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INTRODUCTION

Bacteria of the genus Mycobacterium are gram-positive, ac-
id-fast organisms that include a number of significant human
and animal pathogens. Mycobacterium avium subsp. paratuber-
culosis (basonym M. paratuberculosis) is the etiological agent of
a severe gastroenteritis in ruminants, known as Johne’s dis-
ease. H. A. Johne and L. Frothingham initially reported the
disease in Germany in 1894. However, it was not until 1910
that F. W. Trowt successfully fulfilled Koch’s postulates by
growing M. paratuberculosis in the laboratory and reproducing
the disease in experimentally infected cattle (46, 148).

Johne’s disease is prevalent in domestic animals worldwide
and has significant impact on the global economy (290). Its
influence in the United States alone is staggering, causing an
estimated loss of $1.5 billion to the agriculture industry every
year (279). It is considered to be one of the most serious

diseases affecting dairy cattle (200). However, accurately as-
sessing losses in productivity and profit at the level of an
individual herd is difficult, making it likely that the impact of
this disease is underestimated nationwide (165, 223). Nonethe-
less, a Johne’s disease regression model estimates this loss to
be from $40 to $227 per cow inventoried per year, based on the
percentage of culled cows with clinical signs (219).

Isolation of M. paratuberculosis from intestinal tissue of
Crohn’s disease patients has led to concern that it may be
pathogenic for humans (204). This issue is still controversial,
with several reports documenting either the presence or ab-
sence of this bacterium in Crohn’s disease patients (36, 43, 58,
110, 167, 257). Given the difficulty that investigators have had
in isolating a putative infectious agent for this disease from
human tissues and the lack of suitable animal models, it is not
surprising that Koch’s postulates have not been fulfilled for
Crohn’s disease. Thus, a causal relationship between M. para-
tuberculosis and Crohn’s disease has not been demonstrated.
Similarly, chemotherapy with antimycobacterial agents has
given mixed results in Crohn’s disease patients (see references
61 and 151 for reviews). Finally, it has been hypothesized that
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only a subset of Crohn’s disease cases have an infectious eti-
ology (53). The reader is referred to a recent review by Her-
mon-Taylor et al. (151) for a thoughtful analysis of the involve-
ment of M. paratuberculosis in Crohn’s disease.

Another aspect of this controversy has surfaced recently with
a report that in milk pasteurization trials, a clinical strain of
M. paratuberculosis was more thermally tolerant than either
Mycobacterium bovis or Coxiella burnetii, the current milk pas-
teurization standard microorganism (285). While some reports
have indicated that high-temperature short-time pasteuriza-
tion does not effectively kill M. paratuberculosis in milk (135,
136), others have demonstrated killing by turbulent-flow con-
ditions (277). Thus, the pathogenic role of M. paratuberculosis
in human disease and the identification of potential sources of
infection are topics of intense debate.

Neonatal and juvenile animals are at the highest risk for
acquiring an infection of M. paratuberculosis (56, 61). Young
animals are most commonly infected through the fecal-oral
route. This occurs either by ingesting the organism through
contaminated milk or food products or by accidental ingestion
of the microorganism from contaminated surfaces (61). M.
paratuberculosis, similar to other pathogenic mycobacteria, tar-
gets the mucosa-associated lymphoid tissues of the host (189).
It preferentially targets the mucosa-associated lymphoid tis-
sues of the upper gastrointestinal tract, where it is endocytosed
by the M cells of the ileal Peyer’s patches and subsequently
phagocytosed by subepithelial and intraepithelial macrophages
(121, 189, 208). M. paratuberculosis bacilli probably remain in
the phagosome, where they multiply intracellularly (168). Cy-
tokine production and the initiation of a cellular immune
response by the host causes the appearance of an intestinal
granuloma, and a cellular response is initiated in the nearby
lymph nodes in an attempt to clear the infection (56, 61, 189).
This inflammatory process leads to the clinical manifestations
of a corrugated intestinal epithelium and the corresponding
characteristic malnutrition syndrome associated with Johne’s
disease.

CHARACTERISTICS OF M. PARATUBERCULOSIS

Taxonomic and Phylogenetic Analysis

The mycobacterial species M. avium is currently subdivided
into three subspecies, M. avium subsp. avium (M. avium), M.
avium subsp. paratuberculosis, and M. avium subsp. silvaticum
(M. silvaticum). The subspecies designation of M. paratubercu-
losis is based on DNA-DNA hybridization studies (159, 259,
298, 328) and numerical taxonomy analysis (298). Although
commonly grouped with M. avium in the Mycobacterium avium-
intracellulare complex, M. intracellulare is a genetically distinct
species (7, 256). At the subspecies level, M. paratuberculosis
can be differentiated phenotypically from M. avium and M.
silvaticum by its dependence on mycobactin (298) and geno-
typically by the presence of multiple copies of an insertion
element, IS900 (67, 137).

Analysis of the rRNA genes (rDNA) of mycobacteria has
resulted in the division of this genus into two separate clusters.
These correspond to the traditional fast-growing mycobacteria,
represented by nonpathogenic environmental isolates, and the
slow-growing mycobacteria, containing most of the overt
pathogens (251, 280, 311). The rDNA gene copy number also

reflects this division between fast- and slow-growing mycobac-
teria; fast-growing mycobacteria contain two sets of rRNA
genes, whereas the slow growers, including M. paratuberculosis
and M. avium, contain only one copy (19, 47, 48, 286). Like
other mycobacteria, the rDNA genes are found in a single
operon in M. paratuberculosis (120, 185, 186, 286). Interest-
ingly, as in Streptomyces spp. (237, 287), this operon does not
contain a tRNA gene, a feature found in the Mycobacterium
smegmatis rrnB ribosomal operon (131).

An internal transcribed spacer region of approximately 280
bp separates the 16S and 23S rDNA genes, and a smaller
internal transcribed spacer of 91 bp separates the 23S rDNA
and 5S rDNA genes (186). Both M. paratuberculosis and M.
avium have an unusual insertion of approximately 16 nucleo-
tides in the 23S rRNA gene, which is also found in the 23S
rRNA genes of other mycobacteria (186, 303). This region
appears to be variable among mycobacteria. Sequence com-
parison shows a single mismatch between M. paratuberculosis
and M. avium, whereas this sequence contains an additional
4 bp in M. phlei (303).

The dnaJ gene encodes a highly conserved heat shock pro-
tein and has been used in other bacterial genera for phyloge-
netic mapping (123, 329). This gene was sequenced from 19
mycobacterial species, and the phylogenetic relationship in-
ferred from this data was in close agreement with the tradi-
tional classification based on 16S rRNA sequencing for slowly
growing mycobacteria. As expected, the M. avium and M. para-
tuberculosis dnaJ genes were 99% homologous, substantiating
the previously established close relationship between these two
mycobacterial species (292).

The size of the M. paratuberculosis genome has been esti-
mated to be 4.4 to 4.7 Mb (61). Compared to other mycobac-
teria, this is similar to the M. tuberculosis genome of 4.41 Mb
(65) and the M. bovis genome of 4.4 Mb (Sanger Center;
http://www.sanger.ac.uk) but slightly larger than the estimated
size of the genome of M. leprae (3.3 Mb; sequencing recently
completed) (Sanger Center). However, the M. paratuberculosis
genome sequence is nearly complete and appears to be larger
than expected at approximately 5 Mb (University of Minne-
sota; http://www.cbc.umn.edu/ResearchProjects/Ptb/) similar
to that of the M. avium genome (The Institute for Genomic
Research; sequencing recently completed http://www.tigr.org).
M. paratuberculosis DNA has a base composition of 66 to 67%
G1C, similar to M. tuberculosis and M. bovis (65 and 64%,
respectively) (Sanger Center).

Extrachromosomal plasmid DNA was first reported in My-
cobacterium fortuitum (178). This 5.0-kb plasmid was desig-
nated pAL5000 and has been used extensively for the construc-
tion of other recombinant plasmids in the molecular genetic
studies of many other mycobacterial species. Naturally occur-
ring plasmids have also been observed in clinical and environ-
mental isolates of M. avium, M. intracellulare, and M. scrofula-
ceum (106). However, no endogenous plasmid DNA has yet
been reported in any isolates of M. paratuberculosis.

Major Antigens

The search for M. paratuberculosis-specific antigens for di-
agnostic testing or preventive therapy has led to the discovery
of several immunoreactive proteins (Table 1). Many of these
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proteins have homology to other mycobacterial antigens, such
as the GroES and GroEL proteins. The GroES antigens are
highly antigenic, small (ca. 100-amino-acid), highly conserved
heat shock proteins. Recently, the GroES antigens of M. avium
and M. paratuberculosis have been cloned and sequenced (60).
Not surprisingly, the M. avium and M. paratuberculosis GroES
coding sequences and deduced amino acid sequences are
100% identical to each other and are over 90% identical to the
M. tuberculosis and M. leprae sequences, differing by only 3
amino acids. The homologous GroES protein from M. tuber-
culosis has two T-cell epitopes, which are both conserved in M.
avium and M. paratuberculosis (60).

Other immunoreactive proteins of M. paratuberculosis in-
clude a 32-kDa secreted protein with fibronectin binding prop-
erties implicated in protective immunity (4, 100) and a 34-kDa
cell wall antigenic protein homologous to a similar protein in
M. leprae (87, 88, 127, 264). This 34-kDa protein carries two
species-specific B-cell epitopes that have been exploited in the
histopathological diagnosis of Johne’s disease (62). Cameron
et al. (33) described a seroreactive 34-kDa serine protease
expressed in vivo by M. paratuberculosis. This antigen is differ-
ent from the 34-kDa antigen described above. Another
strongly immunoreactive protein of 35 kDa has also been iden-
tified in M. avium complex isolates, including M. paratubercu-
losis (102). Sequencing data for this antigen are not available,
and its relation to any of the above antigens has not been
established. Nonetheless, it reacted with sera from cattle in
both the subclinical and clinical stages of Johne’s disease but
was nonreactive with sera from cattle vaccinated with M. bovis
BCG (102).

A more thoroughly characterized protein of 65 kDa from M.
paratuberculosis is a member of the GroEL family of heat
shock proteins (100, 101). Like the GroES proteins, the GroEL
antigens from other mycobacteria are highly immunogenic
(260, 296, 297). As expected, the M. paratuberculosis GroEL
protein is homologous to similar proteins of M. tuberculosis
(93%), M. leprae (89%), and M. avium (98%). Adsorbed anti-
sera from infected animals failed to consistently recognize this
antigen, however, precluding its use in the serodiagnosis of
Johne’s disease. Similarly, a DNA vaccine constructed from
the M. avium 65-kDa antigen fused to the green fluorescent
protein failed to confer protective immunity to vaccinated mice
(308).

The alkyl hydroperoxide reductases C and D (AhpC and
AhpD) are the most recently characterized immunogenic pro-

teins of M. paratuberculosis (222). Unlike other mycobacteria,
large amounts of these antigens are produced by M. paratuber-
culosis when the bacilli are grown without exposure to oxida-
tive stress. AhpC is the larger of the two proteins and appears
to exist as a homodimer in its native form since it migrates at
both 45 and 24 kDa under denaturing conditions. In contrast,
AhpD is a smaller monomer, with a molecular mass of about
19 kDa. Antiserum from rabbits immunized against AhpC and
AhpD reacted only with M. paratuberculosis proteins and not
with proteins from other mycobacterial species, indicating that
antibodies against these proteins are not cross-reactive. Fur-
thermore, peripheral blood monocytes from goats experimen-
tally infected with M. paratuberculosis were capable of inducing
gamma interferon (IFN-g) responses after stimulation with
AhpC and AhpD, confirming their immunogenicity (222). In
conclusion, these proteins are potentially useful for developing
future vaccines and diagnostic assays or monitoring disease
progression.

Several putative M. paratuberculosis-specific antigenic pro-
teins have been described in the literature (Table 1). These
include a cellular antigen of 34.5 kDa, (214), a 42-kDa protein
of unknown function (320), and a 44.3-kDa antigen (214).
Unfortunately, the above-mentioned 34.5-kDa protein has not
been compared to either the 34-kDa serine protease described
by Cameron et al. (33) or the 35-kDa protein described by
El-Zaatari et al. (102). Similarly, a comparative analysis of the
42- and 44.3-kDa antigens has not been reported.

Transcriptional Control

Mycobacteria, like other prokaryotes, have a plethora of
DNA-dependent RNA polymerase sigma factors (130). The M.
tuberculosis genome project annotates 14 genes encoding ei-
ther confirmed or putative sigma factors (65). Sigma factors
provide the core RNA polymerase with various recognition
specificities, allowing the transcription of regular housekeep-
ing, stress, and virulence-associated genes (193, 267). Interest-
ingly, a point mutation in the principal sigma factor, sigA, was
demonstrated to attenuate virulent M. bovis (73). In general,
mycobacterial promoters function poorly in Escherichia coli
and have a greater G1C content, reflecting their genome com-
position. A rather highly conserved 210 region and an ex-
tended TGN motif (12, 13) characterize an important set of
mycobacterial promoters, while other promoters seem to pos-
sess a more highly conserved 235 region (212).

TABLE 1. Known immunogenic proteins of M. paratuberculosis

M. paratuberculosis protein Characteristic Size (kDa) Reference(s)

GroES Heat shock protein 10 60
AhpD Alkyl hydroperoxide reductase D 19 222
32-kDa antigen Fibronectin binding properties, secreted protein 32 100
34-kDa antigen Cell wall antigen, B-cell epitope 34 62, 87, 88, 127, 264
34-kDa antigen Serine protease 34 33
34.5-kDa antigen Cytoplasmic protein, M. paratuberculosis species specific 34.5 214
35-kDa antigen Immunodominant protein 35 102
42-kDa antigen Cytoplasmic M. paratuberculosis-specific protein 42 320
44.3-kDa antigen Soluble protein 44.3 214
AhpC Alkyl hydroperoxide reductase C 45 222
65-kDa antigen GroEL heat shock protein 65 100, 101
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In the sole analysis of M. paratuberculosis promoters, Ban-
nantine et al. (9) studied eight promoter regions of M. paratu-
berculosis and found significant differences from those of E.
coli. In this study, gene fusions to the b-galactosidase reporter
gene were analyzed in both E. coli and M. smegmatis. As
expected, these fusions displayed lower or negligible levels of
b-galactosidase activity in E. coli than in M. smegmatis. Primer
extension and sequence analysis of upstream regions demon-
strated 235 and 210 consensus sequences of TGMCGT
(where M represents C or A) and GGGCCS (where S repre-
sents G or C), respectively. These M. paratuberculosis promot-
ers are more closely related to each other than they are to
other mycobacterial promoters. Interestingly, the 235 hex-
amer is more highly conserved than the 210 hexamer while the
latter has a consensus that departs significantly from the pro-
posed extended TGN motif mentioned above. The only other
M. paratuberculosis promoter described is the PAN promoter
(213), which differs from the consensus described by Bannan-
tine et al. (9) and also lacks a TGN motif. It is possible that M.
paratuberculosis, one of the slowest-growing mycobacteria, may
possess promoters that depart significantly from those of other
mycobacteria. However, Bannantine et al. (9) may have iden-
tified a unique set of promoters that do not use the TGN motif.
In this context, the various studies described above used dif-
ferent vectors, reporter genes, and selection or screening strat-
egies that may have led to the identification of different types
of promoters. More studies are necessary to ascertain whether
the main M. paratuberculosis sigma factor uses promoters with
TGN motifs or the special consensus identified by Bannantine
et al. (9). In general, mycobacterial translation signals show a
significant number of GTG start codons and a characteristic
GC codon bias (212). Regarding M. paratuberculosis ribosome
binding sites (RBS), all the corresponding mRNAs from the
lacZ fusions analyzed by Bannantine et al. (9) possess a puta-
tive RBS complementary to the 39 sequence of the 16S rRNA
from M. leprae. In this study, a putative initiation codon and an
open reading frame (ORF) followed the RBS sequences. The
start codons were either ATG (5 of 8) or GTG.

Homologous Recombination

Allelic replacement is based on recombination between ho-
mologous sequences and is useful to generate mutations in a
gene of interest. In M. tuberculosis, allelic exchange has pre-
sented major difficulties, which only recently have been over-
come. Initially, the small number of homologous recombina-
tion events obtained in M. tuberculosis was attributed to a
defect in the homologous recombination system, possibly re-
lated to the presence of an intein in the recA gene (86). Recent
work demonstrated that homologous recombination seems to
be functional in M. tuberculosis, but problems occur due to the
high frequency of illegitimate recombination observed in that
pathogen (118, 227). To circumvent these problems, a series of
vectors with thermosensitive replicons (11, 233), sucrose selec-
tion (231–233), long concatomeric molecules (8), and pretreat-
ment of DNA with restricition endonucleases (154, 224, 225)
have been developed. These approaches have been successful
in the more closely related mycobacterial species M. intracel-
lulare (154, 195), suggesting that M. paratuberculosis may be
amenable to them as well. Additionally, a study of the IS900

insertion sites in M. paratuberculosis indicated that homolo-
gous recombination events may have occurred between IS900
insertion elements present at different loci (29).

MOLECULAR EPIDEMIOLOGY

Restriction Fragment Length Polymorphism Analysis

Because M. paratuberculosis and M. avium are closely related
genetically, they are difficult to differentiate. The application of
molecular genetic methods in epidemiological studies allowed
separation of clinical isolates of M. avium and M. paratubercu-
losis (64, 198, 309, 317). These analyses were instrumental in
reassigning an isolate previously identified as M. paratubercu-
losis strain 18 as an M. avium strain (67, 105, 315, 316).

Restriction fragment length polymorphism (RFLP) analysis
also has been used epidemiologically to ascertain a possible
common clonal origin for M. paratuberculosis strains isolated
from unrelated animal and human sources (54, 66, 89, 115, 228,
315). This technique can also separate sheep and cattle field
isolates of M. paratuberculosis (15, 69), suggesting that M. para-
tuberculosis strains may be undergoing host adaptation. Inter-
estingly, M. paratuberculosis isolates from other ruminants give
similar RFLP profiles to cattle isolates (299). A single case
study documented the isolation of two different strains of M.
paratuberculosis, each with a unique RFLP profile, from the
same animal, implying the possibility of a coinfection (228). An
effort to standardize RFLP analysis for clinical isolates of M.
paratuberculosis combined previously reported methods (69,
228) and resulted in 28 different RFLP types from 1,008 strains
tested. These 28 RFLP types were derived from combining 13
RFLP (PstI) types and 20 RFLP (BstEII) types (229). Re-
cently, a multiplex PCR based on specific IS900 loci in the M.
paratuberculosis genome was cross-referenced to these RFLP
types (29), indicating that future typing of M. paratuberculosis
isolates may not require bacterial culture, making large-scale
epidemiological studies of Johne’s disease possible.

IS900

Insertion sequence elements are small, mobile genetic ele-
ments containing genes related to transposition functions.
IS900 was the first example of an insertion sequence element
to be found in mycobacteria (68, 137); it is a member of the
IS110 family of insertion sequences (191). An interesting as-
pect of the insertion sequences belonging to this family is their
lack of both terminal inverted repeats and direct repeats com-
monly associated with other transposable DNA elements
(191). Four insertion sequences in this family are from myco-
bacteria, IS900 (M. paratuberculosis) (137), IS901 (M. avium)
(177), IS902 (M. silvaticum) (210) , and IS1110 (M. avium)
(152). Two new insertion elements, IS1547, recently discovered
in M. tuberculosis (107), and IS1626, from M. avium and M.
intracellulare (244), are also related to the IS110 family. All of
these insertion elements, except for IS1626, which has been
found only in 1 to 3 copies, are found in their respective
genomes at 10 to 20 copies per chromosome (68, 107, 137, 177,
210).

IS1626 is the most closely related insertion sequence to
IS900 (Table 2). These two insertion elements have 82% ho-
mology, with the greatest variability occurring at the 59 end of
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their nucleotide sequences. IS1626 has a mechanism of trans-
position and consensus sequence remarkably similar to IS900.
Furthermore, like IS900, IS1626 inserts itself with a defined
orientation with respect to its consensus sequence (244).

In contrast, the IS900 and IS901 transposase genes have a
DNA homology of only 60% and an amino acid homology of
49% (177). Similarly, the homology between the IS900 and
IS902 transposase genes is 60% at the nucleotide level and
50% at the amino acid level (210). The transposase from IS900
appears to be quite distinct from the other mycobacterial in-
sertion elements belonging to the IS110 family, since only short
regions of homology are found at the 39 end of both the DNA
and amino acid sequences.

The IS900 transposase gene is functional, since an artificial
transposon derived from IS900 could stably integrate into the
chromosomes of M. smegmatis (91, 103), M. vaccae, and M.
bovis BCG (91). Furthermore, the method of transposition
appears to involve both simple insertions and cointegrates,
suggesting that IS900 transposes by a replicative mechanism
(91). IS900 contains two ORFs encoded on opposite strands.
The transposase protein, p43, is encoded by ORF1 and can be
expressed in vitro (300). This protein is approximately 43 kDa
but migrates at an apparent molecular mass of 44.5 to 45 kDa,
perhaps due to its high basic character (predicted pI 10.4),
which may retard its migration during sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (300). Western blot analysis
shows that antibodies against this protein react with both a
45-kDa protein and an apparent cleavage product of approxi-
mately 28 kDa. This antibody reacts with only the 28-kDa
protein from clinical strains of M. paratuberculosis. Neither M.
avium nor M. silvaticum extracts demonstrated positively stain-
ing bands at these molecular masses confirming that p43 is
specific to IS900-bearing mycobacteria.

The PAN promoter and an adjacent ORF called ORF2 were
discovered by a search for M. paratuberculosis subspecies-spe-
cific genes and expression signals. The PAN promoter is located
adjacent to but outside of IS900. Its proximity to ORF2 sug-
gested that PAN is able to drive the expression of ORF2 (213).
The PAN promoter is present in a single copy in many patho-
genic strains of mycobacteria but is absent from M. marinum,
M. terrae, M. gordonae, and several fast-growing mycobacteria
(133). The PAN region of M. paratuberculosis has 70% similar-
ity to M. tuberculosis, M. bovis and M. bovis BCG regions, and

the 210 and 235 promoter regions are completely conserved
(247). Although it is tempting to speculate that the corre-
sponding genes driven by the PAN promoter may have a similar
function, no analysis of these regions has been performed to
date.

ORF2 of IS900 was designated as the hed (host expression-
dependent) gene (95). The putative Hed protein encoded by
IS900 contains a hydrophobic sequence of 9 amino acids, which
has significant homology to eight other prokaryotic and eu-
karyotic proteins involved in the transport of various essential
growth requirements (94). Of the five prokaryotic transport
proteins containing this conserved 9-amino-acid motif, three
are involved in iron transport, leading to speculation that Hed
may provide M. paratuberculosis with an alternate iron trans-
port mechanism (94). Another possible role for Hed as a re-
pressor of the native mycobactin pathway in M. paratuber-
culosis is implied by the observation that M. smegmatis
transformants carrying a multicopy plasmid with IS900 dem-
onstrate a significantly decreased growth rate in broth cultures.
This phenotype can be restored to wild-type levels by the
supplementation with ferric mycobactin J (217). Clearly, these
studies present intriguing hypotheses of iron utilization in M.
paratuberculosis which merit further research.

The expression of hed requires that IS900 be inserted into
the chromosomal DNA in a directional manner (Fig. 1). This
directionality is accomplished by IS900 inserting itself between
the putative RBS and start codon of a given gene in the chro-
mosome, thus aligning the hed initiation codon next to a func-
tional RBS from the target gene and downstream of an active
promoter (29, 94) (Fig. 1). The target gene RBS (AGGAG) is
in fact the complement of the IS900 consensus sequence,
CATGN4–6 pCNCCTT (where p denotes the site of insertion)
(29, 94, 137). Since no termination codon is present in the hed
sequence, the corresponding translational products of different
IS900 elements in the genome are of different lengths. Because
the hed gene carries its own RBS at the 39 terminus, the
translation of the target gene may be restored by this replace-
ment RBS (95) (Fig. 1). This hypothesis was confirmed re-
cently by Bull et al., (29), who analyzed genomic regions im-
mediately adjacent to 14 different IS900 insertions and found
that IS900 was inserted in the hed orientation with respect to
its consensus sequence in all loci. In five of these loci, these
insertions resulted in the inactivation of the corresponding

TABLE 2. Comparison of the putative mycobacterial insertion element transposase genes belonging to the IS110 family

Insertion
sequence

Mycobacterial
species

Accession
no.

Nucleotide sequence length (bp) of: % Sequence
similarity to IS900

(no. of nucleotides)c

Sequence length
of transposase
(amino acids)

% Sequence
similarity to IS900

(no. of amino acids)dInsertion sequencea Transposaseb

IS900 M. paratuberculosis X16293 1,451 1,200 399
IS901 M. avium X59272 1,472 1,206 73% (232) 401 51% (212)
IS902 M. silvaticum X58030 1,470 1,203 73% (233) 400 52% (213)
IS1110 M. avium Z23003 1,462 1,395 74% (113) 464 51% (189)
IS1547 M. tuberculosis Y13470 1,351 ;1,182 NSe ;380f 31% (118)
IS1626 M. avium AF071067 1,418 1,179g 82% (859) 393 66% (272)

a Nucleotide sequence length of the entire insertion element (107, 191).
b Nucleotide sequence length of the structural gene encoding the putative transposase for each insertion element.
c Nucleotide sequence similarities were determined using BLAST version BLASTN 2.0.9 (National Center for Biotechnology Information databases).
d Amino acid sequence similarities were determined using BLAST version BLASTP 2.0.9 (National Center for Biotechnology Information databases).
e NS, no significant similarity.
f Nucleotide and amino acid sequence lengths of putative transposase are variable, since the stop codon is not within the IS147 sequence (107).
g The function of ORF1179 is unknown (244).
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target genes, possibly altering gene expression. For 13 of these
loci, 94 to 100% homology to the M. avium genome was found.
However, one locus was absent from the M. avium genome and
several other mycobacterial species, including M. silvaticum.
This DNA region in the M. paratuberculosis genome appears to
encode a transcriptional regulator and a polyketide synthase.
Of the loci that had homology to accessions in GenBank, genes
encoding a sigma factor, a nitrate reductase, and a methyl
transferase were identified. ORFs of unknown functions were
found in the other loci. Of the 14 loci, 7 were present in a
panel of 81 M. paratuberculosis isolates tested, and 52 of
these M. paratuberculosis strains contained all 14 IS900 in-
sertion loci.

IS1311

Only one other insertion element, IS1311, has been described
in the M. paratuberculosis chromosome (74, 253). This insertion
element is not unique to M. paratuberculosis, since it is also found
in M. avium and M. intracellulare at approximately 7 to 10 copies
throughout the genome (74, 321). IS1311 is a member of the
IS256 family of insertion elements and differs from IS900 in that

it contains terminal inverted repeats (191). Although this has not
been analyzed in IS1311, other members of the IS256 family also
generate an 8 to 9-bp direct target repeat. Of the 33 members in
the IS256 family of insertion sequences, 8 others are from myco-
bacteria (Table 3). These are IS1081 (M. bovis) (70), IS1245 (M.
avium) (143), IS1395 (M. xenopi) (238), IS1407 (M. celatum)
(239), IS1408 (M. branderi) (191), IS1511 (M. gordonae) (191),
IS1512 ( M. gordonae) (191), and IS6120 (M. smegmatis) (144).
Significant similarity is seen throughout the entire nucleotide and
amino acid sequences of IS1311 and IS1245 (Table 3). Con-
versely, the other mycobacterial members of the IS256 family only
have short (24 to 105-nucleotide) regions of similarity to the
IS1311 transposase gene. A slightly higher similarity (45 to 68%)
is noted at the amino acid level (Table 3). IS1311 is somewhat
smaller than IS900 (1,317 and 1,451 bp, respectively) and appears
to contain a single ORF encoding a putative transposase. IS1311
and IS900 are not homologous at either the nucleotide or amino
acid level. Analysis of M. paratuberculosis and M. avium IS1311
sequences shows a slight difference of five point mutations (321).
In addition, some copies of IS1311 in the cattle strains of M.
paratuberculosis contain an additional point mutation that can be
used to distinguish them from the sheep strains (321).

FIG. 1. IS900 inserts in a target gene of M. paratuberculosis in an orientation-specific manner. A putative target gene of M. paratuberculosis is
illustrated as a hatched line, with the corresponding upstream and downstream sequences of the genome shown as open lines. The IS900 insertion
consensus sequence from Green et al. (137) and Bull, et. al. (29) is italicized and is denoted in the 39 to 59 direction in the illustration. An asterisk
indicates the site of IS900 insertion (defines insertion in the hed orientation, according to the nomenclature of Bull et al. [29]). The RBS for the
putative chromosomal target gene is represented by an open square, and its corresponding promoter (P) is shown as a black oval. A black line
represents the IS900 sequence. The DNA sequences for the putative target gene RBS and its start codon are boxed. The replacement RBS at the
39 end of IS900 is shown as a vertically striped square, and a horizontally striped square represents the RBS for the p43 gene. Small arrows above
or below the RBS squares indicate the direction of translation. Black arrows represent the putative transposase (p43) and hed structural genes
encoded for in IS900.
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IS1110, IS1626, and Other Related Insertion Elements

The presence of other insertion elements in the M. avium
genome that are closely related to IS900 implies that M. para-
tuberculosis may also be harboring other undiscovered inser-
tion elements. These insertion sequences, IS1110 and IS1626,
are not found in all strains of M. avium, suggesting that they
are recent acquisitions by the M. avium genome (152, 244). Of
interest is another insertion element from M. avium and M.
intracellulare, IS1613, whose sequence has been submitted to
GenBank (accession number AJ011838) and which displays
83% homology to IS900 by BLAST analysis.

PATHOGENESIS AND ANIMAL MODELS

Interaction of M. paratuberculosis with Macrophages

Survival within macrophages is a hallmark of M. paratuber-
culosis. Recent evidence indicates that simultaneous intracel-
lular multiplication and killing of M. paratuberculosis occurs,
reflecting an initial T-helper 1 (Th1) cellular immune response
of the host (331). The nutritional and hormonal status of an
animal may also influence its susceptibility to M. paratubercu-
losis infections. Reduced dietary calcium (Ca21) protects beige
mice from M. paratuberculosis infections (276), but a corre-
sponding increase in endogenous 1,25-(OH)2D3 (vitamin D)
levels reverses the beneficial effects of low Ca21 levels (276,
278). Additionally, transient exposure of monocytes to growth
hormone or prolactin enhances intracellular multiplication of
M. paratuberculosis in primary bovine monocytes (109). Be-
cause the levels of these hormones also fluctuate during par-
turition and lactation, it is possible that similar alterations in
the hormonal milieu might also influence the intracellular mul-
tiplication of M. paratuberculosis in bovine mononuclear pha-
gocytes in vivo.

Other mycobacteria, including M. avium and M. tuberculosis,
circumvent macrophage antigen processing by inhibiting
phagolysosomal fusion (59, 221) and acidification (221, 283). In
general, mycobacteria are relatively resistant to the bacteri-
cidal mechanisms of professional phagocytes. Resistance to
reactive oxygen intermediates has been linked to catalase and
peroxidase activities (38, 192), and alkyl hydroperoxidase re-
ductase (AhpC) is implicated in resistance to both reactive

oxygen and reactive nitrogen intermediates (41, 192). The gene
products involved in these processes are candidate virulence
determinants, which are likely to play an important role in dis-
ease. Treatment of M. paratuberculosis-infected bovine mono-
cytes with IFN-g induces the release of nitric oxide (NO) (330).
However, the levels of NO produced by these monocytes are
far below those needed to kill M. paratuberculosis in a cell-free
system. This observation implies that the amount of NO pro-
duced by recombinant IFN-g (rIFN-g)-activated bovine mono-
cytes is insufficient to kill intracellular M. paratuberculosis in
vitro.

Regarding the use of macrophage-derived cell lines, both
the activated murine J774.16 (272) and bovine BoMac (273)
macrophages can restrict the growth of M. paratuberculosis.
Surprisingly, no studies have been reported in the literature
quantifying the ability of M. paratuberculosis to replicate and
survive in cultures of primary human macrophages or human
intestinal epithelial cell lines, important in the context of its
potential role as the etiological agent of Crohn’s disease.

Role of Cytokines in M. paratuberculosis Infections

M. paratuberculosis also influences cytokine production in
infected animals. Both serum IFN-g levels (274) and IFN-g
gene expression in ileal tissue and cecal lymph nodes (291)
were higher in subclinically infected animals than in animals
exhibiting clinical symptoms of Johne’s disease. However, Ad-
ams et al. (3) did not find significant differences in mRNA
IFN-g expression from peripheral blood monocytes in subclin-
ically infected cattle, suggesting that cytokine production is a
local phenomenon restricted to infected tissues. Bovine mac-
rophages can be induced to release interleukin 1 (IL-1) (1,
176), IL-6 (1, 2), and tumor necrosis factor alpha (TNF-a) (1,
2) upon stimulation with M. paratuberculosis antigens. These
cytokines are also associated with granuloma formation and
cachexia in other disease syndromes (42, 170, 184, 211). In
particular, IL-1 seems to play an important role in protecting
experimentally infected mice against M. paratuberculosis infec-
tion (169). These investigators show that in vivo administration
of a monoclonal antibody against the IL-1 receptor hinders the
elimination of M. paratuberculosis from these animals.

Cytokines appear to affect the ability of M. paratuberculosis

TABLE 3. Comparison of the putative mycobacterial insertion element transposase genes belonging to the IS256 family

Insertion
element

Mycobacterial
species

Accession
no.

Nucleotide sequence
length (bp) of:

% Sequence
similarity to IS1311
(no. of nucleotides)c

Protein
sequence length

(amino acids)

% Sequence
similarity to IS1311

(no. of amino acids)d
Insertion sequencea Transposaseb

IS1311 M. paratuberculosis AJ223975 1,317 1,219 395
IS1081 M. bovis X84741 1,435 1,248 75% (102) 415 63% (227)
IS1245 M. avium L33879 1,414 1,233 83% (976) 410 92% (366)
IS1395 M. xenopi U35051 .1,323 1,248 NSe 415 63% (224)
IS1407 M. celatum X97307 .1,399 1,248 92% (24) 415 66% (237)
IS1408 M. branderi U62766 .1,325 1,254 NS 415 65% (237)
IS1511 M. gordonae U95315 1,142 1,218 NS 405 61% (196)
IS1512 M. gordonae U95314 1,428 1,236 76% (105) 411 68% (233)
IS6120 M. smegmatis M69182 1,486 972 NS 323 45% (129)

a Nucleotide sequence length of entire insertion element (191).
b Nucleotide sequence length of ORF1 encoding the putative transposase gene.
c Nucleotide sequence similarities were determined using BLAST version BLASTN 2.0.9 (National Center for Biotechnology Information databases).
d Amino acid sequence similarities were determined using BLAST version BLASTP 2.0.9 (National Center for Biotechnology Information databases).
e NS, no significant similarity.
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to survive within the macrophages. In the J774.16 murine mac-
rophage cell line, preincubation with moderate levels (10 to
1,000 IU) of TNF-a prior to infection with M. paratuberculosis
significantly increases the number of viable bacteria recovered
whereas high doses (4,000 IU) of TNF-a reduce bacterial num-
bers (272). Pretreatment of bovine monocytes with IFN-g
slightly increases phagocytosis of M. paratuberculosis and in-
hibits its intracellular growth (331). Furthermore, continuous
incubation of bovine monocytes with IFN-g or human granu-
locyte-macrophage colony-stimulating factor significantly re-
stricts the intracellular growth of M. paratuberculosis (333).
Together, these studies demonstrate that local tissue cytokine
concentrations are important in determining the outcome of a
mycobacterial infection.

Role of Iron Uptake in M. paratuberculosis Infections

Mammalian hosts actively restrict iron supply to bacterial
pathogens. Cytokines may function by causing macrophages to
actively limit their intracellular iron concentration in an at-
tempt to restrict bacterial growth (172, 312). Activated mac-
rophages downregulate transferrin receptors, reducing iron
levels (32). Nramp1, an integral membrane protein expressed
exclusively in the lysosomal compartment of monocytes and
macrophages, has been implicated in controlling mycobacterial
replication by actively removing iron or divalent cations from
the phagosomal space, further decreasing the amount of iron
available to intracellular bacteria (34, 129). To scavenge iron in
limiting environments, most mycobacterial species produce the
lipid-soluble siderophore mycobactin and the water-soluble
siderophore exochelin (10, 269). Since M. paratuberculosis is a
mycobactin auxotroph, it can synthesize exochelin only (10,
269). These two siderophores appear to be relevant in the
pathogenicity of mycobacteria, as gene mutations in the bio-
synthetic pathway of mycobactin T in M. tuberculosis impairs its
ability to replicate in a human macrophage cell line (93). How
M. paratuberculosis survives intracellularly when producing
only exochelins is unclear.

Genetic Systems for M. paratuberculosis

The genetic manipulation of M. paratuberculosis is notori-
ously difficult. Its lengthy generation time, resistance to enzy-
matic or chemical lysis, and difficulty in performing genetic
exchange commonly used for other mycobacteria all contribute
to this problem. Therefore, the establishment of a gene trans-
fer system in M. paratuberculosis was a significant breakthrough
in the molecular genetic analysis of this organism (112). Prior
to this, the ability to directly manipulate DNA elements from
the M. paratuberculosis genome without the use of surrogate
bacterial hosts had not been possible. This study demonstrated
for the first time that M. paratuberculosis could be transformed
with both foreign plasmid and bacteriophage DNA, providing
a molecular genetics-based method for genetic manipulation.
It also established that the aminoglycoside phosphotransferase
gene (aph) from Tn903, which confers kanamycin resistance,
could function as a selectable marker and that the firefly lu-
ciferase gene could be used as a reporter for gene expression.
Based on this study, the firefly luciferase was subsequently used
in M. paratuberculosis to determine antimicrobial susceptibil-
ites (324).

The ability to mutate genes randomly is another require-
ment to study the underlying molecular genetic basis of patho-
genesis in an organism. Based on the previous study, which
established that M. paratuberculosis is susceptible to the bac-
teriophage TM4 (112), a transposon mutagenesis system uti-
lizing phAE94 (a temperature-sensitive derivative of TM4) was
developed (149). This system uses phAE94 as a vector to de-
liver a transposable element (Tn5367) randomly into the bac-
terial genome (11, 149, 233). The aph gene present in Tn5367
provides a selectable marker to distinguish mutants carrying a
transposon insertion. For this study, strain K-10, a virulent
bovine M. paratuberculosis isolate with a small number of in
vitro passages (112), was used to generate a transposon mutant
bank with phAE94 and was shown to yield a collection of
approximately 5,000 mutants. Theoretically, mutants from this
bank that are attenuated in virulence can be isolated for fur-
ther testing in animal or cell culture model systems (149).
Recently, the usefulness of the phAE94 delivery vector system
was confirmed using the M. paratuberculosis strains 989 and
ATCC 19698 (TMC 1613), in which approximately 2,000 mu-
tants were generated (35). The M. paratuberculosis strain K-10
mutant collection has been recently expanded by our labora-
tory to a representative bank of 13,500 independent mutants
necessary for a 95% theoretical coverage of the genome with
transposon insertions in all nonessential genes (N. B. Harris
and R. G. Barletta, unpublished data).

Animal Models

The most relevant information on host-pathogen interac-
tions is gathered by using the natural host in infection trials.
Unfortunately for Johne’s disease research, the natural rumi-
nant hosts need to be maintained under containment for 2 to
3 years before they develop clinical paratuberculosis. There-
fore, the use of ruminants for research is limited to the few
institutions with facilities capable of meeting these needs. Con-
sequently, several small-animal models, including chickens
(181, 302), guinea pigs (114), hamsters (114, 148, 156), mice
(39, 40, 114, 187), and rabbits (114, 148, 156, 205, 206, 245),
have been developed for M. paratuberculosis infections. These
small-animal models except mice (see below) are somewhat
limited in their use for studying M. paratuberculosis infections
because they do not consistently reproduce disease symptoms
in experimentally infected animals. For example, oral inocula-
tion of rabbits (205, 206) with approximately 108 CFU of M.
paratuberculosis culminated in clinical and histopathological
lesions in only 62 to 75% of the animals. In contrast, 100% of
calves orally inoculated with 106 CFU of M. paratuberculosis
developed disease (182). Possibly the inability of M. paratuber-
culosis to cause disease in other animal species may be attrib-
uted to the genetic background of the animals and/or the
marginal virulence of M. paratuberculosis in these species.

More extensive work has been performed on the mouse
model, with some promising developments. Early researchers
observed that certain inbred and outbred strains of mice, such
as the C57 black and Swiss white strains (39, 40, 187), were
more susceptible to M. paratuberculosis infections than was the
CBA strain (39). Unfortunately, some of the earlier work on
M. paratuberculosis infections in mice is of limited value be-
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cause the researchers did not report which mouse strain was
used (114, 148).

Resistance to mycobacterial infections in mice, including M.
paratuberculosis, is associated with the Bcg locus on mouse
chromosome 1 (116, 265, 266). Two allelic forms of the Bcg
gene, Bcgs and Bcgr, confer susceptibility or resistance to in-
fection, respectively. As reviewed by Blackwell and Searle (24),
the Bcg gene has been identified as nramp1 (which encodes
natural resistance-associated macrophage protein). A point
mutation at position 169 in the amino acid sequence of the
protein substitutes glycine for aspartic acid and leads to the
susceptible phenotype. The Nramp1 protein is an integral
membrane protein expressed in the lysosomal compartment of
monocytes and macrophages and appears to function as an
iron transporter. How this function influences bacterial sur-
vival is still unknown. Both C57/B6 mice (40, 306, 307) and
BALB/c mice (50, 293) have the Bcgs allele and are susceptible
to M. paratuberculosis infections. Conversely, the C3H/HeJ
strain is resistant to M. paratuberculosis and has the Bcgr ge-
notype (293).

Studies using C57/B6 and BALB/c mice confirm that these
animals are capable of harboring 104 to 107 CFU of M. para-
tuberculosis per g of tissue in the liver and spleen for 6 months
(50, 52, 306). Corresponding lesions typical of a mycobacterial
infection are observed histologically in the mesenteric lymph
node, liver, and spleen, but the intestine (ileum, cecum, and
colon) does not contain lesions or acid-fast bacilli. The pattern
of infection seen in BALB/c mice is somewhat atypical com-
pared to natural infections in cattle, where the development of
granulomas with acid-fast bacilli in the intestinal mucosa is
common. However, liver lesions have been found in cattle
naturally infected with M. paratuberculosis (27), and one report
exists of a disseminated M. paratuberculosis infection in a cow
(155). Nonetheless, the BALB/c mouse model may be useful
for evaluating potential chemotherapeutic treatments, since
Chiodini et al. (52) were able to significantly reduce bacterial
counts in tissues of infected mice by prolonged rifabutin treat-
ment.

Typical Johne’s disease intestinal lesions have been induced
in beige, SCID beige, and athymic nude mice. These mice have
mutations that render them deficient in one or more compo-
nents of the cellular immune system and thus are more sus-
ceptible to M. paratuberculosis infections, among others.
BALB/c mice immunosuppressed with either cyclophospha-
mide or prednisolone also establish an intestinal infection fol-
lowing oral M. paratuberculosis inoculation (113). Beige mice
are derived from C57/B6 mice and are deficient in lysosomal
granules, type 2 pneumocytes and mast cells, and natural killer
(NK) cells (122). Phenotypically, these deficiencies make them
more susceptible to pyogenic bacterial infections. Beige mice
have been utilized extensively to study M. avium infections and
experimental chemotherapy in AIDS patients (21, 22, 122).
When inoculated intravenously with ca. 108 CFU of M. para-
tuberculosis, these mice develop a disseminated infection by 2
months postinoculation, with concurrent granulomatous le-
sions in the liver and spleen, which are maintained for up to 12
months. Approximately 102 CFU of viable bacteria per g of
tissue can be recovered from the small intestine by 1 month.
This number increases to ca. 104 CFU/g of tissue by 6 months
and is maintained through 12 months postinfection (276, 318).

The beige mouse model has been used to demonstrate the
influence of dietary calcium (Ca21) on M. paratuberculosis
survival and cytokine secretion (275, 276, 278).

Severe combined immunodeficient beige (SCID beige) mice
have a dual deficit which makes them attractive to study para-
tuberculosis (215, 216). Similar to SCID mice, SCID beige
mice lack functional T and B cells, and, like the beige mice,
they have decreased numbers and activity of NK cells (83, 190).
Therefore, these mice provide the means of studing innate
immunity in the absence of acquired immunity. As expected,
SCID beige mice are also more susceptible than BALB/c or
C57B/6 mice to M. paratuberculosis. The establishment of a
progressive infection is possible in these mice, with gross
pathological abnormalities, intestinal granuloma formation,
and the clinical symptoms of weight loss and cachexia gradually
increasing in severity over time (215). The route of inoculation
(oral versus intraperitoneal) also significantly affects the onset
and severity of the M. paratuberculosis infection in the SCID
beige mice. Intraperitoneal injections at a dose of 105 CFU
cause focal lesions and the detection of acid-fast bacilli in the
liver by 4 weeks postinfection. By 12 weeks after infection, the
average body weight of the intraperitoneally infected animals
was significantly lower than that of controls, and all infected
animals demonstrated generalized muscle wasting and deple-
tion of abdominal fat, which progressed through the entire
study (26 weeks). Conversely, oral inoculation with the same
dose of M. paratuberculosis caused much milder symptoms. In
this group, gross lesions were observed in only 1 of 18 infected
animals by 26 weeks postinoculation. Similarly, histological
lesions in the liver, spleen, and intestines were not observed
until 26 weeks and then were found only in four of nine mice.
Only one mouse had clinical symptoms by the termination of
the study. Therefore, it can be concluded that the oral infection
route causes a milder form of disease in these mice when low
doses of M. paratuberculosis are used.

Athymic nude gnotobiotic mice have also been used in ex-
periments examining M. paratuberculosis pathogenesis. Since
these mice lack a mature thymus, they are congenitally immu-
nodeficient (147). Intragastric inoculation of athymic nude
mice with 1010 bacteria causes a progressive and severe enter-
itis, consistent with naturally occurring M. paratuberculosis in-
fections seen in ruminants (113, 146, 147). Similar to the SCID
beige mouse model, a drop in body weight and increase in
mortality are observed over a period of months (113). Recov-
ery of M. paratuberculosis from feces and tissues increases to
approximately 104 to 105 CFU/g of feces and 106 to 108 CFU/g
of tissue by 36 weeks postinfection. Similarly, a progressive
intestinal granuloma formation and increased numbers of acid-
fast bacilli are observed over the same period. These results
are consistent with those obtained with SCID beige mice and
confirm that a functional cellular immune response is neces-
sary to contain M. paratuberculosis infections in the host.

Immunologically chimeric mice are a recently developed
animal model in which bovine fetal tissue or peripheral blood
cells are engrafted into SCID mice or SCID beige mice. SCID
mice are preferentially used as recipients for these xenografts
since their lack of functionally mature B and T lymphocytes
prevents tissue rejection. However, once reconstituted with
either bovine fetal hematopoietic tissues or peripheral blood
leukocytes, these mice can both produce antibodies, indicative
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of a functional B-cell response, and reject subsequent bovine
tissue allografts, demonstrating a functional T-cell response
(25, 92, 138, 139). Therefore, these mice can mimic normal
bovine immune function. In the sole study analyzing the bovine
immune response to mycobacterial infections with this model,
Smith et al. (268) concluded that both CD81 and g/dT cells
help protect cattle from infection with M. bovis.

In summary, more experimentation is necessary to improve
the animal models to study the various aspects of Johne’s
disease pathogenesis. However, the mouse models currently
available offer interesting alternatives for the study of different
aspects of this disease. The more accurate animal model for
use in the study of Johne’s disease would be the one that
parallels the features of ruminant paratuberculosis pathogen-
esis, including the protracted manifestation of clinical signs.
For these studies, it is important to identify not only the ap-
propriate genetically defined strain of mice but also the dose
and route of inoculation, optimal age for infection, and fre-
quency of repeated challenges with virulent or attenuated mi-
croorganisms. For example, an experimental model resulting
in higher multiplication of M. paratuberculosis in the liver and
spleen than is the ileum would indicate that the infection has
become systematic, which is not a relevant model of ruminant
paratuberculosis. Conditions that lead to preferential bacterial
multiplication in the intestinal tract should be thoroughly ex-
plored experimentally. Nonetheless, a systemic infection mod-
el may be suitable for a preliminary examination of candidate
attenuated strains, if they show a considerable decrease in
virulence compared with wild-type strains. Evidently an immu-
nologically chimeric model would be more useful for studying
the response of bovine immune cells to subunit or live vaccines.

DIAGNOSTICS

Identification of M. paratuberculosis
Subspecies-Specific Genes

Identification of either subspecies-specific genes or unique
modifications in conserved genes (such as insertions, deletions,
or hypervariable regions) of M. paratuberculosis is necessary
for the development of DNA-based diagnostic tests. Two can-
didates reported in the literature to date besides IS900 are the
hspX gene (98) and a 620-bp DNA fragment designated F57
(61). The hspX gene encodes a putative heat shock-like protein
possessing an arginyl-glycyl-aspartic acid (RGD) peptide mo-
tif. Proteins with this type of motif have been implicated in
mediating cell attachment (240) and stimulating phagocytosis
and are likely to be virulence determinants (26, 142). BLAST
analysis of hspX against M. avium and other mycobacterial
genomes show that hspX has approximately 60% homology to
similar sequences present in other mycobacteria, indicating
that it may be unique to M. paratuberculosis. A PCR panel
assay using this gene, the 16S rRNA sequence, and insertion
elements IS901 (M. avium), IS1245 (M. avium complex), and
IS900 (M. paratuberculosis) has been developed recently and
could differentiate between M. avium and M. paratuberculosis
with an accuracy of 99.2% (99). However, two of the 12 M.
paratuberculosis strains tested in this study were negative for
hspX by PCR. Further analysis of these two strains was not
reported, so it is unknown if they were devoid of the hspX gene

or if the PCR failed to amplify the appropriate gene product.
Although the functional analysis of hspX regarding macro-
phage adhesion and entry has yet to be performed, it does
appear to have immediate merit as a diagnostic tool.

Poupart et al. (241), first published the isolation and use of
F57 as a diagnostic probe for detecting M. paratuberculosis.
This fragment does not hybridize with DNA from other my-
cobacterial species and is not related to any known M. para-
tuberculosis sequence including IS900 (241) and hspX (98).
BLAST analysis of this DNA sequence further support these
data, since only 56% homology is found to a DNA region from
M. avium. This F57 fragment and the upstream sequence of the
gene encoding a 34-kDa antigenic protein have been used
recently to develop a diagnostic duplex PCR capable of differ-
entiating M. bovis, M. avium, and M. paratuberculosis (63).
Further characterization and functional analysis of this gene
fragment is necessary to ascertain its role in M. paratuberculosis
pathogenesis.

Although not specific for M. paratuberculosis, a set of genes
located in a 6.5-kb region of the M. paratuberculosis genome
have been cloned and sequenced (301). These genes are also
found in M. sylvaticum, and they have a G1C content of 58%,
which is significantly lower than the 67% average for the M.
paratuberculosis genome. The five ORFs within this region are
gsa, gsbA, gsbB, gsc, and gsd and are homologous to genes that
encode functions related to extracellular polysaccharide or lipo-
polysaccharide biosynthesis from M. tuberculosis and other
gram-negative bacteria (301). Finally, as the subspecies-spe-
cific antigens described earlier in this review are sequenced
and characterized, more unique genes of the M. paratubercu-
losis genome will be discovered. The sequencing and anal-
ysis of the entire M. paratuberculosis genome, currently under
way at the University of Minnesota (http://www.cbc.umn.edu
/ResearchProjects/Ptb/), will also uncover more regions spe-
cific to this pathogen.

Molecular Genetic-Based Diagnostic Tests

The advent of diagnostic probes based on specific bacterial
DNA sequences has allowed fastidious microorganisms, such
as M. paratuberculosis, to be rapidly identified. This strategy
requires the identification of a DNA sequence present only in
M. paratuberculosis but not in M. avium or other closely related
mycobacteria. Initially, this approach was based on Southern
hybridization analysis, but soon thereafter PCR tests based on
these principles were developed (305). The unique regions of
the M. paratuberculosis genome most widely used for PCR are
the 16S rRNA gene and the insertion element IS900 (see the
following section for a detailed discussion of IS900-based PCR
tests). Additionally, an experimental PCR test for hspX has
been recently described (99).

In general, PCR analysis has been unable to match the
sensitivity of fecal culture for identifying small numbers of
bacteria (319, 332), but attempts to increase the sensitivity of
this diagnostic test have yielded promising results (72, 202). In
part, the lack of sensitivity of the PCR technique is due to the
extreme difficulty of removing PCR inhibitors when preparing
DNA from fecal extracts. Englund et al. (104) combined fecal
culture and PCR in an attempt to circumvent this problem. In
this study, plasmid DNA containing human b-actin was incor-
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porated into DNA extracted from primary cultures of M. para-
tuberculosis-suspect colonies, after which a nested PCR was
performed using primers against both b-actin and the IS900
element of M. paratuberculosis. Using this method, false-neg-
ative PCR results could be identified by the lack of amplifica-
tion of both b-actin and the IS900 product. However, it was
still judged to be less sensitive than the culture method alone,
highlighting the difficulty in removing inhibitors from primary
samples. PCR has proven more useful for detecting the pres-
ence of M. paratuberculosis in infected sheep, a significant
benefit since recovery of M. paratuberculosis from ovine fecal
or intestinal samples is notoriously difficult (54, 71, 89). This
tool is also valuable for differentiating species of M. avium. The
IS900 sequence is the most commonly chosen target gene and
is used to distinguish M. paratuberculosis from M. avium (209)
and M. silvaticum (202), with the limitations described below.

IS900 PCR

The first commercial diagnostic PCR test for Johne’s disease
based on the IS900 sequence was developed by Idexx Labora-
tories, Inc. (305). The primers reported in that paper by Vary
et al. (305) (Vary primers) are widely used in variations of the
IS900 PCR test (80, 99, 196, 203). Other primers that amplify
a region spanning the Vary primers have also been reported
(203). The location of these primer sets in relation to the IS900
sequence is illustrated in Fig. 2. Using these primers, Cousins
et al. (80) could amplify IS900-like PCR products from envi-
ronmental mycobacteria, thus demonstrating that false-posi-
tive results are obtainable from strains other than M. paratu-
berculosis.

Using a variation of the primers described by Millar et al.
(202), Naser et al. (218) amplified PCR products from M.
avium complex (MAC) strains originating from AIDS patients.
Although these PCR products hybridized with an IS900-spe-
cific probe, it was not established whether these MAC isolates
contained a sequence identical to IS900 or a novel sequence
with high homology to IS900. This study supports recent find-

ings that nearly one-third of all isolates of M. avium subsp.
avium recovered from human sources have readily amplifiable
fragments corresponding to the IS900 insertion element when
a variety of previously published IS900 primer sets were used
(V. Kapur, personal communication). In addition, a BLAST
analysis of the 229-bp region amplified by the Vary primers
revealed that both primers overlap regions of high homology
between IS900 and IS1626, present in M. avium. In particular,
23 of 24 nucleotides of the forward primer and 20 of 24 nu-
cleotides of the reverse primer are conserved in IS1626 (Fig.
2). All these data indicate that PCR results based on the IS900
sequence alone should be interpreted with caution and that the
IS900 primers used may not be specific for M. avium subsp.
paratuberculosis, since IS900 and/or IS900-like elements may
be present in other closely related mycobacteria.

A variation of the IS900 PCR has recently been introduced
by Bull et al. (29), in which they developed a multiplex PCR of
IS900 loci (MPIL), based on flanking genomic DNA sequences
at 14 different IS900 insertion sites throughout the M. para-
tuberculosis genome. Since this MPIL assay is dependent on
DNA flanking IS900 and since these researchers also deter-
mined that seven different IS900 loci are conserved among all
M. paratuberculosis strains they tested, it is feasible that a rapid
diagnostic test could be developed based on multiple IS900
loci, which would eliminate the potential for false-positive
results.

Combined PCR and Restriction Enzyme Digestion Tests

Restriction enzyme analysis has been coupled with PCR to
differentiate M. avium and M. paratuberculosis and to identify
different strains of M. paratuberculosis. The basis for this test
involves point mutations within the ORF of a highly conserved
gene, which results in the loss of a restriction enzyme recog-
nition site. When a portion of the gene is amplified using PCR
and subsequently digested with the appropriate restriction en-
zymes, fragments of different lengths are obtained as a result of
the specific polymorphisms. Eriks et al. (105) first used this

FIG. 2. Sequence comparison of the 59 ends of IS1626 and IS900. The sequences of the primer sets for M. paratuberculosis IS900 published by
Vary et al. (305) (Vary primers) and Millar et. al. (202) (Millar primers) are shown in boldface type. The Millar primers (Millar F and Millar R)
are represented by solid arrows, and the Vary primers (Vary F and Vary R) are represented by dashed arrows.
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technique to successfully differentiate M. paratuberculosis from
M. avium by using a region of the 65-kDa heat shock protein
gene. This strategy was also used with point mutations in the
IS1311 mobile transposable element to differentiate M. avium
from M. paratuberculosis and to differentiate cattle strains of
M. paratuberculosis from sheep strains (196, 321). This princi-
ple has also been applied to IS900 PCR (80). However, given
the recent findings of IS900-like sequences described above in
MAC isolates, it remains to be determined whether the restric-
tion enzyme polymorphisms of IS900 can differentiate M. para-
tuberculosis from all closely related mycobacteria.

In general, the latest information regarding the specificity of
IS900 suggests that the search for M. paratuberculosis-specific
regions useful for diagnostic purposes is unfinished. Undoubt-
edly, the information that will be provided by analyzing the
completed M. avium and M. paratuberculosis genomes is likely
to yield more conclusive answers.

Diagnostic Serology Tests

During an M. paratuberculosis infection, the animal develops
both humoral and a cell-mediated immune (CMI) responses,
which can be correlated with the stage of disease and the type
of observed lesion. Overall, M. paratuberculosis lesions are
described histopathologically as granulomatous inflammatory
reactions. This classification has been further subdivided into a
spectrum of histological manifestations ranging from tubercu-
loid (discrete) granulomas to lepromatous (diffuse) lesions
(46) and is based on a similar classification first described in
leprosy (250). The tuberculoid form of the disease is associated
with a strong CMI response early in the course of infection (56,
78, 236). This CMI response involves the recruitment and
proliferation of CD41 Th1 cells, CD81 cells, and peripheral
blood mononuclear cells that secrete high levels of cytokines,
including IFN-g (56), which can be detected serologically (14,
234, 274, 291). Paralleling this CMI response is a strong B-cell
proliferative response to M. paratuberculosis antigens (310).
The lepromatous form of paratuberculosis appears in the later
stages of the disease and is characterized by a decreasing CMI
response, an increasing humoral response, and high antibody
titers (56, 234, 263). Moreover, a transition from subclinical
infection to clinical disease is accompanied by a marked anti-
gen-specific B-cell unresponsiveness (310).

Early diagnostic testing for M. paratuberculosis was limited
to the intradermal (skin) test. This test evaluates the delayed-
type hypersensitivity (DTH) reaction of an animal to injected
M. paratuberculosis extracts and is an indication of the CMI
response of the animal (46, 78). However, problems with an-
tigenic cross-reactivity of environmental mycobacteria have re-
cently precluded its use as a diagnostic tool for paratubercu-
losis (78). Because of the importance in determining the
infection status of subclinically infected animals, research in
this area has led to the development of a bioassay (326) and
enzyme-linked immunosorbent assay (ELISA) (255) that de-
tects elevated IFN-g levels in response to M. bovis infections.
This test was further modified for identifying M. paratubercu-
losis-infected animals (23). Evaluation of the IFN-g test by
using experimentally and naturally infected cattle and sheep
demonstrated its utility for distinguishing animals in the initial

stages of infection (23, 234, 236, 274). However, in a recent
study by McDonald et al. (197), all noninfected control animals
tested positive at least once during the course of their study,
suggesting that the IFN-g ELISA may require further optimi-
zation.

Three different tests are currently available for measuring
antibodies against M. paratuberculosis in the serum of infected
animals. These are the complement fixation (CF) test, the agar
gel immunodiffusion (AGID) test, and ELISA. Since a strong
humoral response does not occur until the later stage of
Johne’s disease, the sensitivity of these tests is the highest for
animals with lepromatous lesions (57, 235, 262), those with
clinical symptoms (96, 153, 289), or those that shed large num-
bers of bacteria (17, 18, 270, 289) (Table 4). Therefore, the
main limitation of these antibody tests is their inability to
accurately identify animals early in the course of an infection.
Conversely, all of these tests are highly specific, with false-
positive results occurring at low frequency.

Among the antibody tests, ELISA is more sensitive than
either the AGID or CF test (61, 78). It performs similarly for
cattle, sheep, and goats (30, 97) and can be used with compa-
rable sensitivity for either milk or serum samples (288). Com-
parative studies of the CF and AGID tests and ELISA repeat-
edly show discrepancies in the ability of these tests to identify
all infected animals (84, 85, 153, 199, 270). As suggested by
Sugden et al. (284), this may be due to genetic variation of the
individual animal or the lack of representation of the entire
range of immunodominant antigens for M. paratuberculosis
within a given test.

Many variations of the ELISA method have been used to
detect antibodies against M. paratuberculosis (81, 160, 288,
327). One of the crucial components of this test is the antigen
preparation used to capture antibodies from the test sera.
Therefore, the method of antigen preparation directly affects
both the sensitivity and specificity of the ELISA (81). This was
shown by an inhibition study performed with three commer-
cially available ELISA kits, in which the M. avium strain 18
protoplasmic antigen (PPA-3) and the lipoarabinomannan
polysaccharide antigen (LAM) cross-reacted but the M. para-
tuberculosis strain VRI 316/102-2 crude protoplasmic antigen
(CTL) and LAM did not (284). The cross-reactivity between
the PPA-3 and LAM antigens indicated that these tests have
at least some antigens in common, but the lack of cross-reac-
tivity between the CTL and LAM ELISAs suggest the ab-
sence of shared antigens in these preparations. Therefore, it
is possible that, individually, these commercially available
ELISAs can identify only a subset of an infected population
of animals.

Preabsorption of test sera with M. phlei antigens is another
significant modification proven to increase ELISA sensitivity
(16–18, 75, 81, 85, 327). This step removes nonspecific anti-
bodies against environmental mycobacteria that could poten-
tially cross-react with M. paratuberculosis antigens. Antigen
preparation of the M. phlei absorption antigens also influences
the sensitivity of the ELISA (81). As expected, the most re-
producible results are obtained when the same method is used
to prepare both the test antigen and antigens used for pre-
absorption.
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DISEASE CONTROL

Natural Reservoirs

Effective disease control programs depend on addressing
potential sources of infection and routes of transmission. Stud-
ies have demonstrated that M. paratuberculosis is viable for up
to 250 days in water, feces, and cattle slurry (20, 179, 188).
Consequently, contamination of an animal’s environment by
manure from infected animals is the most common mode of
transmission. Vertical transmission during pregnancy has also
been implicated since M. paratuberculosis has been isolated
from the uterus (173, 230), fetal tissues (183), and semen (180).

Another factor affecting the control of Johne’s disease is its
ability to infect many different animal species. The host range
of M. paratuberculosis is not limited to ruminants, since iso-
lated reports of paratuberculosis in swine (295) and rabbits (6,
140) appear in the literature. Additionally, spontaneous cases
of Johne’s disease have been found in many species of wild
animals. In North America, M. paratuberculosis has been iso-
lated from white-tailed deer (44, 261), mule deer (322, 323),
bighorn sheep (322, 323), Rocky Mountain goats (322, 323),
bison (28), and elk (323). Similarly, M. paratuberculosis has
been found in wild red deer from the Italian Alps (220) and
wild rabbits in Scotland (6, 140, 141).

Management of wild-animal herds for either profit or pres-
ervation of endangered species has exacerbated certain dis-
eases that are normally uncommon in the wild-animal popu-
lation, including Johne’s disease. Paratuberculosis has been
diagnosed in farmed deer (90, 108, 128, 242, 294) alpacas
(249), and elk (161, 194, 252). Furthermore, it appears that an
infection can persist in certain populations without causing
overt disease (79), which prevents both the relocation of these
animals to the wild and the introduction of other livestock onto
land formerly inhabited by these herds. Of greater concern is
the ability of wild animals to infect domestic livestock with M.
paratuberculosis. An M. paratuberculosis strain originally iso-
lated from a bighorn sheep was able to infect other species of
wild animals as well as domestic ruminants, implicating wild-
animal populations as a natural reservoir for this pathogen
(322, 323). In these same studies, either direct contact with
diseased animals or exposure to pen effluent from diseased
animals caused healthy, noninfected elk and sheep to become
infected with M. paratuberculosis, confirming that transmission
of M. paratuberculosis can occur via both of these routes. These
data are supported by a study by Cetinkaya et al. (37), which
demonstrated that the presence of farmed deer on land con-
currently inhabited by dairy cattle increased the risk of Johne’s
disease in the dairy cattle population.

Management

Since Johne’s disease is so insidious within an animal pop-
ulation, management is considered to be the most useful tool
for controlling paratuberculosis within domestic livestock
herds. However, management control recommendations often
fail because they do not take into account the unique circum-
stances of individual farms (254). Specific management prac-
tices are reviewed in detail elsewhere (46, 254) and demon-
strate the necessity for good animal husbandry. The most
important management practices that have been identified are

overall cleanliness of the farm, manure handling, newborn-calf
care, and restriction of contact between calves and mature
animals (77, 132). Other identified risk factors include the
breed of cattle raised on the farm, with Guernsey and Jersey
dairy cattle being associated with a higher risk factor, and the
presence of farmed deer (37). The association between a high
prevalence of clinical paratuberculosis and acidic soils has also
been implicated as a risk factor for Johne’s disease (162–164,
248). However, as discussed in a recent review on this topic
(162), no experimental evidence exists to corroborate this
relationship.

Another critical management tool is herd testing. Presently,
ELISA serology and fecal culture are the most commonly used
methods (254). Because these two tests measure different as-
pects of the disease (indirect antibody response to infection
and shedding of live bacteria), a combination of the tests is
more likely to detect infected animals (254). Therefore, in-
fected animals can be removed (culled) from a herd, reducing
the exposure of uninfected animals to the disease. Statistically,
a significant drawback to testing entire herds lies in the poor
positive predictive value of the tests, caused by the greater
likelihood of a false-positive result in a truly negative herd
when large numbers of animals are tested. In contrast, diag-
nostic testing of individual animals with a low pretest proba-
bility of infection is correlated with a poor negative predictive
value (D. R. Smith, personal communication).

Vaccination

For the dairy industry, economic losses from Johne’s disease
are primarily due to premature disposal of animals and re-
duced milk production (76, 304, 325). Therefore, a vaccine that
prevents animals from becoming infected would be an ideal
goal. Vaccines for paratuberculosis have been commercially
available for many years but unfortunately are not completely
effective in preventing disease (46, 61, 175, 304, 314). Most
studies conducted on paratuberculosis vaccines have been field
trials in which a herd or geographical region has experienced a
high burden of Johne’s disease and a vaccination strategy was
implemented in an attempt to reduce economic losses. In these
studies, design parameters and/or experimental conditions
were not fully described or controlled. Therefore, only general
conclusions can be drawn regarding the efficacy of the vaccine
in preventing disease. Nonetheless, Johne’s disease vaccines
appear to provide partial protection, since they reduce fecal
shedding in cattle (46, 175, 176), the number of clinically af-
fected cows (46, 304, 314), sheep (82), and goats (258), and the
number of animals testing positive histologically or bacterio-
logically (Table 5) (304, 314). This partial protection has been
confirmed in more controlled experimental trials using vacci-
nated and experimentally challenged ruminants. Like the field
trials, these studies demonstrate a significant reduction in the
number and severity of intestinal lesions, the number of posi-
tive fecal cultures, and the severity of clinical symptoms in
vaccinated animals (145, 166, 281). These results contrast with
former studies (125, 126, 182). Thus, further clinical trials
using well-defined parameters are needed to confirm the more
recent positive findings of the effect of vaccination.

From the controlled experimental vaccine trials performed
with ruminants with Johne’s disease, certain conclusions can be
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drawn. Stuart (282) used dairy calves inoculated subcutane-
ously with 5 mg (wet weight) (ca. 5 3 104 CFU) of a live
attenuated vaccine at 1 week of age and exposed 1 month later,
for a duration of 6 months, to infected calves actively shedding
M. paratuberculosis. A subset of the vaccinated calves were
revaccinated at 1, 21/2, and 4 years after exposure. All animals
were monitored for 5 years, and surviving animals were sacri-
ficed at the termination of the study. Statistically, fewer ani-
mals in the once-vaccinated group died of Johne’s disease (8 of
28) than did the nonvaccinated animals (17 of 28) or the
revaccinated animals (13 of 28). However, only five cows in this
group were not infected with M. paratuberculosis after 5 years,
compared to three cows for the revaccinated group and one
animal for the nonvaccinated group. Thus, it appears that
revaccination, or boosting, does not improve the ability of an
animal to resist infection. Similarly, the vaccine does not pre-
vent infection from occurring.

Vaccination and boosting was also tested in sheep (125). In

this study, animals were vaccinated subcutaneously at 4 months
of age with 5 mg (wet weight) of a heat-killed strain of M.
paratuberculosis. Oral challenges of these animals were per-
formed with a virulent bovine clinical strain of M. paratuber-
culosis 1 month after vaccination and again by incorporating M.
paratuberculosis in the drinking water for 9 to 14 months after
vaccination. Revaccination was performed in a subset of sheep
at 11 months with either the same heat-killed vaccine or a
fractionated extract containing peptides and glycolipids from
three vaccine strains of M. paratuberculosis. Animals were sac-
rificed at approximately 20 months of age. At this time, all
animals were infected with M. paratuberculosis and no signifi-
cant differences in gross lesions and numbers of viable bacteria
recovered from tissues were observed between the different
experimental groups, substantiating the previous experiment
that vaccination does not prevent subsequent infection by a
virulent strain of M. paratuberculosis.

In the sole report on oral vaccination against Johne’s disease

TABLE 5. Summary of M. paratuberculosis vaccination studies in the last decade

Type of vaccine
(vaccine straina)

Animal species
(no. in study)

Route of inoculation
and dose given

Effect of M. paratuberculosis vaccine on: Refer-
enceClinical signs Evidence of immune response

Heat killed
(strain 18)

Cattle (20) NRc NTc Antibody titers in vaccinated animals
were detectable by 2 m postvaccina-
tion and were maintained for 15 m

271

Heat killed
(5889 Bergey)

Cattle (866) 25–100 mg (dry wt),
intramuscular

Partial protection; vaccination reduced
fecal shedding

Vaccinated animals had increased anti-
body titers during the first 3 yr which
declined by yr 5

174

Live attenuated
(316 F)

Sheep (580) 5 mg (wet wt),
subcutaneous

Partial protection; no. of animals with
clinical symptoms decreased over 3
yr.

NT 82

Heat killed
(Lelystadb)

Cattle (176) 5 mg, subcutaneous 36/176 cows had both a positive fecal
culture and histological lesions, where-
as only 2 had histological lesions
without concurrent positive cultures

Vaccinated, noninfected animals (126/
176) tended to have a positive DTH
response

313

Live attenuated
(316 F)

Sheep (17) 103 CFU, subcutaneous Partial protection; vaccination reduced
the no. and severity of bacteriologi-
cal isolations and histological lesions
in the intestine

Vaccinated animals displayed a strong
and immediate increase in antibody
titers within 1 wk, but infected ani-
mals delayed this response until 6
wk postinfection

166

Heat killed
(5889 Bergey)

Cattle (866) 25–100 mg (dry wt),
intramuscular

Partial protection; vaccination reduced
fecal shedding

Vaccinated animals had increased anti-
body titers during the first 3 yr,
which declined by yr 5

175

Heat killed
(Lelystad)

Cattle (499) 5 mg, subcutaneous Partial protection; vaccination de-
creased both the no. of animals
culled for clinical paratuberulosis
and the percentage of animals with
positive histology

NT 314

Live attenuated
(316 F)

Goats (20) NR NT Vaccination induced a cellular immune
response as measured by a lympho-
cyte proliferation assay

207

Heat killed
(not reported)

Cattle (652) NR Partial protection; vaccination reduced
the no. of clinically infected animals
by almost 90%

NT 304

Heat killed
(Field strain)
and live atten-
uated (316 F)

Cattle (28) 1.5 ml of live vaccine or
1 ml of heat-killed
vaccine, subcutaneous

Partial protection; infection was con-
firmed in 1 of 9 vaccinated calves,
0 vaccinated calves had positive fecal
culture results

Three vaccinated calves had a positive
ELISA, indicating antibody produc-
tion; all calves had at least one posi-
tive IFN-g ELISA

197

Live attenuated
(316 F)

Sheep (41) 1 ml, subcutaneous,
given 2 wk after oral
inoculation with ca.
107 CFU of a virulent
sheep strain of M.
paratuberculosis

Partial protection; 7/14 unvaccinated
versus 2/14 vaccinated sheep devel-
oped clinical signs, and 11/14 unvac-
cinated and 8/14 vaccinated animals
were positive for M. paratuberculosis
by either histology or PCR testing
(severity of lesions for the vaccinated
group lower than for the unvacci-
nated group)

Vaccinated sheep had higher IFN-g
and antibody production than did
nonvaccinated sheep

145

a Mycobacterial strain used for vaccine preparation, as described in the reference.
b Vaccine prepared by the Central Veterinary Institute, Lelystad, The Netherlands.
c NR, not reported; NT, not tested.
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in sheep, protective immunity was not elicited (126). Three-
month-old animals were dosed with 5 3 106 CFU of M. para-
tuberculosis strain 316F weekly for 10 weeks and challenged 1
month later with 108 CFU of a clinical M. paratuberculosis
isolate per week for an additional 10 weeks. At the termination
of this study (1 month after the last challenge), vaccinated
sheep displayed no differences from control animals in DTH
responses or the number of viable bacilli recovered from either
the mesenteric lymph nodes or small intestine. Mild lesions
consistent with a M. paratuberculosis infection were observed in
vaccinated, nonchallenged sheep, but viable bacilli were not
recovered from these tissues. The main conclusion from this
study was that oral vaccination was not effective in protecting
against a challenge with a pathogenic strain. However, high
doses of the vaccine strain were given over several weeks,
conditions that that may not elicit the correct type of protective
immune response. In this context, Andersen (5) induced a dose-
dependent immunity in mice with a vaccine based on short-term
culture filtrate proteins of M. tuberculosis. At high vaccine doses,
a nonprotective humoral response occurred, but lower doses in-
duced a Th1 response that was protective. Another problem of
the oral vaccination trial in sheep is that the study was termi-
nated after only 1 month postchallenge. Related studies have
demonstrated a significant difference in the number and sever-
ity of lesions in vaccinated animals compared with nonvacci-
nated animals, but only after 6 months or more (145, 166, 282).

Protective immunity against mycobacterial diseases, espe-
cially paratuberculosis in ruminants, is poorly understood. It is
assumed that vaccination stimulates a protective CMI re-
sponse. M. paratuberculosis directly suppresses a murine T-cell
DTH response to injections of sheep red blood cells (171),
implying that this may be another method used by this bacte-
rium to evade the host immune response. As stated above, a
strong CMI response to M. paratuberculosis infections is asso-
ciated with the formation of granulomatous tuberculoid lesions
and containment of the disease by the host whereas a weak
CMI response is associated with diffuse lepromatous lesions
and disease progression. Furthermore, the strength of this re-
sponse can be directly correlated with the presence and sever-
ity of tuberculoid lesions and the bacterial load in the tissues
(31, 145, 236). In paratuberculosis, a strong DTH response,
indicative of a strong CMI response, has been correlated with
the ability of an animal to contain the infection (145, 313). This
situation may be correlated with some observations in human
tuberculosis, where a vaccine-induced low level of hypersensi-
tivity was associated with protection but a persistent vaccine-
associated hypersensitivity was not (111). Several groups have
demonstrated the association of tuberculoid-type lesions with
the elimination of an M. paratuberculosis infection in both sheep
(145, 166, 236) and mice (50). Therefore, it can be hypothe-
sized that the Johne’s disease vaccines stimulate an initial
strong cellular immune response, partially overcoming the sup-
pressive effect of pathogenic M. paratuberculosis on the host
immune system. To this end, vaccinated animals have higher
IFN-g and serum antibody responses than do naturally in-
fected animals (145, 166).

In the United States, vaccination is still considered to be a
controversial management tool (76). In general, vaccination
can interfere with diagnostic testing, can cause observable
granulomas at the vaccination site, and may present a health

risk to veterinarians administering the vaccine due to acciden-
tal self-injection (226). However, a study in The Netherlands
showed that vaccination against paratuberculosis was profit-
able for herd owners, reducing the number of clinically in-
fected cattle by approximately 90% (304). It should be noted
that in the United States, heat-killed M. avium strain 18 is used,
while in Europe, a modified live vaccine is marketed. As re-
viewed previously (46, 61), both live attenuated and killed
whole-cell (bacterin) vaccines are somewhat successful in con-
trolling clinical paratuberculosis. Table 5 lists studies from the
last 10 years that have used either the live attenuated (82, 145,
166, 197, 207) or killed (174, 175, 197, 271, 304, 313, 314) M. para-
tuberculosis or M. avium vaccines. Comprehensive studies on the
most effective strain(s) of M. paratuberculosis for use in vaccine
production are also needed. Since various strains of M. bovis BCG
differ in their ability to elicit experimentally induced immune
reactions (134), it is possible that a similar phenomenon may
occur with M. paratuberculosis. A number of M. paratubercu-
losis strains have been reported in the literature as being used
for both experimental and commercial vaccine production (Ta-
ble 5). These include strain 316F (61, 82, 166), strain 5889
Bergey (175), M. avium strain 18 (46, 271), field isolates (197),
and other unidentified reference strains (304, 313, 314).

Research on M. tuberculosis secreted antigens suggests that
a subunit vaccine may be developed against mycobacterial in-
fections. For example, Horwitz et al. (158) have demonstrated
the potential use of M. tuberculosis antigen 85B as a subunit
vaccine against tuberculosis. A similar approach may be feasi-
ble for M. paratuberculosis, and a subunit vaccine of this kind
would be readily compatible with current diagnostic tests. This
type of vaccine may benefit from the use of an immunoadju-
vant, such as the genetically detoxified derivative of either
the Escherichia coli heat-labile enterotoxin or the closely
related Vibrio cholerae cholera toxin. Mutant heat-labile en-
terotoxin and cholera toxin both elicit a protective humoral
and cellular host immune response when used as a mucosal
adjuvant in conjunction with killed bacteria (117), suggest-
ing new possibilities for vaccine development for M. para-
tuberculosis.

It would be extremely useful to develop methods to differ-
entiate vaccinated from infected animals. The time frame for a
vaccinated animal to demonstrate detectable antibody levels
can vary from 2 weeks to 6 months after vaccination (166, 271).
Once vaccinated, animals appear to maintain these levels for at
least 1 year (271) and up to 3 years (174, 175) afterward, which
interferes with the assays currently used for diagnostic pur-
poses and export requirements. Although the development of
a live attenuated vaccine compatible with diagnostics is diffi-
cult, Cirillo et al. (55) have described a recombinant DNA
technology approach to generate this type of vaccine. It is our
conviction that either this type of a recombinant live attenu-
ated vaccine or a subunit vaccine coupled with the proper use
of adjuvants has the greater promise for a more effective vac-
cine against paratuberculosis.

Treatment

Presently, no drugs are approved for the treatment of
Johne’s disease in livestock, and the rare instances where an-
tibiotic therapy is attempted is limited to the extralabel use of
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standard antimicrobial agents. Since treatment of paratuber-
culosis is expensive and unrewarding, it is only used in extreme
efforts to prolong the life of very valuable animals for breeding
purposes. The treatment regimens most commonly used for
Johne’s disease are either clofazimine (61), or isoniazid and
either rifabutin or ethambutol, followed by a daily dose of
isoniazid for the duration of the animal’s life (124, 281). Al-
though isoniazid is prescribed for the treatment of M. tubercu-
losis and M. bovis infections in cattle (243), both M. paratuber-
culosis and M. avium are resistant to isoniazid in vitro (157,
201, 324), and therefore it may not be effective in vivo.

M. paratuberculosis is susceptible to many antibiotics in vitro.
These include D-cycloserine (45, 324), ethambutol (49, 246,
324), amikacin (49, 324), clarithromycin (246, 324), and rifabu-
tin (324). The fluoroquinolone classes of antibiotics may also
merit further investigation, since the experimental fluoroquin-
olone Bay y 3118 is highly effective against M. paratuberculosis
(324). It has been suggested that antibiotic therapy does not
result in a complete cure, possibly due to the inaccessibility of
mycobacteria to the drugs in vivo (61). Alternatively, some of
the drugs used in the in vivo studies (e.g., isoniazid) may not
have been the most appropriate choices for treatment, since
the corresponding in vitro drug susceptibility patterns of the M.
paratuberculosis strains causing the infection were not report-
ed. Progress in the development of antibiotics to treat paratu-
berculosis infections will require the rational design of studies
that identify appropriate bacterial targets, utilize drugs that are
capable of penetrating macrophages, and focus on cost-effec-
tive chemotherapies that are approved for use in food animals.
Until these considerations are addressed, chemotherapy will
not be a practical alternative for treatment of Johne’s disease.

RESEARCH PRIORITIES AND CONCLUSION

The knowledge of how M. paratuberculosis causes disease
still lags behind that for other pathogenic mycobacteria. Like
other pathogens, the interactions between M. paratuberculosis
and its host are complex. The progression of our understanding
of the basic physiology of M. paratuberculosis is hampered by
the difficulty of manipulating it in a laboratory setting. How-
ever, there is hope that as more of the M. paratuberculosis
genome is sequenced and characterized, differences in the ge-
netic structure and physiology between M. paratuberculosis and
other mycobacteria will become evident. This will expand our
understanding of what makes M. paratuberculosis unique and
will further our repertoire of specific targets that can be ex-
ploited for diagnostic testing and treatment of Johne’s disease.
However, there are important gaps in this knowledge. Regard-
ing the basic biology of the microorganism, it would be most
important to determine the molecular basis of mycobactin
dependency, which is the most prominent diagnostic feature
of the subspecies paratuberculosis. Another important aspect
would be to ascertain the role of M. paratuberculosis species-
specific genes encoding virulence determinants associated with
macrophage survival, host range, tissue specificity, and patho-
genesis. In addition, to develop new live attenuated vaccines, it
would be important to define mutations in virulence determi-
nants or housekeeping functions, leading to an attenuated phe-
notype. In this context, a functional genomic approach based

on the screening of mutant banks in combination with microar-
ray technology offers the greatest promise.

These microbial studies will need to be complemented with
studies using appropriate in vitro and in vivo systems. The in
vitro models for Johne’s disease would include the use of
bovine cell lines, such as the Madin-Darby bovine kidney
(MDBK) epithelial cell line (American Type Culture Collec-
tion), which could be useful to study the interaction of M.
paratuberculosis with the mucosal epithelium, and the BoMac
cell line, which could be used in the study of macrophage
survival. Experiments performed with these cell lines may have
to be validated with primary epithelial and macrophage cells.
There are advantages to each of these approaches, as well as
some distinctive differences between the two. Primary cells are
untransformed, but they vary in phenotypic properties from
one donor to the next. The cell lines will offer consistent results
on a day-to-day basis, but since they are transformed, they may
not accurately represent the mature primary cells in culture. In
particular, epithelial cells are highly differentiated in vivo, un-
like the MDBK cells. Therefore, the calf ileal loop assay, which
has been successfully used to study Salmonella enterica serovar
Typhimurium interactions with the cells of the mucosal epi-
thelium (119), may be valuable for similar studies of M. para-
tuberculosis. In the immune response of the ruminant host, it
would be important to elucidate the various immune cell in-
teractions, such as the potential regulatory effects of g/d T cells
on CD81 cell function (51), found in greatest proportions in
the neonatal calf (150). This issue is also important in the
context of eliciting a protective immune response by vaccina-
tion and could have bearing on the future development of
more effective live attenuated or subunit vaccines.

Since ruminant hosts require specialized containment facil-
ities and are expensive to maintain, prior research needs to be
performed to establish the more suitable small-animal model
that best parallels Johne’s disease. It seems that transgenic and
immunologically chimeric mice offer the greatest possibilities
for meaningful experiments. These models would be important
to test potential vaccine strains and the elicitation of protective
immunity prior to conducting controlled experiments in rumi-
nants and, finally, large-scale field trials. The most rigorously
designed parameters must be established prior to conducting
these field trials so that accurate and meaningful data are
obtained.

The potential role of M. paratuberculosis in the etiology of
Crohn’s disease, or its potential to serve as an opportunistic
pathogen in patients with inflammatory bowel disease, de-
serves substantial future investigation. In this context, the rec-
ommendations of a panel from a workshop conducted at the
National Institutes of Health (http://www.niaid.nth.gov/dmid
/meetings/crohns) have established several research priorities
to address potential M. paratuberculosis infections of humans.
These guidelines parallel the recommendations on Johne’s dis-
ease research provided above and include the establishment
of cell or organ culture models, new small- and large-animal
models of infections, and basic aspects of gene expression and
differential genomics. In addition, the panel recommended to
optimize diagnostics of M. paratuberculosis antigens, and drug
susceptibility testing. Some progress has been made in this con-
text, but substantial funding from this agency would be required
to meet these goals in a timely fashion. In conclusion, progress
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on the understanding of M. paratuberculosis infections will
require a combination of molecular genetic studies with ap-
propriate in vitro and in vivo models to evaluate pathogenesis.
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