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Abstract

The ‘‘enhanced intracellular survival’’ (eis) gene of Mycobacterium tuberculosis (Mtb) is involved in the intracellular survival of
M. smegmatis. However, its exact effects on host cell function remain elusive. We herein report that Mtb Eis plays essential
roles in modulating macrophage autophagy, inflammatory responses, and cell death via a reactive oxygen species (ROS)-
dependent pathway. Macrophages infected with an Mtb eis-deletion mutant H37Rv (Mtb-Deis) displayed markedly
increased accumulation of massive autophagic vacuoles and formation of autophagosomes in vitro and in vivo. Infection of
macrophages with Mtb-Deis increased the production of tumor necrosis factor-a and interleukin-6 over the levels produced
by infection with wild-type or complemented strains. Elevated ROS generation in macrophages infected with Mtb-Deis (for
which NADPH oxidase and mitochondria were largely responsible) rendered the cells highly sensitive to autophagy
activation and cytokine production. Despite considerable activation of autophagy and proinflammatory responses,
macrophages infected with Mtb-Deis underwent caspase-independent cell death. This cell death was significantly inhibited
by blockade of autophagy and c-Jun N-terminal kinase-ROS signaling, suggesting that excessive autophagy and oxidative
stress are detrimental to cell survival. Finally, artificial over-expression of Eis or pretreatment with recombinant Eis
abrogated production of both ROS and proinflammatory cytokines, which depends on the N-acetyltransferase domain of
the Eis protein. Collectively, these data indicate that Mtb Eis suppresses host innate immune defenses by modulating
autophagy, inflammation, and cell death in a redox-dependent manner.
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Introduction

Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that

can survive and even multiply within host macrophages [1,2]. Mtb

can persist within phagosomes by interfering with intracellular

membrane trafficking and by arresting phagosome maturation in

infected host cells [3]. Pathogenic mycobacteria have developed

several strategies for surviving and growing under nutrient-limited

conditions [4]. Autophagy, or the removal of aged organelles, plays a

central role in regulating important cellular functions [5,6] and

aids in innate and adaptive immune defense against Mtb and other

intracellular pathogens [5,7–9]. Physiological or pharmacological

induction of autophagy in macrophages results in increased co-

localization of mycobacterial phagosomes and the autophagy

effector LC3, and the fusion of the former with lysosomes, which

overcomes the blockade of membrane trafficking and increased

bactericidal activity [7].

Although autophagy plays key roles in host innate and adaptive

immune defenses, it can, under certain circumstances, result in type II

programmed cell death [10,11]. Autophagic processes are activated

in response to cellular stresses, such as oxidative stress, and can

influence several types of cell death, including autophagy-related cell

death [12]. Recently, we showed that the mycobacterial BCG cell

wall triggers autophagy-induced cell death in radiosensitized colon

cancer cells [13]. Additionally, several viral gene products may be

involved in autophagy-induced cell death [14]. However, the genetic

basis for mycobacterial induction of autophagy, and its implications

for host cell viability, remain to be elucidated.

The ‘‘enhanced intracellular survival’’ (eis) gene and its protein

product, Eis, a unique protein of 42 kDa, of Mtb H37Rv enhance

the survival of the saprophytic M. smegmatis during repeated

passage through the human macrophage-like cell line U-937 [15].

Bioinformatic analyses showed that Eis is a member of the GCN5-

related family of N-acetyltransferases [16]. Recent studies have

PLoS Pathogens | www.plospathogens.org 1 December 2010 | Volume 6 | Issue 12 | e1001230



revealed that kanamycin resistance is associated with eis promoter

mutations that increase Eis transcript and protein levels [17].

Additionally, regulation of eis expression by SigA enhanced

intracellular growth of the W-Beijing Mtb strain in monocytic

cells [18]. Moreover, Eis inhibited the proliferation of mitogen-

activated T cells and, by blocking the phosphorylation of

extracellular signal-regulated kinase (ERK), reduced the produc-

tion of tumor necrosis factor (TNF)-a and interleukin (IL)-4 [19].

Despite being implicated in host-pathogen interactions during Mtb

infection, the precise role of Eis in innate immune regulation

remains to be determined.

In an effort to gain further insight into the role of Eis in host

responses, we examined autophagy, inflammatory cytokine produc-

tion, and reactive oxygen species (ROS) generation in macrophages

infected with wild-type (Mtb-WT), eis-deletion (Mtb-Deis), or comple-

mented (Mtb-c-eis) Mtb strains. Infection with Mtb-Deis significantly

increased autophagy, inflammatory responses, and ROS generation in

macrophages. NADPH oxidase (NOX) and mitochondria were found

to be the major sources of ROS, which contributed to the induction of

autophagy and inflammatory responses in Mtb-Deis-infected cells.

Increased and excessive activation of autophagy in macrophages

infected with Mtb-Deis had no effect on antimicrobial responses, but

stimulated caspase-independent cell death (CICD). Mtb-Deis-induced

host cell death was regulated by autophagic pathways and influenced

by c-Jun N-terminal kinase (JNK)-dependent ROS generation.

Furthermore, we show that the N-acetyltransferase domain of Eis is

responsible for its modulation of ROS generation and proinflamma-

tory responses in macrophages.

Results

Mycobacterium tuberculosis Eis Inhibits Autophagy in
Macrophages
Previous studies identified a role for the eis gene in enhancing

the survival of mycobacteria in human monocytic cells [15].

However, the role of eis in autophagy activation in macrophages,

which plays a key role in defense and cellular homeostasis [5], is

not fully understood. We first infected bone marrow-derived

macrophages (BMDMs) with the Mtb-WT, Mtb-Deis, and Mtb-c-

eis strains of Mtb H37Rv and examined the kinetics of

autophagosome formation by immunostaining for LC3. As shown

in Figure 1A, in BMDMs infected with Mtb-Deis we observed the

recruitment of endogenous LC3 in punctate structures the

formation of which peaked 24 h after infection, before decreasing

substantially by 48 h post-infection (Fig. 1A, right). In contrast,

autophagosome formation was not increased in BMDMs infected

with Mtb-WT or Mtb-c-eis (Fig. 1A). Additionally, RAW 264.7

macrophages transfected with green fluorescent protein (GFP)

fused to the autophagosome protein LC3 (GFP-LC3) [20] showed

a significant increase in GFP-LC3 puncta formation when infected

with Mtb-Deis at a multiplicity of infection (MOI) of 10 (over levels

in cells infected with Mtb-WT or Mtb-c-eis at the same bacterial

load; Fig. S1A). Moreover, Mtb-Deis-induced formation of LC3

punctae in BMDMs (Fig. 1B) and RAW 264.7 cells (Fig. S1B) was

abrogated by treatment for 4 h with 3-methyladenine (3-MA), a

classical inhibitor of autophagy [21].

Cleavage of soluble LC3 (LC3-I) to form LC3-II, which

correlates with the extent of autophagosome formation [20], was

further examined by Western blotting. As shown in Figure 1C,

Mtb-Deis significantly induced LC3-II formation, whereas Mtb-

WT and Mtb-c-eis did not. We next monitored Mtb-Deis-induced

autophagy through detection of autophagic vacuoles or organelles

by transmission electron microscopy (TEM). Ultrastructural

analysis of BMDMs treated with Mtb-Deis for 24 h revealed the

presence of multiple cytosolic autophagic vacuoles resembling

autophagosomes (Fig. 1D). Additionally, TEM analyses revealed

the presence of bacilli within characteristic double-membrane

autophagosomes and multiple membrane structures (Fig. 1D), a

pattern characteristic of the induction of autophagy and

autophagic death [22–24]. From 12 h post-infection, we observed

Mtb-Deis within autophagic vacuoles (Fig. 1D, middle), which

fused with multivesicular structures [25]. At 24 h post-infection,

multiple late or degradative autophagic vacuoles [25] were clearly

visible, in which partially degraded cytoplasmic materials and

bacteria were evident (Fig. 1D, bottom).

We also examined whether autophagic vacuoles formed in cells

infected with Mtb-Deis were able to mature to autolysosomes [25].

Confocal analysis showed that BMDMs infected with Mtb-Deis
exhibited co-localization of the autophagosomal marker LC3 and

the lysosomes marker Lamp-1 (Fig. S1C). We also observed that

levels of LC3-II and LC3 puncta formation in Mtb-Deis-infected
BMDMs were increased by pretreatment with the vacuolar H+-

ATPase inhibitor bafilomycin A (Baf-A) [20,26] (Fig. 1E, LC3-II;

Fig. S1D, LC3 puncta formation). These findings indicate that

Mtb-Deis induced both autophagy and autophagosome-lysosome

fusion in macrophages.

Mtb-Deis Infection Up-Regulates Proinflammatory
Cytokine Production and ROS Generation in BMDMs
The interaction of Mtb with innate receptors in phagocytes

triggers an oxidative burst and activates intracellular signaling

cascades that induce proinflammatory responses [27,28]. We thus

examined the production of proinflammatory cytokines and the

generation of ROS in BMDMs infected with Mtb-WT, Mtb-Deis,
or Mtb-c-eis. As shown in Figure 2A, BMDMs infected with Mtb-

Deis at increasing bacterial loads (MOI= 0.1, 1, 10) produced

greater amounts of TNF-a and IL-6 than cells infected with Mtb-

WT or Mtb-c-eis. Levels of TNF-a and IL-6, which peaked at

18 h, were significantly higher in BMDMs infected with Mtb-Deis

Author Summary

Tuberculosis is a global health problem: at least one-third
of the world’s population is infected with Mycobacterium
tuberculosis (Mtb). Mtb is a successful pathogen that
enhances its own intracellular survival by arresting
phagolysosomal fusion. Recently, autophagy has emerged
as a host defense strategy against Mtb infection, through
stimulation of the fusion of phagosomes and lysosomes.
However, excessive and uncontrolled autophagic activity
can be detrimental to host cells and can result in their
death. The Mtb ‘‘enhanced intracellular survival’’ (eis) gene
has been implicated in the intracellular survival of M.
smegmatis. However, its exact role and how it regulates
host innate immune responses have not been fully
explained. Here, we provide evidence that Eis suppresses
macrophage autophagy, inflammation, and cell death
through the inhibition of reactive oxygen species (ROS)
generation. Although it has previously been demonstrated
that autophagy is a key host defense response to
mycobacterial infections, our data indicate that excessive
autophagy, and the resulting cell death, do not signifi-
cantly affect host defense responses to mycobacteria.
Additionally, our data reveal that Eis’s ability to regulate
ROS generation and proinflammatory responses depends
on its N-acetyltransferase domain. These results under-
score a previously unrecognized role of Eis in modulating
host inflammatory responses, oxidative stress, and cell
survival/death during mycobacterial infection.

Eis Regulates Autophagy and Cell Death
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than those infected with Mtb-WT or Mtb-c-eis (Fig. 2B; P,0.05,

TNF-a; P,0.01, IL-6). We next examined whether autophagy

played a role in the regulation of proinflammatory cytokine

production in macrophages infected with Mtb-WT, Mtb-Deis, or

Mtb-c-eis. As shown in Figure S2, the secretion of TNF-a and

IL-6 was significantly increased in RAW264.7 cells transfected

with siRNA specific for Beclin-1 (siBeclin-1) or Atg5 (siAtg5),

suggesting a negative regulatory role for autophagic pathways in

proinflammatory cytokine production in macrophages infected

with Mtb-Deis.

We further examined whether ROS levels differed between cells

infected with the WT, Deis, and c-eis strains of Mtb H37Rv. We

measured the production of ROS by flow cytometry, using 2,79-

dichlorofluorescein-diacetate (DCFH-DA) and dihydroethidium

(DHE) as probes for H2O2 and O2
2, respectively (Fig. 2C).

Compared with BMDMs infected with Mtb-WT or Mtb-c-eis

strains, cells infected with Mtb-Deis displayed markedly increased

intracellular DCFH-DA and DHE fluorescence (Fig. 2C). To

exclude the involvement of reactive nitrogen species (RNS) in

detecting ROS generation, we pre-treated BMDMs with the

specific nitric oxide synthase inhibitors nitro-L-arginine methyl

ester (L-NAME) or NG-monomethyl-L-arginine (L-NMMA) prior

to Mtb-Deis infection and examined ROS generation. Pre-

treatment with nitric oxide synthase inhibitors had no significant

effect on ROS generation in BMDMs infected with Mtb-Deis (Fig.

S3), suggesting that up-regulated DCFH-DA and DHE fluores-

cence intensities were due principally to increased ROS generation

in Mtb-Deis-infected macrophages. Notably, flow cytometric

analysis showed that infection with Mtb-Deis yielded a stronger

MitoSOX Red signal, which is specific for mitochondrial

superoxide [29], than infection with the Mtb-WT or Mtb-c-eis

strains (Fig. 2D). These data suggest that Mtb-Deis more strongly

induces the production of proinflammatory cytokines and ROS in

BMDMs than do Mtb-WT or Mtb-c-eis.

Figure 1. Mtb Eis modulates autophagy in macrophages. (A) BMDMs were infected with Mtb-WT, Mtb-Deis, or Mtb-c-eis (MOI = 10) for 4 h (as
described in the Materials and Methods), and then incubated for 24 h (left) or the indicated periods of time (right). Cells were fixed, stained with DAPI
to visualize nuclei (blue), and immunolabeled with an anti-LC3 antibody. Primary antibody was detected using an Alexa Fluor 488-conjugated goat
anti-rabbit IgG (green). Left: representative immunofluorescence images of LC3 punctae; right: quantification of data (LC3-punctated cells were
counted manually). ***p,0.001, vs. Mtb-WT-infected condition. Scale bars, 5 mm. (B) BMDMs were infected with Mtb-Deis in the absence or presence
of 3-methyladenine (3-MA; 10 mM) and subjected to confocal analysis as described in Figure 1A. LC3-punctated cells were counted manually. Each
condition was assayed in triplicate, and at least 250 cells were counted in each well. ***p,0.001, vs. SC. (C) Immunoblot analyses performed using
Abs raised to LC3 or b-actin. Experimental conditions were identical to those outlined in panel A. Gel images representative of three experiments are
shown. (D) Electron micrographs of Mtb-Deis-infected BMDMs under low (left) and high (right) magnification show the accumulation of autophagic
vesicles (black arrow, initial autophagic vacuoles; white arrow, degradative autophagic vacuoles). Scale bars: 2 mm (left), 0.5 mm (right). (E)
Immunoblot analyses performed using Abs raised to LC3 or b-actin. BMDMs were infected with Mtb-Deis in the presence or absence of 3-MA (10 mM)
or bafilomycin A1 (Baf-A1; 100 nM). Gel images representative of three experiments are shown. The ratio of the intensities of the LC3-II/LC3-I and b-
actin bands is indicated below each lane (C and E). UI, uninfected; SC, solvent control (0.1% distilled water (B), 0.1% DMSO (E)).
doi:10.1371/journal.ppat.1001230.g001
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ROS Generation Is Required for the Induction of
Autophagy and Inflammatory Responses in Macrophages
Infected with Mtb-Deis
Recent studies have shown that NOX-derived ROS are involved

in the activation of autophagy [30]. Additionally, we have shown

that NOX2/gp91phox, the main catalytic component of NOX,

interacts with TLR2, a key effector of Mtb-induced proinflamma-

tory responses [28]. Because ROS generation was significantly

elevated in Mtb-Deis-infected cells, we hypothesized that increased

ROS production during Mtb-Deis infection might be a trigger for

autophagy activation and proinflammatory responses. As anticipat-

ed, pretreatment with the ROS scavengers [N-acetyl cysteine

(NAC), diphenyleneiodonium (DPI), catalase and tiron (4,5-

dihydroxy-1,3-benzene disulfonic acid-disodium salt); for 1 h before

infection] prevented Mtb-Deis-induced autophagosome accumula-

tion in BMDMs (Fig. 3A) and RAW 264.7 cells transfected with

GFP-LC3 (Fig. S4A). Additionally, the conversion of LC3-I to LC3-

II in Mtb-Deis-infected cells was suppressed by catalase and tiron

(Fig. 3B). We further examined whether ROS generation was

involved in the induction of proinflammatory cytokines in Mtb-Deis-

infected BMDMs. ROS scavengers reduced the TNF-a and IL-6

levels in BMDMs infected with Mtb-Deis (Fig. 3C).

We next determined the Mtb-Deis-induced activation of

autophagy and proinflammatory responses in NOX2-deficient

macrophages. ROS induction was abolished in NOX2-deficient

macrophages infected with Mtb-WT, Mtb-Deis, or Mtb-c-eis (Fig.

S4B). Infection of NOX2-deficient BMDMs with Mtb-Deis

resulted in a dramatic reduction in autophagy, as assessed by

LC3 puncta formation (Fig. 3D) and LC3-II conversion (Fig. 3E)

at 18 h. However, neither starvation- nor rapamycin-induced

autophagy was dependent on NOX2 expression (Fig. S4C).

Proinflammatory cytokine mRNA expression at 6 h (Fig. S4D)

and protein levels at 18 h (Fig. 3F) following infection with Mtb-

Deis were significantly reduced in BMDMs taken from NOX2 KO

mice. The release of proinflammatory cytokines in response to WT

or c-eis Mtb was similarly reduced in NOX2-deficient macro-

phages (Fig. 3F). Collectively, our data suggest that NOX2-derived

ROS are centrally involved in the up-regulated autophagy and

proinflammatory responses in BMDMs infected with Mtb-Deis.

Infection with Mtb-Deis Increases Caspase-independent
Cell Death
Autophagy serves as a cell survival mechanism in some contexts,

but triggers cell death in others [31]. To examine whether the eis

Figure 2. Mtb-Deis infection increases production of proinflammatory cytokines and ROS by BMDMs. (A and B) BMDMs were infected
with Mtb-WT, Mtb-Deis or Mtb-c-eis at different MOIs (0.1, 1 and 10) for 18 h (A) or for the indicated periods of time (B; MOI = 10). Supernatants were
assessed by ELISA for levels of TNF-a and IL-6. Data (A and B) are presented as the mean6SD of five experiments. (C and D) BMDMs were stimulated
with Mtb-WT, Mtb-Deis, or Mtb-c-eis for 30 min. Cells were then incubated with 10 mM DHE or 5 mM DCFH-DA for 15 min, washed thoroughly, and
immediately analyzed for superoxide or H2O2 production by flow cytometry (C, Left). Cells were labeled with MitoSOX for 30 min and analyzed for
mitochondrial ROS levels by flow cytometry (D, top). Quantitative analysis of ROS generation (C, right; D, bottom). *p,0.05, **p,0.01, ***p,0.001, vs.
Mtb-WT-infected condition. UI, uninfected.
doi:10.1371/journal.ppat.1001230.g002
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gene can modulate host cell survival/death in macrophages, we

infected BMDMs with Mtb-WT, Mtb-Deis, or Mtb-c-eis and

examined host cell viability. When BMDMs were infected with

these three strains at an MOI of 10, Mtb-Deis-infected cells showed

a significant decrease in cell viability after 24 h, whereas Mtb-WT-

and Mtb-c-eis-infected cells displayed only low rates of cell death

(Fig. 4A). Infection with either Mtb-WT or Mtb-c-eis tended to

reduce BMDM viability, dose-dependently, above an MOI of 25

(Fig. S5A).

We next assessed whether apoptosis played a role in the cell

death induced by Mtb-Deis using the TUNEL assay (Fig. 4B). At

36 h post-infection, there was a marked increase in total cell death

in BMDMs infected with Mtb-Deis. However, only a slight

increase in the number of apoptotic cells was observed (Fig. 4B).

Additionally, microscopic examination of Mtb-Deis-infected cells at

36 h post-infection revealed morphological changes associated

with cell death that were not observed in Mtb-WT- or Mtb-c-eis-

infected cells (Fig. 4C). http://www.jimmunol.org/cgi/content/

full/179/2/939 - F1#F1To further examine the mechanism of

cell death in Mtb-Deis-infected cells, we cultured BMDMs infected

with Mtb-WT, Mtb-Deis, or Mtb-c-eis (MOI=10) in the presence

or absence of the broad-spectrum caspase inhibitor z-VAD-fmk

(administered 1 h prior to infection). We found that z-VAD-fmk

only partially blocked Mtb-Deis-mediated cell death (Fig. 4D).

Also, caspase-3 enzyme activities did not differ significantly

between Mtb-WT-, Mtb-Deis-, and Mtb-c-eis-infected macrophag-

es (data not shown), suggesting that the reduction in macrophage

viability caused by Mtb-Deis infection did not result primarily from

caspase activation.

We further assessed the role of autophagy in modulating cell

death induced by Mtb-Deis. BMDMs were pretreated with a

known inhibitor of autophagy, 3-MA, prior to Mtb-Deis infection.

Pretreatment with 3-MA effectively prevented Mtb-Deis-induced

macrophage cell death, but had no such effect on Mtb-WT- or

Mtb-c-eis-infected cells (Fig. 4D)http://www.jimmunol.org/cgi/

content/full/180/1/207 - F6#F6. To further assess the role of

autophagy in Mtb-Deis-induced cell death, we depleted Beclin-1 or

Atg5 by siRNA transfection of Mtb-Deis-infected RAW 264.7 cells.

Transfection of RAW 264.7 cells with siBeclin-1 or siAtg5

significantly inhibited Mtb-Deis-induced cell death, as assessed by

propidium iodide (PI) staining (Fig. S5B). Moreover, a trypan blue

exclusion assay showed that blockade of autophagy increased the

survival of Mtb-Deis-infected BMDMs (Fig. S5C). Collectively,

these results support the concept that Mtb Eis actively inhibited

CICD.

Macrophage Death and ROS Generation Induced by Mtb-
Deis Depend on JNK Signaling
It is known that ERK and JNK mitogen-activated protein

kinase (MAPK) signaling pathways are important in oxidative

stress-induced cell death [32–34]. No significant difference in

activation kinetics of phosphorylated p38 and ERK1/2 was

detected between cells infected with Mtb-WT-, Mtb-Deis-, and

Mtb-c-eis (Fig. 5A). In contrast, a significant increase in JNK/

Figure 3. Increased ROS generation plays a critical role in autophagy and proinflammatory cytokine production in Mtb-Deis-
infected macrophages. (A–C) BMDMs were infected with Mtb-Deis (MOI = 10) for 18 h in the presence or absence of DPI (10 mM), NAC (20 mM),
catalase (Cat, 1 mU/mL), or tiron (5 mM). (A) Representative immunofluorescence images (top); percentage of endogenous LC3-punctated cells
(bottom). (B) Immunoblot analyses of BMDMs with antibodies raised to LC3 or b-actin. Gel images are representative of three experiments. The ratio
of the intensities of the LC3-II/LC3-I and b-actin bands is indicated below each lane. (C) Experimental conditions were identical to those outlined in
Figure 3A. Supernatants collected 18 h after infection were assessed for cytokine levels by ELISA. Data represent the mean6SD of five experiments.
(D–F) BMDMs from WT and NOX2 KO mice were infected with Mtb-WT, Mtb-Deis, or Mtb-c-eis for 18 h. (D) Numbers of LC3-punctated cells (counted
manually) are shown (at least 250 cells were counted in each well). (E) Immunoblot analyses performed using Abs raised to LC3 or b-actin. BMDMs
from WT and NOX2 KO mice were infected with Mtb-Deis for 18 h. Gel images representative of three experiments are shown. (F) Supernatants
collected 18 h after infection were assessed for cytokine levels by ELISA. Data are presented as the mean6SD of at least three separate experiments,
each performed in triplicate. ***p,0.001, vs. SC (A and C); WT mice (D and F). UI, uninfected; SC, solvent control (0.1% DMSO).
doi:10.1371/journal.ppat.1001230.g003
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SAPK phosphorylation was observed in cells infected with Mtb-

Deis, this response preceding similar responses in macrophages

infected with Mtb-WT or Mtb-c-eis (Fig. 5A). Densitometric

quantification of phosphorylated p38, ERK1/2, and JNK band

intensities showed that the active form of JNK was uniquely

increased in macrophages infected with Mtb-Deis (Fig. 5B). These

results indicate that differences in JNK signaling may be

responsible for differences in the responses to different bacterial

strains.

To further explore the link between MAPK signaling and Mtb-

Deis-induced ROS generation and cell death, cells were pretreated

with specific inhibitors of JNK (SP600125), p38 (SB203580), and

MEK (U0126) for 1 h prior to infection with Mtb-Deis. Inhibition

of JNK, but not the other two kinases, dose-dependently reduced

Mtb-Deis-induced ROS generation, as measured by flow cytom-

etry (Fig. 5C). Additionally, inhibition of JNK signaling, but not

p38 or ERK1/2 signaling, dose-dependently reduced Mtb-Deis-

induced macrophage death (Fig. 5D). Moreover, transfection of

RAW264.7 cells with siRNA specific for JNK (siJNK) markedly

reduced cell death induced by Mtb-Deis (Fig. 5E). Together, these

data suggest that Eis modulated macrophage survival through

JNK-dependent regulation of ROS signaling.

Mtb-Deis Increases the Accumulation of Autophagic
Vesicles and Causes Lung Inflammation in Infected Mice
We next investigated the activation of autophagy, inflammation,

cell death, and mycobacterial growth in vivo. Mice were

challenged, by aerosol exposure to Mtb-WT, Mtb-Deis, or Mtb-

c-eis, and maintained for 4 weeks. Rates/levels of pulmonary

granulomatous inflammation were approximately 35–50% at 4

weeks post-infection (data not shown). Similar to the in vitro results

(Fig. 1), numerous lamellar structures with cytoplasmic autophagic

vacuoles were observed in the cytosol of alveolar macrophages

isolated from the lungs of mice 4 weeks after infection with Mtb-

Deis, but not Mtb-WT or Mtb-c-eis (Fig. 6A and other data not

shown). These ultrastructural features demonstrated the presence

and degradation of bacteria within autophagic vesicles in the lungs

Figure 4. Macrophages infected with Mtb-Deis show reduced cell viability and increased caspase-independent cell death. (A) BMDMs
were infected with Mtb-WT, Mtb-Deis, or Mtb-c-eis (MOI = 10) for the indicated periods of time, washed to remove unbound mycobacteria, and then
incubated in complete DMEM at 37uC in 5% CO2. Cell viability was assessed by PI staining and then examined by fluorescence microscopy. (B and C)
Experimental conditions were identical to those outlined in panel A. BMDMs were infected with the three strains of mycobacteria for 36 h. (B)
Apoptosis was assessed using a TUNEL/apoptosis detection kit, according to the manufacturer’s protocol. Cells were then examined under a laser-
scanning confocal microscope (LSM 510; Zeiss). Percentages of TUNEL-positive, PI-positive, and TUNEL-/PI-double-positive cells were calculated. Data
are representative of three separate experiments. (C) Morphological changes in BMDMs infected with Mtb-WT, Mtb-Deis, or Mtb-c-eis at MOIs of 1 and
10. Representative images are shown. Scale bars: 50 mm (low magnification), 20 mm (high magnification). (D) Macrophages were infected with Mtb-
WT, Mtb-Deis, or Mtb-c-eis in the presence or absence of zVAD-fmk (20 mM) or 3-MA (10 mM). Staurosporine (STS; 500 nM) was used as a positive
control. After 36 h, cells were stained with PI and then examined by fluorescence microscopy. Data are presented as the mean6SD of at least three
separate experiments, each performed in duplicate. *p,0.05, ***p,0.001, vs. Mtb-WT-infected condition (A and B); Mtb-Deis–infected condition
without inhibitors (D). UI, uninfected.
doi:10.1371/journal.ppat.1001230.g004
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of Mtb-Deis-infected mice (Fig. 6A). Additionally, quantitative RT-

PCR analysis demonstrated that TNF-a and IL-6 mRNA levels

were significantly higher in lung tissues from Mtb-Deis-infected

mice than in those from Mtb-WT- or Mtb-c-eis-infected mice

(Fig. 6B). Moreover, rates of cell death, measured by PI staining,

were significantly higher in bronchoalveolar lavage fluid cells

isolated from Mtb-Deis-infected mice than those from Mtb-WT- or

Mtb-c-eis-infected mice (Fig. 6C). There was no significant

difference in the number of TUNEL-positive apoptotic cells in

lung tissues from Mtb-WT-, Mtb-Deis-, and Mtb-c-eis-infected

mice (data not shown).

To analyze bacterial survival in vivo, five mice per group were

sacrificed 4 weeks post-challenge and bacterial counts were

determined from lung and spleen homogenates. Numbers of

viable bacteria in lung and spleen did not differ among mice

infected with the three Mtb strains (Fig. 6D). Furthermore, we

determined the in vitro intracellular growth of Mtb-WT, Mtb-Deis,

and Mtb-c-eis in macrophages. The three strains grew in

macrophages at almost identical rates (Fig. 6E), consistent with

our previous observations [16]. Collectively, these data suggest

that numbers of autophagic vacuoles, the strength of the

inflammatory response, and rates of cell death were significantly

increased during in vivo infection with Mtb-Deis, although there was

no obvious effect on bacterial elimination.

The N-acetyltransferase Domain of Eis Mediates ROS
Generation and Proinflammatory Cytokine Production
We previously showed that Mtb-infected macrophages release

Eis into the cytosol and the culture supernatant [16]. Thus, the

Figure 5. Infection with Mtb-Deis induces cell death through JNK-dependent signaling. (A and B) BMDMs were infected with Mtb-WT,
Mtb-Deis, or Mtb-c-eis (MOI = 1) for the indicated periods of time, and then subjected to Western blot analysis using Abs raised to p-ERK1/2, p-p38, p-
JNK, and b-actin. Data shown are representative of three independent experiments that all yielded similar results (A). Expression of phospho-MAPK/b-
actin protein in cytoplasmic extracts of BMDMs was quantified densitometrically (B). (C and D) BMDMs were pretreated with U0126 (5, 10, 20 mM),
SB203580 (SB; 1, 5, 10 mM), or SP600125 (SP; 5, 10, 20 mM) for 45 min, and then infected with Mtb-Deis for 30 min (C) or 36 h (D). (C) Cells were then
incubated with DHE for 15 min, washed rapidly and thoroughly, and analyzed immediately for superoxide levels by flow cytometry. Quantitative DHE
fluorescence data represent the mean6SD of four experiments. (D) Cell death after 36 h was assessed by PI staining and then examined by
fluorescence microscopy. (E) Raw264.7 cells were transfected with siRNA specific for JNK1 (siJNK) or a non-specific control siRNA (siNS). At 24 h after
transfection, cells were infected with Mtb-Deis for 36 h. Cell death was then assessed by PI staining, and then examined by flow cytometry.
Transfection efficiency was assessed by RT-PCR (inset). Data represent the mean6SD of five random fields and are representative of three
independent experiments (D and E). *p,0.05, **p,0.01, ***p,0.001, vs. Mtb-WT-infected condition (B); SC (C and D); siNS (E). UI, uninfected; SC,
solvent control (0.1% DMSO).
doi:10.1371/journal.ppat.1001230.g005
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potential of recombinant Eis protein to inhibit ROS generation

and inflammatory cytokine production in macrophages infected

with Mtb-Deis was assessed by Eis pretreatment or transfection

with the eis gene. Induction of ROS by Mtb-Deis was significantly

decreased by pretreatment with Eis, but not by control

mycobacterial antigens, such as the recombinant 85A (30 k)

antigen of Mtb (Fig. 7A). Eis is a member of the GCN5-related

family of N-acetyltransferases [16]. To test whether the acetyl-

transferase domain of Eis was required for the induction of ROS,

we transfected THP-1 cells with an Eis-WT (WT-eis-expressing) or

Eis-DAT (N-acetyltransferase domain deletion mutant) construct,

or a mock control plasmid, and infected them with Mtb-Deis. Eis-

WT, but not Eis-DAT, blocked the induction of superoxide and

H2O2 generation by Mtb-Deis (Fig. 7B).

We next examined the effect of Eis pretreatment on the

proinflammatory cytokine production in Mtb-Deis-infected

BMDMs. Pretreatment with Eis, but not 85A antigen, dose-

dependently inhibited Mtb-Deis-induced secretion of TNF-a and

IL-6 (Fig. 7C). Moreover, we examined the effects of over-

expressing Eis-WT or Eis-DAT plasmids on proinflammatory

cytokine responses in THP-1 cells infected with Mtb-Deis. Cells

over-expressing wild-type Eis secreted 2.6-fold less TNF-a and 2.7-

Figure 6. In vivo analysis of autophagic vesicles, inflammation, and cell death in infected mice with Mtb-Deis. C57BL/6 mice were
challenged, by aerosol, with 10–30 CFU Mtb-WT, Mtb-Deis, or Mtb-c-eis and sacrificed 4 weeks post-infection. (A) High- and low-magnification
electron micrographs of lung tissue sections from mice infected with Mtb-Deis show accumulation of autophagic vesicles (black arrow, bacteria in
autophagic vacuoles; white arrow, degradative autophagic vacuoles). Scale bars: 2 mm (left upper), 0.5 mm (right). Numbers of autophagic vacuoles
per cell in each TEM section (left lower) (mean6SD; n= 50). (B) Quantitative RT-PCR analysis of lung tissue from Mtb-WT-, Mtb-Deis-, and Mtb-c-eis-
infected mice. Total RNA was extracted from paraffin-embedded lung tissue sections, as described in the Materials and Methods. (C) To assess in vivo
cell death, bronchoalveolar lavage fluid cells from Mtb-WT-, Mtb-Deis-, and Mtb-c-eis-infected mice were subjected to PI staining, and analyzed by
flow cytometry. Data are presented as the mean6SEM (n=4). (D) Numbers of CFUs in lung and spleen 4 weeks after infection with Mtb-WT, Mtb-Deis,
or Mtb-c-eis. Data are presented as log10 CFU6SEM (n= 4). (E) BMDMs were infected with Mtb-WT, Mtb-Deis, or Mtb-c-eis and then analyzed by CFU
assay. CFU data represent the mean6SD of four individual experiments. **p,0.01, ***p,0.001, vs. Mtb-WT-infected condition. UI, uninfected.
doi:10.1371/journal.ppat.1001230.g006
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fold less IL-6 than those expressing an Eis protein lacking the AT

domain (Fig. 7D). Notably, inhibition of the JNK pathway by pre-

treatment with pharmacological inhibitors markedly blocked Mtb-

Deis-mediated up-regulation of superoxide generation (Fig. 7E)

and proinflammatory cytokine levels (Fig. 7F) in THP-1 cells

transfected with either mock control or Eis-DAT constructs. In

Figure 7. Eis modulates ROS release and proinflammatory cytokine production through its N-acetyltransferase domain. (A)
Intracellular superoxide production was analyzed by flow cytometric analysis. BMDMs were infected with Mtb-Deis (MOI = 10) in the presence or
absence of recombinant Eis protein (rEis; 5, 10, 20 mg/mL) or 30 kDa Mtb antigen (30 k; 5, 10, 20 mg/mL). Upper, representative flow cytometric
analysis; lower, quantitation of superoxide generation. (B) THP-1 cells were transfected with mock, Eis-WT, or Eis-DAT constructs, and infected with
Mtb-Deis for 30 min. Cells were stained with DHE (for superoxide) or DCFH-DA (for H2O2) and subjected to flow cytometric analysis. Inset, transfection
efficiency. (C and D) Experimental conditions were identical to those outlined in panels A and B, respectively. Supernatants were collected 18 h after
infection and assessed by ELISA for levels of TNF-a and IL-6. Data are presented as the mean6SD of five experiments. (E and F) THP-1 cells transfected
with mock, Eis-WT, or Eis-DAT constructs were pretreated with SP600125 (SP; 20 mM) or SB203580 (SB; 5 mM) for 45 min before infection with Mtb-
Deis for 30 min (E) or 18 h (F). E, Intracellular superoxide production was analyzed by flow cytometric analysis. F, ELISA analysis for TNF-a and IL-6
levels. Data are presented as the mean6SD of three experiments. **p,0.01, ***p,0.001, vs. SC (A, C, E, and F); mock control (B and D). UI, uninfected;
SC, solvent control (0.1% DMSO).
doi:10.1371/journal.ppat.1001230.g007
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contrast, JNK inhibition did not significantly affect Mtb-Deis-

induced ROS production (Fig. 7E) or cytokine secretion (Fig. 7F)

in THP-1 cells over-expressing Eis-WT constructs. These data

suggest that the N-acetyltransferase domain of Eis is critical to Eis’s

modulation of host cell ROS generation and proinflammatory

cytokine responses through the JNK pathway.

Discussion

Earlier studies demonstrated that the eis gene of Mtb can

enhance survival of the non-pathogenic M. smegmatis in macro-

phages [15]. Moreover, Eis protein was detected in Mtb-

containing phagosomes and the cytoplasm of parasitized cells, as

well as in cell culture supernatants of Mtb-infected macrophages

[16,35]. Studies have demonstrated the presence of anti-Eis

antibodies in TB patients, indicating that Eis is produced during

human infection [35]. Eis also modulates TNF-a secretion and T

cell responses [16,19]. However, its precise role in innate immune

responses has not been clearly determined. The present study

provides evidence that Eis plays an essential role in modulating

host innate responses and cell death through ROS-dependent

pathways. Our demonstration that Mtb-Deis increased the

production of proinflammatory cytokines by BMDMs (i.e., Eis

production alters patterns of cytokine production) is consistent

with our previous findings [16]. Additionally, we provide evidence

that Eis performs previously unrecognized functions in modulating

specific types of cell death, dependent on autophagy and ROS-

mediated signaling. Although autophagic pathways have been

widely explored as a strategy for overcoming mycobacterial escape

from phagosomal maturation, excessive activation of autophagy,

and the resulting cell death (caused by a robust increase in ROS

generation), did not apparently directly impact host defenses in

Mtb-Deis-infected cells.

Autophagy is a well-organized homeostatic cellular process

responsible for the removal of damaged organelles and the

elimination of intracellular pathogens [5]. Induction of autophagy

is critical to the eradication of Mtb from murine and human

macrophages [7,8]. Recent reports have emphasized the role of

autophagy in host defense against human tuberculosis caused by

Mtb [36]. Prolonged or excessive autophagy can result in non-

apoptotic type II programmed cell death [10]. We recently

reported that mycobacterial BCG cell wall induced autophagic cell

death in radiosensitized cancer cells [34]. Indeed, it is known that

several cytokines, including TNF-a, can activate autophagy

pathways [5]. Thus, because they have been shown to be potent

inducers of cytokine production [37], it is possible that

mycobacterial proteins and/or other cell components increase

the activation of autophagy by inducing the production of TNF-a.

In our recent study, we found that mycobacterial LpqH can

trigger the activation of autophagy [38]. Additionally, various

mycobacterial components, including ESAT6 [39], PE_PGRS 33

[40], and nuoG [41], have been reported in modulating host cell

death, i.e., apoptosis or necrosis. Moreover, a recent report

showed that Mtb mutation of nuoG or KatG leads to ROS

accumulation in phagosomes, with subsequent induction of host

cell apoptosis [42]. However, the genetic basis of mycobacterial

induction of autophagy-dependent cell death in normal macro-

phages has not been characterized. Macrophages that died after

Mtb-Deis infection displayed morphological features of autophagic

(type 2) cell death, characterized by the accumulation of

autophagic vacuoles (autophagosomes) in the cytoplasm [43].

Massive autophagic vacuolization may be the consequence of a

failed attempt by Mtb to adapt to its cellular environment, which

ultimately results in cell death [43].

Macrophages infected with Mtb-Deis at a relatively low MOI

(5–10) displayed higher rates of CICD and autophagy activation

than did cells infected with wild-type or complemented strains of

Mtb H37Rv. These data partly correlate with the previous finding

that infection with Mtb H37Rv at the same MOI slightly increased

macrophage cytotoxicity over control levels [44]. It has also been

shown that attenuated strains of mycobacteria at an MOI#10

trigger TNF-a-induced apoptosis, which is associated with innate

host defenses against intracellular mycobacteria [45]. Macrophag-

es infected with Mtb-Deis showed a modest, but significant,

increase in the rate of apoptosis, as assessed by the TUNEL assay.

Additionally, we observed no prominent sign of necrosis [46], such

as intracellular vesicular swelling, rupture of plasma membranes,

or dilation of cytoplasmic organelles, in macrophages infected with

Mtb-Deis. Thus, our data show that Mtb Eis is involved in the

control of a novel type of cell death, characterized by massive

autophagic vacuolization. This type of cell death was modulated

by inhibitors of autophagy: 3-MA (see Fig. 4).

After showing that Eis is involved in autophagy-dependent cell

death, we considered the possibility that Eis may affect the

intracellular survival of bacteria. We previously reported that an eis

deletion mutant of Mtb had no growth defect in human monocytic

U937 cells or in mice [16]. The current study confirms our

previous findings [16] that an eis deletion mutant of H37Rv

multiplies at a rate similar to WT or complemented strains in the

lungs and spleen of infected mice (see Fig. 6D). In contrast, a

recent study reported that deletion of eis reduced the growth of the

clinical Mtb strain TB294 in Mono Mac 6 cells [18]. This clinical

strain was found to express 20-fold higher levels of Eis than

H37Rv [18]. This discrepancy may be the result of strain-specific

differences in the production of Eis and/or the use of different host

cells [18]. Recent findings showed that an eis promoter mutation

that increases Eis expression conferred resistance to kanamycin in

clinical Mtb strains, by increasing its acetylation and inactivation

[17]. We thus suggest that overproduction of Eis may enable some

clinical Mtb strains to modulate autophagy and cell death,

especially those with eis promoter mutations. It will be interesting

to determine whether clinical strains overproducing Eis exhibit

altered intracellular growth and disease outcomes through

subversion of autophagy, cell death, and host defense.

Activation of an exacerbated inflammatory response during

Mtb-Deis infection may explain the lack of effect on bacterial

elimination despite the induction of autophagy. Indeed, our

previous [16] and current studies showed that inflammatory

responses are profoundly up-regulated in Mtb-Deis-infected

monocytes/macrophages. Here, proinflammatory cytokine pro-

duction was negatively regulated by autophagy activation in Mtb-

Deis-infected macrophages (Fig. S2). Despite the potential

contribution of autophagy to this inflammatory balance, increased

ROS and subsequent organelle damage by Mtb-Deis infection may

trigger an amplifying positive feedback loop and in so doing

induce massive autophagy and cell death. If production of pro-

inflammatory cytokines and chemokines during mycobacterial

infection is excessive or inappropriate, it may hinder protective

immunity and exacerbate the pathology [47].

Our data show that significant up-regulation of ROS produc-

tion (for which NOX and mitochondria are largely responsible) is

required for Mtb-Deis to increase macrophage inflammatory and

autophagic responses, which are normally controlled by Eis. These

findings partially agree with our previous studies showing that

NOX2-dependent ROS generation played a key role in TLR2-

dependent inflammatory signaling and cathelicidin production in

macrophages [28]. Selective autophagic degradation of catalase

and subsequent ROS accumulation cause lipid membrane damage
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and autophagic cell death, indicating the complex nature of the

relationship between ROS and non-apoptotic programmed cell

death [48]. Additionally, overproduction of ROS contributed to

CICD in macrophages treated with lipopolysaccharide and the

pan-caspase inhibitor, Z-VAD [48]. At the molecular level, ‘‘Toll/

IL-1 receptor (TIR) domain-containing adaptor-inducing IFN-b’’
(TRIF) and ‘‘receptor-interacting protein 1’’ (RIP-1) operate

upstream of ROS production and are involved in inducing

autophagy and CICD [49]. In starvation-induced autophagy,

ROS serve as signaling molecules that induce autophagy and

regulate cysteine protease HsAtg4 [50]. Moreover, previous

studies showed that activation of TLRs or Fcc receptors induced

autophagy through NADPH oxidase-derived ROS [30].

Regarding the signaling pathways linking ROS and cell death,

our data provide evidence for the involvement of JNK signaling in

macrophages infected with Mtb-Deis. Recent studies have shown

that JNK pathways contribute to the induction of non-canonical

autophagy by activating Atg7 [51]. Additionally, other studies

showed that increased oxidative stress results in the induction of

endoplasmic reticulum stress, which, in turn, can lead to

autophagy and cell death through activation of a JNK/p38

signaling pathway [52]. Moreover, JNK signaling has been shown

to play an important role in autophagic cell death [53]. We found

that the activation of JNK was required for Mtb-Deis-induced

ROS generation and cell death. Thus, it appears that oxidative

stress and JNK/SAPK constitute a positive feedback loop that

contributes to the induction of cell death with autophagy by Mtb-

Deis.

Given the specific pathologic events that occur in Mtb-Deis-

infected macrophages, several mechanisms could explain the

observed excessive autophagy and resulting cell death. First,

excessive ROS generation (for which NOX and mitochondria are

primarily responsible), may contribute to increased activation of

autophagy. Data generated using ROS inhibitors and NOX2-

deficient mice show that excessive ROS generation is responsible

for the induction of autophagy and inflammation by Mtb-Deis.

The marked induction of autophagy by Mtb-Deis may be

attributed to the expected need for increased protein/organelle

turnover in injured cells undergoing oxidative stress, such as those

with damaged mitochondria [54]. Second, our findings suggest

that Eis regulates a key player in host innate immunity through its

N-acetyltransferase domain. This idea is supported by the

observations that Mtb-Deis-mediated ROS generation and inflam-

matory cytokine production were inhibited by pretreatment with

Eis and realized in an N-acetyltransferase domain-dependent

manner (see Fig. 7). Finally, the phenotype of Mtb-Deis-infected

macrophages may depend on their activation state. When

macrophages were primed using interferon-c and lipopolysaccha-

ride prior to exposure to Mtb-Deis, they showed a significant

decrease in overall cell death, but a concurrent increase in the rate

of apoptosis (data not shown). These data indicate that the

activation of macrophages may alter their mechanism of cell death

during subsequent Mtb-Deis infection. Thus, excessive activation

of autophagy appears to play an important role in cell death,

although cell death with autophagy does not affect the ability of

host cells to efficiently eliminate invading bacteria.

Our data provide evidence that Eis plays an essential role in

regulating both the early generation of ROS and inflammatory

responses in macrophages. These activities are dependent on the

acetyltransferase moiety of Eis. Previously, we reported that Eis is

a member of the GCN5-related family of N-acetyltransferases, as

determined through bioinformatics analyses [16]. Members of this

family of proteins are involved in a variety of activities, ranging

from transcriptional activation to antibiotic resistance [55]. The

well-characterized effector YopJ from Yersinia spp. acetylated

critical serine and threonine residues in the activation loop of

MAPKK6, thereby blocking its phosphorylation [56]. This

resulted in the inhibition of MAPK and nuclear factor-kB
signaling and, thus, the innate immune responses to Yersinia
infection [56,57]. The current data suggest that the mycobacterial

effector Eis regulates eukaryotic cell function through the direct

modification of target proteins, effected by its N-acetyltransferase
domain.

Together, our results provide novel insights into the roles of

mycobacterial Eis in controlling and suppressing host inflamma-

tory responses and cell survival/death, which it achieves by

modulating ROS-dependent JNK activation. Excessive activation

of autophagy was shown to cause cell death, as well as inefficient

bacterial clearance, in macrophages infected with Mtb-Deis. Eis

itself regulated oxidative stress and inflammation through its

acetyltransferase domain. Our present characterization of the

mycobacterial effector Eis as a modulator of autophagy and cell

death presents a previously unknown paradigm for understanding

host-pathogen interactions in mycobacterial infection.

Materials and Methods

Bacterial Strains and Recombinant Eis Protein
Mtb-WT, Mtb-Deis, and Mtb-c-eis strains were generated and

used in these experiments. The eis gene was disrupted in H37Rv

by means of a two-step gene replacement strategy using a pMJ10

allelic exchange vector (ts oriM; sacB counterselection; KanR,

GentR) as described previously [58]. A vector was constructed that

contained the eis gene disrupted by a hygromycin cassette (eis:hyg/

pMJ10). This vector (5 mg) was introduced into electrocompetent

Mtb H37Rv cells. Transformants were first selected by growth on

7H10-OADC-Tween 80 plates containing hygromycin B (50 mg/

mL) at 37uC for 3–4 weeks. Individual antibiotic-resistant colonies

were selected and subcultured onto fresh plates. Several clones

were then picked and grown in 50 mL of 7H9-ADC broth

containing hygromycin B at 37uC for 48 h. Cells from the broth

cultures were then diluted in 7H9-ADC broth and plated on 2%

sucrose-7H10-OADC-hyg and incubated at 39uC for 3–4 weeks.

The double-resistant (sucR/hygR) clones were selected and shown,

by Southern blotting, to be Deis mutants (data not shown). The

H37RvDeis mutant was complemented using an integration vector

(pMV306) containing a single copy of the eis gene (mycobacterial

integration vector; integrates into the attB site; KanR) [59]. To

obtain purified Eis protein, N-terminally His-tagged Eis was

induced, harvested and purified from, E. coli expression strain BL-

21 DE-3 pLysS, as described by Samuel et al. [16] following

standard protocols recommended by Novagen. Mtb strains were

grown as described previously [13]. The bacterial cultures were

divided into 1-mL aliquots in cryovials and stored at 270uC prior

to use. Representative vials were thawed, and viable CFUs were

counted on Middlebrook 7H10 agar. Single-cell suspensions of

mycobacteria were prepared as described previously [60].

Ethics Statement
All animal procedures were approved by the Institutional

Animal Care and Use Committees of Yonsei University Health

System and Chungnam National University. All animal experi-

ments were performed in accordance with Korean Food and Drug

Administration (KFDA) guidelines.

Mice and Cells
For in vivo experiments, pathogen-free female C57BL/6 mice,

aged 5–6 weeks, purchased from Japan SLC Inc. (Shijuoka, Japan)
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were maintained under barrier conditions in a BL-3 biohazard

animal room at Yonsei University Medical Research Center.

Animals were fed a sterile commercial mouse diet and water ad
libitum. NOX2 (C57BL/6 background) mice were kindly provided

by Y. S. Bae (Iwha University, Seoul). Mice used as a source of

cells for in vitro experiments were housed in specific pathogen-free

conditions. Those used in individual experiments were age- and

sex-matched mice (and 5–8 weeks of age). BMDMs were isolated

and then differentiated by growth for 5–7 days in medium

containing M-CSF (25 mg/mL; R&D), as described previously

[13]. RAW 264.7 cells were maintained in Dulbecco’s modified

Eagle’s medium (DMEM) containing 10% fetal bovine serum, as

described previously [13]. Human THP-1 (ATCC TIB-202)

monocytic cells were grown in RPMI 1640/GlutaMAX, supple-

mented with 10% FBS [8]. Cells were treated with 20 nM PMA

(Sigma-Aldrich, St. Louis, MO) for 24 h to induce their

differentiation into macrophage-like cells and then washed three

times with PBS.

Mtb Infection and Bacterial Counts In Vitro and In Vivo
In vitro macrophage infection was performed as described

previously [13]. Briefly, cells were infected with mycobacteria at

different MOIs and incubated for 4 h at 37uC in a 5% CO2

atmosphere. After allowing time for phagocytosis, cells were

washed four times with fresh PBS to remove extracellular bacteria

and then incubated with complete DMEM without antibiotics. As

controls, cultures of uninfected macrophages (UI) were maintained

under the same conditions. The infection rates for the three strains

were approximately 35–45% when BMDMs were infected at an

MOI of 5. Rates of infection were increased in infected

macrophages when the MOI was increased. There was no

significant difference in infection rates between the three strains.

To test the capacities of the Mtb-WT, Mtb-Deis, and Mtb-c-eis

strains to survive intracellularly, BMDMs were infected with each

strain at MOIs of 1 and 5. Then, 4 h later, cells were washed with

PBS three times, and the majority of extracellular bacteria (.99%)

were removed, as determined through staining with auramine-

rhodamine (Merck, Darmstadt, Germany). After washing, the cells

were incubated in fresh medium for a further 3 days. They were

then lysed in autoclaved distilled water to allow intracellular

bacteria to be collected [8]. The lysates were then re-suspended

and sonicated for 5 min in a preheated 37uC water bath sonicator

(Elma, Singen, Germany). Aliquots of the resulting sonicates were

serially diluted in 7H9 broth, plated separately on 7H10 agar

plates, and incubated at 37uC in 5% CO2 for 12 d. Colony

counting was then performed in triplicate.

Mice were challenged by aerosol exposure with Mtb-WT, Mtb-

Deis, or Mtb-c-eis using an inhalation device (Glas-Col, Terre

Haute, IN, USA) calibrated to deliver approximately 50 bacteria

into the lungs. Five mice per group were sacrificed at 4 weeks post-

challenge, and bacteria in lung and spleen homogenates were

counted. Numbers of viable bacteria in lung/spleen were

determined by plating serial dilutions of whole organ homogenates

on Middlebrook 7H11 agar (Difco, Detroit, MI, USA). Colonies

were counted after 3–4 weeks of incubation at 37uC.

Reagents, DNA, Abs, and Transfection
DPI (a NOX inhibitor), NAC (an antioxidant), catalase, and z-

VAD-fmk (a pan-caspase inhibitor) were purchased from Calbio-

chem (San Diego, CA, USA). 3-MA, tiron (a commercial

deflocculant), and DAPI were purchased from Sigma. DMSO

(Sigma) was added to cultures at a concentration of 0.1% (v/v) as a

solvent control (SC). The plasmid that encoded EGFP-LC3 [20]

was a gift from Tamotsu Yoshimori (Osaka University, Japan).

pCMV-Eis-WT and pCMV-Eis-DAT constructs were created by

subcloning the whole eis gene (WT), or an acetyltransferase

domain-deletion mutant (lacking the sequence encoding residues

61–137 of the 402-amino-acid Eis protein) from pET21a. This was

achieved by cutting at the BamHI and SacI restriction sites and

then ligating the resulting inserts into the pCMV-Tag1 mamma-

lian expression vector (Stratagene Co., USA).

Anti-LC3 antibodies (Abs) used for Western blotting and

immunofluorescence analysis were purchased from Novus Biolog-

icals and MBL International (Woburn, MA, USA), respectively.

Anti-rabbit IgG-Alexa488 and IgG-TRITC, and anti-mouse IgG-

Cy2, were purchased from Jackson Immunoresearch (West Grove,

PA, USA). siRNAs specific for mBeclin 1 (sc-29798), mAtg5 (sc-

41446), and mJNK1 (sc-29381), each a pool of five target-specific

19–25 nt siRNAs, were purchased from Santa Cruz Biotechnol-

ogy (Santa Cruz, CA, USA). Cells were transfected with plasmids

and/or siRNAs using Lipofectamine 2000 (Invitrogen, Carlsbad,

CA, USA) according to the manufacturer’s protocol.

Measurement of ROS Production
Intracellular ROS levels were measured by DCFH-DA and

DHE assays as described previously [61]. Briefly, BMDMs were

differentiated in culture dishes and infected with bacterial strains

(MOI= 10) for 30 min. Cells were then incubated with either

DCFH-DA (5 mM) or DHE (10 mM; Molecular Probes) for

30 min at 37uC in 5% CO2 and then washed with Krebs-Hepes

buffer (for DHE staining) or HBSS (for DCFH-DA staining). Total

intracellular levels of ROS were determined by FACS analyses of

the oxidative conversion of cell-permeable DCFH-DA (Molecular

Probes) to fluorescent DHE (Molecular Probes), using the

FACSCanto II system (Becton Dickinson, San Jose, CA, USA).

A mitochondrion-specific hydroethidine-derivative fluorescent

dye (MitoSOX; M36008; Calbiochem) was used to determine

relative mitochondrial O2
2 levels in BMDMs. Cells were

incubated for 30 min in PBS containing 5 mM MitoSOX. They

were then washed twice and analyzed using the FACSCanto II

system. All FACS data were collected using 50,000 to 100,000 cells

and analyzed using FlowJo software (Tree Star, Ashland, OR,

USA).

Cell Viability and Apoptosis Assays
Cell viability was assessed by PI staining and then examined by

fluorescence microscopy or flow cytometric analysis. Trypan blue-

stained cells were counted using a ViCell counter (Beckman

Coulter, Fullerton, CA, USA). Apoptosis was examined by TdT-

mediated dUTP Nick-End Labeling (TUNEL; Promega), accord-

ing to the manufacturer’s instructions. Labeled cells were

examined under a laser-scanning confocal microscope (model

LSM 510; Zeiss). Each condition was assayed in triplicate, and at

least 200 cells per well were counted. To analyze in vivo cell death,

single-cell suspensions were prepared in RPMI 1640 medium by

passing cell populations through a nylon mesh with 50 mm pores

and were subjected to further analysis.

Western Blotting, RT-PCR and ELISA
Treated BMDMs were processed for analysis by sandwich

ELISA, Western blotting, and RT-PCR as described previously

[2]. For Western blot analysis, primary Abs were diluted 1:1000.

Membranes were developed using a chemiluminescent reagent

(ECL; Pharmacia-Amersham, Freiburg, Germany) and subse-

quently exposed to film (Pharmacia-Amersham). Supernatant

TNF-a and IL-6 levels were measured by sandwich ELISA using

Duoset Ab pairs (Pharmingen, San Diego, CA, USA) [2].
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To provide RNA for RT-PCR analysis, paraffin-embedded

tissue sections were first deparaffinized in octane [62]. After

vigorous vortexing, 150 mL of methanol were added. Samples

were vortexed again and the tissue was pelleted by centrifugation

(10,0006g, 2 min). Supernatants were removed, and the remain-

ing tissue was vacuum-dried for 20 min. Next, pellets were

resuspended in digestion buffer (20 mM Tris-HCl, pH 7.6, 0.5%

N-laurylsarcosine, 1 M guanidine thiocyanate, 25 mM 2-mercap-

toethanol) containing proteinase K (5 mg/mL; Sigma). After

overnight digestion at 55uC, RNA was extracted using TRIzol

(Invitrogen) according to the manufacturer’s instructions. For

quantitative RT-PCR analysis was performed by using SYBR

Green (Molecular Probes) PCR core reagents (Applied Biosys-

tems), and transcript levels were quantified by using an ABI 7900

Sequence Detection System (Applied Biosystems). The mean value

of triplicate reactions was normalized against the mean value of b-

actin. Primers were used at 400 nM.

Autophagy Analysis
Autophagosome formation was measured by LC3 punctate

staining, as described previously [8]. To quantitate autophagy, we

used fluorescence microscopy to count the percentages of GFP-

LC3-positive autophagic vacuoles in transfected cells or the

numbers of endogenous LC3 punctate dots in primary cells. Each

condition was assayed in triplicate, and at least 200 cells per well

were counted. LC3 conjugation was evaluated by Western blot

analysis using an antibody raised to LC3-I/II.

Transmission Electron Microscopy
Infected and stimulated RAW 264.7 macrophages were washed

with PBS and then fixed with 3% formaldehyde, 2% glutaralde-

hyde in 0.1 M sodium cacodylate buffer (pH 7.4) for 1 h. They

were then post-fixed in 1% osmium tetroxide, 0.5% potassium

ferricyanide in cacodylate buffer for 1 h; embedded in straight

resin; and cured at 80uC for 24 h. Ultrathin sections (70–80 nm),

cut using an ultramicrotome (RMC MT6000-XL), were stained

with uranyl acetate and lead citrate and examined using a Tecnai

G2 Spirit Twin transmission electron microscope (FEI Company,

USA) and a JEM ARM 1300S High Voltage electron microscope

(JEOL, Japan).

Immunofluorescence
Immunofluorescence analysis was performed as described

previously [8]. Briefly, cells were fixed with 4% paraformaldehyde

in PBS at 4uC for 10 min and permeabilized with 0.01% Triton

X-100 in PBS for 10 min. Cultures were then stained for 2 h at

room temperature with primary antibodies, including rabbit anti-

mouse LC3 (1:400; MBL International). After washing, to remove

excess primary antibody, cultures were then incubated for 1 h at

room temperature with an anti-rabbit IgG-Alexa488 secondary

antibody (Jackson Immunoresearch). Nuclei were stained by

incubation with DAPI for 5 min. Slides were examined using a

laser-scanning confocal microscope (model LSM 510; Zeiss).

Statistical Analyses
Data obtained from independent experiments (presented as

mean6SD) were analyzed by the paired Student’s t-test with

Bonferroni correction or analysis of variance (for multiple

comparisons). A p value,0.05 was deemed to indicate statistical

significance.

Accession Numbers
The GenBank accession number for the eis gene is AF144099.

Supporting Information

Figure S1 Autophagic vesicles are increased in macrophages

infected with Mtb-Deis, but not in cells infected with Mtb-WT or

Mtb-c-eis. (A and B) Formation of GFP-LC3 vacuoles (dots) was

determined in RAW 264.7 cells transfected with GFP-LC3 cDNA.

Transfected cells were infected with Mtb-WT, Mtb-Deis, or Mtb-c-

eis (MOI=10) for 24 h (A) or Mtb-Deis (MOI= 10) for 24 h in the

presence or absence of 3-MA (B). Top, representative immunoflu-

orescence images; bottom, percentage of GFP-LC3 cells with

punctae. (C) Co-localization of autophagosomes (endogenous

LC3, red) and lysosomes (lamp-1, green) was increased in Mtb-

Deis-infected BMDMs. Data are representative of three separate

experiments. Scale bars: 10 mm. (D) BMDMs were infected with

Mtb-Deis (MOI= 10) for 24 h in the presence or absence of 3-MA

(10 mM) or Baf-A1 (100 nM). Quantitation of the percentages of

cells with LC3 punctae. Each condition was assayed in triplicate,

and at least 250 cells per well were counted. ***p,0.001, vs. Mtb-

WT-infected condition (A); SC (B and D). UI, uninfected; SC,

solvent control (0.1% distilled water (B), 0.1% DMSO (D)).

Found at: doi:10.1371/journal.ppat.1001230.s001 (0.66 MB TIF)

Figure S2 Activation of autophagy negatively impacts the

secretion of proinflammatory cytokines by Mtb-Deis-infected

macrophages. RAW 264.7 cells transfected with siRNAs specific

for Beclin-1 (siBec-1) or Atg5 (siAtg5) were infected with Mtb-WT,

Mtb-Deis, or Mtb-c-eis (MOI= 10) for 24 h. Supernatants were

assessed by ELISA for levels of TNF-a and IL-6. Data are

presented as the mean6SD of five experiments. ***p,0.001, vs.

Mtb-WT-infected condition. UI, uninfected.

Found at: doi:10.1371/journal.ppat.1001230.s002 (0.12 MB TIF)

Figure S3 Reactive nitrogen species are not involved in the

elevation of ROS generation in Mtb-Deis-infected macrophages.

BMDMs were infected with Mtb-Deis (MOI= 10) in the presence

or absence of L-NAME (0.1, 1, 5 mM) or L-NMMA (0.1, 1,

5 mM). Cells were stained with DHE (for superoxide) or DCFH-

DA (for H2O2) and subjected to flow cytometry analysis. Data

represent densitometric analyses (mean6SD) of three separate

experiments. UI, uninfected; SC, solvent control.

Found at: doi:10.1371/journal.ppat.1001230.s003 (0.07 MB TIF)

Figure S4 Intracellular ROS and NOX2 are required for

autophagy and proinflammatory responses in Mtb-Deis-infected

macrophages. (A) RAW 264.7 cells transfected with GFP-LC3

cDNA were infected with Mtb-Deis (MOI= 10) in the presence or

absence of DPI (10 mM), NAC (20 mM), catalase (Cat, 1 mU/

mL), or tiron (5 mM). Formation of GFP-LC3 vacuoles (dots) was

determined in transfected cells, and at least 250 cells per well were

counted. Left: representative immunofluorescence images; right:

percentage of LC3-punctated cells. (B) BMDMs from WT and

NOX2-KO mice were infected with Mtb-WT, Mtb-Deis, or Mtb-

c-eis (MOI=10). After 30 min, ROS production (DHE staining)

was determined by flow cytometry (left). Quantitative analysis of

ROS generation in WT- and NOX2-deficient BMDMs (right).

Data represent the mean6SD of three independent experiments.

(C) BMDMs from WT and NOX2 KO mice were treated with

rapamycin (Rapa; 20 mg/mL) or staurosporine (STS; 500 nM), or

nutrient-starved (Starv; maintained in HBSS) for 8 h. Numbers of

LC3-punctated cells (counted manually) are shown. Data are

presented as the mean6SD of at least three separate experiments,

each performed in triplicate. (D) BMDMs from WT and NOX2

KO mice were infected with Mtb-WT, Mtb-Deis, or Mtb-c-eis for

6 h and then subjected to RT-PCR analysis. A gel representative

of three independent replicates is shown. *** p,0.001, vs. SC (A);

WT mice (B). UI, uninfected; SC, solvent control (0.1% DMSO).
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Found at: doi:10.1371/journal.ppat.1001230.s004 (0.38 MB TIF)

Figure S5 Enhanced cell death in Mtb-Deis-infected macro-

phages is regulated by autophagic pathways. (A) BMDMs were

infected with Mtb-WT, Mtb-Deis, or Mtb-c-eis at the indicated

MOIs for 4 h, washed to remove unbound mycobacteria, and

then incubated in complete DMEM at 37uC in 5% CO2 for the

indicated periods of time. Cells were stained with PI and then

examined by fluorescence microscopy. (B) Cell death was

determined in RAW 264.7 cells transfected with specific siRNA

for beclin-1, atg5, or non-specific scrambled siRNA (siNS) before

infection with Mtb-WT, Mtb-Deis, or Mtb-c-eis, as described in the

Materials and Methods. After 36 h, cells were stained with PI and

examined by fluorescence microscopy, as described in the

Materials and Methods. Transfection efficiency was assessed by

RT-PCR (inset). (C) Experimental conditions were identical to

those outlined in panel A. Cell viability was assessed by trypan

blue staining. Data are presented as the mean6SD of three

separate experiments, each performed in duplicate. *p,0.05,

***p,0.001, vs. Mtb-WT-infected condition (A).

Found at: doi:10.1371/journal.ppat.1001230.s005 (0.16 MB TIF)
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