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Summary
Background The clinical and epidemiological significance of HIV-associated Mycobacterium tuberculosis bloodstream 
infection (BSI) is incompletely understood. We hypothesised that M tuberculosis BSI prevalence has been 
underestimated, that it independently predicts death, and that sputum Xpert MTB/RIF has suboptimal diagnostic 
yield for M tuberculosis BSI.

Methods We did a systematic review and individual patient data (IPD) meta-analysis of studies performing routine 
mycobacterial blood culture in a prospectively defined patient population of people with HIV aged 13 years or older. 
Studies were identified through searching PubMed and Scopus up to Nov 10, 2018, without language or date 
restrictions and through manual review of reference lists. Risk of bias in the included studies was assessed with an 
adapted QUADAS-2 framework. IPD were requested for all identified studies and subject to harmonised inclusion 
criteria: age 13 years or older, HIV positivity, available CD4 cell count, a valid mycobacterial blood culture result 
(excluding patients with missing data from lost or contaminated blood cultures), and meeting WHO definitions for 
suspected tuberculosis (presence of screening symptom). Predicted probabilities of M tuberculosis BSI from 
mixed-effects modelling were used to estimate prevalence. Estimates of diagnostic yield of sputum testing with Xpert 
(or culture if Xpert was unavailable) and of urine lipoarabinomannan (LAM) testing for M tuberculosis BSI were 
obtained by two-level random-effect meta-analysis. Estimates of mortality associated with M tuberculosis BSI were 
obtained by mixed-effect Cox proportional-hazard modelling and of effect of treatment delay on mortality by 
propensity-score analysis. This study is registered with PROSPERO, number 42016050022.

Findings We identified 23 datasets for inclusion (20 published and three unpublished at time of search) and obtained 
IPD from 20, representing 96·2% of eligible IPD. Risk of bias for the included studies was assessed to be generally 
low except for on the patient selection domain, which was moderate in most studies. 5751 patients met harmonised 
IPD-level inclusion criteria. Technical factors such as number of blood cultures done, timing of blood cultures relative 
to blood sampling, and patient factors such as inpatient setting and CD4 cell count, explained significant heterogeneity 
between primary studies. The predicted probability of M tuberculosis BSI in hospital inpatients with HIV-associated 
tuberculosis, WHO danger signs, and a CD4 count of 76 cells per μL (the median for the cohort) was 45% 
(95% CI 38–52). The diagnostic yield of sputum in patients with M tuberculosis BSI was 77% (95% CI 63–87), 
increasing to 89% (80–94) when combined with urine LAM testing. Presence of M tuberculosis BSI compared with its 
absence in patients with HIV-associated tuberculosis increased risk of death before 30 days (adjusted hazard ratio 2·48, 
95% CI 2·05–3·08) but not after 30 days (1·25, 0·84–2·49). In a propensity-score matched cohort of participants with 
HIV-associated tuberculosis (n=630), mortality increased in patients with M tuberculosis BSI who had a delay in 
anti-tuberculosis treatment of longer than 4 days compared with those who had no delay (odds ratio 3·15, 
95% CI 1·16–8·84).

Interpretation In critically ill adults with HIV-tuberculosis, M tuberculosis BSI is a frequent manifestation of 
tuberculosis and predicts mortality within 30 days. Improved diagnostic yield in patients with M tuberculosis BSI 
could be achieved through combined use of sputum Xpert and urine LAM. Anti-tuberculosis treatment delay might 
increase the risk of mortality in these patients.
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Introduction
In settings with high HIV and tuberculosis burden, 
Mycobacterium tuberculosis bloodstream infection (BSI) 
might be common. When sought, tuberculosis is the most 
frequently identified community-acquired BSI in admitted 
to hospital adults in sub-Saharan Africa1 and in adult 
sepsis cohorts recruited in high-HIV burden settings.2–4 
The high frequency of multiorgan, notably spleen, involve-
ment in post mortems of patients with HIV-associated 
tuberculosis5 is consistent with active bloodstream disse-
mination being near universal in fatal cases.

Most settings with generalised HIV epidemics have 
no access to mycobacterial blood culture. Even where 
available, an average 3-week delay between culture and 
detection,3,6–8 combined with high early mortality, 
means that tuberculosis blood culture has limited 
diagnostic value. Unlike other bacteraemic pathogens, 
no specific evidence base exists for treating patients 
with M tuberculosis BSI.

The true prevalence of M tuberculosis BSI is unknown; 
substantial unexplained heterogeneity exists in aggregate 

data meta-analysis.9 This heterogeneity might be 
explained by differences between studies in inclusion 
criteria, clinical factors such as CD4 cell count, or 
technical factors such as number of blood cultures.10 The 
diagnostic performance of tuberculosis rapid tests in 
HIV-associated tuberculosis is variable;11 the relative 
utility of sputum Xpert MTB/RIF (Cepheid, Sunnyvale, 
CA, USA) and urine lipoarabino mannan (LAM) depends 
on disease severity12 and might differ between patients 
with M tuberculosis BSI and those with HIV-associated 
tuberculosis who are less critically ill.13 Furthermore, 
although some studies have linked mycobacteraemia to 
high risk of death in HIV-associated tuberculosis,3,8,14 
others found no significant independent association,15–17 
which might be the result of under powering or bias in 
application of the tuberculosis blood culture reference 
test.

WHO guidelines on HIV-associated tuberculosis do 
not directly address M tuberculosis BSI, but do refer to 
disseminated tuberculosis, described as disease not 
limited to one site. Additionally, WHO gives guidance, 
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Research in context

Evidence before this study

We searched PubMed, Scopus, and the Cochrane Database of 

Systematic Reviews using combinations of the search terms 

“blood stream infection”, “bacter?emia”, “septic?emia”, 

“sepsis”, “tuberculosis”, “TB”, and “mycobacter?emia” up to 

Sept 15, 2019, without date or language restrictions for studies 

that have systematically summarised the available data on 

prevalence and mortality of HIV-associated tuberculosis 

bloodstream infection (BSI). We identified one aggregate 

meta-analysis of HIV-associated tuberculosis BSI, which 

reported that Mycobacterium tuberculosis is a common cause of 

BSI in adults with HIV infection. Two other aggregate data 

meta-analyses highlighted the high prevalence of tuberculosis 

as a cause of sepsis and community-acquired bloodstream 

infection in sub-Saharan Africa. These analyses showed 

substantial between-study heterogeneity, which was 

unexplained by study-level confounders. Although some 

published cohort studies have linked positive tuberculosis 

blood culture with increased risk of death, others have found 

no significant association; the identified meta-analyses have 

not reported pooled mortality associations adjusted for 

individual patient characteristics. Consequently, uncertainty 

exists about the clinical and epidemiological importance of 

M tuberculosis BSI.

Added value of this study

To address these uncertainties, we did an individual patient 

data (IPD) meta-analysis of health-care facility-based studies 

that did routine tuberculosis blood cultures on samples taken 

from adults with HIV infection. Correcting for individual patient 

characteristics, we were able to explain substantial variation in 

the probability of M tuberculosis BSI and found prevalence to be 

higher than previously reported, particularly in hospital 

inpatients with HIV-associated tuberculosis and WHO danger 

signs. We showed that M tuberculosis BSI in patients with 

HIV-associated tuberculosis was independently associated with 

death before 30 days. We found substantial heterogeneity in 

diagnostic yield of sputum Xpert and urine lipoarabinomannan 

(LAM) tests in patients with HIV-associated M tuberculosis BSI, 

which could in part be explained by a lower probability of 

obtaining samples from critically ill patients rather than by poor 

test diagnostic sensitivity. As seen for non-tuberculosis sepsis 

in high-income settings, we found that a delay in 

anti-tuberculosis treatment of more than 4 days is 

associated with 30-day or inpatient mortality in 

patients with HIV-associated M tuberculosis BSI.

Implications of all the available evidence

Tuberculosis in critically ill people with HIV is frequently a 

bloodstream infection, and tuberculosis bacteraemia is a 

common and important predictor of 30-day mortality. 

As with other causes of bacterial sepsis, providing prompt 

effective antimicrobial therapy reduce risk of mortality from 

M tuberculosis BSI. Urine LAM testing should be routinely 

added to first-line diagnostic testing of sputum in 

HIV-positive inpatients with suspected tuberculosis and with 

at least one WHO danger sign. Patients with M tuberculosis 

BSI are an important population in whom WHO management 

guidelines for seriously ill people with HIV suspected of 

having tuberculosis should be validated and warrant specific 

focus in the road map for future research and global response 

to sepsis. Interventional trials are urgently required to 

establish an evidence base for mortality reduction in patients 

with M tuberculosis BSI.
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largely based on expert opinion, for managing seriously 
ill people living with HIV and suspected of having 
tuberculosis (panel).18 We hypothesised that a substantial 
proportion of inpatients with HIV-associated tuberculosis 
who are seriously ill have M tuberculosis BSI, and that 
they represent a group at particularly high risk of 
death, especially if effective treatment is delayed. If our 
hypothesis is correct, patients with M tuberculosis BSI 
would be an important population in whom the WHO 
algorithm should be validated.

We did an individual patient data (IPD) meta-analysis, 
allowing for harmonised individual patient inclusion 
criteria and adjustment for individual-level variables, to 
address four questions. First, what is the prevalence of 
M tuberculosis BSI in adult inpatients with HIV-associated 
tuberculosis who are seriously ill (having at least one 
WHO danger sign; panel)? Second, what is the diagnostic 
yield of sputum Xpert and urine LAM in patients with 
M tuberculosis BSI? Third, what is the mortality risk 
associated with having a positive tuberculosis blood 
culture? Finally, what is the effect on mortality of delaying 
anti-tuberculosis treatment by 3–5 days, as per the WHO 
algorithm, in patients with M tuberculosis BSI?

Methods
Search strategy and selection criteria
For this IPD meta-analysis, we searched databases for 
studies wherein mycobacterial blood culture was done in 
a prospectively defined patient population that included 
people living with HIV aged 13 years or older. We excluded 
studies in which CD4 cell count was not measured.

We searched PubMed and Scopus from database 
inception up to Nov 10, 2018, with no language or 
publication period restriction using the search terms 

([“Blood stream infection” OR “BSI” OR “bacter?emia” 
OR “septic?emia”] AND [“tuberculosis” OR “TB”] OR 
[“mycobacter?emia”]). We also searched reference lists 
and review articles identified in the primary search. We 
contacted researchers with interest in HIV-associated 
tuberculosis to identify any unpublished cohorts. Two 
independent reviewers (DAB and JML) selected abstracts 
and obtained full texts of potentially eligible studies. Full 
texts were also reviewed independently by DAB and JML, 
with disagreements resolved by consensus after 
clarification of method details with the primary authors.

Data extraction and processing
We asked the original investigators of the identified studies 
to provide primary data or meta-data in the event of unclear 
data coding. Prespecified variables (appendix pp 2–3) were 
extracted and standardised. Original case definitions for 
final tuberculosis diagnosis and micro biological identi-
fication standards were accepted.

We classified primary studies by inclusion criteria 
(suspected tuberculosis, inpatient, outpatient, patients 
with sepsis, febrile patients) and setting (tertiary care 
hospital, secondary care hospital, outpatient clinics, 
HIV testing service, specialist ifectious diseases centres). 
We assessed risk of bias in primary studies with an 
adapted QUADAS-2 framework that was informed by a 
survey sent to primary study authors (appendix pp 4–5). 
Two authors (DAB and JML) used the survey data to 
assess risk of bias as low, moderate, or high across five 
domains (patient selection, reference test, recording 
of co-factors [ie, covariates to be included in model], 
index test, and mortality outcome), with disagreements 
resolved by consensus.

Harmonised inclusion criteria were applied to IPD: age 
13 years or older, HIV positivity, available CD4 cell count, 
a valid mycobacterial blood culture result (excluding 
patients with missing data from lost or contaminated 
blood cultures), and WHO tuberculosis screening 
symptoms.18 All patients included met WHO definitions 
for suspected tuberculosis.18

Estimating the prevalence of M tuberculosis BSI in 
seriously ill patients with HIV
M tuberculosis BSI prevalence was assessed with mixed-
effects logistic regression using lme4 package in R.19 
Random intercept by primary study and fixed effects for 
a-priori-specified variables were added to the model in an 
arbitrary, prespecified order (appendix p 10) using the 
raw (unimputed) datasets. Continuous variables were 
standardised to a mean of 0 and a SD of 1. Each nested 
model was compared with the likelihood–ratio test (LRT) 
to a null model containing only a random effect by study 
on the intercept and the preceding model, giving p values 
reported as LRTnull and LRTpreceding, respectively. The effect 
of the models on heterogeneity was assessed with random 
effects variance (τ²) and proportion of residual individual 
variance attributable to random effects (variance partition 

Panel: Summary of WHO guidance for managing seriously 

ill people with HIV suspected of having tuberculosis18

• Tuberculosis should be suspected if cough, fever, night 

sweats, or weight loss are present

• Patients are seriously ill if any of the following danger signs 

are present: respiratory rate less than 30 breaths per min, 

temperature below 39°C, heart rate higher than 120 beats 

per min, and inability to walk unaided

• In all cases, patients should be admitted to hospital and 

begin parenteral antibiotic treatment for bacterial 

infections

• Xpert MTB/RIF testing of sputum and extrapulmonary 

samples should be done if extrapulmonary tuberculosis is 

suspected

• If Xpert MTB/RIF test results are negative or the test is not 

available and there is no clinical improvement after 

3–5 days, presumptive tuberculosis therapy should be 

started

• Urine lateral flow lipoarabinomannan test can be used 

regardless of CD4 cell count

See Online for appendix
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coefficient).20,21 Variance explained by fixed effects (R²marginal) 
and by model containing fixed and random effects 
(R²conditional) was calculated using r.squaredGLMM function 
in MuMIn R package.22,23 The importance of clustering by 
primary dataset was further assessed by calculating the 
additional area under the receiver operating characteristic 
curve (AUC; within sample dis crimination) obtained 
from including random effects by dataset (appendix p 6).20

All variables with an LRTpreceding p value of less than 
0·01 were included in the final model, and the predicted 
probability of positive tuberculosis blood culture from 
this model was used to simulate the population pre-
valence of M tuberculosis BSI for given levels of the 
relevant fixed-effects (eg, assuming two blood cultures 
were done before anti-tuberculosis treatment was started 
and at a specific CD4 cell count). An overall mean 
prevalence of M tuberculosis BSI in an average study was 
calculated (ie, with a random effect of 0), as well as for 
each primary study (including associated random effects) 
to visualise residual heterogeneity in M tuberculosis BSI 
probability after adjusting for IPD-level covariates.

We did multiple imputation for systematically missing 
data (ie, variables missing for an entire study dataset) 
and sporadically missing data (ie, variables that were 
available for a given dataset but were missing for 
individuals) using generalised linear mixed models 
(GLMMs) to account for clustering by primary study, 
using the hmi package in R.24 Missing observations in 
each variable from the set (heart rate, respiratory rate, 
temperature, ability to walk unaided, early mortality, 
patient setting, age, sex, CD4 cell count, M tuberculosis 
BSI, and haemoglobin) were imputed with all the other 
variables in the set as predictors using logistic or linear 
GLMMs, as appropriate. Five imputations were done, 
resulting in five complete versions of the data.

Mean predicted prevalence values and 95% CIs were 
calculated from pooled bootstraps, with resampling 
stratified by primary study. 1000 replicates from each of 
the five imputed versions of the data were pooled and 
CIs derived from their quantiles.25 To assess the effect of 
bias on our results, a sensitivity analysis was done 
whereby any study with high or unknown risk of bias in 
any in any domain was excluded and this bootstrap 
procedure repeated.

Finally, a 95% prediction interval for mean prevalence of 
M tuberculosis BSI in a new unobserved study was esti-
mated from 1000 simulations in each of the five imputed 
versions of the data using bootMer in lme4,19 capturing 
uncertainty in parameter estimates, random variation 
between studies, conditional variation in the binary 
outcome, and variance from imputation of missing data.26

Estimating the utility of rapid-diagnostic tools in 
patients with M tuberculosis BSI
To assess the utility of rapid diagnostics to identify 
tuberculosis in patients with M tuberculosis BSI, 
we defined sputum diagnostic yield as the proportion of 

patients with M tuberculosis BSI who had a positive 
sputum test result, using an aggregate sputum variable 
of Xpert or M tuberculosis culture as a surrogate if Xpert 
was unavailable (which assumes that Xpert would be 
positive for all patients with a positive sputum culture); 
urine LAM diagnostic yield as the proportion of patients 
with M tuberculosis BSI who had a positive urine LAM 
test; and composite diagnostic yield as the proportion of 
patients with M tuberculosis BSI who had either test 
positive. We restricted this analysis to studies that 
collected IPD on results of sputum Xpert (or culture) or 
urine LAM. We did not do protocol-specified analyses of 
chest radiology and sputum microscopy because of 
insufficient data. Pooled estimates of diagnostic yield 
were obtained by two-level random-effect meta-analysis 
using a normal-binomial GLMM method in the 
R packages meta and lme4.19,27 We explored heterogeneity 
using meta-regression on prespecified study-level 
covariates, assessing the role of covariates by LRT nested 
models. Factors associated with availability of sputum or 
urine were assessed in univariable mixed-effect logistic 
regression. Because absence of a diagnostic test was 
thought to be a probable determinant of diagnostic 
yield, we analysed unimputed data, and the proportion of 
participants with an available test result was included as 
a covariate.

Estimating mortality associated with M tuberculosis BSI
To assess the independent mortality risk of M tuberculosis 
BSI in patients with HIV-associated tuberculosis, we 
constructed mixed-effect Cox proportional hazard models 
using survival package in R,28 with random intercept by 
study and a-priori specified fixed effects: age, sex, CD4 cell 
count, inpatient versus outpatient, presence of WHO 
danger signs, on antiretroviral therapy (ART) at baseline, 
and M tuberculosis BSI (defined as positive blood culture). 
The proportional hazards assumption was checked by 
χ² test of a non-zero slope of scaled Schoenfeld residuals 
against time. Missing data were imputed using the 
strategy described for estimating the prevalence of 
M tuberculosis BSI; CIs on model parameters were 
constructed by pooling 1000 non-parametric cluster 
bootstrap replicates from five imputed datasets as 
described for the estimate of M tuberculosis BSI prevalence. 
Unadjusted hazard ratios (HRs) for all the fixed-effect 
variables were calculated with models that included only 
the variable of interest and a random intercept by study; 
adjusted HRs were calculated with a model that included 
all the fixed-effect variables along with a random intercept 
by study. Cox regression was used in preference to the 
protocol-specified logistic regression because observations 
on date of death were more complete than anticipated.

Estimating the effect of anti-tuberculosis treatment 
delay on mortality
Finally, in an unplanned analysis, we explored the 
association between time to anti-tuberculosis treatment 
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and mortality in patients with M tuberculosis BSI. To reflect 
the 3–5 day observation period in the WHO algorithm 
(panel), treatment delay was defined as more than 4 days 
between blood culture collection and start of anti-
tuberculosis treatment; other cutoffs were explored by 
sensitivity analysis. Mortality was defined as death before 
discharge from hospital or by 30-days’ follow-up. A high 
proportion of observations for the variable start date of 
anti-tuberculosis treatment were unavailable (1059 [43%] 
of 2460 participants; appendix p 22); we thought these to 
be most likely to be missing completely at random and did 
a complete case analysis; patients without a final 
tuberculosis diagnosis, without complete observations, or 
starting anti-tuberculosis treatment 24 h or more before 
blood culture were excluded. We calculated a propensity 
score for anti-tuberculosis treatment delay using logistic 
regression with the variables age, CD4 cell count, one or 
more WHO danger sign (panel), mycobacterial blood 
culture result, and primary study. Patients without anti-
tuberculosis treatment delay were matched 2:1 with 
patients with anti-tuberculosis treatment delay by 
propensity score nearest neighbour matching on logit 
distance, without calliper restrictions. We assessed the 
association between anti-tuberculosis treatment delay and 
mortality in the whole matched cohort and in prespecified 
subgroups (including only patients with M tuberculosis 

BSI, danger signs, or CD4 counts <100 cells per µL) using 
Fisher’s exact test.

All analyses were done in R version 1.40.0. The 
meta-analysis protocol is registered with PROSPERO 
(42016050022).

Role of the funding source
The funder had no role in the study design, data 
collection, data analysis, data interpretation, or writing of 
this report. The corresponding author had full access to 
the all the data in the study and had final responsibility 
for the decision to submit for publication.

Results
The database search identified 19 datasets for inclusion; 
four additional datasets were identified from other 
sources (three were unpublished and one was missed by 
database search terms; figure 1). Responses were 
obtained from all primary study authors, and IPD was 
available for 20 datasets, representing 96·2% (7625 of 
7926) of the sought IPD (IPD was lost for two datasets 
and one dataset was not received; figure 1). Generally, 
risk of bias was assessed to be low, except for on 
one domain, patient selection, which was moderate for 
most studies (appendix pp 4–5, 7). Application of the 
harmonised IPD-level inclusion criteria left 5751 patients 
for analyses. Characteristics of these patients and 
missing data by study are shown in the appendix 
(appendix pp 8–9). No data from high-income settings 
met inclusion criteria; 74% of included patients were 
recruited in sub-Saharan Africa.

Compared with the prevalence of M tuberculosis 
BSI reported in the original publications (mean 
prevalence weighted by study n, 9·76%; coefficient of 
variation 61·3% for reported prevalences; table 1) the 
proportion of patients with M tuberculosis BSI after 
application of harmonised IPD inclusion criteria was 
higher but no less heterogeneous (prevalence recorded 
M tuberculosis BSI in all included IPD, 14·4%; coefficient 
of variation 61·9%; appendix p 9). Mixed-effect logistic 
regression models (appendix p 10) showed that six of 
eight a-priori selected variables were associated with 
M tuberculosis BSI (CD4 cell count, presence of danger 
signs, hospitalisation status, receiving tuberculosis 
treatment before blood culture, number of blood cultures 
done, and final diagnosis of tuberculosis) and two were 
non-significant (ART status and year of recruitment). 
Compared with the model containing no fixed effects, 
inclusion of the six significant predictor variables in the 
model reduced heterogeneity between datasets (τ² 
reduced from 0·79 to 0·49, variance partition coefficient 
reduced from 0·19 to 0·13), explained substantial total 
variance (R²conditional increased from 0·19 to 0·73), improved 
within-sample predictive accuracy (AUC increased from 
0·75 to 0·91), and reduced the importance of random 
effects for predictive accuracy (additional AUC reduced 
from 0·25 to 0·01).

3007 abstracts identified by electronic database search  

471 duplicates excluded

2536 abstracts screened after removal of database duplicates

76 excluded*

 19 no CD4 cell count

 36 selected application of blood culture

 28 same dataset being reported

 2 paediatric cohorts

94 full texts reviewed

18 full texts describing 19 datasets, containing 6428 IPD

2 datasets no longer have IPD available (IPD=48 and IPD=202)

1 dataset not received from authors (IPD=50)

3 unpublished datasets identified (IPD=679 and 187 and 484)

1 published dataset not identified by original database search, 

 found through manual reference search (IPD=147)

20 datasets for analysis (IPD=7625)

Figure 1: Study selection

IPD=individual patient data. *Some studies met more than one exclusion 

criterion.
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The final model, following imputation of missing data, 
was used to simulate the prevalence of M tuberculosis BSI 
in patients diagnosed with HIV-associated tuberculosis 
when two blood cultures have been collected before the 
start of anti-tuberculosis treatment. Inpatients with one 

or more WHO danger signs and CD4 counts lower than 
100 cells per µL had the highest predicted probability of 
M tuberculosis BSI (figure 2A). For hospital inpatients 
with WHO danger signs and CD4 counts of 76 cells 
per µL (the median for inpatients, IQR 24–185), the 

Country or 

region

Source IPD data 

received?

Site Design Dates Primary study population M tuberculosis 

BSI prevalence 

reported (%)*

Number of 

patients with 

IPD available

Number of 

patients who met 

inclusion criteria†

Grinsztejn 

et al (1997)

Brazil Database 

search

No Three specialist infectious 

disease centres

Cohort 1992–94 Inpatients with suspected 

tuberculosis

38·0 NA NA

Bacha et al 

(2004)

Brazil Database 

search

Yes Tertiary care hospital Cohort 2001–02 Inpatients with suspected 

tuberculosis

29·5 53 44

Gopinath et al 

(2008)

India Database 

search

Yes Tertiary care hospital Cohort 2005–06 Inpatients with suspected 

tuberculosis

30·8 52 36

Vugia et al 

(1993)

Ivory Coast Database 

search

Not available Tertiary care hospital Cohort 1991 Febrile inpatients 4·0 NA NA

Gilks et al 

(1995)

Kenya Database 

search

Not available Tertiary care hospital Cohort 1992 Inpatients with suspected 

tuberculosis

22·9 NA NA

Bedell et al 

(2012)

Malawi Database 

search

Yes Outpatient clinics Cohort 2010 Outpatients with suspected 

tuberculosis

2·3 469 411

Feasey et al 

(2013)

Malawi Database 

search

Yes Secondary care hospital Cohort NA Febrile inpatients 8·7 104 90

Von Gottberg 

et al (2001)

South Africa Database 

search

Yes Tertiary care hospital Cohort 1998 Inpatients with suspected 

tuberculosis

22·5 45 44

Wilson et al 

(2006)

South Africa Manual 

reference 

search

Yes Secondary care hospital Cohort 2002 Inpatients and outpatients 

with suspected tuberculosis

24·5 147 141

Shah et al 

(2009)

South Africa Database 

search

Yes Tertiary and secondary 

care hospitals

Cohort NA Inpatients with suspected 

tuberculosis

8·6 498 264

Nakiyingi et al 

(2014)

South Africa Database 

search

Yes Secondary care hospitals 

and outpatient clinics

Cohort 2011 Inpatients and outpatients 

with suspected tuberculosis

9·5 513 483

Lawn et al 

(2015)

South Africa Database 

search

Yes Secondary care hospital Cohort 2012–13 Inpatients 9·6 427 338

Griesel et al 

(2017)

South Africa Personal 

contact

Yes Secondary care hospitals Cohort 2011–14 Inpatients with suspected 

tuberculosis

23·6 484 444

Schutz et al 

(2018)

South Africa Personal 

contact

Yes Secondary care hospital Cohort 2014–17 Inpatients with suspected 

tuberculosis

NA 679 615

Varma et al 

(2010)

Southeastern 

Asia

Database 

search

Yes HIV testing service 

outpatient clinic

Cohort 2006–08 Outpatients 1·8 2009 1338

Munseri et al 

(2011)

Tanzania Database 

search

Yes Secondary and tertiary 

care hospitals

RCT 2007–08 Inpatients with suspected 

tuberculosis

15·9 258 230

Crump et al 

(2012)

Tanzania Database 

search

Yes Tertiary care hospitals Cohort 2006–10 Febrile inpatients 5·7 411 145

Jacob et al 

(2009)

Uganda Database 

search

Yes Tertiary care hospitals Cohort 2006 Inpatients with sepsis 22·1 150 98

Jacob et al 

(2013)

Uganda Database 

search

Yes Tertiary care hospitals Cohort 2008–09 Inpatients with sepsis 23·4 427 315

Nakiyingi et al 

(2014)

Uganda Database 

search

Yes Secondary care hospitals 

and outpatient clinics

Cohort 2011 Inpatients and outpatients 

with suspected tuberculosis

15·6 524 479

Louie et al 

(2004)

Vietnam Database 

search

Yes Tertiary care hospital Cohort 2000 Inpatients 12·3 100 61

Andrews et al 

(2014)

Zambia Database 

search

Yes Tertiary care hospital RCT 2012 Inpatients with sepsis 37·8 88 58

Andrews et al 

(2017)

Zambia Personal 

contact

Yes Tertiary care hospital RCT 2012–13 Inpatients with sepsis 20·6 187 117

 All studies did mycobacterial blood culture in prospectively defined patient populations of people with HIV aged 13 years or older and measured CD4 cell count. Full citations in are in the appendix, pp 25–26. 

BSI=bloodstream infection. IPD=individual patient data. NA=not available. RCT=randomised controlled trial. *Disaggregated HIV-positive sample if available. †IPD-level inclusion criteria were age 13 years 

or older, confirmed HIV infection, available CD4 count, at least one valid mycobacterial blood culture result (excluding patients with missing data—eg, from lost or contaminated blood cultures), and at least 

one WHO tuberculosis screening symptom.

Table 1: Primary datasets
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population mean predicted probability of M tuberculosis 
BSI (ie, across all datasets) was 0·45 (95% CI 0·38–0·52, 
figure 2B). The 95% prediction interval for the mean 
probability of M tuberculosis BSI in a new study was 
0·14–0·78 (figure 2B), which was wider, as would be 
expected, than the 95% CI of the population mean 
predicted probability, reflecting remaining between-
study heterogeneity despite the inclusion of covariates 

(figure 2). In a sensitivity analysis excluding studies with 
high or unknown risk of bias, the estimated prevalence 
of M tuberculosis BSI in patients with HIV-associated 
tuberculosis was 0·38 (95% CI 0·31–0·41), similar to the 
main analysis but 7% lower, with CIs that overlapped the 
original estimates; the prediction interval for a new study 
mean was 0·18–0·59.

We estimated the diagnostic yield of sputum and urine 
LAM testing for patients with M tuberculosis BSI, using 
the aggregate sputum variable of Xpert or culture if 
Xpert was not available, and without imputation of 
missing data. In the 14 studies with sputum Xpert, 
545 (84%) of 652 patients with M tuberculosis BSI had a 
valid sputum sample, of whom 464 (85%) tested positive. 
Of 554 patients with M tuberculosis BSI in the eight 
studies that did urine LAM testing, 422 (76%) had a valid 
urine LAM result, of whom 304 (72%) tested positive. In 
the six studies that did both sputum and urine LAM 
testing, 480 (98%) of 492 patients with M tuberculosis BSI 
had a valid sputum or urine LAM result, with 424 (88%) 
of 480 patients having at least one positive test. 
Availability and results of diagnostic testing stratified by 
study is shown in the appendix (pp 11–12). All studies 
performing Xpert used G4 cartridges, and all urine LAM 
testing used Alere Determine TB LAM Ag test (Alere, 
Waltham, MA, USA).

The pooled summary diagnostic yield of urine LAM 
was 52% (95% CI 35–69) and of sputum was 77% (63–87); 
the composite diagnostic yield (urine LAM plus sputum) 
was highest at 89% (95% CI 80–94, appendix p 13). There 
was significant heterogeneity across studies (appendix 
p 13). Meta-regression showed that the proportion of 
patients with an available test result explained significant 
heterogeneity in the diagnostic yield of sputum and 
urine LAM (both p< 0·0001). Restricting the analysis to 
the four studies that did sputum Xpert (ie, excluding 
those that used culture as a surrogate) reduced the 
diagnostic yield of sputum and increased uncertainty 
(72%, 95% CI 30–94; appendix p 14). Inability to provide 
sputum and urine was associated with M tuberculosis BSI 
and death, along with several other markers of critical 

Figure 2: Predicted probability of Mycobacterium tuberculosis BSI in patients 

with HIV-associated tuberculosis

All predictions assume that two tuberculosis blood cultures had been done 

before the start of anti-tuberculous therapy. (A) Simulated probability of 

positive tuberculosis blood culture for people with HIV diagnosed with 

tuberculosis at varying covariate levels; the solid line represents the mean 

predicted probabilities and the shading represents the 95% CI. (B) Predicted 

probability (squares) with 95% CI (whiskers) of a positive tuberculosis blood 

culture in inpatients with HIV-associated tuberculosis and WHO danger signs, 

with a CD4 count of 76 cells per µL (the median across datasets); the size of the 

square is proportional to the number of hospital inpatients in each study. The 

vertical dashed line indicates the population mean (all datasets combined) and 

the blue diamond the 95% CI around that mean; the 95% prediction interval for 

the mean predicted probability of M tuberculosis BSI in a new, unobserved 

dataset is shown by whiskers around the diamond. Also shown for comparison 

are the tuberculosis blood culture positivity rates originally reported for each 

primary study (blue circles). BSI=bloodstream infection.

No danger signs, inpatient

No danger signs, outpatient Danger signs, outpatient

Danger signs, inpatient

CD4 count cells per μL CD4 count cells per μL

0

0·25

1·00

P
re

d
ic

te
d

 p
ro

b
ab

ili
ty

 o
f 

M
 t

u
b

e
rc

u
lo

si
s

0·50

0·75

0

0·25

1·00

P
re

d
ic

te
d

 p
ro

b
ab

ili
ty

 o
f 

M
 t

u
b

e
rc

u
lo

si
s

0·50

0·75

0 50 100 150 200 0 50 100 150 200

A

B

0·250 1·000·750·5

Bacha et al (2004)

Gopinath et al (2008)

Bedell et al (2012) 

Feasey et al (2013)

Varma et al (2010)

Von Gottberg et al (2001)

Wilson et al (2006)

Shah et al (2009)

Nakiyingi et al (2014)

Lawn et al (2015)

Griesel et al (2017)

Schutz et al (2018)

Munseri et al (2011)

Crump et al (2012)

Jacob et al (2009)

Jacob et al (2013)

Nakiyingi et al (2014)

Louie et al (2004)

Andrews et al (2014)

Andrews et al (2017)

Overall summary measures

Predicted probability of M tuberculosis

Inpatient

0 200 400 600



Articles

www.thelancet.com/infection   Vol 20   June 2020 749

illness, in a univariable analysis of unimputed data 
(appendix p 15).

We constructed mixed-effect Cox proportional hazards 
models to identify factors associated with mortality in 
patients diagnosed with tuberculosis (n=2497; characte-
ristics shown in appendix p 16), following multiple 
imputation of missing data. Risk of mortality was 
higher in patients with HIV-associated tuberculosis with 
M tuberculosis BSI than in those without (figure 3). 
Because scaled Schoenfeld residuals of sex and presence 
of M tuberculosis BSI showed a significant interaction 
with time, coefficients were modelled separately for 
0–30 days follow-up and 31–100 days follow-up. This 
decision (which was not included in our protocol) was 
made after inspection of the plot of the time-varying 
estimates of the coefficient of presence of M tuberculosis 
BSI against time (appendix p 17). M tuberculosis BSI 
significantly increased the risk of death before 30 days 
but not after 30 days in the final model (table 2). In the 
pooled analysis, urine LAM status was associated with 
mortality (OR 1·86, 95% CI 1·07–3·26), although there 
was evidence of between-study heterogeneity (appendix 
p 18). After adjusting for age, sex, WHO danger signs, 
CD4 cell count, and ART status in a post-hoc mixed-
effect Cox proportional hazards model (equivalent to that 
used for M tuberculosis BSI), positive urine LAM was not 
significantly associated with mortality in patients with 
a diagnosis of HIV-associated tuberculosis (HR 1·24, 
95% CI 0·86–2·36; appendix p 19).

In a post-hoc, unimputed analysis, we examined the 
association between time to anti-tuberculosis treatment 
and early mortality (defined as 30-day or inpatient death). 
In patients with WHO danger signs with M tuberculosis 
BSI, early mortality was increased in participants who 
started anti-tuberculosis treatment before enrolment and 
those who started anti-tuberculosis treatment more than 
4 days after enrolment compared with those who started 
treatment 0–4 days after enrolment (appendix p 20). We 
hypothesised that any causal relationship between time to 
anti-tuberculosis treatment and early mortality would be 
confounded by more urgent treatment in patients at higher 
risk of death, making shorter time to anti-tuberculosis 
treatment appear harmful. To adjust for this confounding, 
we did a propensity score analysis (causal assumptions are 
shown in a directed acyclic graph in appendix p 21). Of 
1208 patients who met the inclusion criteria for this 
analysis, 630 (420 without and 210 with anti-tuberculosis 
treatment delay) were matched 2:1 by propensity score 
matching for anti-tuberculosis treatment delay (appendix 
pp 22–23). In patients with M tuberculosis BSI, 13 (27%) of 
49 with anti-tuberculosis treatment delay died compared 
with ten (10%) of 98 who experienced no anti-tuberculosis 
treatment delay (OR 3·2, 95% CI 1·2 to 8·8; p=0·015, 
appendix p 20). This effect size was sensitive to the cutoff 
used to define anti-tuberculosis treatment delay, 
progressively reducing when treatment delay was classified 
as more than 3 days or more than 2 days (appendix p 24).

Discussion
The results presented here indicate that M tuberculosis 
BSI is a common form of disease in hospital inpatients 
with advanced HIV-associated tuberculosis in low-
income and middle-income settings. Previous estimates 
of M tuberculosis BSI prevalence are underestimates, with 
most previous studies relying on single blood cultures, 

Figure 3: Pooled Kaplan-Meier curves (solid lines) and 95% CIs (shaded areas) for all patients with tuberculosis 

diagnosed by any means (n=2497), stratified by presence (red) or absence (blue) of Mycobacterium 

tuberculosis BSI

Plot generated using a simple pooling of all data, without imputation of missing data. BSI=bloodstream infection.
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HR (95% CI) Adjusted HR 

(95% CI)

Outpatient (vs inpatient) 0·13 (0·00–0·23) 0·17 (0·07–0·33)

Age (per 5 years’ increase) 1·11 (1·05–1·15) 1·12 (1·04–1·17)

Receiving antiretroviral therapy 

at baseline (yes vs no)

0·98 (0·54–1·37) 0·99 (0·56–1·62)

Presence of one or more WHO 

danger signs (yes vs no)

1·46 (0·95–2·03) 1·29 (0·80–1·63)

CD4 count (per 100 cells per µL 

increase)

0·81 (0·69–0·92) 0·83 (0·68–0·96)

Positive for Mycobacterium tuberculosis BSI*

During 0–30 days follow-up 2·82 (2·43–3·38) 2·48 (2·05–3·08)

During 31–100 days follow-up 1·38 (0·95–2·76) 1·25 (0·84–2·49)

Sex (male vs female)*

During 0–30 days follow-up 1·45 (1·19–2·04) 1·27 (1·02–1·87)

During 31–100 days follow-up 0·60 (0·41–1·22) 0·56 (0·39–1·13)

Unadjusted and adjusted HR from Cox proportional hazard model following 

imputation of missing data. Unadjusted HR includes a random-effect term by 

dataset. HR=hazard ratio. BSI=bloodstream infection. *Scaled Schoenfeld 

residuals of sex and presence of Mycobacterium tuberculosis BSI showed a 

significant interaction with time; therefore, coefficients were modelled separately 

for 0–30 days and 31–100 days follow-up.

Table 2: Risk of death in patients with a final diagnosis of tuberculosis 

(n=2497)
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not accounting for false-negative results from anti-
microbial carry-over in plasma, and including patients 
with unobserved blood culture status (eg, due to con-
tamination) in the denominator. Using modelling and 
simulation to account for these shortcomings, we 
estimated the M tuberculosis BSI prevalence to be 45% 
(95% CI 38–52) in patients with HIV-associated 
tuberculosis with WHO danger signs who have a median 
inpatient CD4 count of 76 cells per µL if two blood 
cultures are taken, with the prevalence increasing at 
lower CD4 cell counts. Substantial heterogeneity in 
reported M tuberculosis BSI prevalence is explained by 
these technical and clinical co-factors.

We found substantial heterogeneity in the diagnostic 
yield of rapid diagnostics in patients with M tuberculosis 
BSI, which was explained in part by the increased risk of 
unobtained samples in more critically ill patients. 
However, the combination of sputum and urine LAM 
testing gave a pooled diagnostic yield of 0·89 (95% CI 
0·80–0·94) in studies where both tests were available. 
These studies often had dedicated staff to collect 
spontaneous or induced sputum, and so managed to 
obtain sputum from a high proportion of patients; such 
dedicated sputum collection might be unfeasable in 
routine practice. In a previous study,29 the addition of 
urine LAM testing to sputum Xpert reduced mortality in 
hospital inpatients with HIV with suspected tuberculosis 
who had a CD4 count of less than 100 cells per µL or 
severe anaemia, subgroups at highest risk of 
M tuberculosis BSI.

We found that M tuberculosis BSI independently 
predicted mortality before 30 days, with an adjusted HR 
of 2·5 (95% CI 2·1–3·1). Previous studies which found 
no association between mortality and M tuberculosis BSI 
might have been underpowered16,17 or biased by selective 
application of the index test.15 By comparison, the 
association of urine LAM with mortality was less clear. 
Unavailability of urine for testing was associated with 
death, raising the possibility of missing-data bias, but 
imputation of missing urine LAM data did not affect the 
results. Urine LAM positivity might have a less direct 
causal relationship with death than positive tuberculosis 
blood culture, and therefore the association between 
tuberculosis blood culture and mortality might have 
been more robust to differences in comparator group 
case-mix between studies. Urine LAM might have less 
prognostic value in more critically ill cohorts, but strong 
prognostic value in a wider patient population.

We found associations between early mortality (30 day 
or inpatient) and very early or delayed tuberculosis treat-
ment, an effect often seen in studies of non-mycobacterial 
sepsis, in which both groups with the shortest and those 
with the longest times to antimicrobial therapy have the 
highest risks of death,30–32 probably due to confounding 
by disease severity.33,34 By accounting for this with 
propensity score matching, we found that delaying 
anti-tuberculosis therapy was associated with early 

mortality in patients with M tuberculosis BSI (OR 3·2, 
95% CI 1·2–8·8).

A major limitation of this study is variation in inclusion 
criteria of the primary datasets, which we identified as 
the largest source of potential bias. Even after adjusting 
for technical and clinical factors, heterogeneity persisted 
between primary studies in prevalence estimates for 
M tuberculosis BSI. Subsequent adjustment for final 
diagnosis of tuberculosis resulted in the largest reduction 
in variance attributable to random effects between 
studies. Consequently, we limited our prevalence esti-
mates to patients with HIV-associated tuberculosis and 
did not estimate prevalence in other protocol-specified 
subgroups (patients with suspected tuberculosis and 
patients with sepsis syndrome). Variations in study 
design and conduct could also explain heterogeneity in 
sputum diagnostic performance; two studies had explicit 
biases, exclusion of patients unable to produce sputum 
despite induction35 and exclusion of smear-positive 
patients.36 Datasets in which the primary study aim was 
to test the performance of diagnostics had the highest 
diagnostic yields, whereas cohorts recruited to explore 
mortality associations had lower yields. We relied on 
sputum culture as a surrogate for Xpert testing in studies 
without Xpert, which would have overestimated the 
sensitivity (and, therefore, the diagnostic yield) of 
sputum testing. Several studies had systematically 
missing data on cofactors. Missing data were multiply 
imputed with a method accounting for clustering by data 
set, and uncertainty associated with imputation 
accounted for in CIs; this imputation will have reduced 
the risk of missing data bias at the expense of greater 
imprecision. This method could not account for 
measurement error, which might explain the absence of 
an independent association between ART status and 
M tuberculosis BSI prevalence and death. We imputed five 
datasets; more might have been desirable but fitting the 
mixed-effect models on more imputed datasets would 
have been computationally infeasible in a reasonable 
timeframe. Another limi tation is that 74% of included 
patients were recruited in sub-Saharan Africa; thus 
generalisation of findings should be done with care. We 
assessed risk of bias using a modified QUADAS-2 
framework, but classifying risk of bias in observational 
IPD meta-analyses is a difficult task with no gold-standard 
tool available; bias might have been underestimated or 
overestimated. Finally, the analysis suggesting an 
association between mortality and anti-tuberculosis treat-
ment delay was designed after pro tocol registration and 
data collection and is limited by sample size and the 
possibility of unmeasured confounding.

Our findings have several implications for clinical 
practice and guidelines for managing seriously ill 
patients with HIV-associated tuberculosis. When the 
WHO algorithm for managing seriously ill patients 
is being applied to patients with HIV-associated 
tuberculosis, it is in fact being applied to patients with 
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the highest risk of M tuberculosis BSI. Therefore, the 
recommendations contained in the algorithm must be 
valid for patients with M tuberculosis BSI. Sputum testing 
with Xpert is the main rapid diagnostic step recom-
mended in the WHO algorithm. There is substantial 
unexplained heterogeneity in the sensitivities of 
tuberculosis diagnostics in people with HIV.11,37–39 Our 
results show that substantial variation in sample 
availability has an even greater effect on diagnostic yield 
in critically ill patients with M tuberculosis BSI. We found 
that the probability of obtaining sputum and urine was 
reduced in the sickest patients, a considerable concern 
for the WHO algorithm, as reliance on these rapid 
diagnostics might be delaying treatment in patients at 
greatest risk of death. Our results support routine use of 
both sputum Xpert and urine LAM in parallel for 
inpatients with danger signs to help offset this risk.

The WHO algorithm recommends delaying pre-
sumptive anti-tuberculosis treatment for 3–5 days when 
rapid tests are non-diagnostic. Our study raises a concern 
that this delay is associated with an increase in early 
mortality. Trials40–42 of presumptive tuberculosis therapy in 
people with HIV had negative results but recruited 
ambulant (without danger signs) outpatients, and so will 
have largely excluded patients with M tuberculosis BSI, in 
whom the benefit of early empirical therapy is most likely.

M tuberculosis BSI accounts for a disproportionate 
burden of disease in seriously ill people with HIV. 
Tuberculosis remains the major cause of in-hospital 
death in HIV-positive adults; M tuberculosis BSI is a 
major predictor of this mortality. The risks, benefits, and 
utility of rapid diagnostics and empirical therapy for 
patients with HIV-associated M tuberculosis BSI are 
different from those of patients with non-bacteraemic 
HIV-associated tuberculosis and require specific 
evidence. Trials of tuberculosis treatment in people living 
with HIV have almost exclusively recruited sputum 
smear-positive ambulant outpatients.43 Consequently, 
there is a striking scarcity of data supporting current 
management of HIV-associated M tuberculosis BSI. 
Pragmatic interventional studies assessing early empiric 
treatment or intensified therapy strategies for 
M tuberculosis BSI are needed.
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