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ABSTRACT

Arthrobacters exhibit a dimorphic growth cycle 
where exponential phase cells appear as irregular 
bacilli and stationary phase cells as cocci. 
Arthrobacter globiformis was found to form myceloids 
when subjected to osmotic stress. Addition of known 
osmoprotective compounds did not relieve this effect. 
Since myceloid formation may result from altered 
penicillin-binding proteins (PBPs), PBP profiles of 
stressed and unstressed A. globiformis were studied. 
Eight PBPs were identified, ranging in molecular mass 
from 91,000 to 30,000 daltons. Myceloids appeared to 
lack PBP 2a (84 kD) and PBP 2b (82 kD) in all growth 
conditions. The myceloids were 12-20 times more 
sensitive to beta-lactam antibiotics than the normal 
bacteria and 320 times more resistant to streptomycin. 
Myceloids were more sensitive to heat than the coccal 
forms and more resistant to long term starvation in a 
buffer lacking a nitrogen source. These results 
indicate that myceloid formation in A. globiformis may 
result from the altered synthesis of specific PBPs.
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CHAPTER 1

GENERAL INTRODUCTION

Arthrobacters thrive well in desert habitats and 
their characteristic dimorphic life cycle enhances 
their value as a model for morphogenesis. The ability 
of arthrobacters to metabolize a variety of organic 
compounds also gualifies them as a primary candidate in 
bioremediation of desert habitats. Because 
arthrobacters do well in desert habitats, I examined 
the characteristics of Arthrobacter globiformis under 
osmotic stress in this project.

1.1 General characteristics of arthrobacters
Arthrobacters belong to the family 

Corynebacteriaceae (Breed et al. 1957). They are 
closely related to the other coryneform genera 
Aureobacterium, Cellulomonas, Curtobacterium and 
Microbacterium, and more distantly related to the genus 
Brevibacterium (Jones & Keddie 1992). According to 16S 
rRNA cataloging (Stackebrandt et al. 1980; Stackebrandt 
and Woese 1981), arthrobacters belong to the high GC 
"actinomycete" branch of Gram positive eubacteria (Fig.



1.1). They have a 59-70 mol% G+C content in their DNA 
and are obligate aerobes with an optimum growth 
temperature of 25-30 0 C (Keddie et al. 1986). 
Arthrobacters are chemoheterotrophs and metabolize a 
wide variety of organic compounds (Stevenson 1967; 
Hagedorn & Holt 1975b). Arthrobacter globiformis (ATCC 
8010) is the type species and the type strain of the 
genus Arthrobacter (Conn & Dimmick 1947).

The characteristic feature of the arthrobacter 
life cycle (Fig. 1.2) is a changing cell morphology. 
During early exponential phase, the bacteria are rod 
shaped, but sometimes have irregular rudimentary 
branches. These branched forms are called myceloids. 
During exponential growth, the bacteria often appear 
"V" shaped, and are bent or curved at sites of 
septation. Arthrobacters later become small cocci 0.6-
1.0 pm in diameter as growth ceases and they enter 
stationary phase. The ability of arthrobacters to 
undergo morphogenesis makes them a valuable tool in 
understanding the processes that determine the shape of 
a bacterium. Both the rod and the coccal forms are Gram 
positive in wall structure but readily lose color and 
often show Gram negative staining characteristics.

Corynebacteria are an economically important group 
in the commercial production of amino acids and 
nucleotides. Arthrobacters in particular are important
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in that they represent the most dominant species of 
soil bacteria encountered on aerobic plate counts 
(Hagedorn & Holt 1975b; Holm & Jensen 1972; Lowe & Gray 
1972; Mulder & Antheunisse 1963; Skyring & Quadling 
1969; Soumare & Blondeau 1972). Arthrobacter habitats 
include, but are not limited to, subterranean cave 
silts (Gounot 1967), glacier silts (Moiroud & Gounot 
1969), 200-700 m deep oil brines (Iizuka & Komagata 
1965), aerial plant surfaces (Wallace & Gates 1986; 
Forni et al. 1989,1990; Petro & Gates 1987) and sea 
water (Sieburth 1964).

Arthrobacters are also very resistant to drying 
(Boylen 1973; Chen & Alexander 1973; Labeda et al.
1976; Mulder & Antheunisse 1963; Robinson et al. 1965) 
and can withstand long periods of starvation (Boylen & 
Ensign 1970; Boylen & Mulks 1978; Zevenhuizen 1966).
A. crvstallopoietes in particular is resistant to total 
starvation and extreme desiccation. Exponential phase 
rods and cocci of A. crvstallopoietes have remained 
fully viable for a period up to one month, and the 
viability dropped only by 35% in 60 days (Ensign 1970). 
No difference in viability was found between the rod 
and the coccal forms, and both could remain viable up 
to 6 months in sand (Boylen 197 3). These properties may 
qualify them as suitable candidates for the 
bioremediation of desert soils.



1.2 Effects of Osmotic Stress on Bacteria
Bacteria are subject to two types of osmotic 

stress. Hyperosmotic stress leads to efflux of water 
while hypoosmotic stress leads to influx of water. 
Hypoosmotic stress generally leads to a minor increase 
of the cytoplasmic volume (Stock et al. 1977). This is 
because bacterial cell walls can withstand pressures up 
to 10 MPa (Carpita 1985). Hyperosmotic stress can 
result from either desiccation or high salt 
concentrations. It usually results in a decrease in the 
cytoplasmic volume or plasmolysis. The result is 
reduced water activity (Csonka 1989), which in turn may 
affect functions which are essential to the cell such 
as deoxyribonucleic acid (DNA) replication (Meury 1988) 
and nutrient uptake (Roth et al. 1985a; 1985b; Walter 
et al. 1987). Hyperosmotic stress may also lead to an 
increase in the levels of specific enzyme inhibitors 
(Atkinson 1969) and have a toxic effect on the cell by 
the elevation of ion concentrations (Walderhaug et al. 
1987). Increased adenosine triphosphate (ATP) levels 
have been reported to occur with sudden plasmolysis 
(Ohwada & Sagisaka 1988) and this is thought to result 
from impaired macromolecular biosynthesis (Csonka
1989) .

Organisms undergoing hyperosmotic stress generally 
increase the concentrations of specific solutes, which



help them counteract cytoplasmic volume changes. These 
solutes are termed compatible solutes (Fig.1.3), and 
include 1) K+ ions; 2) amino acids such as glutamate, 
glutamine, proline, gamma aminobutyrate, and alanine;
3) glycine betaine and other fully N-methylated amino 
acid derivatives; and 4) sugars like trehalose («><-D- 
glucopyranosyl-p<-D-glucopyranoside). Compatible solutes 
may be accumulated by de novo synthesis or by transport 
into the cell from the culture medium (Csonka 1989).

Only a few studies have investigated the osmotic 
responses of corynebacteria. Brevibacterium 
ammoniagenes accumulates pipecolic acid at high 
osmolalities (Gouesbet et al. 1992) while 
Brevibacterium linens accumulates ectoine (Bernard et 
al. 1993). There are similarities between bacteria and 
plants in their response to osmotic stress and 
accumulation of pipecolic acid in these bacteria is one 
example (Goas et al. 1976; Stewart & Larher 1980; 
Gouesbet et al. 1992).

1.3 Morphogenesis of bacteria
The idea that biological form reflects the action 

of physical forces was first stated by D'Arcy Thompson 
(1917) in the book, On Growth and Form. There he 
expresses his point of view: "The form...of any portion 
of matter, whether it be living or dead, and the
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changes of form which are apparent in its movements and 
its growth, may in all cases alike be described as due 
to the action of force. In short, the form of an object 
is a 'diagram of forces' in this sense, at least, that 
from it we can judge or deduce the forces that are 
acting or have acted upon it" (Thompson 1961; Harold 
1990) .

A principle of morphogenesis which is widely 
accepted by most biologists is self assembly. This 
principle states that the shape of a structure is 
specified by the spontaneous association of its 
component parts. At the subcellular level, the assembly 
of subunits determines the shape of a structure. A few 
examples of this principle are the formation of 
bacterial flagella and ribosomes, the creation of 
nuclear membrane pore complexes, the assembly of 
microtubules from tubulin monomers, and the assembly of 
microfilaments from actin (Harold 1990).

Another principle of morphogenesis is that in 
objects governed by surface tension, shape is achieved 
by minimizing surface area compared to volume (Thompson 
1961). Biological forms are compatible with this law of 
minimal surface area (Harold 1990). Although the 
surface tension of biological membranes is insufficient 
to determine shape (Thompson 1961), membrane tension, 
which arises due to contractile forces acting on the
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cell, operate to shrink the surface area. The cell thus 
obtains the minimum surface area for any given volume 
and mechanical constraints (Harold 1990).

The shape of a bacterial cell cannot be accounted 
for by the model of self-assembly (Daneo-Moore & 
Shockman 1977; Henning 1975; Shockman et al. 1974). The 
shape of a bacterial cell is determined by its cell 
wall, which is not a self-assembling structure. Rather, 
the wall is a stress-bearing fabric whose form is 
determined by how the wall is laid down as cells grow 
and divide (Koch 1988a). The surface stress theory 
proposes that hydrostatic pressure, about 0.5 MPa in a 
Gram negative cell and about 2 MPa in a Gram positive 
cell, provides the driving force for surface 
enlargement. This force counteracts the cohesive forces 
that hold the components of the wall together as a 
unit. Cells respond to these forces by controlled 
expansion of the wall at particular sites (Koch 1983; 
1985; 1988b). The shape of bacterial cells is 
determined by this surface expansion within the 
limitations of the law of minimal surface area (Harold
1990). This can be expressed mathematically using the 
energy conservation equation: PdV=TdA, where P and V 
are gas pressure and volume, respectively; dA is the 
newly-made surface area and T the surface tension. This 
relationship is true for bacterial cells as well as
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soap bubbles. The surface stress theory applies to the 
rod and the coccal forms of bacteria (Koch 1983; 1985) 
and also to prosthecate bacteria (Koch 1988a). Although 
this model does not provide any information in the 
molecular sense, it is the only one that has so far 
been able to explain how the bacteria obtain their 
form.

The efflux of water under elevated osmolalities 
results in a decrease of turgor pressure that acts on 
the wall (Csonka 1989). According to the surface stress 
theory the decrease in the turgor pressure in a growing 
cell should affect the expansion of the surface area at 
particular sites. This would be expected to give rise 
to different morphological forms, while maintaining the 
minimum surface area to the cell volume.

1.4 Structure of the Bacterial Cell Wall
The Gram positive cell wall (Fig. 1.4A) is a 20-50 

nm thick amorphous layer which consists mainly of 
peptidoglycan (murein) and one or more non- 
peptidoglycan polymers like teichoic acids, 
teichuronic acids, and/or other polysaccharides 
(Shockman & Barrett 1983). The cell wall provides the 
characteristic shape (rod, coccal, etc.) to the species 
and can be isolated from mechanically disrupted 
bacteria as an insoluble residue true to its
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characteristic morphology (Daneo-moore & Shockman 1977; 
Ghuysen 1977; Ghuysen & Shockman 1973; Rogers et al. 
1980; Tipper & Wright 1979). The Gram positive cell 
wall is made up of several layers of peptidoglycan.

The typical Gram negative cell wall (Fig. 1.4B) 
consists of a relatively thin peptidoglycan (murein) 
sacculus and a bilayered outer membrane. The outer 
layer of this outer membrane contains a unique 
substance called bacterial lipopolysaccharide (LPS) not 
found elsewhere in nature. The LPS is made of three 
components, 1) a glycolipid called lipid A, 2) a core 
usually containing keto-deoxyoctonoic acid and a 
heptose, and 3) the 0 antigen made of long carbohydrate 
chains which is unique to each bacterial strain. The 
inner layer of the outer membrane resembles the 
cytoplasmic membrane.

The insoluble peptidoglycan polymer (Fig. 1.5) is 
made of repeating carbohydrate units, namely, N- 
acetylglucosamine (NAG) and N-acetylmuramic acid (NAM). 
These are linked to each other by beta-1,4 linkages.
The NAM units are linked by a tetrapeptide, which 
usually consists of L-alanine, D-glutamic acid, a 
dibasic amino acid, and D-alanine. In most Gram- 
negative bacteria and a few Gram-positive bacteria, the 
dibasic amino acid is meso-diaminopimelic acid. In 
Gram-positive cells such as Streptococcus and in
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arthrobacters, the dibasic amino acid is lysine 
(Fiedler et al. 1970; Yamada & Komagata 1972b?
Schleifer & Handler 1972? Keddie & Cure 1977; Keddie & 
Cure 1978) . The cell wall structure gains mechanical 
strength due both to the cross-links between the third 
and fourth amino acids of the adjacent tetrapeptides, 
to the layered sheet configuration of the alternating D 
and L amino acids in the tetrapeptide and the beta-1,4 
linkages between the repeating NAM and NAG units.

There are three phases in the assembly of the 
bacterial cell wall (Fig. 1.6). These occur in the 
cytoplasm, in the membrane, and in the environment 
external to the membrane. The UDP-N-acetylmuramyl- 
pentapeptide is synthesized in the cytoplasm by a 
series of addition reactions. The NAM-pentapeptide is 
then transferred to a lipid carrier
(undecaprenylpyrophosphate) in the cytoplasmic membrane 
which is able to carry the NAM-pentapeptide through the 
phospholipid membrane. At this stage, the NAM-1ipid 
complex is linked to UDP-N-acetylglucosamine. Further 
modifications of the polymer may take place depending 
on the bacterium. Polymerization of the disacharide- 
peptide units occurs by a headward elongation mechanism 
(Lipmann 1968) and is thought to occur on the exterior 
face of the cytoplasmic membrane (Ward & Perkins 1973). 
The new glycan chains are inserted to the pre-existing
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cell wall by transglycosylation and transpeptidation. A 
terminal D-alanine is cleaved by D-alanine 
carboxypeptidase either from the new or pre existing 
units (Hammes 1976; Hammes & Kandler 1976). The 
transpeptidation reaction is inhibited by beta-lactam 
antibiotics, while transglycosylation is sensitive to 
moenomycin and related drugs (Ishino & Matsuhashi 1981; 
Ishino et al. 1980; Van & Van 1980).

1.5 Penicillin Binding Proteins (PBPs) of Bacteria
Beta-lactam antibiotics like penicillin (Fig. 1.7) 

are used against a variety of bacterial infections due 
to their low toxicity to humans. The target of 
penicillin activity is the bacterial cell wall (Duguid 
1946; Gardner 1940; 1945). The enzymes responsible for 
catalyzing reactions involved in the extension, cross- 
linking, and septation of the peptidoglycan sacculus 
bind penicillin covalently and are defined as 
penicillin-binding proteins (PBPs). The antibacterial 
effect of the beta-lactams is due to their ability to 
bind to these PBPs, thus inhibiting their activity in 
cell wall formation.

PBPs can be detected by incubation of bacterial 
membranes with [14C]penicillin G or [3H]penicillin G 
followed by sodium dodecylsulfate (SDS) polyacrylamide 
gel electrophoresis and autoradiography (eg. Blumberg &
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Strominger 1972; Spratt 1977). PBPs usually have 
apparent molecular masses of 140,000-40,000 (Waxman & 
Strominger 1983) although molecular masses around
25,000 also have been reported (Dusart et al. 1981). 
There are two categories of PBPs: relatively abundant 
low molecular PBPs (40,000-50,000), which are less 
sensitive to penicillins, and less abundant high 
molecular weight PBPs (60,000-140,000), which are more 
sensitive to penicillins. All eubacteria studied 
contains 3-8 PBPs (Waxman & Strominger 1983). The PBPs 
can be purified by covalent penicillin affinity 
chromatography (Blumberg & Strominger 1972). The low 
molecular mass PBPs (CPases) catalyze nucleophilic 
attacks at the carbonyl carbon of the D-alanine residue 
of cell wall pentapeptide-like compounds.

1.6 PBPs of Escherichia coli
The Gram-negative bacterium Escherichia coli has 

served as a model for the study of PBPs. There are six 
PBPs consistently found in the envelope of E. coli; two 
others are less frequently detected (Spratt 1977). The 
properties of these PBPs are summarized in Table 1.1. 
Spratt (1975) showed that the varying effects of beta- 
lactam antibiotics on cell division, cell elongation, 
and cell shape in Eh. coli were due to three distinct 
PBPs. A PBP with an apparent molecular mass of 66,000
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(PBP 2) was responsible for the production of ovoid 
cells as a result of beta-lactam treatment. Cell 
division was affected by beta-lactams that 
preferentially bound to a protein with a molecular mass 
of 60,000 (PBP 3). Cell elongation was preferentially 
inhibited and the cells were lysed by preferential 
binding of penicillin to a protein with an apparent 
molecular mass of 91,000 (PBP 1). All three PBPs are 
peptidoglycan synthetases which act together in 
catalyzing the duplication of the peptidoglycan network 
(Nakagawa et al. 1982; Ishino et al. 1980; 1981; 1982; 
Matsuhashi et al. 1981; 1982).

PBP 2 is thought to be a bifunctional enzyme 
catalyzing both transglycolase and transpeptidase 
reactions (Ishino et al. 1986). PBP 1A, PBP IB, and PBP 
3 also appear to be bifunctional (Matsuhashi et al. 
1981; 1982; Ishino et al. 1980; 1981). PBP 4 has a 
secondary transpeptidase activity in peptidoglycan 
biosynthesis (Curtis et al. 1980; dePedro & Schwarz 
1981) as well as carboxypeptidase activity and 
endopeptidase activities (Park 1987b). PBP 5 & 6 both 
show carboxypeptidase activity. PBP 5 is also viewed as 
a cell-shape gene (Waxman & Strominger 1983), since 
overproduction of this D-alanine CPase leads to the 
production of osmotically stable ovoid cells. These 
cells show abnormal peptidoglycan biosynthesis similar
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to that obtained after inactivating PBP 2 (Markiewicz 
et al. 1982). PBP 7 of E. coli is a protein with an 
apparent molecular mass of 32,000 but its function is 
unknown.

Genes for most of the reactions needed for 
peptidoglycan synthesis in E. coli are known (Begg & 
Donachie 1985), as well as genes required for the 
maintenance of its rod shape (Donachie et al. 1984). 
Genetic analysis shows that there are at least 12 genes 
in E. coli specifically required for cell division 
(Donachie & Robinson 1987; Holland & Darby 1976; Reeve 
et al. 1970; Ricard & Hirota 1973; Slater & Schaechtler
1974). Temperature-sensitive mutants at these loci (fts 
A-H) stop division and grow into long filaments when 
transferred to restrictive temperatures (Spratt 1977). 
Numerous chemicals also result in filamentation of 
bacterial cells; two that act on division are 
penicillins and cephalosporins (Blumberg & Strominger 
1974; Burdett & Murray 1974; Schwarz et al. 1969;
Spratt 1975). The isolation of mutants (sp258, sp63) 
with thermolabile PBP 3 has indicated that PBP 3 is 
specifically required for division in E. coli. It is 
the target at which penicillin interacts to inhibit 
cell division and cause filamentation (Spratt 1977).
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1.7 Effects of beta-lactams on Escherichia coli

In Escherichia coli, the two growth processes of 
septation and elongation are differentiated by the 
response of the cells to various doses of penicillin 
(Schwarz et al. 1969). Low doses (10-50 U/ml) of 
penicillin block cell division and causes the formation 
of bulges in the middle of the cell where the cross 
wall forms. Bulge formation is thought to be due to the 
action of hydrolytic enzymes (autolysins) after the 
transpeptidation reaction is inhibited (Schwarz et al. 
1969). Here, the elongation of the cell continues, but 
higher doses of penicillin (100 U/ml or more) totally 
inhibit mucopeptide synthesis.

Mecillinam (6-b aminodinopenicillanic acid), also 
designated FL 1060 (Lund & Tybring 197 2), acts on a 
target to affect the shape of E. coli. and at its 
lowest concentrations, causes the conversion of E. coli 
rods into ovoid shaped cells (Lund & Tybring 1972; Park 
& Burman 1973). Normally, low concentrations of beta- 
lactam antibiotics specifically inhibit cell division 
in E. coli. The atypical effects of FL 1060 may be due 
to competition between a minor PBP or inhibition of an 
enzyme in the cell envelope (Spratt & Pardee 1975). The 
penicillin precursor 6-aminopenicillanic acid (6-APA) 
also results in the production of ovoid cells, but does 
not specifically inhibit cell division like most other
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beta-lactam antibiotics.

Addition of FL 1060 to exponential and synchronous 
cultures of E. coli B/r results in a block of a very 
early event of the cell cycle (beginning of the C 
period). This event seems to be essential for normal 
cell elongation in the rod configuration (James et al.
1975). In E. coli. a FL 1060-sensitive event initiates 
the onset of the C period of the cell division cycle 
and is responsible for the normal cell elongation. 
Mecillinam is considered an ideal probe for cell shape 
since it doesn't initially inhibit cell division or 
cause typical penicillin lysis. Table 1.2 summarizes 
the effects of beta-lactam antibiotics on growth of E. 
coli (Spratt 1975).

1.8 PBPs of Gram positive bacteria
PBPs of a few Gram positive bacteria have been 

studied. The first mechanism to explain the effect of 
penicillin was that inhibition of the transpeptidase 
reaction led to absence of cross linkages in newly- 
formed peptidoglycan of Staphylococcus aureus (Tipper & 
Strominger 1965; Wise & Park 1965).

The susceptibility of Streptococcus faecium to 
penicillin is heavily influenced by the physiological 
status of the cells (Fontana et al. 1983). S. faecium 
shows different PBP labeling patterns at different
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temperatures when grown in a chemically defined medium. 
With the fastest growing cells, the target for 
penicillin most likely to be responsible for growth 
inhibition is PBP 3 (Fontana et al. 1980).

Some Streptococcus species, like S. pyogenes. S. 
pneumoniae, and S. mitis, are sensitive to beta-lactams 
(Masten 1972; Moellering & Krogstad 1979; Faber et al. 
1983) but other species and strains are resistant 
(e.g., Escribano et al. 1990; Goldfarb et aJL. 1984). 
Penicillin resistant streptococci show alterations in 
the binding affinity of one or more PBPs (Faber et al. 
1983; Massida & Moore 1988; Zighelboim & Tomasz 1981; 
Zeto & Moore 1988). S. mitis (NCTC 10712) has 7 PBPs 
with apparent molecular masses of 49-82 kDa. The PBP 
profiles of penicillin-susceptible and penicillin- 
resistant S. mitis vary even at the same minimal 
inhibitory concentrations (Potgieter et al. 1992). In 
transformation experiments with penicillin-resistant 
clinical isolates of S. mitis and S. pneumoniae as the 
donors and S. mitis (NCTC 10712) as the recipient, 
transformants with a minimum inhibitory concentration 
33 times higher than the original were obtained. These 
transformants showed reduced penicillin-binding 
affinities of PBPs 2, 3, 4, 5, and 6 depending on the 
donor DNA. The level of resistance and PBP 3 (74 kDa) 
was altered in the transformants with the increased
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resistance (Potgieter et al. 1992).

Hartman and Tomasz (1984) showed that methicillin 
resistance in Staphylococcus aureus is also associated 
with alterations in PBPs. Methicillin resistance was 
shown to be pH dependent. A PBP (PBP-2a, molecular mass
78,000 daltons) was detected in methicillin resistant 
staphylococci grown at pH 7.0 while it was absent in 
cultures grown at a pH of 5.2, supporting the fact that 
PBP functions vary depending on the physiological 
status of the cell.

In the following chapters myceloid cell formation 
in Arthrobacter globiformis will be discussed in terms 
of their penicillin-binding protein (PBP) profiles and 
sensitivity to extreme conditions. Chapter 2 will look 
at the phenomenon of myceloid formation during osmotic 
stress; chapter 3 at the PBP profile of A. globiformis 
and how it varies in myceloids and normal cells; 
chapter 4 at the difference in sensitivity of the 
myceloids and the normal cells to heat, starvation, and 
desiccation. This will be followed by a general 
discussion of the project as a whole, and a general 
bibliography.
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2.1 ABSTRACT

Arthrobacter globiformis was grown in a semi
defined liquid medium containing added solutes to 
determine the effects of osmotic stress on its 
reproduction and cell morphology. There was a 
progressive reduction in the specific growth rate 
during exponential phase as the concentration of NaCl 
was increased, although the final yields of the 
cultures during stationary phase were not affected. 
Clusters of branching myceloid cells rather than the 
typical bacillary forms predominated during exponential 
phase. These myceloids did not undergo complete 
septation and persisted into stationary phase. Similar 
responses were observed with potassium sulfate as the 
exogenous solute but less dramatic morphological 
effects were found with added polyethylene glycol or 
sucrose. The myceloids formed in response to osmotic 
stress could not be disrupted mechanically but were 
more sensitive than normal cells to lysozyme, 
particularly during stationary phase. Addition of 
osmoprotective compounds such as proline, glutamate, 
glycine betaine, or trehalose to the growth medium did 
not significantly relieve the effects of osmotic stress 
on growth rate or morphology. A. simplex also formed 
myceloid cells during osmotic stress but A. 
crvstallopoietes did not. These results indicate
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arthrobacters exhibit characteristic responses to 
osmotic stress and suggest these bacteria may contain 
novel osmoprotective compounds.

2.2 INTRODUCTION
Bacteria of the genus Arthrobacter have been found 

in many different terrestrial habitats (Hagedorn & Holt 
1975a; Vollmer et al. 1977; Keddie & Jones 1987;
Shivaj i et al. 1989). These aerobic chemoheterotrophs 
can metabolize a wide range of organic compounds 
(Stevenson 1967; Hagedorn & Holt 1975b), including 
herbicides (Pipke & Amrhein 1988), chlorinated phenols 
and alkanes (Stanlake & Finn 1982; Scholtz et al.
1987), and complex aromatic compounds (Tomasek & 
Crawford 1986). Because arthrobacters are also 
resistant to dessication (Boylen 1973) and long-term 
starvation (Boylen & Ensign 1970), they may be 
particularly useful for bioremediation in dry desert 
soils.

A characteristic feature of arthrobacters is a 
dimorphic growth cycle in which exponential-phase cells 
appear as irregular bacilli and stationary-phase cells 
as cocci (Cure & Keddie 1973; Clark 1975). Both forms 
have a Gram-positive wall structure but are readily 
decolorized during the Gram-staining reaction and often 
appear to be Gram-negative (Keddie & Jones 1987) . When



nongrowing cocci are added to fresh medium, a rod
shaped structure emerges from each cell and elongates. 
The bacteria then may go through a transient myceloid 
stage in which some rudimentary branching is observed. 
More commonly, the cells directly enter exponential 
phase where they grow as V-shaped bacilli bent at the 
division septa. Coccal cells are formed again when the
bacteria cease growth and go into stationary phase
(Sundman 1958; Stevenson 1961; Duxbury & Gray 1977).

This dimorphic cycle is under genetic control 
(Achberger & Kolenbrander 1978) but can be modified by 
nutritional conditions in two ways. First, A. 
crvstallopoietes. but not most other species, can be 
grown through exponential phase as cocci in a minimal 
medium with glucose as the carbon source. The bacillary 
form can be restored by addition of specific amino
acids or other carbon sources to this medium (Ensign &
Wolfe 1964; Lucas & Clark 1975). A. crvstallopoietes 
also exhibits coccal growth in carbon-limited chemostat 
cultures, suggesting that morphology is determined in 
part by growth rate (Luscombe & Gray 1971). Second, 
when arthrobacters are deprived of nutrients such as 
biotin (Chan et al. 1973), vitamin B12 (Chaplin & 
Lochhead 1976), or manganese (Germida & Casida 1980), 
stable myceloid cells are formed during exponential 
phase and persist into stationary phase. Morphology
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thus is also determined by the availability of 
essential nutrients.

We have begun to study the effects of osmotic 
stress on the morphology and metabolism of 
arthrobacters with the long-term goal of constructing 
strains with enhanced biodegradative properties in 
desert habitats. Although the physiology of 
osmoregulation in Gram-negative bacteria such as 
Escherichia coli and Salmonella typhimurium has been 
investigated in detail (Csonka 1989), less is known 
about the effects of osmotic stress on Gram-positive 
bacteria and no prior studies on arthrobacters have 
been published. Measures (1975) reported that members 
of the generic groups Bacillus. Lactobacillus. 
Micrococcus. Staphylococcus. and Streptococcus 
contained elevated amounts of L-proline, s'-aminobutyric 
acid, and L-glutamate when grown in high concentrations 
of NaCl. Killham & Firestone (1984) later showed that 
in Streptomvces griseus. the cellular pools of proline, 
glutamine, and alanine rose as a result of increased 
biosynthesis during growth in the presence of NaCl. 
However, if proline was added to the medium, its 
biosynthesis was reduced and proline transport was 
increased instead. Whatmore et al. (1990) found that 
the cellular concentrations of potassium ions and 
proline in Bacillus subtilis increased dramatically
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during osmotic stress, although proline synthesis was 
suppressed in the presence of glycine betaine. In none 
of these cases was an alteration in cell morphology 
observed as a consequence of osmotic stress. In this 
paper, we report that growth in the presence of 
exogenous solutes has a dramatic effect on the 
morphology of Arthrobacter globiformis.

2.2 MATERIALS AND METHODS

Bacteria and growth conditions
Arthrobacter globiformis (ATCC 8010), A. simplex (ATCC 
6946), and A. crvstallopoietes (ATCC 15481) were 
obtained from the American Type Culture Collection and 
maintained on Tryptic Soy Agar (Difco Laboratories) 
supplemented with 0.2% (w/v) yeast extract (TSYE agar). 
The bacteria were routinely grown in 3 00 ml 
nephelometer flasks containing 25 ml of liquid minimal 
medium E supplemented with 0.1% (w/v) yeast extract and 
0.1% (w/v) D-glucose (EYG medium, Cure & Keddie 1973). 
Solutes and other compounds were added to this medium 
as specified in each experiment. In some cases, the 
yeast extract was omitted from the EYG medium to make 
EG medium. Cultures were incubated at 3 0°C in a Lab- 
Line environmental chamber and shaken at 2 50 rpm. 
Optical densities were determined with a Klett-
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Suitimerson colorimeter (no. 66 filter) or with a 
Shimadzu UV-160 UV-visible spectrophotometer.

Photomicrography
Bacteria from liquid exponential- or stationary-phase 
cultures were spotted on glass slides coated with a 
thin layer of the same type of medium in which they had 
been grown that had been solidified with 1% (w/v) agar. 
The sample was covered with a glass coverslip and 
photographed through a 100X oil immersion objective 
with a Nikon Optiphot phase contrast microscope fitted 
with a UFX-II photographic system. Kodak Technical Pan 
black and white film (ASA 100) was used in all cases.

Other assays
Bacterial dry weights were determined by filtering 10 
ml samples of cultures through tared nitrocellulose 
filters (Millipore Corporation, Type HA). The filters 
then were dried to a constant weight in a 37°C oven.
In most cases, filters with 0.45 pm pores were used for 
dry weight determinations, but for one experiment, 
filters with 1.2 pm, 3.0 pm, or 8.0 pm pores were 
employed as well. Viable cell counts were performed by 
serially diluting bacteria in the same medium in which 
they had been grown and by spreading the cell 
suspensions on TSYE agar plates. The colonies were



counted after two days of incubation at 3 0°C. Protein 
concentrations were measured by the method of Lowry et 
al. (1951) using bovine serum albumin (Sigma Chemical 
Company) as a standard.

2.2 RESULTS

Growth and morphology of Arthrobacter globiformis 
during osmotic stress
To study the effects of osmotic stress on A. 
globiformis (ATCC 8010, the bacteria were grown in 
liquid EYG medium containing increasing concentrations 
of NaCl. There was a linear decrease in the specific 
growth rate during exponential phase as the solute 
concentration was raised (Fig.2.1). The arthrobacters 
were quite tolerant of osmotic stress, however, and 
growth occurred even in the presence of 1.5 M NaCl.
The final yields of the cultures in stationary phase 
were not affected by the presence of the added solutes.

When cells from cultures without added NaCl were 
examined by phase-contrast microscopy, bacillary and 
coccal forms typical of Arthrobacter were observed 
during exponential phase and stationary phase, 
respectively (Figs. 2.2A and 2.2B). When bacteria from 
cultures with added NaCl were examined in the same way, 
myceloid cells rather than bacillary forms predominated
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Fig. 2.1 Specific growth rates of A. globiformis 
during osmotic stress. A. globiformis (ATCC 8010) was 
grown at 30°C with continuous aeration in 300 ml 
nephelometer flasks containing 25 ml of liquid EYG 
medium supplemented with different concentrations of 
NaCl. Optical densities were measured periodically 

during exponential phase with a Klett-Summerson 
colorimeter (no. 66 filter), and the specific growth 
rates calculated as u = 0.693/apparent generation time 
in hours.



during exponential phase (Fig. 2.2C). These myceloids 
could be seen at NaCl concentrations as low as 0.3 M 
but were most obvious at 0.6 M or 0.9 M. Higher salt 
concentrations did not alter cell morphology further. 
The myceloid cells had a marked tendency to aggregate 
and often formed clusters containing 10 to 2 0 
organisms. As the bacteria entered stationary phase, 
normal septation did not occur and the clusters of 
myceloids persisted even though the cells became 
smaller (Fig. 2.2D). A. globiformis could be maintained 
in the myceloid form indefinitely by transfer to fresh 
medium containing added NaCl. The formation of myceloid 
cells by A. globiformis was most dramatic in liquid 
medium. While myceloids were sometimes observed after 
growth on EYG agar containing 0.9 M NaCl, most of the 
bacteria appeared normal.

Quantitative effects of myceloid formation
The quantitative values of optical density per mg 

of dry weight and protein content per mg of dry weight 
were compared for bacteria from cultures with or 
without 0.9 M NaCl. There were no significant 
differences between the cultures for either 
exponential- or stationary-phase cells. The number of 
colony forming units per mg of dry weight also was 
similar for exponential-phase bacteria from cultures
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Fig. 2.2 Morphology of A. globiformis during 

osmotic stress. Bacterial cultures were grown as 
described in Fig. 1 to either exponential phase (about 
100 Klett Units) or stationary phase (about 250 Klett 
Units). Panels A and B show exponential-phase and 
stationary-phase cells grown in EYG medium without 
added NaCl; panels C and D show exponential-phase and 

stationary-phase cells grown in EYG medium containing 
0.9 M NaCl. The scale bar in each figure indicates 2



with or without added NaCl, although the variance for 
samples containing myceloids was much greater.
However, the number of colony forming units per mg of 
dry weight decreased from 2.56 x 10 for stationary- 
phase cells from unstressed cultures to 1.99 x 10 for 
stationary-phase cells from cultures containing 0.9 M 
NaCl. This was consistent with the presence of clusters 
of myceloids in the cultures containing added NaCl 
rather than single cocci.

The presence of myeloids in cultures with 0.9 M 
NaCl was also reflected in the filtration properties of 
the cells. This was demonstrated by measuring the dry 
weights of the bacteria after filtration through 
nitrocellulose filters with different pore sizes. When 
exponential-phase bacteria from stressed and unstressed 
cultures were passed through filters with 0.45 pm,
1.2 pm, 3.0 pm, or 8.0 pm pores, there was little 
decrease in dry weight as the pore size increased. When 
stationary-phase cocci from cultures without added NaCl 
were passed through these filters, the dry weight on 
filters with 8.0 pm pores was only 11% of that found on 
filters with 0.4 5 pm pores. By contrast, when 
stationary-phase myceloids from cultures containing 
0.9 M NaCl were passed through these filters, the dry 
weight on filters with 8.0 pm pores was 87% of that 
found on filters with 0.45 pm pores. This was again
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consistent with the formation of larger aggregates 
during osmotic stress.

Characteristics of myceloids
To determine whether the myceloid cells were 
permanently altered in morphology, A. globiformis was 
grown to exponential phase in liquid EYG medium 
containing 0.9 M NaCl, harvested by centrifugation, 
washed, and resuspended in EYG medium lacking added 
NaCl. There was no immediate change in morphology, 
indicating that the myceloids were not simply 
transiently-deformed bacteria. However, as A. 
globiformis grew in EYG medium without added NaCl, the 
myceloid cells gradually divided and separated. When 
the culture reached stationary phase, almost all of the 
bacteria exhibited the coccal morphology typical of 
untreated cells.

The myceloids formed in cultures containing added 
NaCl were readily decolorized during Gram-staining 
reactions and showed the same pink color as the 
bacillary and coccal forms. However, both the myceloids 
and the normal cells gave a negative result in the KOH 
test (Gregersen 1978), indicating they have a Gram- 
positive wall structure. The stress-induced mycleoids 
could not be disrupted by mechanical agitation with a 
Vortex mixer or a "bead-breaker." They exhibited the
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same sensitivity as unstressed cells to sonication and 
were not degraded by treatment with a nonspecific 
protease.

However, the myceloids formed in response to 
osmotic stress were more susceptible than normal cells 
to degradation by lysozyme, particularly during 
stationary phase (Fig. 2.3). Sensitivity was 
demonstrated by the formation of spherical protoplasts 
that underwent lysis to produce a decrease in optical 
density. Exponential-phase cells were quite sensitive 
to lysozyme treatment and the optical density decreased 
more than 60% in one hour. Bacteria grown in EYG medium 
containing 0.9 M NaCl were somewhat more sensitive to 
lysozyme treatment than those from unstressed cultures. 
Stationary-phase cells from EYG medium without added 
NaCl were quite resistant to lysozyme treatment. On the 
other hand, stationary-phase myceloids from EYG medium 
containing 0.9 M NaCl remained sensitive to the enzyme 
as indicated by a marked decrease in optical density.

Effects of growth conditions on myceloid formation
Arthrobacters have been previously found to form 
myceloids when deprived of nutrients such as biotin 
(Chan et al. 1973), vitamin B12 (Chaplin & Lochhead
1976), or manganese (Germida & Casida 1980). To 
determine whether the formation of myceloids during
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Fig. 2.3 Sensitivity of A. globiformis to 
lysozyme. Bacteria were grown as described in Fig. 2.1 
to exponential phase (about 100 Klett Units) or 
stationary phase (about 250 Klett Units) in EYG medium 
or EYG medium containing 0.9 M NaCl. The bacteria were 
harvested by centrifugation and suspended in EYG medium 
containing 0.9 M NaCl and 1 mg/ml of lysozyme (Sigma). 
The suspensions then were incubated at 30°C and the 
optical densities determined periodically at 420 nm in 
a Shimadzu UV-visible spectrophotometer. The figure 
shows the results for exponential-phase cells from EYG 
medium without added NaCl (©), stationary-phase cells 
from EYG medium without added NaCl (O), exponential- 
phase cells from EYG medium containing 0.9 M NaCl 
(A.), and stationary-phase cells from EYG medium 
containing 0.9 M NaCl (A).
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osmotic stress was due to a limitation of any of these 
compounds, the bacteria were grown in EYG media 
containing 0.9 M NaCl and 1000-fold additions of each 
these nutrients. Myceloid cells again were formed 
during exponential phase and persisted into stationary 
phase.

To test whether chemicals that act as 
osmoprotectants in other bacteria (Csonka 1989) could 
relieve the effects of osmotic stress on A. 
globiformis. bacteria were grown in liquid EYG media 
containing 0.9 M NaCl and 10 mM L-proline, 10 mM L- 
glutamate, 10 mM L-glutamine, 10 mM glycine betaine, 10 
mM choline, 10 mM trehalose, or 10 mM 'jf-aminobutyric 
acid. None of these supplements increased the growth 
rate of the bacteria significantly or prevented the 
formation of myceloid cells during exponential phase 
(Fig. 2.4A). However, cells grown in the presence of 
proline or glutamate did show partial septation in 
stationary phase (Fig. 2.4B). The myceloid cells began 
to divide so that chains and clusters of cocci were 
gradually formed over the next 2-3 days; single cocci 
were occasionally observed. Similar but less dramatic 
effects were found in cultures containing choline or 
trehalose.

Because the EYG medium used in the preceding 
studies contained yeast extract as a possible source of



44

B

I c.

$  *>

*s

Fig. 2.4 Effect of exogenous proline on the 
morphology of A. globiformis during osmotic stress. 
Bacteria were grown to exponential phase (Panel A) or 
stationary phase (Panel B) in EYG medium containing 0.9 
M NaCl and 10 mM L-proline. The scale bar in each 
figure indicates 2 jam. Control cultures in EYG medium 
lacking added NaCl but containing 10 mM L-proline 
exhibited the same morphologies as shown in Figs. 2.2A 
and 2.2B.
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osmoprotective compounds, the experiments were repeated 
with a similar medium lacking yeast extract (EG 
medium). Bacteria grown in EG medium without added NaCl 
exhibited the typical arthrobacter morphologies shown 
in Figs. 2.2A and 2.2B. Bacteria grown in EG medium 
containing 0.9 M NaCl formed very well-defined 
myceloids during exponential phase which persisted into 
stationary phase. Again, however, addition of proline, 
glycine betaine, trehalose, and other osmoprotective 
compounds did not prevent the formation of myceloid 
cells.

Since the myceloids formed in response to osmotic 
stress showed an increased sensitivity to lysozyme, 
experiments were also performed in which amino acids 
found in the peptidoglycan (Keddie & Jones 1987) were 
added to cultures containing 0.9 M NaCl. D-alanine, D- 
glutamate, or L-lysine had no effect on the growth rate 
of the bacteria and did not prevent the formation of 
myceloids during exponential phase. After 5 days of 
incubation, however, the myceloids from cultures 
containing D-alanine or L-lysine showed partial 
septation and chains or clusters of coccal cells were 
observed similar to those shown in Fig. 2.4B.

Finally, to see whether these effects of osmotic 
stress were specific to NaCl, similar experiments were 
conducted with potassium sulfate, polyethylene glycol



(average molecular weight of 2 00), and sucrose as the 
exogenous solute. A progressive decrease in growth rate 
occurred in liquid cultures with increasing 
concentrations of each solute. With potassium sulfate, 
the morphological response was very similar to that 
observed with NaCl. Myceloid cells were formed during 
exponential phase and persisted into stationary phase. 
However, growth was not observed at potassium sulfate 
concentrations greater than 0.9 M. With polyethylene 
glycol, bloated or irregular bacilli and cocci were 
observed during exponential phase. No growth occurred 
at concentrations greater than 0.6 M and the bacteria 
seemed particularly sensitive to this compound. With 
sucrose, some elongation and branching were observed 
during exponential phase in the presence of 0.6 to 
0.9 M sucrose; short rods rather than cocci were found 
in stationary phase.

Myceloid formation in other arthrobacters
To determine whether these effects of osmotic stress 
were unique to A. globiformis. similar growth and 
morphology studies were performed with A. simplex (ATCC 
6946) and A. crystallopoietes (ATCC 15481). A. simplex 
showed responses comparable to those of A. globiformis. 
although growth was not observed at NaCl concentrations 
greater than 0.6 M. At 0.3 or 0.6 M NaCl, however,



pronounced myceloid cell formation occurred during 
exponential phase and the bacteria failed to divide as 
they entered stationary phase. On the other hand, A. 
crystallopoietes remained generally rod-shaped 
throughout exponential phase and few myceloids were 
observed. However, the bacteria did not convert to 
cocci as they entered stationary phase and retained a 
bacillary form.

2.5 DISCUSSION

These experiments indicate for the first time that 
exposure of A. globiformis to osmotic stress leads to 
characteristic changes in growth rate and morphology. 
The effects appear to be a general reaction to this 
environmental factor since similar responses were 
observed with different solutes. All of the exogenous 
solutes led to decreased growth rates, but ionic 
solutes produced the most dramatic morphological 
effects. None of the amino acids or other compounds 
tested was found to reverse the morphological changes 
completely. Although A. simplex also formed myceloid 
cells in response to osmotic stress, A. 
crystallopoietes did not. This is consistent with 
previous studies indicating the latter species is quite 
different from other arthrobacters (Lucas & Clark
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1975).
Two aspects of this work warrant further 

investigation. The first concerns the mechanism of 
myceloid formation. Electron micrographs of myceloids 
induced by nutrient limitation indicate they consist of 
chains of cells in which septation is incomplete (Chan 
et al. 1973; Germida & Casida 1980). The myceloid cells 
formed in response to osmotic stress appear to arise in 
the same way, but the relationship between osmotic 
stress and deprivation of biotin, vitamin B12, or 
manganese is not obvious. It is possible myceloid 
formation is an adaptive response to certain 
environmental conditions and these multicellular forms 
have an enhanced chance of survival. The observation 
that the myceloids formed in response to osmotic stress 
were more sensitive to lysozyme treatment than normal 
cells suggests they may be altered in the formation of 
the peptidoglycan layer. Although penicillin-binding 
proteins that might be involved in wall synthesis have 
not been described in arthrobacters, an analysis of 
such proteins and the effects of osmotic stress on 
their synthesis and activity would be very useful. The 
second aspect worth pursuing is the physiology of 
osmoregulation in arthrobacters. The addition of 
proline or other well-characterized osmoprotectants to 
cultures containing added NaCl did not increase the
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growth rate of A. globiformis or prevent the formation 
of myceloid cells. This suggests other osmoprotective 
compounds may be formed endogenously during osmotic 
stress. A complete analysis of the effects of osmotic 
stress on the intracellular solutes of A. globiformis 
by [13C]nuclear magnetic resonance spectroscopy thus 
would be important.

One implication of these experiments is that 
arthrobacter morphology may be useful in monitoring 
osmotic stress in terrestrial habitats. When indigenous 
populations of these bacteria are subjected to this 
condition, they too may form myceloid cells rather than 
bacillary or coccal forms. In situ observations of 
arthrobacters using fluorescently-labelled antibodies 
to surface components (Bohlool & Schmidt 1980) thus may 
document the occurrence of stress in the habitat of 
interest. A second implication of these experiments is 
that formation of myceloid cells in response to osmotic 
stress may affect the use of arthrobacters in 
bioremediation. We have not yet determined whether 
myceloid cells differ qualitatively from the bacillary 
forms in their metabolism. However, the addition of 
exogenous solutes to liquid medium provides a 
convenient system for testing the effects of 
dehydration on metabolic function.
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3.1 ABSTRACT

Bacteria of the genus Arthrobacter exhibit a 
dimorphic growth cycle in which exponential-phase cells 
appear as irregular bacilli and stationary phase cells 
as cocci. Exposure of Arthrobacter globiformis to 
osmotic stress leads to the formation of clusters of 
branching myceloid cells during exponential phase, 
which then persist into stationary phase. To determine 
whether these changes in morphology are related to the 
presence or absence of specific penicillin-binding 
proteins, membrane fractions from unstressed and salt- 
stressed bacteria were exposed to [14C]benzylpenicillin 
and the proteins separated by SDS-polyacrylamide gel 
electrophoresis. Eight penicillin-binding proteins 
(PBPs) were identified, ranging in molecular mass from 
91,000 to 30,000 daltons. The PBP profile varied with 
salt concentration and growth state. During 
exponential phase, normal rods contained PBP lb (90 
kD), lc (89 kD), 2a (84 kD), 2b (82 kD), 4 (51 kD) and 
5 (30 kD) while salt-induced myceloids contained only 
lb (90 kD), lc (89 kD), 4 (51 kD) and 5 (30 kD). During 
stationary phase, normal coccal form had la (91 kD), lb 
(90 kD), lc (89 kD), 2b (82 kD), 3 (63 kD), 4 (51 kD)
and 5 (30 kD) while salt-induced myceloids had PBP la 
(91 kD), lb (90 kD), lc (89 kD), 3 (63 kD), 4 (51 kD) 
and 5 (30 kD). Myceloids arising from osmotic stress
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appeared to lack PBP 2a (84kD) and PBP 2b (82 kD) under 
all growth conditions tested, suggesting these proteins 
are involved in septation. The myceloids were 12 to 2 0 
times more sensitive to beta-lactam antibiotics than 
the normal bacteria, and while there was no difference 
in tetracycline sensitivity, the myceloids were 320 
times more resistant to streptomycin. Mutanolysin, a 
hydrolytic enzyme which degrades peptidoglycan, caused 
breakage of the myceloids into short rods and cocci 
without significant lysis. These results indicate that 
myceloid formation in Â . globiformis may result from 
the altered synthesis of specific penicillin-binding 
proteins.

3.2 INTRODUCTION
Arthrobacters are Gram positive, aerobic 

chemoheterotropic bacteria that are abundant in a wide 
variety of habitats. They thrive well in dry soils, 
qualifying them as candidates for bioremediation of 
contaminated desert sites. Arthrobacters have a 
characteristic rod/coccus life cycle in which the 
exponential phase cells take on an irregular bacillary 
form and the stationary-phase cells a coccal form (Cure 
& Keddie 1973; Clark 1975). When subjected to osmotic 
stress, Arthrobacter globiformis does not divide 
normally. Rather, it forms clusters of long, branching
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myceloids that persist into stationary phase (Deutch & 
Perera 1992).

Penicillin-binding proteins (PBPs) are 
predominantly found in the bacterial cell membrane and 
can covalently bind penicillin (Blumberg & Strominger 
1974; Waxman & Strominger 1983). Most PBPs have 
molecular masses in the range of 140,000-40,000 daltons 
(Waxman & Strominger 1983), but PBPs with molecular 
masses as low as 25,000 have been reported 
(Dusart et al. 1981). These proteins are important in 
determining cell morphology, since treatment of 
bacteria with penicillin often changes their morphology 
and mutants with altered morphology often differ in 
their PBP profile (Spratt 1975; Markiewicz et al. 1982; 
Schuster et al. 1990).

Pucci et al. (1986) found that treatment of 
Streptococcus faecium ATCC 9790 with N-formimidoyl 
thienamycin and methicillin blocked the cell division 
cycle prior to completion of the chromosome 
replication, giving rise to "dumbbell" shaped cells; 
cefoxitin and cephalothin treatment induced a block 
later in the cell cycle, producing "lemon" shaped 
cells. The dumbbell-shaped cells were thought to result 
from the specific inhibition of PBP 3 and the lemon 
shaped cells from inhibition of PBP 2 (90 kD). In 
Streptococcus pneumoniae. mutants with altered PBP 3



(43 kD) were found to grow as irregular enlarged 
spheres; septa formation was unevenly distributed at 
multiple sites and the peptidoglycan layer was variable 
in thickness (Schuster et al. 1990). In Staphylococcus 
aureus. mutants lacking PBP 4 (46 kD) grew as enlarged 
spheres (Curtis et al. 1980; Wyke et al. 1981).
Although Bacillus subtilis was the first species in 
which multiple PBPs were identified (Suginaka et al. 
1972; Blumberg & Strominger 1972), no dramatic 
morphological changes were observed with selective 
binding of beta-lactams to particular PBPs (Frere & 
Joris 1985). However, mutants lacking PBP la and lb 
showed a reduced diameter, suggesting it has a role in 
septum formation (Waxman & Strominger 1983) .

Since myceloid formation in A. globiformis seemed 
to result from a defect in septation, we hypothesized 
that these cells might have an altered penicillin 
binding protein profile. No prior studies on the PBPs 
of arthrobacters have been published. Since 
arthrobacters have a characteristic rod/coccus life 
cycle, identifying and characterizing their PBPs will 
provide valuble information about cellular 
morphogenesis in prokaryotic cells. In this paper, we 
report differences in the protein profiles of 
unstressed and salt-stressed bacteria. We also describe 
the relative sensitivities of myceloids and normal
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cells to beta-lactam antibiotics and peptidoglycan- 
degrading enzymes.

3.3 MATERIALS AMD METHODS

Bacterial growth and culture conditions
Arthrobacter globiformis (ATCC 8010) was obtained from 
the American Type Culture Collection and maintained on 
Tryptic soy agar (Difco) supplemented with 0.2% (w/v) 
yeast extract (TSYE agar). The bacteria were grown in 
EYG medium (Cure & Keddie, 197 3) as described 
previously (Deutch & Perera, 1992). Minimum inhibitory 
concentrations (MICs) for antibiotics were determined 
by a tube dilution method. A. globiformis was grown in 
EYG medium overnight and exponential phase cells 
diluted 1:25 into 1 x 10 cm glass tubes containing 5 ml 
of EYG medium or EYG medium containing 0.9 M NaCl. 
Serially diluted filter-sterilized solutions of 
penicillin-G (benzyl-penicillin), methicillin, 
ampicillin, streptomycin, or tetracycline were added 
and the cultures incubated at 3 0°C in a Lab-Line 
environmental chamber and shaken at 2 50 rpm. Optical 
density was determined periodically using a Klett- 
Summerson colorimeter (no. 66 filter) and morphology 
monitored with a Nikon phase contrast microscope. The 
cultures were incubated for 2 0 hours and the minimum



61
inhibitory concentration (MIC) was defined as the 
concentration at which four or fewer doublings took 
place.

Treatment with peptidoglycan degradating enzymes 
Achromopeptidase, lysostaphin, mutanolysin, and 
lysozyme were obtained from Sigma Chemical Company. 
Arthrobacter globiformis was grown in EYG medium or EYG 
medium containing 0.9 M NaCl and exponential phase or 
stationary phase cells were harvested by centrifugation 
in a TOMY microcentrifuge. The bacteria were 
resuspended in a 5 mM sodium phosphate buffer, pH 7, 
and the above enzymes were added to a final 
concentration of 3.0 pg/ml. The suspensions were 
incubated at 37°C for 60 minutes, and the turbidity 
measured periodically.

Membrane preparations
Membranes were prepared as described by Coyette et al. 
(1977). Bacteria were grown in EYG medium or EYG medium 
containing 0.9 M NaCl to mid-exponential or stationary 
phase, and 10 ml aliquots harvested by centrifugation 
at 10,000 rpm in a TOMY centrifuge. The cells were 
washed twice in a 5 mM sodium phosphate buffer, pH 7 
containing 1 mM MgC12, and treated for 2 0 minutes at 
37°C with lysozyme, DNase (pancreatic) and RNase at
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final concentrations of 0.5 mg/ml, 2 pg/ml and 1 pg/ml 
respectively. The membranes were recovered by 
centrifugation for 10 minutes at 10,000 rpm, washed 
twice in the 5 mM phosphate buffer, and stored at -20°C 
in 0.5 ml aliquots in 40 mM sodium phosphate buffer/5% 
glycerol, pH 7. Protein concentrations were determined 
by the method of Lowry et al. (1951) using bovine serum 
albumin (Sigma) as a standard.

[14C]Benzylpenicillin labelling
[14C]benzylpenicillin, with the radioactive label on 
the C=0 substituent, was purchased from the Amersham 
Corporation; specific activity was 57 Ci/mol. Frozen 
membrane fractions were thawed at room temperature and 
4-10 pi aliquots incubated with 1 pi of 
[14C]benzylpenicillin (10 pM final concentration) for 
20 minutes at 37°C. The reactions were terminated by 
adding 1 pi of 0.1 M non-radioactive benzylpenicillin 
and 12 pi of a sample denaturing buffer.

SDS polyacrylamide gel electrophoresis and 
autoradiography
Membrane fraction proteins were analyzed in 10% 
polyacrylamide slab gels (10% acrylamide-0.13% bis- 
acrylamide) as described by Laemmli (1970) with 4% 
stacking gels. The samples were boiled for one minute



and 10 jul aliquots subjected to electrophoresis at a 
constant voltage of 200 V in a discontinuous buffer 
system. The gels were stained with Coomassie Brilliant 
Blue R (Fairbanks et al. 1971) and destained with a 40% 
methanol/10% acetic acid solution. The destained gels 
were soaked in a 3% glycerol/3 0% methanol solution 
overnight, and dried in a conventional vacuum gel dryer 
at room temperature for at least two hours. The dried 
gels were then placed in paper cassettes with Kodak X- 
OMAT RT X-ray film and stored in a -70°C freezer for
4.5 months prior to development.

3.4 RESULTS

Penicillin binding proteins of A. globiformis
The protein profiles of unstressed bacilli and cocci 
and of salt-induced myceloids revealed numerous 
differences (Fig. 3.1). For example, three bands with 
molecular masses of 66 kD, 59 kD and 55 kD were 
apparently more intense in the exponential phase normal 
rods than in exponential phase myceloids while a 47 kD 
band was more intense in the exponential phase 
myceloids. The stationary phase myceloids showed a very 
intense band at 13 0 kD while the corresponding band was 
less intense in the cocci. A 100 kD protein seemed to
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Fig.3.1 Protein and penicillin-binding protein ( P B P )  

profiles of A .  globiformis. Membrane fractions prepared 
as described in Materials and Methods were incubated 
with 1 0  jiM [ 14C]benzylpenicillin at 3 7 ° C  for 2 0
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minutes; the reactions were terminated with 0.1 M non 
radioactive penicillin, and after staining with 
coomassie blue, the dried gel exposed to X-OMAT x-ray 
film for 4.5 months. Panel A shows coomassie blue 
stained gel and panel B shows the penicillin-binding 
protein profile of A. alobiformis. Low molecular weight 
standards (lane 1), High molecular weight standards 
(lanes 9 & 10), exponential phase cells in EYG medium 
(lanes 2 & 8), exponential phase cells in EYG medium 
containing 0.9 M NaCl (3 & 7), stationary phase cells 
in EYG medium (lane 5), and stationary phase cells in 
EYG medium containing 0. 9 M NaCl (lane 6) are shown. 
Lane 4 was left blank. Lanes 2, 3, 5 & 6 contain 10 juM, 
and lanes 7 & 8 1 jiM [ 14C]benzylpenicillin 
respectively.
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be absent in the myceloids while a 34 kD band was very 
intense in the cocci.

Autoradiograms of radioactively labelled proteins 
indicated that A. qlobiformis contains as many as eight 
penicillin binding proteins. The PBPs were numbered in 
order of decreasing molecular mass (Waxman & Strominger 
1983) . Four to seven bands could be identified 
depending on the growth medium and the stage of growth 
(Table 3.1). Two high molecular mass proteins, PBP lb 
(90 kD) and PBP lc (89 kD) and two low molecular mass 
proteins, PBP 4 (51 kD) and PBP 5 (30 kD) were present
in all growth stages irrespective of the medium. PBP la
(91 kD) and PBP 3 (63 kD) appeared to be formed only 
during stationary phase (lanes 5 & 6, Fig. 3.IB) since 
they were absent in the exponential-phase cells (lanes 
2 & 3, Fig. 3.IB). PBP 2a (84 kD) and PBP 2b (82 kD)
were absent in the myceloids from the EYG medium
containing NaCl (lanes 3, 6, & 8, Fig. 3.IB). These may 
be associated with septation in arthrobacters.

Effects of beta-lactam antibiotics on Arthrobacter 
qlobiformis
When beta-lactam antibiotics were added to exponential 
phase cultures of A. qlobiformis grown in EYG medium, 
many morphological aberrations could be observed. With 
ampicillin, some cells lysed and others appeared as
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PBP Exp-phase Exp-phase Sta-phase Sta-phase

Molecular 
mass 

# (kD)

EYG EYG + 
0.9 M 
NaCl

EYG EYG + 
0.9 M 
NaCl

la-91 - - + +

lb-90 + + + +

lc-89 + + + +

2a-84 + - - -

2b-82 + - + -

3-63 - - + +

4-51 + + - + +

5-30 + + + +

Table 3.2 The PBPs of exponential and stationary phase 

cells of A. qlobiformis grown in EYG medium 
and EYG medium containing 0.9 M NaCl.
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large protoplasts; rod-shaped cells with large bulges 
in the middle were not uncommon. Cell clusters and 
cells with tiny side branches were also apparent and a 
significant amount of cellular debris was present. The 
same was true for the other beta-lactam antibiotics 
tested (benzylpenicillin and methicillin). When these 
beta-lactam antibiotics were added to exponential-phase 
myceloids from EYG medium containing 0.9 M NaCl, the 
myceloid branches appeared bloated and portions of the 
branches were observed to lyse.

There were major differences in the minimum 
inhibitory concentrations (MICs) of these different 
antibiotics depending on the growth medium (Table 3.2). 
The myceloids were more sensitive to the beta-lactam 
antibiotics than normal cells, and the MICs were 12 to 
20 times lower. By contrast, the myceloids did not 
differ from normal cells in their sensitivity to 
tetracycline. Surprisingly, the MIC for streptomycin 
was about 320 times higher for the myceloids than for 
normal cells.

Sensitivity to degradative enzymes
A number of hydrolytic enzymes including mutanolysin, 
achromopeptidase and lysostaphin act on the bacterial 
peptidoglycan. When mutanolysin (3 ;ug/ml) was added to 
the exponential phase myceloids grown in EYG medium
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Minimum inhibitory concentrations (juM)

Medium Pen Amp Met Tet str

EYG 3 3 6 0.20 0.25

EYG + 
0.9 M 
NaCl

0.06 0.25 0.40 0.20 80

Table 3.2 Antibiotic sensitivities of myceloids grown 
in EYG containing 0.9 M NaCl and normal 
cells grown in EYG. Abbreviations: Pen- 
Penicillin, Amp-Ampicillin, Met-Methicillin, 
Tet-Tetracycline, Str-Streptomycin.
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containing NaCl, there was a significant drop in 
absorbance, which was much more rapid than that found 
with cells from medium lacking NaCl (Figure 3.2). 
Myceloids from stationary phase cultures were also 
sensitive to mutanolysin, but the drop in absorbance 
was not as dramatic as during the exponential phase.
The stationary phase cocci, on the other hand, were not 
affected by the mutanolysin treatment.

The exponential phase normal rods and stationary 
phase myceloids were very easily fragmented to short 
rods and cocci when treated with mutanolysin (Figure
3.3). The myceloids began to break up within 10 minutes 
and only short rods and cocci were observed at the end 
of a 60 minute treatment. With achromopeptidase and 
lysostaphin, there was no significant change in 
absorbance or fragmentation of the myceloids during 
either exponential phase or stationary phase

3.5 DISCUSSION
These experiments demonstrate for the first time the 
penicillin binding protein profile of Arthrobacter 
qlobiformis (ATCC 8010). These proteins range in 
molecular mass from 90,000 to 30,000. PBPs la (91 kD) 
and 3 (63 kD) are absent from normal exponential phase 
cells but present in normal stationary phase cocci. PBP 
2a may play a major role in maintaining the bacillary
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Fig.3.2 Effect of mutanolysin on myceloids and normal

rods and cocci. A. qlobiformis was grown in EYG medium
or EYG medium containing 0.9 M NaCl to mid exponential
phase (70 Klett units) and stationary phase (200 Klett
units). The cells were harvested, washed twice in a
phosphate buffer, and treated with 3 )ig/ml mutanolysin.
The cells were then incubated at 37°C and turbidity was
measured periodically. The figure shows the results for
exponential phase myceloids (o)/ normal baccilli (0),
stationary phase myceloids (B), and cocci (•).
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A B

Fig. 3.3 Morphology o f A. globiformis before and after treatment with 

mutanolysin. Panel A shows stationary phase A. globiformis cells grown in EYG  

medium containing 0.9 M NaCl (m yceloids) and panel B shows A. globiformis 

cells after 60 minutes o f mutanolysin treatment.
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form since it is the only one absent in the PBP profile 
of the normal stationary phase cocci. PBP 2a and PBP 2b 
may be associated with septation since they are both 
absent in exponential and stationary phase myceloids. 
Since myceloids form as a result of osmotic stress 
(Deutch & Perera 1992) it is likely that osmotic stress 
in some way inhibits the synthesis of these PBPs.

The myceloids were 12-2 0 times more sensitive to 
penicillin, ampicillin and methicillin when compared to 
the normal bacilli. The most common morphological 
abnormality observed with the beta-lactam treated cells 
was the formation of bulges. It was also interesting 
that while there was no difference in the MICs for 
tetracycline the myceloids were 320 times more 
resistant to streptomycin than normal cells. Of the 
hydrolytic enzymes tested, only mutanolysin was able to 
trigger division the myceloids into smaller cellular 
units. It is interesting that only the exponential 
phase myceloids showed significant lysis. Mutanolysin 
consists of three enzymes; one proteolytic and two 
lytic enzymes (Yokogawa et ad. 1974). If myceloids were 
the result of incompletely septated cells sticking 
together, then the separation of cells by treating with 
the enzyme should not lead to a significant loss of 
absorbance. The drop in optical density on the other 
hand implies that a considerable amount of lysis takes
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place with mutanolysin treatment at this stage.

Streptomycin is an aminoglycoside that interacts 
with the 30S ribosomal subunit and often causes 
misreading of the messenger RNA (Garrod et al. 1981). 
While it is unclear why osmotic stress leads to 
streptomycin resistance, this phenotype may be very 
useful for isolating mutants of A. qlobiformis that 
form myceloids in the absence of added salt. Further 
studies of each of the PBPs of A. globiformis should 
provide insight into their role in myceloid formation 
and the morphogenesis of these bacteria.
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4.1 ABSTRACT
Arthrobacter qlobiformis forms myceloids during growth 
in media containing increased concentrations of NaCl. 
Viability studies were carried out to compare the 
sensitivity of stationary-phase myceloids and normal 
cocci to elevated temperature, starvation, and 
desiccation. The coccal form maintained a 1000-fold 
higher viability than the myceloids after being treated 
for one hour at 4 5°C. The myceloids were more resistant 
than stationary-phase coccal forms to long term 
starvation in a buffer containing 0.9 M NaCl and 
lacking a nitrogen source. In the absence of a carbon 
source, the coccal form survived better than the 
myceloids. In the absence of both a carbon and a 
nitrogen source, there was no difference in survival 
between the two morphological forms. There was no 
significant difference in viability when the two forms 
were subjected to desiccation over a three week period. 
These results indicate that the myceloids may be more 
tolerant to nitrogen starvation while the coccal form 
seem to tolerate heat and carbon starvation better than 
the myceloids.
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4.2 INTRODUCTION

Arthrobacters are corynefonn chemoheterotrophs 
that can utilize a variety of organic substrates 
(Stevenson, 1967: Hagedorn and Holt, 1975). They 
exhibit a characteristic dimorphic life cycle where the 
exponential phase cells appear as bacilli, sometimes 
with rudimemtary branches, and the stationary phase 
cells appear as cocci. Arthrobacters are found in many 
different habitats and are most numerous in soil (Conn, 
1948; Clark, 1975). These bacteria should exhibit 
specific adaptations to limiting conditions found in 
the soil. Morris (1960) suggested that the ability of 
the arthrobacters to utilize a variety of compounds at 
low concentrations as well as their simple nutritional 
requirements may be contributing factors to their 
presence in soils poor in organic nutrients.

Several studies have examined the resistance of 
arthrobacters to extreme conditions like starvation and 
desiccation (Robinson et al. 1965; Ensign, 1970;
Boylen, 1973). Exponential-phase rods and cocci of A. 
crystalloooietes maintained 100% viability during 
starvation for a period up to one month. Viability 
dropped only by 35% after 60 days (Ensign, 1970). No 
difference was observed for the rod and the coccal 
forms. The bacteria metabolized intracellular 
substrates such as glycogen or poly-beta-hydroxybutyric



acid during prolonged starvation (Boylen & Ensign 
1970). Ribonucleic acid (RNA) as well as proteins were 
also substrates for endogenous metabolism, while 
deoxyribonucleic acid (DNA) and lipids were not 
metabolized. The protein turn-over rates of starving 
bacteria are much higher than in growing cells (Dawes & 
Sutherland 1992). Both rod and coccal forms of A. 
crystalloooietes were resistant to extreme desiccation 
and 50% of the cells remained viable for a period of 6 
months in sand (Boylen, 1973). A. qlobiformis. on the 
other hand, seems to be more variable in its ability to 
withstand desiccation (Robinson et al. 1965).

We have reported that A. qlobiformis forms clusters 
of branching rods or myceloids when subjected to 
osmotic stress (Deutch & Perera 1992). We have also 
shown that the penicillin binding protein (PBP) 
profiles of normal cells and myceloids are different 
and that two particular PBPs are lacking in the 
myceloid form. To determine if the myceloid form has an 
adaptive advantage over the stationary phase coccal 
form, we have now compared the sensitivity of the two 
forms to heat, starvation and desiccation.

Because myceloids are aggregates of cells, they 
might have an advantage over the single cells in 
producing a colony. Viable count comparisons of 
myceloids and single cocci could therefore be
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misleading. Because of this, we compared the viable 
counts of myceloids separated prior to each treatment 
with the hydrolytic enzyme mutanolysin to those of 
nomal cocci and untreated myceloids. We have previously 
found that mutanolysin, separates the myceloids into 
short rods and cocci (Perera & Deutch, unpublished 
data).

4.3 MATERIALS AND METHODS 

Growth and culture conditions
Arthrobacter qlobiformis (ATCC 8010) was obtained from 
the American Type Culture Collection and grown as 
described previously (Deutch & Perera 1992). Bacteria 
grown to stationary phase in EYG medium (cocci) or in 
EYG containing 0.9 M NaCl (myceloids) were harvested by 
centrifugation in a high speed microcentrifuge at 
10,000 rpm for 10 min. The cells were washed with 5 mM 
sodium phosphate buffer, pH 7 to remove any nutrients 
and diluted into test solutions as required.

Heat treatment of myceloids and cocci
Stationary phase myceloids and cocci were heated at 45° 
C for up to one hour. Portions were aseptically removed 
periodically, serially diluted in 0.1 M NaCl, and 
plated on tryptic soy agar (TSA) medium. Duplicate



plates were counted after 2 days at 30°C.
8 4

Starvation of A. globiformis
Cells were diluted 1:25 into mineral base E containing 
0.9 M NaCl (Cure & Keddie, 1973) but without an added 
carbon source (E-C), an added nitrogen source (E-N), or 
without both a carbon and a nitrogen source (E-C-N). 
Cell suspensions were incubated at 30°C in a Lab-Line 
environmental chamber and shaken at 2 50 rpm. Samples (1 
ml) were taken out at 24 hrs, and weekly to one month 
and at the end of two months. Serial dilutions were 
done in 0.1 M NaCl prior to plating on tryptic soy agar 
medium for viable cell counts. Duplicate plates were 
scored after 2 days at 30°C.

Desiccation of A. globiformis
Aliquots (100 pi) of stationary phase myceloids and 
normal cocci were transferred to sterile dry sand in 
loosely screw capped glass vials. The cell suspension 
was mixed well into the sand using a sterile spatula. 
The vials were placed in a sealed desiccator containing 
50 g of lithium chloride, which was replaced weekly.
The dry weights of the vials were also recorded. Viable 
counts were prepared periodically for up to three 
weeks. E buffer (5 ml) was added to each vial and the 
suspension shaken vigorously to free any cells attached



to sand particles. The soil was allowed to settle one 
minute, the supernatant serially diluted in 0.1 M NaCl 
and viable counts prepared in duplicate on TSA plates 
as described above.

4.4 RESULTS

Sensitivity of myceloids to heat
OStationary-phase myceloids rapidly lost viability at 45 

C while stationary phase cocci were not greatly 
affected by this temperature (Fig. 4.1). Twenty percent 
of the stationary phase cocci, and 0.07 percent of the 
myceloids remained viable after 60 minute at 45°C.

Sensitivity of myceloids to starvation
During starvation in E-N medium containing D-glucose as 
the carbon source but no nitrogen source, myceloids 
maintained viability better than cocci (Fig. 4.2).
After one week, 78% of the myceloids were viable while 
only 27% of the cocci were viable. The viability of 
both myceloids and cocci then dropped and after two 
weeks only about 2% of cocci and 4% of myceloids 
remained viable. At the end of the third week only 
0.07% cocci remained viable, but there was no further 
change in viability of the myceloids. The myceloids 
separated into shorter cellular units by treatment with
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Fig. 4.1 Sensitivity of myceloids to heat. Stationary 
phase myceloids (•) and cocci (A)of Â _ globiformis were 
treated at 45°C upto one hour. Aliquots were 
periodically removed and serially diluted in a 0.1 M 
NaCl solution and plated on tryptic soy agar medium.



o -

■Uc3oa

A10•H>
<D>•H
■P<0cH0)

o
O'oJ

20155 100
Days of starvation

Fig. 4.2 Sensitivity of A. globiformis to starvation in 

a E-N medium. This medium contained D-glucose as the 
carbon source and no nitrogen source. Myceloids («), 
cocci (a ) and myceloids separated to smaller units with 
mutanolysin (o) are shown.
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mutanolysin maintained 75% viability up to two weeks. 
Viability then fell to 1.3% of the initial level at the 
end of a three week period.

During starvation in E-C medium containing 
ammonium sulphate but no carbon source, the cocci were 
more resistant to starvation than the myceloids (Fig.
4.3). The myceloids initially maintained a higher 
viability up to one week and then the viability fell to 
1.6% by the end of one month. The cocci and the 
separated units of myceloids maintained about 27% 
viability at the end of a one month period.

During starvation in a medium lacking both carbon 
and nitrogen (E buffer), both forms remained viable.
The myceloids maintained greater than 70% viability up 
to one month (Fig. 4.4). The cocci lost viability more 
rapidly and at the end of a month, 17% of the cells 
were still viable. The separated units of myceloids 
gradually lost viability and 37% remained viable at the 
end of one month.

Cell size decreased dramatically over time in all 
the starvation media. No apparent resting stage was 
observed. Both the cocci and the myceloids remained 
phase dark while a few protoplast like spheres were 
observed at the latter stages in the starving media. 
Attempts to maintain the myceloids in the defined 
starvation media in the absence of salt were
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90

+JG3O

4)O
<U

(-Hja(0•H>
M-to
DiO
t-a

a

CMI

302520151050
Days of starvation

Pig. 4.4 Sensitivity of A. qlobiformis to starvation in 

a E-C-N medium. This medium is a non-nutrient buffer (E 
buffer) lacking both ammonium sulphate and D-glucose. 
Myceloids (•), cocci (A) and myceloids separated to 
smaller units with mutanolysin (o) are shown.
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unsuccessful. After six hours the myceloids started to 
divide and formed shorter fragments.

Sensitivity of myceloids and cocci to desiccation 
Both the myceloids and cocci appeared equally sensitive 
to desiccation. After one week the viable counts of 
treated and untreated myceloids and cocci fell about 
1000 fold. By the end of the third week there were no 
viable cells in either case.

4.5 DISCUSSION

These results indicate that stationary phase salt- 
induced myceloids and stationary phase cocci differ in 
their sensitivities to potential environmental 
stresses. The myceloids were more sensitive to heating 
at 45°C than the cocci. However, there was not much 
difference between the myceloids and the cocci in terms 
of extreme desiccation. There were no viable cells of 
either form after three weeks in sterile sand. The two 
forms varied in their sensitivity to starvation. The 
myceloids seemed to survive better under nitrogen 
limiting conditions while the cocci survived better 
under carbon starvation. There was little difference 
between the two forms under both carbon and nitrogen
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limiting conditions. Both forms exhibit a higher level 
of viability than during either nitrogen or carbon 
starvation. The ability of myceloids to survive better 
under nitrogen starvation could be due to myceloids 
being an aggregation of cells. Lysis of parts of a 
myceloid could provide necessary nutrients to the 
remaining portions of the myceloids, thus maintaining 
their viability. This would be an example of cryptic 
growth.

Salt-induced myceloids can be broken into short 
rods and cocci by the treatment of mutanolysin. These 
smaller units of the myceloids maintained their 
viability better than the cocci in E-N and E-C-N media. 
In E-C medium, the disrupted myceloids more closely 
resembled the cocci. This suggests that the resistance 
of myceloids to starvation in E-N or E-C-N medium is 
not a property of their morphology per se. Rather, it 
may be a physiological consequence of poor growth in 
medium of high osmolality.

A potential problem encountered in viability 
studies is the possibility of viable but non-culturable 
cells (Byrd et al. 1991). Certain cells may be viable, 
but non-culturable at different points in these 
studies, thus leading to an under estimation of the 
percent viability. In order to understand viability, 
therefore, it is important to think of the percent of
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cells referred to as "viable" as the percent that are 
"culturable".

A. qlobiformis cells grown in carbohydrate-rich 
media are known to accumulate large amounts of fc< - 
trehalose and the amount of trehalose is believed to 
increase upto 13 00 pg/mg protein under osmotic stress 
(Zevenhuizen, 1992). Non-growing cells of A. 
qlobiformis maintain a constant level of trehalose 
while the glycogen level depends on the carbon supply 
of the medium. The starvation resistance of 
Arthrobacter cells in E-C or E-C-N medium may be due to 
the presence of high contents of trehalose in these 
cells. It would be of value to analyze the glycogen and 
trehalose contents of the coccal and myceloid forms 
under nutrient starving conditions. Another interesting 
aspect would be to compare the normal cocci and the 
myceloids formed in response to osmotic stress in terms 
of their protein turnover rate, RNA metabolism, and 
trehalose metabolism. Myceloids were somewhat more 
resistant to nitrogen starvation and therefore may 
differ in their metabolism of N-containing compounds.
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CHAPTER 5

GENERAL DISCUSSION
5.1 Growth, morphology, and osmotic stress in A.

qlobiformis
The unique nature of the arthrobacter lifecycle 

makes it a valuable tool in understanding the nature of 
the cell cycle and morphology. The ability of 
Arthrobacter qlobiformis to form myceloids when 
subjected to osmotic stress enhances its value as a 
tool in morphogenesis.

Arthrobacter alobi formis shows characteristic 
responses to osmotic stress: the specific growth rate 
drops linearly with increasing solute concentrations 
and myceloids are formed at concentrations as low as 
0.3 M NaCl. The myceloids are larger with more branches 
as the solute concentration increases to 0.6 or 0.9 M 
NaCl. Known osmoprotectants do not prevent the 
formation of myceloids or relieve the osmotic effect 
completely, although proline and glutamate have some 
effect in initiating partial septation of the myceloids 
(Deutch & Perera 1992).

Other studies have shown that myceloids may also 
arise due to the lack of certain nutrients such as
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biotin (Chan et al. 1973), vitamin B12 (Chaplin & 
Lockhead 1956), or manganese (Germida & Casida 1980). 
Morphology thus is also determined by the availability 
of essential growth factors. Since myceloids arise 
either due to lack of certain nutrients or due to 
osmotic stress, it is possible that osmotic stress in 
some way leads to deprivation of certain nutrients to 
the cell. If the above were true, addition of these 
nutrients should lead to a normal cell cycle. However,
I found that addition of these nutrients in 1000 fold 
or addition of D-alanine, D-glutamate or L-lysine did 
not relieve myceloid formation. Therefore, it does not 
seem likely that lack of these growth compounds are 
responsible for myceloid formation under osmotic 
stress.

5.2 Penicillin binding proteins and myceloid cell
formation during osmotic stress
The PBPs of A. qlobiformis were identified after 

incubating the membranes with 10 ,uM final concentration 
of [14C]benzylpenicillin. At high concentrations of 
[14C]benzylpenicillin (e.g., 3000 ;uM, 2000 juM, 300 juM, 
200 juM etc.) there was a lot of nonspecific binding as 
indicated by the blurry black blotches on the auto
radiogram. At low concentrations (e. g. , 10 pM and 1 
pM) eight clear bands were observed and identified as
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the PBPs.

Myceloids seem to arise as a result of alterations 
in peptidoglycan synthesis during osmotic stress. The 
salt-induced myceloids cannot be disrupted mechanically 
but peptidoglycan degradative enzymes like lysozyme and 
mutanolysin can break down the myceloids. Moreover, the 
myceloids are 12-20 times more sensitive to beta-lactam 
antibiotics than normal cells. PBPs are associated with 
altered morphological forms in both Gram negative and 
Gram positive bacteria (eg. Schuster et al. 1990; Pucci 
et al. 1986). In Streptococcus faecium. Streptococcus 
pneumoniae and Staphylococcus aureus. PBPs are 
associated with altered morphological forms (Pucci et 
al 1986; Schuster et al. 1990; Curtis et al.. 1980; Wyke 
et al. 1981). Several penicillin binding proteins have 
transglycolase and transpeptidase activity (eg. PBPs 1, 
2 and 3 of Escherichia coli. PBP 4 of S. aureus and 
high molecular PBPs of Bacillus) These proteins have 
been shown to be involved in generating morphological 
forms other than the characteristic form (Spratt 1975; 
Waxman & Strominger 1983; Curtis et al. 1980). This 
implies that these PBPs play a role in determining the 
shape of a bacterium.

This seems to be true for arthrobacters as well. I 
found that the PBP profile of the myceloids varies from 
that of the cocci. Myceloids seem to arise as a result



of lacking PBP 2a (84 kD) and PBP 2b (82 kD) although 
other unknown proteins may also be involved.
Exponential phase myceloids as well as stationary phase 
myceloids lack PBP 2a and PBP 2b. Therefore, these PBPs 
seem to play a significant role in septation of A. 
qlobiformis. These proteins may have transglycolase 
and/or transpeptidase activity that is inactivated in a 
hyperosmotic environment. This would be consistent with 
Koch's surface stress theory. However, it is also 
possible that osmotic stress causes changes in cell 
volume that lead to altered patterns of peptidoglycan 
synthesis. Since PBP 2a and 2b are totally missing from 
myceloids, it seem more likely that osmotic stress 
leads indirectly to an altered pattern of PBP 
synthesis. It is the absence of PBP 2a and PBP 2b that 
then leads to defects in septation. These proteins may 
have transpeptidase or transglycosylase activities 
required for the formation of peptidoglycan 
specifically at division septa.

At physiological pH DNA remain as a charged anion 
and therefore attracts many cations. Binding of 
proteins to DNA displaces cations from the surface area 
of the DNA. Hence, DNA-protein binding alterations can 
occur as a result of fluctuations in the ion 
concentrations in the cytoplasm due to the influx of 
cations ( e.g. K+) during hyperosmotic conditions. If
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this is true, increasing K+ concentration in the cell 
may affect binding of RNA polymerase to the DNA causing 
changes in the transcription of many genes including 
the ones that code for specific PBPs.

5.3 Physiological significance of myceloid cells
In an unfavorable environment, arthrobacters may 

benefit by the ability to form myceloids, which are a 
collection of many cells. This may increase their 
chance of remaining viable. From my observations, 
myceloids seem to tolerate nitrogen starvation better 
than the coccal form. Myceloids however, did not seem 
to have an advantage over cocci in tolerating heat, 
carbon starvation, or desiccation. Myceloids survived 
better than the cocci in a 0.1 M NaCl and 0.9 M NaCl 
solution (data not given). This implies that the 
bacterium forms myceloids in order to survive in a 
hyperosmotic environment or as a result of stress. 
Ability of myceloids to tolerate nitrogen starvation 
may be an advantage to a bacterium since nitrogen is 
limiting in most environments.

5.4 Suggestions for further work
Other corynebacteria accumulate ectoine and 

pipecolic acid at high osmolalities (Gouesbet et al. 
1992; Bernard et al. 1993). To understand if
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arthrobacters accumulate novel compatible solutes it 
would be worthwhile to analyse their osmotically 
compatible solutes. The intracellular solutes can be 
extracted using ethanol and analysed and purified by 
paper chromatography and paper electrophoresis. Further 
analysis of the intracellular solutes can be done by 
[13C]nuclear magnetic resonance spectroscopy.

Purification of the PBPs and establishing mutants 
of each PBP also may prove to be very useful in 
understanding not only how the myceloids form but also 
in understanding morphogenesis in Gram positive 
bacteria. PBPs can be purified by covalent penicillin 
affinity chromatography (Blumberg & Strominger 1972). 
Mixtures of PBPs will be obtained by this method. 
Individual PBPs can be purified by varying the Beta- 
lactam ligand in the Sepharose column. To understand 
the affinity of beta-lactam antibiotics for the PBPs, a 
competition experiment can be carried out. Membrane 
samples can be incubated with a variety of beta-lactam 
antibiotics (e.g., 1 nM to 1 mM), prior to 
supplementing with [14C]benzylpenicillin. Once the 
beta-lactam antibiotics showing a high affinity to 
certain PBPs are identified, these can be used as 
ligands in the Sepharose column to isolate the specific 
PBPs. Moreover, it would be interesting to study PBPs 
in myceloids formed as a result of nutrient deficiency.
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Another possibility is to study the PBP patterns of 
arthrobacters when subjected to osmotic upshocks or 
downshocks.

Electron micrographs of myceloids at each stage of
formation will provide great insight into how the
murein layer is laid down in myceloids. A complete
analysis of the cell wall composition and structure on
the other hand will be very useful to fully understand 
the nature of the myceloid peptidoglycan component. 
Isolation of spontaneous or chemically induced mutants 
for streptomycin resistance also will be very useful in 
understanding the phenomenon of myceloid formation in 
arthrobacters.
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