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Tuberculosis (TB) caused by the intracellular pathogen, Mycobacterium tuberculosis 

(Mtb), claims more than 1.5 million lives worldwide annually. Despite promulgation 

of multipronged strategies to prevent and control TB, there is no signi�cant downfall 

occurring in the number of new cases, and adding to this is the relapse of the disease 

due to the emergence of antibiotic resistance and the ability of Mtb to remain dormant 

after primary infection. The pathology of Mtb is complex and largely attributed to 

immune-evading strategies that this pathogen adopts to establish primary infection, its 

persistence in the host, and reactivation of pathogenicity under favorable conditions. 

In this review, we present various biochemical, immunological, and genetic strategies 

unleashed by Mtb inside the host for its survival. The bacterium enables itself to estab-

lish a niche by evading immune recognition via resorting to masking, establishment of 

dormancy by manipulating immune receptor responses, altering innate immune cell 

fate, enhancing granuloma formation, and developing antibiotic tolerance. Besides 

these, the regulatory entities, such as DosR and its regulon, encompassing various 

putative effector proteins play a vital role in maintaining the dormant nature of this 

pathogen. Further, reactivation of Mtb allows relapse of the disease and is favored by 

the genes of the Rtf family and the conditions that suppress the immune system of the 

host. Identi�cation of target genes and characterizing the function of their respective 

antigens involved in primary infection, dormancy, and reactivation would likely provide 

vital clues to design novel drugs and/or vaccines for the control of dormant TB.

Keywords: Mycobacterium tuberculosis, dormancy, DosR regulon, granuloma, antibiotic resistance, alveolar 

macrophages, latency

INTRODUCTION

Tuberculosis (TB), a chronic infectious disease caused by Mycobacterium tuberculosis (Mtb), is one 
of the major drivers of human mortality worldwide since many decades with an estimated global 
burden of 10.4 million new TB cases and 1.4 million TB deaths in the year 2015 (1). Due to the grow-
ing e�ciency of case �nding and in the a�ermath of DOTS regimen, the mortality rate decreased 
worldwide by 22% during 2000–2015 (1). �ere has been a decrease in the prevalence of TB cases 
dramatically from 4 million to 2.8 million cases in the last decade with a decrease in TB mortality 
form 330,000 cases to 220,000 cases, annually, in India (2). However, the burden of disease in the form 
of active TB still persists at an alarming rate in low and middle income countries with an estimated 
580,000 new cases due to multiple drug resistant TB (MDR-TB), globally (1). TB infection is caused 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.00084&domain=pdf&date_stamp=2017-02-15
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.00084
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:ahmed.nizi@gmail.com
mailto:niyaz.ahmed@icddrb.org
https://doi.org/10.3389/fimmu.2017.00084
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00084/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00084/abstract
http://loop.frontiersin.org/people/153606
http://loop.frontiersin.org/people/395256
http://loop.frontiersin.org/people/388305


2

Peddireddy et al. Mycobacterium tuberculosis Dormancy Survival Strategies

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 84

by the inhalation of aerosolized particles harboring Mtb. Various 
factors such as host’s immune status, inhaled bacillary load, the 
closeness of contact, and infectiousness of the source case play 
a primary role in TB transmission (3). �e ability of inhaled 
Mtb aerosolized particles to infect the phagocytic immune cells 
[dendritic cells (DCs) and macrophages] and the non-phagocytic 
alveolar endothelial cells such as M cells and type 1 and type 2 
epithelial cells (pneumocytes) (4) allows Mtb to replicate within 
the macrophages and spread to pulmonary lymph nodes and to 
several extra pulmonary sites before the adaptive immunity sets 
in (5). Hence, multiple possibilities exist where there could be (a) 
bacterial clearance by host immune activation, (b) multiplication 
of bacteria leading to primary infection, (c) dormant survival of 
bacteria rendering the host non-contagious and asymptomatic, 
and (d) reactivation of bacteria by infringement of dormancy 
causing re-emergence of the infection (6). Dormancy of the 
Mtb in the host is largely attributed to its sophisticated immune-
evading capability that allows it to persist inde�nitely. �e key 
strategies adopted by Mtb to maintain its dormant phase include 
manifestation of immune [manipulation of toll-like receptor 
(TLR), cytokine, and immune cell function], biochemical (devel-
opment of resistance to reactive intermediates and antibiotics), 
and genetic (activation of dormancy-associated genes) mecha-
nisms. Despite vaccination with BCG (which is e�ective only 
in children) and the availability of powerful drugs to treat Mtb, 
there has been no decrease in the global burden. Epidemiological 
studies indicate that 90–95% of new Mtb infections could become 
dormant, and this dictates the immunological poise between the 
pathogen and the host (7). Besides persistent infections due to 
evolution of multidrug resistant and extensive drug resistant Mtb, 
a large reservoir of population hosting Mtb in the dormant stage 
represent the prime cause of new TB cases throughout the world 
(8). Hence, diagnosis and treatment of individuals hosting Mtb 
in a dormant stage is one of the crucial strategies to be adopted 
for the prevention of TB. Diagnostic methods such as tuberculin 
skin test (TST) and cell-mediated immune response-dependent 
approaches were developed based on the current understanding 
of the mechanisms that contribute to the establishment of per-
sistent infection (9). �e latest developments in understanding 
the cellular, biochemical, and molecular mechanisms that are 
employed for the establishment of dormant stage by Mtb are 
discussed in this review.

IMMUNOLOGY OF DORMANT Mtb

Evading Immune Detection
Masking: An Immunological Disguise
Mycobacteria adopt multiple strategies to avoid the attack from 
macrophages. �ey express surface lipids such as phthiocerol 
dimycoceroserate, which can mask the pathogen-associated 
molecular patterns (PAMPs), thereby going “unnoticed” by the 
innate immune system (10). �e phenolic glycolipid produced by 
these bacilli induces the production of the chemokine CCL2 to 
recruit macrophages for further infection (10). In the upper airway 
where a constant and heavy recruitment of macrophages occurs 
due to the presence of TLR stimulating bacteria, thus posing a 

very hostile environment, Mtb adopts a di�erent immune evasion 
strategy by forming small infection droplets that allow them to be 
delivered directly into the alveolar spaces of the lower lung, which 
anchorages a few microbicidal macrophages (11).

Manipulating the TLR Responses
In the macrophages, which are the crucial niche for replication, 
Mtb interacts with various receptors to initiate phagocytosis. 
Despite the bactericidal properties of the macrophages, Mtb 
employs phagocytosis as a primary mode of gaining entry to 
establish the niche. �e opsonization of the bacillus by the 
complement or antibodies determines the nature of receptors 
engaged and also the nature of events that are involved in the 
outcome of the infection. Recognition of Mtb through its cell 
wall glycolipids involves the formation of TLR heterodimers 
(12). �e importance of TLR-mediated signaling during Mtb 
infection is well proven in various TLR knockout animal models 
(13). Mycobacterial components such as lipomannan, lipoarabi-
nomannan (LAM), 38- and 19-kDa mycobacterial glycoproteins, 
and phosphatidylinositol mannoside (PIM) induce the formation 
of TLR1/6 heterodimer (12). �e 38- and 19-kDa mycobacte-
rial glycoproteins, PIM, and triacylated lipoproteins favor the 
formation of TLR2/TLR1, whereas the diacylated lipoprotein 
induces TLR2/TLR6 dimerization (13). �e susceptibility to Mtb 
infection is also due to genetic polymorphisms in the host genes 
(14). It is well established that Mtb has the ability to modulate 
the immune responses to its advantage. Exposure of THP-1 cells 
to Mtb cell wall components results in the de novo synthesis of 
TLR4, thereby decreasing the production of �1 cytokines (15). 
Induction of apoptosis in bystander cells during Mtb infection 
of macrophages is a classic example of how this pathogen causes 
immunosuppression in infected individuals, thereby gaining the 
survival advantage (16). Interaction of Mtb cell wall components 
with TLRs modulates a number of events that include antigen 
presentation (17), phagolysosomal fusion (13), apoptosis of mac-
rophages (12), and production of reactive oxygen and nitrogen 
intermediates (18).

Although Myd88-dependent signaling of TLRs is well 
established in mycobacterial pathogenesis, recent studies indi-
cate independent roles for Mal (the TLR adaptor) and Myd88. 
Individuals with the single-nucleotide polymorphisms, D96N 
and S180L, in the TIRAP gene (that codes for Mal) display 
di�erential susceptibility to Mtb. Heterozygous genotype was 
associated with a protection toward TB, whereas the homozygous 
genotype was related to susceptibility (19). Using a murine model 
that carried the human equivalent mutation in TIRAP gene, it was 
demonstrated that in the homozygous genotype for the mutation, 
the mycobacterial load was higher and this was independent of 
the macrophage cytokine production (20). Further, in vitro stud-
ies indicated that mutation in TIRAP gene a�ected phagosome 
maturation and intracellular killing of Mtb (20).

Antigen Presentation by MHC
�e TLR2-dependent surface expression of MHC class II 
receptor and their antigen-presenting ability was found to be 
inhibited by either Mtb infected or 19-kDa lipoprotein (LpqH) 
exposed macrophages (12, 21). Class II transactivator (CIITA), a 
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FIGURE 1 | I. TLR signaling modulation. The Mycobacterium tuberculosis (Mtb) cell wall components interact with TLR-2 and modulate the host cell signaling via 

p38 MAPK, resulting in activation of NF-κB and synthesis of C/ERB that binds to class II transactivator (CIITA) promoter and inhibits CIITA production leading to 

decreased expression of MHC-II, thus inhibiting antigen presentation. II. Immune evasion: prolonged signaling by cell wall components induces the anti-in�ammatory 

cytokines, TGF-β, interleukin (IL)-10, and IL-4 (Th2-dependent manner), which inhibits IL-12. IL-12 is required for the production of interferon-γ, iNOS, and NO, a 

major defense of the host against Mtb. The intracellular pathogen secretes SucB, AhpC, and AhpD, which catalyzes the breakdown of reactive nitric intermediates 

(RNIs). III. Phagosome maturation inhibition: mannosylated-LAM (ManLAM) activates GDI via p38MAPK leading to the inhibition of Rab5 activity that is required for 

the recruitment of early endosomal autoantigen1 (EEA1); it also inhibits the increase in cytosolic Ca2+ �ux required for the hvps34 activity. pknG prevents 

phagolysosomal fusion and sapM, ptpA inactivates the phosphatidylinositol 3-phosphate (PI3P) and VPS33B through dephosphorylation. Phosphatidylinositol 

mannoside (PIM) mediates the early endosomal fusion through which bacilli gains access to nutrients such as iron required for its survival.
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TLR-2-dependent regulator of MHC class II a, b, invariant chains 
contributes to antigen processing and its expression was found 
to be decreased during Mtb infection (22–24). Its importance is 
further strengthened with the observation that CIITA knockout 
mice could not survive Mtb infection (25). Mtb also inhibits the 
expression of genes involved in MHC class II processing and 
presentation (26, 27) and the posttranslational function of these 
molecules. Another interesting feature by which Mtb evades 
TLR-mediated immune response is by the di�erential antigen-
presenting ability of MHC class II. It is demonstrated in Mtb-
infected lung DCs of mice that despite normal levels of MHC 
class II molecules, antigen presentation capability was decreased, 
whereas in macrophages, both the MHC class II molecules 

expression and antigen presentation capacity were found to be 
decreased (28–31).

Phagolysosomal Fusion/Fission
During chronic infections, repeated stimulation of TLRs by the Mtb 
components such as mannosylated-LAM (ManLAM) and PIM 
causes phagosomal maturation and arrest allowing persistence of 
mycobacteria inside the phagosome (32) (Figure 1). Among the 
successful strategies adopted by Mtb to establish a niche in the 
host, inhibition of macrophage maturation is best characterized. 
�e mycobacterial products (ManLAM, trehalose dimycolate, 
and sulfolipids), phosphatase SapM, kinase PknG, and early 
secretory antigenic target-6 (ESAT-6) have been implicated in the 
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inhibition of macrophage maturation (33, 34). ManLAM inhibits 
Ca+ surge that modulates the calmodulin- and Ca2+/calmodulin-
dependent kinase II-dependent delivery of early endosomal 
autoantigen1 (35–37), which in turn is necessary for the delivery 
of lysosomal hydrolases and vacuolar H+-ATPases into phago-
somes. ManLAM blocks ESAT-6 recruitment by inhibiting PI3K 
hVPS34 to block PIP3 production as well as SapM-mediated 
dephosphorylation of phosphatidylinositol 3-phosphate (37–39). 
Further, phosphorylation of unknown substrates by the kinase 
PknG and activation of p38MAPK by LAM to reduce the levels 
of Rab5 are some other mechanisms by which Mtb inhibits mac-
rophage maturation, though the exact role of ManLAM in these 
two mechanisms is not clear (40–42). Further, Mtb also disrupts 
the sca�olding of endosomes required for phagosome–endosome 
interactions leading to delay in phagosomal maturation (43, 44). 
Because of the abovementioned mechanisms, the phagosomal 
compartment formed in the macrophage is devoid of acidi�ca-
tion and lysosomal enzymes, thereby allowing Mtb to successfully 
establish a niche for its growth and replication.

Apoptosis of Immune Cells and Rede�ning the 

Immune Cell Fate: A Process of Exploitation
Mycobacterial infection leads to various cellular fates such as apop-
tosis, necroptosis (type of programed necrosis), and autophagy 
(45–47). In the macrophages, apoptosis and autophagy are the 
natural defense mechanisms that operate to eliminate microbial 
infection and invasion. �e spread of these bacilli is lowered (46) 
by tumor necrosis factor (TNF)-α activated caspase 8-mediated 
extrinsic cell death pathway that involves kinases p38, ASK1, and 
c-Abl (48). Additionally, autophagy also promotes the clearance 
of Mtb (47, 49), which is supported by the observation that the 
survival of Mtb depends on the expression pattern of factors 
predominantly involved in autophagy (50). However, mycobacte-
rial species have evolved mechanisms that prevent apoptosis and 
the autophagy of immune cells, so that they can survive in these 
cells and remain dormant for longer durations (51). Interestingly, 
the extent of alveolar macrophage apoptosis and Mtb virulence 
are inversely correlated. Mtb H37Rv, a virulent strain, inhibits 
apoptosis by enhancing the release of membrane-bound TNFR2 
receptors (52, 53) and also by upregulating the expression of 
Mcl-1 protein, a member of antiapoptotic B-cell lymphoma/
leukemia 2 family (54). �e products encoded by certain Mtb 
genes also in�uence the apoptosis of infected macrophages. 
Overexpression of the Mtb type I NADH dehydrogenase (nuoG) 
neutralizes NOX2-derived reactive oxygen species (ROS) (55, 56) 
and thereby inhibits apoptosis in macrophages. Such a role was 
also observed in PknE and SecA2 genes using knockout strategies 
(57, 58).

Apoptosis is induced in host cells in response to pathogen 
infection, which determines the initiation of infection, survival, 
and escape from the host. An interesting feature during this 
process is the induction of apoptosis in uninfected cells due to 
the non-speci�c activation of cytokines (59). �us, the induction 
of apoptosis of T cells (bystander cells) by Mtb is bene�cial for 
its survival (16). In T cells stimulated with non-speci�c phyto-
hemagglutinin (PHA) or speci�c culture �ltrate protein of Mtb, 
apoptosis was evident in non-speci�cally stimulated T-cells that 

were dependent on Fas–Fas ligand interactions. Further, a signi�-
cant release of TNF-α indicated its association with speci�c T-cell 
apoptosis during Mtb infection of macrophages (16).

Mtb exerts altogether a di�erent kind of action on T-cells 
(CD4+ and CD8+) to delay T-cell responses by inhibiting apopto-
sis. Evidence for the ability of Mtb to inhibit apoptosis is indicated 
by (a) the promotion of development of CD8+ T cell responses 
by the Sec2A-de�cient mutant strain of Mtb; (b) manipulation 
of eicosanoid metabolism of T cells (60); (c) increased frequency 
of macrophage apoptosis, accelerated CD4+ and CD8+ T-cell 
responses, and enhanced control of bacterial burden in Alox5 
(5-lipoxygenase, required for generation of LXA4) de�cient mice 
infected with virulent Mtb (61); and (d) enhanced susceptibility 
to Mtb infection due to polymorphisms in Alox5 and lta4h (62, 
63). Another important mechanism by which Mtb enhances its 
survival in the host is to delay the expansion of Foxp3+ regulatory 
T (Treg) cells and thereby delay adaptive immunity (64). Although 
in�ammation and cytokines produced during Mtb infection play 
a role in Treg cell proliferation, Treg cells that recognize Mtb anti-
gens expand preferentially. It is reported that mice infected with 
wild-type Mtb displayed higher Treg cell proliferation than those 
infected with a virulent strain of Mtb de�cient in expression of 
the speci�c antigen, Ag85B (64). Further, increased bacterial load 
associated with delay in priming of e�ector T cells was observed 
in mice receiving Mtb-speci�c Treg cells and such an e�ect was 
not observed in mice that received Mtb-speci�c Foxp3− CD4+ T 
cells (64). �ese observations clearly indicate that Mtb expresses 
certain antigens and allows Treg cells speci�c to these antigens to 
proliferate rapidly and limit the rate of e�ector T-cell priming and 
expansion at this site.

Migration of DCs from the lungs to the lymph node precedes 
CD4+ T-cell responses during Mtb infection, and this was dem-
onstrated in interleukin (IL)-12p40-de�cient mice (65). Further, 
the restoration of the ability of DCs and activation of CD4+  
T cells upon treatment with IL-12p40 (65) and presence of the 
same subset of DCs in the lymph nodes that were primed in the 
lungs (30) provides further evidence for the acquisition of bacilli 
and tra�cking by DCs as a rate limiting step in the initiation 
of adaptive immunity. An in�ammatory stimulus that resulted 
in migration of DCs from the lung to the lymph node failed to 
accelerate the delivery of Mtb from lung to lymph nodes, sug-
gesting that DCs infected with Mtb are intrinsically impaired to 
migrate (65).

Manipulation of Host Cytokine Responses
Mtb infection manipulates host cytokine responses in di�erent 
directions to create a balance and take advantage for its survival. 
Prolonged signaling of TLR2 by Mtb cell wall components results 
in increased production of IL-10, IL-4, and TGF-β, which then 
inhibits the IFN-γ-mediated activation of macrophages (27, 
66–69), thereby the immune surveillance of T cells is evaded. 
Recognition of mycobacterial PAMPs by macrophages stimulates 
the production of cytokines like type I interferons (IFNs) and 
TNF (70, 71) through the TLR2 pathway, and these two cytokines 
promote apoptosis and necroptosis. Host cytokine responses are 
manipulated by various molecules during Mtb infection (72). It 
is demonstrated that IFN-γ and ESAT-6 inhibits TNF-α, IL-17 
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production, and early expression markers on T cells (73). Tim-3 
inhibits the expansion of �1 cells to prevent production of excess 
pro-in�ammatory cytokines (74). Further, programed death-1 
(PD-1) inhibits CTL function during Mtb infection (75). Mtb 
evolved mechanisms to control the expression of ESTAT-6, Tim-
3, and PD-1 to control the manipulation of cytokine responses.

Increased production of TNF-α by macrophages induces gen-
eration of mitochondrial ROS, which confers the antimicrobial 
properties and necroptosis of these cells during Mtb infection 
(76–78). TNF-mediated ROS generation is brought through 
receptor-interacting protein 1 (RIP1), receptor-interacting pro-
tein 3 (RIP3), phosphoglycerate mutase family member 5, mixed 
lineage kinase domain-like protein (MLKL), and dynamin-related 
protein-1-dependent pathways (77). In brief, binding of TNF-α 
to its receptor results in the formation a membrane-proximal 
super-molecular structure complex 1 [containing TNF receptor-
associated death domain (TRADD) that binds to RIP1, TNF 
receptor-associated factor 2/5 (TRAF2/5), and cellular inhibitor 
of apoptosis 1/2 (cIAP1/2)] followed by polyubiquitination of 
RIP1 or TRAF2 by cIAPs, which then allows NF-κB translocation 
into nucleus to initiate transcription of A20 and cylindromatosis 
(CYLD) (79, 80). Deubiquitination of RIP1 by A20 and CYLD 
(79) results in complex I getting converted to complex II [con-
taining RIP1, Fas-associated protein with death domain (FADD), 
caspase-8, and TRADD] (80). Apoptosis is initiated by the acti-
vated caspase-8 of this complex and in  situations wherein this 
activity is abrogated, RIP1 and RIP3 come together in complex 
III also with FADD, caspase-8, and TRADD to form a necrosome, 
in which RIP1 phosphorylates RIP3 and further engages MLKL, 
leading to necroptosis (80). Mtb targets the caspase-8 activity and 
leading thereby the macrophages to undergo necroptosis instead 
of apoptosis, since the former process is favorable to its survival 
(81). Inducing a very high level of TNF-α and promoting the 
secretion of a biological factor that can block caspase-8 activity 
have been proposed to be reasons for the ability of virulent Mtb 
to favor occurrence of necroptosis (82).

Other cytokines that are implicated in Mtb pathophysiology 
are IL-10 and IL-4/IL-13. IL-10, also referred to as “cytokine 
synthesis inhibitory factor,” produced by �2 cells regulates 
macrophage and DC function in response to Mtb infection. �e 
production of IL-10 during Mtb infection is more of an advantage 
to the pathogen than the host. IL-10 facilitates Mtb survival by 
inhibiting phagosome maturation thorough a STAT3-dependent 
and p38-independent mechanism (83), IFN-γ-mediated produc-
tion of reactive oxygen and nitrogen intermediates (84), blocking 
antigen presentation by downregulating the expression of major 
histocompatibility complex molecules (85), DC migration (86), 
and recruitment of �1 cells to the lungs by modulating CXCL10 
production (87). In humans, IL-10 is responsible for limiting 
immune responses during Mtb infection (88). Further, an asso-
ciation between IL-10 gene polymorphism and susceptibility to 
TB was demonstrated (89). On the other hand, the Mtb strains 
HN878 and CH subvert the immune response via induction of 
IL-10 (90).

Besides the classical activation of macrophages modulated 
by many cytokines during Mtb infection, IL-4/IL-13 facilitates 
alternative activation of these cells. Mtb exploits the alternatively 

activated macrophages to divert the microbial actions of clas-
sically activated macrophages. Alternative activation results in 
induction of Arg1 gene whose protein product competes with 
iNOS for the substrate l-arginine (91). �is results in lower pro-
duction of NO reactive intermediates. Upregulation of IL-4/IL-13 
was observed in patients with progressive pulmonary TB and in 
PBMCs infected with HN878 Mtb strain (92–94). IL-4/IL-13 
induces Arg1 in alternatively activated macrophages to subvert 
the host NO-based mycobactericidal activity and could be a tactic 
by Mtb to thrive inside classically activated macrophages. On the 
other hand, the enhanced production of IL-4/IL-13 due to alter-
nate activation of macrophages inhibits autophagy to facilitate the 
survival of Mtb (95).

Resistance to Reactive Nitrogen Intermediates
Generation of reactive nitrogen intermediates (RNIs) by the 
macrophages through nitric oxide synthase 2-dependent path-
way mediated by IFN-γ is an antimicrobial strategy displayed by 
these cells and this process has been shown to be vital for the 
control of TB (96). In the macrophages, the inducible form of 
NOS is activated by the cytokines produced by �1 lymphocytes 
that stimulate the production of nitric oxide (97), which reacts 
with superoxide radicals to form RNIs. �e RNIs thus produced, 
attack bacterial macromolecules to aid in killing. Although the 
role of RNIs in the control of TB in humans is not yet clear, 
some studies provide substantial evidence that RNIs play a role 
in innate immunity mounted during mycobacterial infection. 
�e susceptibility to TB was found to be associated with genetic 
alterations in the NOS2A gene (98). Further, the negative cor-
relation of mycobacterial growth and NO production in human 
alveolar macrophages, elevated expression of NOS2 in the lungs 
of TB patients, and reactivation of dormant TB due NOS2 inhibi-
tion support the role of the RNIs mycobacterial pathogenesis 
(99). However, Mtb has developed mechanisms that can subvert 
the antimicrobial actions of the macrophages, which allows these 
bacilli to establish a niche and remain in the host for a long time. 
ManLAM was also described to trigger �2 cytokines such as 
IL-4 and IL-10 that inhibit the action of inducible NO synthase, 
an enzyme critical for the production of NO (9).

�e alkyl hydroperoxide reductase subunit C encoded by the 
mycobacterial gene AhpC, in association with peroxidase, per-
oxinitrite reductase, dihydrolipoamide dehydrogenase (Lpd), 
dihydrolipoamide succinyltransferase (SucB), and thioredoxin-
like AhpD catalyzes the breakdown of RNIs to protect Mtb 
from the antimicrobial actions of the macrophages (100, 101). 
Further, the mycobaterial gene MsrA encodes methionine sul-
foxide reductase, an enzyme that converts methionine sulfoxide 
[produced out of a reaction between peroxynitrite (ONOO−) 
and methionine residues of proteins] to methionine, protects 
bacteria against RNIs (102). Rv1205, a pupylated proteasome 
substrate, catalyzes the production of cytokinins and helps 
Mtb to defend against NO (103). To summarize, TLR agonists 
present in the thick cell wall of Mtb causes prolonged TLR 
signaling resulting in various immune evasion mechanisms. 
Among these mechanisms, inhibition of MHC class II appears 
to be predominant that allows preventing detection by CD4+ 
T cells.
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Antibiotic Tolerance: An Acquired Fitness 
Advantage
Besides the �xed genetic mutations that the Mtb undergo to 
develop antibiotic tolerance, another interesting feature adopted 
by Mtb to remain dormant in the host is the development of 
“phenotypic drug resistance” or simply called “drug resistance,” 
during which a transient resistance to antibiotics is developed 
(104, 105). �is is achieved by induction of speci�c macrophage-
induced e�ux pumps (106). Adding to this, the same pumps 
promote intracellular bacterial growth, thereby providing a 
double advantage to the Mtb.

�e role of toxin–antitoxin (TA) systems in conferring the 
“non-classical” antibiotic resistance to allow Mtb to remain in 
a non-replicating phase for longer durations is very interesting. 
�is system encoded by two genes is composed of two proteins, 
namely, the long-lived protein “toxin” and the short-lived protein 
“antitoxin.” In Mtb, under normal physiological conditions, the 
toxin is neutralized by the antitoxin. To remain in dormant stage, 
Mtb represses the expression of the antitoxin protein resulting 
in the accumulation of toxin. Under such conditions, the toxin 
protein acts as a ribonuclease to cleave free and ribosomal bound 
single-stranded mRNA resulting in inhibition of protein synthe-
sis and bacterial growth. �is allows the Mtb to persist in the host 
without any signs of infection state for a long time. Multiple TA 
systems, approximately 88, exist in the bacilli and their numbers 
are ever increasing (107–109), with H37Rv strain found to harbor 
38 modules of 5 TA systems (3 relBE, 24 vapBC, 8 mazEF, 1 higBA, 
and 2 parDE) (108). Over expression of these genes belonging 
to di�erent modules in Mycobacterium smegmatis stopped the 
growth of the recipient cells to remain in latent phase. In general, 
the mycobacterial TA proteins are homologous to the proteins of 
other bacterial species and some of them exhibit certain special 
features. �e MazF protein besides cleaving mRNA can also 
interact with DNA topoisomerase (110), thus indicating that 
di�erential mechanisms may exist in the way the TA proteins act 
to contribute to persistent infection in the host.

Granuloma Formation: A Finely  
Negotiated Refuge?
Granulomas are formed in response to infectious and non-infec-
tious stimuli and are associated with various diseases (111). �ey 
are aggregates of macrophages whose membranes are interlocked 
and their occurrence is more prevalent in TB worldwide. Although 
it was initially reported that granulomas are complex protective 
structures that contain host cells to wall o� bacteria (104) and 
can also sterilize infection (112), many studies have indicated 
that they are conducive to heavy bacterial burdens in TB (113). 
In case of active disease, some of the lesions are cleansed by the 
host even though there is progression of other lesions indicating 
that lesional heterogeneity persists a�er the initiation of adaptive 
immunity where di�erential killing of the bacteria take place, 
deciding the outcome of the clinical infection (112). Mtb in fact 
enhances the formation of granulomas (114) for their expansion 
and dissemination. �is is accomplished by spreading of Mtb 
from dying macrophages to newly recruited ones. Macrophages 

undergo apoptosis when the bacterial load reaches a threshold 
and the nascent granulomas are presented to the uninfected mac-
rophages. �us, the Mtb numbers are phenomenally expanded by 
way of macrophage death and re-phagocytosis (114).

In the granuloma lesions, either the infection is cleared 
or viability is promoted by creating a favorable niche to the 
bacterium (Figure  2) (115). �e immune status of the human 
host and transcriptional signature of the bacteria directs early 
granuloma establishment and consequence of the disease (116). 
However, it is shown that the immunological responses to Mtb 
by infected individuals vary to a great extent and is dependent on 
the granulomatous lesion formed. Two kinds of granulomatous 
lesions were demonstrated in cynomolgus macaques that were 
infected with low doses of Mtb (117). �e classical ones are the 
caseous granulomas with low oxygen availability that is charac-
terized by �broblasts surrounding the epithelial macrophages 
and neutrophils in the periphery and dead macrophages in the 
center (118), whereas �brotic lesions are associated with latent 
TB and exclusively �lled with �broblasts with sparsely distributed 
macrophages (119). In the event of an immunocompromised 
condition, granulomas liquefy and the bacteria are released from 
degraded granuloma to re-infect lung tissue and spread to new 
hosts (120).

Although granuloma formation is a basic immune response 
elicited by the host against an infection, it is also promoted by Mtb 
as part of its virulence program (121, 122). TNF-α plays an impor-
tant role in mounting a response that is cytotoxic to the pathogen 
as well as maintaining the structural integrity of the granuloma 
and this is evident by the fact that neutralization of TNF-α leads 
to fatal reactivation of the bacterium and increased burden of 
the bacilli in the lung tissues (123, 124). It is demonstrated that 
the lipid-rich mycobacterial cell wall composed of trehalose 
dimycolate induces TNF-α induction and thus the granuloma-
tous in�ammatory response (120). Eliciting an excessive TNF-α 
response is another mechanism of virulence of Mtb to favor its 
existence in the host without being detected. �is is accomplished 
by increasing the levels of TNF-α in the macrophages by directly 
interfering with cAMP mediated responses. In the mutant strain 
of Mtb lacking Rv0386 (encodes an adenylate cyclase), reduced 
protein kinase A and cAMP response element-binding protein 
activation was observed, which results in a signi�cant reduction 
of macrophage TNF-α secretion (125). Although excess pro-
duction of TNF-α is required for the containment of Mtb, this 
pathogen, however, uses adenylate cyclase to deliver excess cAMP 
to macrophage cytoplasm and acts to subvert host cell signal 
transduction so as to result in a pro-granulomatous response with 
excess TNF-α secretion (125).

�e mechanisms of granuloma formation are not well studied. 
However, evidence points to the role of matrix metalloproteinases 
(MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in 
Mtb for induction of granuloma formation (126). �e expres-
sion of MMPs is largely dependent on cAMP-mediated signaling 
in the host cell (127) and thus the levels of these enzymes can 
be modulated by bacterial mechanisms (for example, the Mtb 
Rv0386 pathway) that regulate cAMP levels. Secretion of MMP-
1, -2, -7, and -9 and decreased expression of TIMP-1, -2, and -3 
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FIGURE 2 | Dynamics of granuloma formation, maintenance, and reactivation: Mycobacterium tuberculosis primarily harbors lungs and infects 

alveolar macrophages and establishes its niche. The host defense sets in to counteract the actions Mtb. In this process, multiple possibilities exist where there 

could be (A) active infection/clearance: macrophages (Mφ) and Th1 cells secrete tumor necrosis factor (TNF)-α, IFN-γ that recruits other immune cells like 

neutrophils, dendritic cells (DCs), and B-cells that might clear the infection or bacilli may multiply leading to primary infection. However, some of the bacilli might 

escape the host’s immune actions and enter into dormancy. (B) Solid granuloma: solid granuloma is composed of macrophages, lymphocytes (B-cells and T-cells), 

DCs, and neutrophils. The solid granuloma is usually encircled by �broblasts. During latent infection, Mtb encourages the immune system to form granuloma by 

manipulating host immune responses for its survival. Some of the Mtb survival strategies include stimulation of macrophages and T-cells to secrete large doses of 

TNF-α, chemokines such as CCL-2, CCL-12, and CCL-13, which are crutial for the recruitment of other immune cells and maintenance of granuloma. Extensive 

calci�cation of granuloma by Mtb leads to prevention of apoptosis. Secretion of Mtb antigens such as Rv0386 (adenylyl cyclase) produce cAMP which signal the 

synthesis of matrix metalloproteinases (MMPs) that are involved in the maintenance of granuloma by unknown mechanism. (C) Reactivation: Mtb reactivates and 

exits from the granuloma when immune system compromises and bacilli spread to new sites of infection. Poor nutrition, decrease in the number of T-cells, HIV 

coinfection are some of the contributing factor for reactivation.

7

Peddireddy et al. Mycobacterium tuberculosis Dormancy Survival Strategies

Frontiers in Immunology | www.frontiersin.org February 2017 | Volume 8 | Article 84

(126, 128) have been shown in the peripheral blood mononuclear 
cells and human airway epithelial cells. Governing granuloma 
formation is also exploited by this bacterium to increase its 
numbers and dissemination systemically. In the Mycobacterium 
marinum-zebra�sh model, it was demonstrated that the infected 
macrophages attract new cells and they in turn ingest the bac-
terium and allow them to sustain, thus allowing the granuloma 
to expand (114). �us, it is clear that Mtb pathogenesis involves 
subversion of host signaling in a pro-in�ammatory manner to 
create an environment that is favorable for its dormancy.

Regulation of Granuloma Maintenance
Calci�cation
Neutrophils on the other hand also display antimycobacterial 
activity and the mechanism involves generation of ROS (129, 
130). Further, infected neutrophils undergo apoptosis (131, 
132), thus contributing to an e�ective adaptive immunity 
during Mtb infection (133). However, Mtb adopts strategies to 
inhibit apoptosis and promotes necrosis of these cells by various 
mechanisms by expressing the region of di�erence 1 (RD1) and a 
type VII secretion system (ESX) (134). Apoptotic neutrophils are 
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also subjected to necrosis because of the activation of Calpain, a 
Ca2+-activated protease (135) due to Ca2+ in�ux, and this process 
is generally termed as Ca2+-induced necrosis. �e Ca2+ in�ux 
and the subsequent necrosis of neutrophils are promoted by 
ESAT, a mycobacterial leukocidin (136). Further, the dormancy 
regulator of DosR activates the Ca2+ ATPase of the plasma mem-
brane of the microvesicles of mycobacteria to create hypoxic 
conditions (137). �us, the calci�cation of neutrophils is an 
important survival strategy adopted by Mtb at the cellular level. 
On the other hand, it was reported that feeding Mycobacterium 
paratuberculosis-infected rats with low calcium enhanced their 
ability to clear the infection (138). Besides utilizing Ca2+ for 
its survival at the cellular level, Mtb infection causes extensive 
calci�cation in various host tissues. Calci�cation is observed in 
myocardial (139), pulmonary (140), musculoskeletal, central 
nervous, abdominal (141) and genitourinary systems (142), 
and in lymphatic tissue and more importantly the granulomas. 
During the granuloma formation, the parenchymal tissues 
calcify to form caseous structures, especially during chronic 
or latent infection (143). Calci�cation allows the formation of 
various granuloma structures within a single host, thus creating 
di�erent microenvironments that are unique among them to 
allow the survival of Mtb (143). �e molecular mechanisms of 
granuloma calci�cation remain unclear. However, calci�cation 
of granulomas allows a safe environment for Mtb to remain 
dormant for extended periods of time.

Fibroblasts
Besides macrophages, granulomas also contain other cells 
such as eosinophils, neutrophils, and �broblasts. In the mature 
granulomas, �broblasts are found in the periphery and embed-
ded within collagen �bers. TB in�ammation is associated with 
increased number of �broblasts and the �broblastic activity 
(144). �ese cells produce collagen bundles such that the �brotic 
capsule separates the bacteria from the surrounding tissue. 
�is process is a consequence of intra-granulomatous cytokine 
secretion (145). On the other hand, �broblasts also participate 
in the burning out of granuloma (in the event of the pathogen 
completely eliminated) by secreting tissue inhibitors of metallo-
proteases (145). �e dynamics of granuloma formation depends 
on the number and degree of di�erentiation of �broblasts (144). 
Interferon-γ primed �broblasts present bacterial antigens to �1 
cells for further processing. However, it was demonstrated that 
Mtb-infected �broblasts fail to present the antigens (146), thus 
enabling these bacilli to evade immune response of �1 cells. 
Mtb also directly a�ects the collagen turnover and expression of 
matrix metalloproteases and tissue inhibitors of matrix metallo-
proteases in �broblasts (147). �us, the manipulation of �broblast 
function is one of the key strategies of Mtb for the establishment 
and sustenance of persistent infection.

Genetics of Host and Pathogen in 
Mycobacterial Dormancy:  
A Perfect Storm?
�e pathogenesis of Mtb, especially its ability to remain in dor-
mant state and reactivation, depends on both the genetics of the 

host and the pathogen (148). �is is evidenced by the fact that 
(a) dormant mycobacteria do not replicate at all and their cell 
divisions occur at a very low rate (149, 150) and (b) a high level of 
genomic stability was observed in these bacterium isolated from 
human populations. Hence, studies on the genetic variations of 
the Mtb and the host have invited a lot of interest in the past few 
years and the same are discussed in this section.

Host gene–environment interactions play a crucial role in 
determining the outcome of TB and these are very important 
to evolve strategies to prevent mycobacterial infection at the 
genomic level. Interestingly, the ability of the host genetic 
control depends on the mycobacterial strain encountered and 
the exposure intensity (151). Two major loci on chromosomal 
regions, 18q11.2 and 11p13, were found to be associated with 
incidence of TB (152, 153). TST reactivity and interferon-γ 
release assay responses during Mtb exposure were found to be 
hereditarily controlled (154, 155). Since heritability is related 
to latent tuberculosis infection (LTBI), the phenotype of cer-
tain genes seems to govern mycobacterial infection and the 
associated dormancy. For example, in a Ghanaian population, 
IL-10 promoter haplotype (−2849G/−1082G/−819C/−592C) 
in TST non-responders was signi�cantly more compared to 
TST responders (15.3 vs. 9.7%, OR = 2.09, p = 0.01) (156). In 
individuals carrying GG genotype at 1082A>G, the prevalence 
of TST non-response was 1.5 times than those carrying the 
AA and AG genotypes (156). Further, SNPs in IL4 (−590T>C, 
p = 0.007) and IFN-γ (+874A>T, p = 0.02) genes are associated 
with TST response (156). A linkage of persistent TST negativity 
with chromosomal regions 2q21-2q24, 5p13-5q22 (157), 11p14 
(also called TST1 locus), and 5p15 (also called TST2 locus) was 
identi�ed (158). �us, the genetics of the host determines the 
susceptibility to mycobacterial infection and the development 
of LTBI.

Dormancy in Mtb is regulated by a set of approximately 50 
genes, the DosR regulon, under the tight control of the dormancy 
survival regulator transcription factor (159). �e genes of the 
DosR regulon are distributed in nine blocks in the genome: 
(block 1) Rv0079–Rv0081, (block 2) Rv0569–Rv0574c, (block 3) 
Rv1733c–Rv1738, (block 4) Rv1812c–Rv1813c, (block 5) Rv1996–
Rv1998c, (block 6) Rv2003c–Rv2007c, (block 7) Rv2028c–Rv2032, 
(block 8) Rv2623–Rv2631, and (block 9) Rv3126c–Rv3134c (160). 
Evolutionarily, these genes are conserved across various patho-
genic, non-pathogenic, and environmental bacteria of diverse 
habitats (160), and this could have occurred due to horizontal 
gene transfer mechanism during adaptation to challenging envi-
ronmental conditions (161). Functionally, they emerged primarily 
to assist Mtb to adapt for anaerobic environment, thus enabling 
its survival in the host granuloma (162). �eir expression is 
induced under hypoxia (163, 164) and under conditions where 
mycobacterial growth is inhibited by external growth factors both 
in vitro (macrophages) (165) and in vivo (mice and guinea pigs) 
(166, 167), suggesting their role in maintaining a low pro�le of 
bacterial growth under unfavorable conditions. Interestingly, the 
protein products of many of these genes seem to be good T-cell 
antigens and involved in many physiological processes of both the 
bacilli and the host.
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�e protein products encoded by DosR genes are predicted/
reported to be involved in various functions, and on this basis, 
they were classi�ed into eight groups (160). �e functional roles of 
these genes are outlined in Table 1. Although they were predicted 
to have diverse functions, immune regulation and modulation of 
host responses have gained importance in the recent years. Out of 
the DosR genes expressed during dormancy, 18 are T cell respond-
ers that trigger strong IFN-γ response in TB patients. Further, it 
was demonstrated that Rv1733c, Rv2029c, Rv2627c, and Rv2628 
are strong IFN-γ responders in latently infected individuals 
(168). Further, Rv2032, Rv1998c, Rv2031c, Rv2623, and Rv3132c 
exhibit strong T-cell response, whereas Rv0079, Rv0080, Rv3127, 
Rv2626c, and Rv2029c exhibit strong humoral immune response 
(169, 170). It was identi�ed that Rv2626c is a secretory protein, 
which binds to macrophage a�ecting its function and also elicit 
TNF-α and strong B-cell responses (171). In aerosol-mediated 
murine TB model, decreased induction of pro-in�ammatory 
cytokines (IL-1 and IL-12) and decreased bacterial load and 
delayed death was observed when infected with Rv1813c deletion 
mutant of Mtb (172). It is to be noted that evidence for the role of 
DosR genes in Mtb dormancy stems out from murine models and 
no concrete evidence exists in higher animal models. In a recent 
study, using macaque as the model system, it was demonstrated 
that during hypoxic conditions DosR regulon modulates the 
timing and magnitude of adaptive immune responses to favor 
persistence of infection by Mtb (173).

It is very interesting to note that mutations in dosR does not 
induce Mtb death under hypoxic conditions, indicating that 
other factors beyond dosR are important for the dormancy and 
survival of Mtb in the host. Further, the massive expression of 
dosR-independent genes during hypoxic conditions and the vari-
ation in the expression pro�les of dosR genes in di�erent strains 
of mycobacteria of di�erent virulence indicates that further 
studies are required to warrant the exclusive role of these genes 
in mycobacterial dormancy (200–202).

Environmental Signals of Sleep
�e complex life cycle of Mtb involves adaptation to various 
stresses and to accomplish this it encodes about 190 regula-
tory proteins among which 11 form the two-component signal 
transduction systems (TCSSs) (134, 203). TCSSs found in Mtb are 
conserved in other closely related mycobacterial species in terms 
of genetic arrangement and location (134, 204). However, the 
number of functional TCSSs seems to vary between the species, 
wherein the Mycobacterium leprae had only four TCSSs (204). 
�e TCSSs identi�ed in Mtb are phoP-phoR, regX3-senX3, dosR-
dosS (dosT), Rv0600c-Rv0601-ctcrA, narL-Rv0845, tcrX-tcrY, 
mprA-mprB, prrA-prrB, trcR-trcS, pdtaR-pdtaS, mtrA-mtrB, and 
kdpD-kdpE (205).

A typical TCSS comprises a histidine sensor kinase and a 
response regulator that are localized in the plasma membrane 
and cytoplasm, respectively. Both of them have speci�c domains 
through which they sense environmental cues. �e sensor 
kinase comprises a sensor domain, one or more transmembrane 
domains, and a cytoplasmic transmitter containing a dimerization 
motif and a kinase domain, and the latter can be again divided 
into two subdomains possessing a histidine phosphorylation box 

and an ATP-binding pocket (made of N, D, F, and G boxes that 
have highly conserved amino acids); signal recognition results in 
dimerization and auto-phosphorylation followed by the transfer 
of this phosphate to the response regulator, thus enabling it to 
promote transcriptional, translational, and functional aspects 
(206–209). �e environmental cues that activate the TCSSs are not 
yet de�ned for all of them. Inorganic phosphate (regX3-senX3); 
SDS, triton X-100 alkaline pH, and nutrient limitation (mprA-
mprB); low oxygen, nitric oxide, carbon monoxide, and ascorbate 
(DosS-DosR) are some of the signals that are identi�ed to activate 
the TCSSs in model organisms such as M. smegmatis. However, 
whether the same signals also activate these TCSSs in Mtb is not 
yet clear. �e signaling mechanisms of some of the characterized 
TCSSs remain more or less similar as described above for a typical 
TCSS, with some variations. One of the downstream events of 
TCSS activation is gene regulation. SenX3-RegX3 activation leads 
to the upregulation of several genetic determinants such as phoA 
(alkaline phosphatase) (210), pstSCAB and phnDCE (encodes 
phosphate-speci�c transporter systems) (210, 211), and phnF 
(encodes a negative regulator of phnDCE) (211) and SenX3-
RegX3 itself (210, 212). PhoP-PhoR regulates about 150 genes 
that are involved in general and lipid metabolism, and respiration 
(213, 214). Further, a number of genes that code for membrane 
proteins, genes of dosRS regulon, genes of the PE/PPE/PE-PGRS 
protein families, and genes of the virulence-associated RD1 such 
as espB and espR (214, 215). �e narL-Rv0845 TCSS regulates 
genes involved in nitrate metabolism during anaerobic respira-
tion (216). mprA-mprB di�erentially regulates about 200 genes 
(217, 218). Examples include expression of its own gene, pepD 
and moaB2 and Acr2 (alpha-crystallin-like protein) (219, 220). 
�e trcR-trcS TCSS regulates about 50 genes (221). dosR-dosS 
(dosT), one of the well-characterized TCSS, regulates about 48 
genes (collectively called the DosR regulon), predominantly hav-
ing a role in hypoxia. MtrA-MtrB seems to be an important TCSS 
since it regulates genes involved in DNA replication and cell wall 
integrity (222, 223). �e gene expression regulated by pdtaR 
binding to RNA involves prevention of stem-loop structure for-
mation by acting as an anti-terminator (224). �e huge variety of 
genes regulated by TCSSs gives an edge for Mtb to create favorable 
conditions for its survival in the host in a dormant condition for 
longer durations.

Evidence to strengthen the crucial role of TCSS is demonstrated 
in animal models of TB infected with mycobacterial strains that 
harbor mutation in the TCSS genes. Attenuation of bacterial 
growth in lung, liver, and spleen and delayed time to death of 
Mtb-infected animals are some of the phenotypes described in 
studies that used TCSS mutants [reviewed in Ref. (205)].

REACTIVATION

Reactivation and Liquefaction  
of the Granuloma
�e reactivation of dormant Mtb is governed by a group of 
proteins belonging to the resuscitation-promoting factor (RPF) 
family and their genes were found to be upregulated during 
this process (149, 225, 226) (Figure 3). In general, these genes 
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TABLE 1 | Functional role of proteins encoded by the DosR genes.

Predicted functional 

group

Gene Reported/predicted functional role of the encoded protein

Stress response Rv2623 Regulates bacillary growth of Mtb by modulating ATP-binding (174). Biomarker for the diagnosis of latent tuberculosis 

meningitis (175)

Rv3134c Associates with devRS to form an operon that mediates the expression of DevR target genes (176)

Rv2031c Alpha-crystallin (Hsp-X), a master regulator of Rv-2018-2031 operon (177); blocks the differentiation of monocytes to 

dendritic cells (178)

Rv2624c, Rv1996, 

Rv2005c, Rv2028c

Not yet characterized

Proteases and 

transport

Rv2625c Metalloprotease (Rip3); required for early phases of pulmonary tuberculosis infection (179)

Rv1997 Not yet characterized

Rv1735c Immunogenic (169)

Rv1733c Enhances humoral and cellular immunity (180)

Host–pathogen 

interactions

Rv2626c Modulates macrophage effector functions and delayed hypersensitivity (171). Diagnostic marker for tuberculosis (181)

Rv2004c Binds speci�cally to U397 macrophages and A549 epithelial cells to modulate immune responses (182)

Sensor kinases 

and transcriptional 

regulation

Rv3132c (DosS), 

Rv2027c (DosT) 

Rv3133c (DosR)

Form a two sensor kinase system (183)

Rv0081 Predicted to involve in encoding of formate Hydrogenylase complex (Rv0081-Rv0088 locus) (184); highly 

immunogenic in African populations (169)

Cell wall and protein 

synthesis

Rv0079 RafH (ribosome-associated factor during hypoxia); stabilizes ribosome under stress conditions (6, 185); inducer of 

T-cell responses (186)

Rv0574c A pyroglutamate synthase-like protein, modulates poly-α-L-glutamine content in the cell walls to maintain cell integrity 

under hostile conditions (187)

Rv1738 Shutdown of ribosomal protein synthesis (188)

Nucleotide 

metabolism and 

repair

Rv2630 Immunogenic in patients with active pulmonary tuberculosis; exact role in nucleotide metabolism and repair are yet to 

be proven in vivo (189)

Rv2631 RNA-splicing ligase RtcB; function not yet characterized

Rv0570 Putative vitamin B12 dependent ribonucleoside-diphosphate reductase; immunogenic (134)

Rv0571c Putative phosphoribosyltransferase; function not yet characterized

Nitrogen metabolism Rv3131 Putative NAD(P)H nitroreductase and immunogenic in nature (169, 190)

Rv2032 Putative NADP(H) nitroreductase (191); Potent inducer of host cytokines (192, 193)

Rv1737c, Rv1736c Nark2 and NarkX (encoded by Rv1737c and Rv1736c, respectively) are nitrate/nitrite transporters required during 

mycobacterial anerobic dormancy (194); immunogenic and potent diagnostic markers of tuberculosis (169)

Rv3127 Not yet characterized

Redox balance Rv0573c Predicted to involve in biosynthesis and recycling of nicotinamide; lmmunogenic (195)

Rv1812c Nitrogen metabolism during stress (172)

Rv3130c Putative Diacylglycerol O-acyltransferase; facilitates accumulation of triacylglycerol under stress (196)

Rv2029c Putative 6-Phosphofructokinase (PfkB); induces cytokine production (197)

Rv1734c, Rv2006, 

Rv1998c, Rv2003c, 

Rv2007c

Not yet characterized

Hypothetical proteins Rv2628 Immune-mediated protection against tuberculosis (198)

Rv2627c Delays mycobacterial growth (199)

Rv2629, Rv3126c, 

Rv0569, Rv0572c, 

Rv0080, Rv2030c, 

Rv3128c, Rv1813c

Not yet characterized

are upregulated when the stress is removed. �e importance of 
these genes was demonstrated by the fact that Mtb in which Rpf 
genes were knocked down, were unable to undergo reactivation 

even a�er immune suppression of the host (227, 228). �e �ve 
Rpf genes (A to E), though, not required for general viability, are 
crucial for the induction of reactivation of Mtb and the bacilli 
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FIGURE 3 | Reactivation of latent bacilli: Mycobacterium tuberculosis (Mtb) persisting under hostile conditions in granuloma reactivates when 
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to shift to metabolic phase. On the other hand, Mtb expresses a family of �ve resuscitation-promoting factors (RPF A to E) that are essential for the lysis of 

granulomatous cell wall. Certain Universal stress proteins (like Rv2005c) are also upregulated during resuscitation which might play an essential role for the 
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can survive multiple mutations across the underlying genes. 
�e Rpf proteins conserve a domain that is structurally close to 
lytic transglycosylases and are thought to participate in cell wall 
hydrolysis, an essential early phase step in the reactivation or 
resuscitation process (229). �e action of these proteins breaks 
the peptidoglycan strands of the highly impermeable cell wall 
of the granulomatous cells. During the reactivation process, 
increase in cAMP levels due to activation of adenylate cyclase by 
free fatty acids is evident and the RPF proteins do not seem to be 
involved in this process (230). However, gene expression analyses 
indicated that the RPF biosynthesis is active in the later phase of 
reactivation, suggesting that they may mediate the early and late 
events (230, 231). �us, each of these genes is considered as a 
potential drug target that would allow Mtb to exit the dormant 
stage for further treatment by conventional drugs.

Besides the Rpf genes, the DosR regulon gene (Rv3133c) also 
contributes to the rapid resumption of Mtb growth especially when 
they transit from the non-respiring conditions to the respiring 

conditions (200). �e dosR regulon also regulates the expression 
of non-coding short RNAs that are involved in both dormancy 
and reactivation (232). A recent study indicates that Clp protease 
gene regulator, Rv2745c (clgR) is required for in vitro reactivation 
from hypoxia-induced dormancy (233). In the isogenic mutant 
Mtb:ΔRv2745c, genes in the σ(H)/σ(E) regulon as well as the 
dosR regulon were dysregulated suggesting that the DosR genes 
are regulated at a di�erent level to contribute to the reactivation 
process (233). It thus appears that Mtb reactivation involves 
biochemical, immunological, and genetic aspects all of which are 
potential drug targets for the development of treatment strategies 
to prevent dormancy and reactivation of the bacilli.

Exiting the Granuloma: In Search  
of a New Niche
Besides the biochemical aspects that favor apoptosis or necrosis, 
genetic reprograming also plays a vital role in the reactivation 
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of Mtb from its inactive state (234). �e prime necessity of any 
pathogen to enter a dormant phase is to establish its niche and 
re-infect when the conditions are favorable. Evolutionarily, the 
pathogens exit the host in which they have resided to infect a 
new host. In the case of Mtb, the bacilli exit from the granulomas 
that have undergone necrosis in to the bronchial tree and this 
seems to be most e�cient method of transmission to the new host 
(235, 236). Reactivation generally occurs when the host immune 
machinery is weakened or suppressed due to physiological or 
pathological factors. For example, in the case of HIV+ individuals, 
increased risk of Mtb reactivation is possible due to the low levels 
of CD4+ T cells (237). Further, the immune responses during 
reactivation di�er from that of primary infection with CD8+  
T cells taking the lead than the CD4+ T cells (238). In a primate 
model exhibiting latent TB and HIV coinfection, it was observed 
that animals with low CD4+ T cells show higher incidence of TB 
suggesting that T-cell depletion is one of the major triggering fac-
tor for Mtb reactivation (239). �ough these observations were 
con�rmed in smaller animal models, controversy still exists in 
the primates and humans (240).

Further the immunological factors, cellular events also 
determine the e�ciency of reactivation. �e nature of cell death 
experienced by the granuloma cells de�nes the extent of infection 
(111). Apoptosis of the macrophages allows the bacilli to remain 
encased in the macrophages, which then are phagocytosed by 
new macrophages and thus allowing bacterial expansion or 
maintenance in the new granuloma cells. On the other hand, 
necrosis of macrophages in the granuloma releases the bacilli into 
the extracellular milieu allowing multiplication in high numbers 
and these new bacilli structurally appear as serpentine cords. It is 
very interesting to note that the serpentine cords are not readily 
recognized by macrophages, thus allowing them to successfully 
get transmitted to a new individual (241). What factors and con-
ditions that allows a granuloma to undergo apoptosis or necrosis 
is still a matter of debate and is being actively investigated. Once 
in the airway mileu, the new bacterial cells are aerosolized in 
cough droplets.

Anti-Cytokine Inhibitors: Contribution to 
Reactivation
As discussed earlier, TNF is a potent in�ammatory cytokine that 
controls the dynamics of pathogen survival and host immune 
response. Among the cytokines implicated in Mtb pathogen-
esis, TNF is a potent in�ammatory cytokine that controls the 
dynamics of pathogen survival and host immune response. 
TNF confers anti-TB immunity to the host by manipulating the 
levels of other cytokines, adhesion molecules, and apoptosis 
of macrophages. In the clinical settings, TNF blockers such as 
in�iximab, adalimumab, certolizumab pegol, and etanercept 
are routinely used for the treatment of various autoimmune 
disorders. An emerging concern is the association between the 
use of TNF inhibitors and increased risk of Mtb reactivation. 
It is observed that treatment with TNF inhibitors resulted in 
progression of Mtb from latent to reactivation (242, 243). Recent 
studies project a higher risk of TB in rheumatoid arthritis 
patients receiving TNF inhibitor treatment (244). Further, in 
various animal models, it is demonstrated that neutralization 

of TNF resulted in increased susceptibility to primary infection 
of Mtb (245, 246). TNF inhibitors interfere with innate and 
adaptive immune responses such as increased T-cell activity, 
complement-mediated lysis, apoptosis of immune cells, and 
phagosomal maturation (247). �e changes that occur in the 
immune responses due to TNF inhibitors give an opportunity 
for Mtb to reactivate. A thorough multistep screening for Mtb is 
proposed for individuals who are subjected to anti-TNF therapy 
to treat autoimmune diseases (248).

Clinical Implications of Dormancy/
Therapeutic Manipulations of Dormancy
�e unique feature of Mtb is its ability to maintain a persistent 
infection without being detected under di�erent conditions has a 
lot of impact on the clinical implications. Mtb, because of its abil-
ity to create a secure environment for itself is not susceptible to 
certain antibiotics and also resistant to strong antibiotics such as 
isoniazid (249). Development of drug resistance during dormancy 
is mainly due to chromosomal mutations in genes required for 
antibiotic action. Isoniazid (INH) and rifampicin (RIF) are the 
front line drugs for the treatment of TB. However, over a period 
of time, Mtb developed multidrug resistance and currently a 
combination of 8–10 drugs are being used for treating MDR-TB. 
Development of multidrug resistance by Mtb complicates the 
clinical interventions. Serious side e�ects such as nephrotoxicity, 
ototoxicity, and dysglycaemia due to the use of powerful anti-TB 
drugs such as aminoglycosides, ethionamide, and gati�oxacin are 
some of the indirect clinical implications caused by the ability of 
Mtb to acquire drug resistance (250). Another clinical implication 
that is very serious is the re-emergence of TB when host immune 
responses fail in conditions such as HIV infection (237) and the 
increased risk of developing TB in patients treated with anti-TNF 
(251). Further, corticosteroid therapy, de�ciency of vitamin D, 
and other possible conditions that a�ect T cell function increases 
the risk of TB (252). �e main therapeutic implication of myco-
bacterial dormancy is development of drug resistance and this 
is mainly due to chromosomal mutations in genes required for 
antibiotic action.

CONCLUSION

Despite global e�orts to tackle incidence and transmission of 
TB, about 10 million people are diagnosed with this disease each 
year, leading to approximately 2 million deaths. A minority of 
the infected patients enjoy total elimination of the pathogen 
but, a majority of the cases appear to contain Mtb in dormant 
phase. Identi�cation and diagnosis of individuals with latent 
TB has been an active area of investigation even in the era of 
advanced molecular and cell biology. Although the role of many 
genes and their protein products that contribute to dormancy 
and reactivation of Mtb were studied and proposed as potential 
targets/antigens for the development of drugs and vaccines, the 
application of the same at the ground level in containing TB 
still remains a major challenge. Whether or not the functional 
applicability identi�ed for these genes is su�cient to develop 
control strategies, such as development of vaccines against TB 
will need to be tested, evaluated, and addressed. If so, would the 
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vaccines be designed with multiple antigens encoded by the genes 
involved in dormancy and reactivation of Mtb? On the same lines, 
should multiple antigen strategy be adopted in designing highly 
sensitive diagnostics that can detect stage-speci�c antigens of Mtb 
to allow the option of a strategic treatment protocol and prevent 
the “under representation” of dormant Mtb cases as healthy 
individuals? On the other hand, can the immune system of the 
host be manipulated to e�ciently prevent dormancy of Mtb? 
What is the relevance of the functional aspects of genes involved 
in latency and reactivation for the development of extreme drug 
resistance in Mtb? Answering all these questions, although dif-
�cult form a practical point of view, would enable us tackle Mtb 
by a multipronged approach that involves prevention, timely 
detection of infection, and also the identi�cation of the stage of 
infection through the development of novel drugs that can target 
the pathogen at all the three stages, namely, infection, dormancy, 
and reactivation.
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