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Abstract

Mycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized
membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited.
Understanding how the bacillus extracts and incorporates nutrients from its host may help develop novel strategies to
combat tuberculosis. Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted
asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release. While
the role of AnsP2 is partially spared by yet to be identified transporter(s), that of AnsA is crucial in both phagosome
acidification arrest and intracellular replication, as an M. tuberculosis mutant lacking this asparaginase is ultimately
attenuated in macrophages and in mice. Our study provides yet another example of the intimate link between physiology
and virulence in the tubercle bacillus, and identifies a novel pathway to be targeted for therapeutic purposes.
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Introduction

With nearly 1.3 million lives claimed in 2012, as reported by the

World Health Organization, tuberculosis (TB) remains the major

cause of death due to a single bacterial pathogen. A better

understanding of the interactions between Mycobacterium tuberculosis,

the etiologic agent of TB, and its human host may help improve

current therapies. In particular, unraveling the microbial mech-

anisms involved in uptake and catabolism of host-derived nutrients

required by the pathogen during its life cycle may identify targets

for novel antimicrobials [1–3].

The TB bacillus is an intracellular microorganism that thrives

inside host macrophages. Although M. tuberculosis can be found in

the host cell cytosol at later stages of infection [4–6], the prevailing

consensus is that the pathogen resides and multiplies mostly within

phagosomes, which fuse poorly with host cell lysosomes and barely

acidify (pH,6.5) [7–10]. In macrophages activated by immune cell-

derived cytokines, such as interferon (IFN)- c, and microbial ligands,

such as Escherichia coli-derived lipopolysaccharide (LPS), the pH of

the mycobacterial phagosome drops below 5.5, and mycobacterial

growth is constrained to some extent [8,11,12]. The ability to block

phagosome maturation and avoid lysosomal degradation is

considered chief among M. tuberculosis virulence strategies, although

the molecular mechanisms involved in this process are likely to be

multiple and remain yet to be fully elucidated [10]. In addition to

being slightly acidic, the mycobacterial phagosome is considered an

environment in which nutrient availability is limited [1,3,13]. Such

multiple stresses typically translate into a marked remodeling of the

mycobacterial transcriptional landscape soon after phagocytosis, as

supported, for example, by the induction of acid-responsive genes

and those involved in utilization of alternative carbon sources, such

as host-derived fatty acids and cholesterol [14–18]. Carbon

metabolism reprogramming, in particular, appears instrumental in

mycobacteria adaptation to their host, and a number of studies

identified major pathways used by M. tuberculosis to gather carbon

during infection [19–24].
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In addition to carbon, nitrogen is an essential component of

biomolecules, such as amino acids, nucleotides and organic co-

factors. Although several studies provided insight into the regulation

mechanisms of the central nitrogen metabolism in M. tuberculosis,

showing in particular the key role of the glutamine synthetase

GlnA1 and its regulator GlnE in this process [25–29], the

mechanisms by which nitrogen is acquired by the bacillus, and

the main nitrogen sources used during infection remain poorly

characterized. In this context, we recently reported that M.

tuberculosis employs the membrane transporter AnsP1/Rv2127 to

capture aspartate and exploit this amino acid species as a nitrogen

source during infection [30,31]. Here we further report that the

AnsP1 homologue AnsP2 (AroP2/Rv0346c), a predicted asparagine

transporter, and that AnsA (Rv1538c), a predicted asparaginase

[32], allow asparagine uptake and deamination, respectively. The

hydrolysis of asparagine in turn allows M. tuberculosis to assimilate

nitrogen into downstream metabolites such as glutamate and

glutamine. In parallel, this system of asparagine acquisition supports

the in vitro mycobacterial growth in acidic conditions through

ammonia release and pH buffering. Finally, we provide evidence

that AnsA is released into the M. tuberculosis culture filtrate in vitro

and within the mycobacterial phagosome. Thus AnsA is important

for phagosome acidification arrest and intracellular survival of the

pathogen inside macrophages, ultimately serving as a virulence

factor. Collectively, these results provide compelling evidence that

asparagine is an important additional source of nitrogen for M.

tuberculosis during host colonization, and identify AnsA and the

asparagine transport system as potential novel targets to be

considered for therapeutic purposes.

Results

Asparagine catabolism plays a role in M. tuberculosis

virulence
Because asparagine is known to be one of the best nitrogen

sources used byM. tuberculosis in vitro [33,34], we reasoned that the

pathogen may have a transport system in place to scavenge this

amino acid from its host. Among putative transporters, AnsP2/

Rv0346c became an obvious candidate based on its high primary

sequence identity (58%) with the Salmonella enterica asparagine

transporter AnsP [35]. Moreover, ansP2 expression is markedly

induced in M. tuberculosis in the lungs of patients with TB, which

may reflect an important role for this putative transporter in a

natural setting [36]. In order to evaluate whether AnsP2 transports

asparagine, we first performed a 14C-asparagine uptake experi-

ment with wild-type M. tuberculosis H37Rv and an ansP2-deficient

mutant strain that we generated by recombineering [30,37]. In

agreement with the functional annotation of AnsP2, we found

asparagine transport was partially impaired in the mutant as

compared to its wild-type counterpart (Fig. 1A). This phenotype

was reversed upon genetic complementation of the mutant strain

with an integrative cosmid harboring the ansP2 gene region

(Fig. 1A), thus demonstrating the implication of AnsP2 in

asparagine uptake. Based on these results, we hypothesized the

ansP2-KO mutant should be affected in its ability to grow in the

presence of asparagine as sole nitrogen source. Surprisingly, we

found the mutant multiplied equally to the wild-type strain under

this condition (Fig. 1B), indicating the reduced amount of

asparagine imported by the mutant strain (Fig. 1A) was

nevertheless sufficient to promote bacterial growth. Moreover,

the ansP2-KO mutant was not attenuated in immune-competent

mice (Fig. 1C). Altogether, while these results identify AnsP2 as an

asparagine transporter in M. tuberculosis, they also allude to the

presence of one or more additional yet to be identified

transporter(s) responsible for the uptake of this amino acid species.

Once asparagine is scavenged by the bacillus, we inferred it

must undergo an assimilation process carried out by asparaginases,

which hydrolyze this amino acid into aspartate and ammonia.

Indeed, asparaginase activity was described several decades ago in

lysates of various mycobacteria species, including M. tuberculosis

[38,39]. In the M. tuberculosis genome, a unique gene by the name

of ansA is predicted to encode an asparaginase [32], and whose

homologue was recently proven to hydrolyze asparagine in vitro in

the closely related attenuated vaccine strain Mycobacterium bovis

BCG [40]. Building upon these observations, we decided to

produce and purify a recombinant HIS6-tagged version of AnsA in

the M. tuberculosis-related fast grower Mycobacterium smegmatis in

order to evaluate its asparaginase activity. The recombinant

enzyme, with a predicted molecular weight of 34 kDa, was

immuno-detected both in total bacterial lysate and after purifica-

tion on a nickel column using an appropriate anti-HIS6 antibody

(Fig. 1D). The ability of recombinant AnsA to hydrolyze

asparagine was then assessed in a coupled enzymatic reaction in

which the ammonia generated after asparagine deamination is

used in a secondary reaction to form glutamate via a NADPH-

dependent glutamate dehydrogenase. Disappearance of NADPH

was followed as a marker of asparagine consumption in the

reaction mixture, and revealed that AnsA mediates asparagine

hydrolysis (Fig. 1E). By contrast, we found AnsA could not

hydrolyze glutamine (Fig. 1E), indicating the enzyme is void of any

significant glutaminase activity frequently associated to asparag-

inases [30,41].

Since AnsA is the only predicted asparaginase in M. tuberculosis

[32], as opposed to in other bacteria such as E. coli [42], we

deduced that the genetic inactivation of AnsA should have a

significant impact on asparagine metabolism in this species. Given

that ansA might be essential in M. tuberculosis [24], we designed a

conditional inactivation strategy to knock this gene out [43]

(Figure S1). Unexpectedly, we could readily generate a viable ansA-

KO mutant strain, revealing ansA is not essential in M. tuberculosis,

as suggested by other studies [44,45]. The apparent contradiction

between the observed viability of the mutant and the essentiality

Author Summary

Tuberculosis (TB) is still responsible for nearly 1.3 million
deaths annually. There is an urgent need to identify novel
drug targets in the tubercle bacillus, Mycobacterium
tuberculosis, in order to develop novel therapeutics. To
proliferate inside its human host, and ensure its spreading,
M. tuberculosis must adapt its nutritional requirements and
metabolism to the molecular environment it encounters
during infection. Elucidating the origin, nature, and
acquisition mechanisms of the nutrients required by M.
tuberculosis inside its host may help identify targets for
novel antimicrobials. In this study we asked how the TB
bacillus acquires nitrogen, a vital constituent of all living
organisms, from host tissues. We show the amino acid
asparagine to be an important source of nitrogen for the
bacillus, and we identify two bacterial proteins, AnsP2 and
AnsA, that allow the pathogen to capture and ‘digest’
asparagine, respectively. In addition, we report that
asparagine ‘digestion’ allows the pathogen to resist the
host immune defense and to survive inside host cells and
tissues. This study paves the way for future research into
M. tuberculosis nitrogen metabolism, and for the develop-
ment of alternative therapeutic strategies to impair
nitrogen acquisition by the bacillus and treat patients
with TB.
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predicted by Griffin et al. [24] can be reconciled when considering

that for the high density transposon insertion screen asparagine

was used as the main nitrogen source in the culture medium; it is

most likely that under these conditions an ansA-KO mutant is

impaired in growth. Consistent with this assumption, and with the

observed enzymatic activity of AnsA in vitro, we found the growth

of the ansA-KO mutant was impaired, although not fully

abolished, when asparagine was provided as sole nitrogen donor

(Fig. 1F). It is likely that the remaining minimal growth of the

mutant observed under this condition is due to residual asparagine

deamination mediated by other yet to be identified amidases

present in M. tuberculosis. As a control, the ansA-KO mutant

replicated equally to the wild-type strain in the presence of another

nitrogen source, such as glutamate (Figure S2), suggesting that

ansA inactivation does not lead to general growth defects. Equally

important, we found the ansA-KO mutant was impaired in host

tissue colonization (Fig. 1G), thus suggesting a role for asparagine

catabolism in M. tuberculosis virulence.

Figure 1. The function and in vivo relevance of AnsP2 and AnsA in asparagine utilization in M. tuberculosis. (A) U-14C-Asn uptake assay
with M. tuberculosis H37Rv, the ansP2-KO mutant and its complemented strains (Compl.). Bacteria previously grown in 7H9 with 5 mM Asn, were
harvested and resuspended in an uptake buffer containing a mix of 14C-labeled and non-labeled asparagine to obtain a final concentration of 20 mM
asparagine. Bacteria were incubated at 37uC and samples were removed and bacteria-associated 14C radioactivity was quantified at the indicated
time points. Data are expressed as the percentage of the number of disintegrations per minute (DPM) per total protein concentration (14C-Asn (DPM).
mg protein21), as compared to the values obtained at t0. (B) Growth of M. tuberculosis H37Rv and the ansP2-KO mutant strain in the presence of
asparagine as sole nitrogen source. (C) C57BL/6 mice were infected intranasally with 1,000 CFUs M. tuberculosis wild type (H37Rv) or the ansP2-KO
mutant. Three weeks later, lungs and spleen were recovered, homogenized and plated onto agar for CFU scoring. (D) Western blotting analysis of
total protein extracts (Tot) or a Ni-NTA purified fraction (Pur) from M. smegmatis containing a pVV16 control plasmid (pVV16) or an ansA-his6 cassette
cloned into pVV16 (pVV16 ansA-his6), using an anti-HIS6 monoclonal antibody. 1 mg of proteins were loaded in the ‘‘Tot’’ lanes, 0.5 mg of proteins
were loaded in the ‘‘Pur’’ lanes. The expected molecular weight of recombinant AnsA-HIS6 fusion protein is of 34 kDa. (E) Asparaginase activity, as
monitored by NADPH disappearance at OD340 (see Materials & Methods), of recombinant AnsA in the presence of asparagine (Asn) or glutamine (Gln).
Control reactions lack (w/o) substrate or enzyme. (F) Growth of M. tuberculosis H37Rv, the ansA-KO mutant strain, and the ansA-KO complemented
strain (Compl.) in minimal medium containing 5 mM asparagine as sole nitrogen source. (G) C57BL/6 mice were infected intranasally with 1,000 CFUs
M. tuberculosis wild type (H37Rv), the ansA-KO mutant or its complemented strain (Compl.). Three weeks later, lungs and spleen were recovered,
homogenized and plated onto agar for CFU scoring. All data are representative of at least two independent experiments. In (A), (C), (F) and (G), data
represent mean6s.d. of triplicate samples and were analyzed using the Student’s t test; *, P,0.05; **, P,0.01; ***, P,0.001. NS, not significant.
doi:10.1371/journal.ppat.1003928.g001
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AnsP2 and AnsA are involved in nitrogen incorporation
from asparagine in M. tuberculosis
The results above suggested M. tuberculosis exploits asparagine

from host tissues during infection to support growth. In agreement

with previous studies reporting asparagine is a preferred source of

nitrogen in M. tuberculosis [33,34], we found this amino acid does

not support mycobacterial growth when provided as sole carbon

and energy source (Figure S3). To further understand the role of

asparagine assimilation in M. tuberculosis, we used targeted

metabolomics to follow nitrogen incorporation in the ansP2- and

ansA-KO mutants during growth on 15N2-labeled asparagine. As

compared to wild-type M. tuberculosis, we found the ansP2-KO

mutant was impaired in nitrogen incorporation from asparagine

into other amino acids, such as glutamate and glutamine, which

serve as initial nitrogen providers in the central nitrogen

metabolism; this phenotype was reversed upon genetic comple-

mentation with a functional ansP2 allele (Fig. 2A). Strikingly, total

asparagine content of the ansA-KO strain at the steady state in a

medium containing asparagine as sole nitrogen provider was

found ,1,000-fold higher than in its wild-type and complemented

counterparts (Fig. 2B), a likely consequence arising from the

impaired asparagine catabolism in the mutant. In line with this

hypothesis, the amounts of total (Fig. 2B), as well as newly

synthetized (Fig. 2C), glutamate and glutamine were reduced in

the mutant strain, further indicating a clear impairment of

nitrogen incorporation from asparagine into downstream metab-

olites in the absence of AnsA. Of notice, nitrogen assimilation from

asparagine was not completely abolished in the ansA-KO mutant,

and this phenotype paralleled the residual growth of the mutant in

the presence of asparagine reported above (Fig. 1F). Altogether,

these results reveal that asparagine-derived nitrogen is fully

assimilated in M. tuberculosis, and that AnsP2 and AnsA are

involved in this process.

Asparagine catabolism in M. tuberculosis mediates
resistance to acid stress and intracellular survival
A recent study reported asparagine is the best among the few

amino acids that can support M. tuberculosis resistance to acid stress

[46]. This feature most likely relies on the specific release of the

weak base ammonia and subsequent pH buffering that accompany

asparagine consumption [46]. Building upon this observation, we

found the growth of the ansP2-KO strain, in the presence of

asparagine as sole nitrogen provider, was greatly reduced at

pH 5.5 as compared to the wild-type and complemented strains

(Fig. 3A). This phenotype correlated with a markedly diminished

capacity of the mutant to secrete ammonia and neutralize pH of

the culture medium (Fig. 3B,C). In the same conditions, the

phenotypes of the ansA-KO mutant were even more pronounced.

Indeed, mycobacterial growth, asparagine-mediated ammonia

secretion and pH buffering were totally abolished in the absence

of AnsA (Fig. 3D–F). In line with these results, nitrogen

assimilation from asparagine into glutamate and glutamine was

fully abrogated in the ansA-KO mutant at acidic pH (Figure S4A).

In order to rule out the possibility that the observed defect in

ammonia secretion and pH buffering in the ansA-KO mutant was

due to the growth defect of the mutant at acidic pH, we repeated

the experiment reported in Fig. 3D–F using a more dense bacterial

suspension and a shorter time course, with and without asparagine

as sole nitrogen source. We resuspended bacteria at an OD600 of

1.5 in acidic culture medium and measured ammonia secretion

and pH at 0, 2, 4, 18 and 24 hours after inoculation. In these

conditions, the ansA-KO mutant was still completely impaired in

ammonia secretion and pH buffering, as compared to its wild-type

and complemented counterparts (Figure S4B–D). Collectively,

these results unequivocally demonstrate that, in particular in an

acidic environment, asparagine catabolism partially requires

AnsP2 and is strictly dependent on AnsA to sustain M. tuberculosis

growth in the presence of asparagine. These results also underline

that asparagine hydrolysis, ammonia release, pH buffering and

growth in acidic conditions are intrinsically linked molecular

events in M. tuberculosis.

We next evaluated to what extent the sensitivity of our mutants

to acid stress may impact their ability to survive in an acidic

phagosome and to parasitize host macrophages. We first assessed

whether asparagine can access the mycobacterial phagosome

inside infected cells. To this aim, we employed secondary ion mass

spectrometry (SIMS), a method that allows the visualization of

isotopic labeling and metabolites in biological samples with sub-

micrometer resolution. We infected mouse bone marrow-derived

macrophages (BMMs) with 13C-labelled M. tuberculosis H37Rv for

20 hours, and pulsed the infected cells with 15N-asparagine for 4 h

before SIMS analysis. Our data clearly indicate that exogenously

provided asparagine accumulates in the mycobacterial phagosome

(in <50% of them in Fig. 4A), as compared to the host cell cytosol

(Fig. 4A,B). Regarding mycobacterial growth, the ansP2-KO

mutant was found not affected in its ability to survive in IFNc-

and LPS-activated BMMs, in which the pH of the mycobacterial

phagosome readily drops below 5.5 ([8]; Figure S5). This result

correlates with the remaining amount of ammonia secretion

observed in this mutant (Fig. 3B). On the other hand, the

intracellular survival of the ansA-KO strain was strongly impaired

in activated BMMs (Fig. 4C). Strikingly, labeling of infected cells

with the acidotropic dye LysoTracker and phagosomal pH

measurement at early time-points after infection revealed that

the phagosomes harboring the ansA-KO mutant acidified more

readily compared to those containing the wild type or comple-

mented strains (Fig. 4D–F). In line with this finding, we also found

that V-ATPase, the proton pump responsible for phagosomal

acidification, accumulated in larger amounts in phagosomes

containing the ansA-KO mutant than in vacuoles containing its

wild-type or complemented counterparts (Figure S6A,B). Consis-

tent with these observations, treatment of BMMs with bafilomycin

A1, a specific V-ATPase inhibitor preventing phagosome acidifi-

cation [47], restored the ability of the ansA-KO mutant to multiply

intracellularly (Fig. 4G). Whether the attenuation phenotype of the

ansA-KO mutant inside macrophages is a cause or a consequence

of impaired asparagine hydrolysis and subsequent reduced

ammonia production and pH buffering capacity is difficult to

delineate, as these molecular events are intrinsically linked one to

each other; nevertheless, our results clearly establish AnsA is

required for intracellular survival of M. tuberculosis.

AnsA is a secreted asparaginase in M. tuberculosis
Strikingly, M. tuberculosis AnsA is more similar to the periplasmic

(type II) asparaginase AnsB than to the cytosolic (type I) enzyme

AnsA from E. coli (35% vs. 28% identity, respectively) [42],

suggesting AnsA might be a secreted asparaginase inM. tuberculosis.

We addressed this important issue using different and comple-

mentary approaches: i) quantification of asparaginase activity in

cell-free culture supernatants by mass spectrometry (MS); ii)

immune-detection of AnsA-HIS6 fusion protein in culture filtrates

from recombinant M. tuberculosis strains; iii) analysis of AnsA

secretion in phagosomes of M. tuberculosis-infected macrophages by

electron microscopy (EM). We incubated bacterial culture

supernatants from the wild type, ansA-KO and complemented

strains with 15N-asparagine and monitored 15N-aspartate produc-

tion by MS. Our data revealed that an asparaginase activity could

Asparagine Metabolism in M. tuberculosis
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be detected in the M. tuberculosis culture supernatant, unless ansA

was genetically inactivated (Fig. 5A). Consistently, we immuno-

detected the AnsA-HIS6 fusion protein in culture filtrate, as well as

in the cell pellet, of recombinant M. tuberculosis by Western blotting

(Fig. 5B). As expected, the strictly cytosolic protein GroEL2 was

detected in the cell pellet only, indicating the absence of bacterial

lysis. Because AnsA does not contain a classical signal peptidase I

cleavage site in its N-terminal end, we investigated whether

alternative secretion systems, such as the SecA2 secretion system

[48,49] or the ESX-1 and ESX-5 type VII secretion systems [50]

might be involved in AnsA secretion. To this aim, we transformed

ESX-1, ESX-5 and SecA2-KO mutants with the AnsA-HIS6
fusion-encoding plasmid, purified the culture filtrate from expo-

nentially growing cultures, and immuno-detected the fusion

protein using the anti-HIS6 antibody. Our data indicate that

AnsA secretion is independent of SecA2 and ESX-1 (Fig. 5B). As a

control, the SecA2-dependent protein SodA was not detected in

the supernatant of the SecA2-KO strain. Surprisingly, secretion of

AnsA was impaired in the ESX-5 mutant (Fig. 5B,C), indicating

the involvement of this type VII secretion system in the secretion

of the enzyme. In order to evaluate whether AnsA is also secreted

in the phagosomal lumen inside macrophages, we used EM and

Ni-NTA-Nanogold to detect AnsA-HIS6 in ultrathin sections of

cells infected with M. tuberculosis carrying or not the AnsA-HIS6
fusion-encoding genetic construct. Gold particles were detected in

the phagosomal lumen, strongly suggesting AnsA is also secreted in

host cells during infection (Fig. 5D).

Collectively, this study puts forward an acquisition system for

asparagine that not only protects against phagosomal acidification,

but also serves to assimilate nitrogen from this amino acid species,

with a central role for the asparaginase AnsA in enhancing the

fitness of M. tuberculosis during host colonization.

Figure 2. AnsP2 and AnsA are involved in nitrogen incorporation from asparagine in M. tuberculosis. (A) Frequency of 15N-glutamate
(GLU) and 15N-glutamine (GLN) detected in the presence of U-15N-Asn (2 mM) in M. tuberculosis wild type (H37Rv), the ansP2-KO mutant and its
complemented strain (Compl.). (B) Total asparagine (ASN), glutamate (GLU) and glutamine (GLN) ion counts in M. tuberculosis wild type (H37Rv), the
ansA-KO mutant and its complemented strain (Compl.). (C) Frequency of 15N-glutamate (GLU) and 15N-glutamine (GLN) detected in M. tuberculosis
wild type (H37Rv), the ansA-KO mutant and its complemented strain (Compl.) cultivated in minimal medium in the presence of 2 mM 15N-asparagine
as sole nitrogen source. #, not detected. Data represent mean6s.d. of triplicate samples, are representative of two independent experiments, and
were analyzed using the Student’s t test; *, P,0.05; **, P,0.01; ***, P,0.001; ****, P,0.0001.
doi:10.1371/journal.ppat.1003928.g002
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Discussion

Identifying the nutrients used by M. tuberculosis to assimilate

essential elements, such as carbon and nitrogen, is key to

understanding host-pathogen interactions in TB. In this context,

we recently reported that aspartate is a key nitrogen source used

by M. tuberculosis during infection [30,31]. Here we further show

that asparagine can serve as an additional source of nitrogen for

the pathogen through transport by the amino acid permease

AnsP2, and subsequent hydrolysis by the asparaginase AnsA

(Fig. 6). Furthermore, our results establish a unique link between

mycobacterial physiology and virulence since we show AnsA has a

dual function in both nitrogen assimilation and in protection

against acid stress in vitro and inside host cells (Fig. 4). Our results

are most likely relevant from a physiological viewpoint since

asparagine is present at 50–60 mM in the human plasma [51], and

is 2- to 4-fold more concentrated in white blood cells [29,51,52].

In addition, we further show here that asparagine accumulates in

the mycobacterial vacuole inside infected macrophages. Altogeth-

er, these observations indicate that asparagine is most likely readily

accessible to M. tuberculosis during infection in vivo.

Regarding asparagine uptake in M. tuberculosis, it is clear from

the present study that one or more transporter(s) complement the

function of AnsP2, since the ansP2-KO mutant was only partially

impaired in nitrogen incorporation from asparagine in vitro, and it

was not attenuated inside host cells and in vivo. The AnsP2

paralogue AnsP1 (72% identity) is an obvious candidate to fulfill

this function [32]. However, we previously reported that the M.

tuberculosis ansP1-KO mutant grows and incorporates asparagine

equally well, compared to the wild-type strain, when grown on

asparagine as sole nitrogen source [30]. Furthermore, we found

the ansP1-KO mutant transports asparagine to the same extent as

the wild-type strain in vitro (data not shown). In addition to AnsP1,

two other putative amino acid transporters, namely CycA/

Rv1704c and GabP/Rv0522 [32], show some similarity with

AnsP2 (38% and 34% identity, respectively) and may contribute to

asparagine transport. The construction of multiple mutants

inactivated in two or more of these candidates will be required

in order to uncover the complete asparagine transport machinery

in M. tuberculosis, which will be the purpose of future study.

Nevertheless, our results identify AnsP2 as an important aspara-

gine transporter in M. tuberculosis, in particular at acidic pH.

Beyond the complexity of asparagine uptake, further efforts

should be allocated to deciphering the exact contribution of AnsA

to mycobacterial virulence. Whether attenuation of the ansA-KO

mutant in vivo is due to its inability to counteract phagosome

acidification and/or to incorporate nitrogen from asparagine

resulting in an impaired fitness will require careful investigation;

however such an investigation will be made difficult by the

intrinsically linked nature of the asparagine hydrolysis, ammonia

release and pH buffering phenomenons in M. tuberculosis, as

revealed by our study and in a previous report [46]. In this

context, it is worth noticing that, like AnsA, another mycobacterial

hydrolase, namely the urease, was proposed to play a part both in

nitrogen acquisition and in counteracting phagosome acidification

through hydrolysis of urea and subsequent release of ammonia

[53–55]. However, unlike for AnsA, mycobacterial mutants

deficient in urease production are barely impaired in intracellular

survival and their capacity to persist or multiply in vivo is not

affected [53–55].

Finally, a role for asparaginase in virulence of other bacterial

pathogens, including Helicobacter pylori, Campylobacter jejuni and

Salmonella typhimurium, has been reported [56–60]. In these species,

asparaginase is secreted into the periplasm and is thought to

Figure 3. Varied requirement of AnsP2 and AnsA for M. tuberculosis resistance to acid stress in vitro. (A–C) Growth (A), culture
supernatant NH4

+ concentration (B) and pH (C) of M. tuberculosis H37Rv, the ansP2-KO mutant strain, or the ansP2-KO complemented strain (Compl.)
at acidic pH (5.5) in the presence of asparagine as sole nitrogen source. (D–F) Growth (D), culture supernatant NH4

+ concentration (E) and pH (F) of M.
tuberculosis H37Rv, the ansA-KO mutant strain, or the ansA-KO complemented strain (Compl.) at acidic pH (5.5) in the presence of asparagine as sole
nitrogen source. Data represent mean6s.d. of triplicate samples and are representative of at least three independent experiments. #, not detected.
doi:10.1371/journal.ppat.1003928.g003
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Figure 4. Requirement of AnsP2 and AnsA for M. tuberculosis resistance to acid in host macrophages. (A,B) Exogenous asparagine
accumulates in the mycobacterial phagosome. (A) Images from a representative infected cell showing the locations of M. tuberculosis (13C% map,
middle) and 15N-asparagine uptake (15N/14N ratio map, right), as derived from secondary ion mass spectrometry (SIMS) analysis of M. tuberculosis
H37Rv-infected mouse bone marrow-derived macrophages (BMMs). 13C-labeled bacteria were used to infect BMMs at a multiplicity of infection of 10
bacteria per cell. At 20 h post-infection, infected cells were pulsed for 4 h with 5 mM 15N1 (amine)-asparagine, and

13C and 15N isotope proportions
were analyzed. (B) Quantification of 15N isotope enrichment in surface areas chosen in the intracellular 13C-labeled bacteria; ‘‘background’’ indicates
the level of enrichment measured in the host cell cytoplasm. For more details about the technique, see [30]. (C) IFNc- and LPS-activated BMMs were
infected with M. tuberculosis wild type (H37Rv), the ansA-KO mutant or its complemented strain (Compl.) at a multiplicity of infection (MOI) of 0.1
bacterium/cell for 4 h at 37uC. Cells were washed and further incubated with fresh medium for 0, 2 or 5 days. At the indicated time-points, cells
lysates were plated for CFU scoring. (D) Confocal microscopy analysis of activated BMMs infected for 1 h with Alexa Fluor 488-labeled M. tuberculosis
wild type (H37Rv), the ansA-KO mutant or its complemented strain (Compl.) (green), and stained with LysoTracker Red DND-99 (red) and DAPI (blue)
to visualize nuclei. Bar represents 10 mm. Arrowheads point to example phagosomes considered positive for LysoTracker staining. (E) Quantification
of LysoTracker-positive phagosomes in samples prepared as in (h) 2 or 4 h after infection. Colocalisation events were recorded in <300 phagosomes
observed in <10 different fields. (F) Phagosomal pH measured by flow cytometry in activated BMMs infected with M. tuberculosis wild type (H37Rv),
the ansA-KO mutant or its complemented counterpart (Compl.). (G) Cells were pre-incubated with 100 nM bafilomycin A1 for 1 h, infected as in (C)
and bafilomycin A1 was removed after 24 h. All data are representative of at least three independent experiments. In (C), (E) and (G), data represent
mean6s.d. of triplicate samples, and were analyzed using the Student’s t test. *, P,0.05; **, P,0.01; ***, P,0.001; ****, P,0.0001.
doi:10.1371/journal.ppat.1003928.g004

Asparagine Metabolism in M. tuberculosis

PLOS Pathogens | www.plospathogens.org 7 February 2014 | Volume 10 | Issue 2 | e1003928



contribute to host colonization either through direct microbial

asparagine utilization in vivo [56], or through indirect starvation-

mediated exhaustion of immune cells following asparagine

depletion in infected tissues [57–60]. The M. tuberculosis asparag-

inase AnsA does not contain any detectable signal sequence in its

N-terminal end. Yet, we show that this enzyme is secreted in vitro

and inside infected macrophages through an alternative SecA2-

and ESX-1-independent pathway that relies, at least partially, on

the ESX-5 type VII secretion system [50]. The exact mechanism

of AnsA secretion, and the extent to which ESX-5 is involved in

this process, remain to be further delineated; however it is worth

noticing that AnsA contains two sequences resembling the ESX

secretion signal consensus YXXXD/E: Y207PGSD211 and

Y282GPGHD287 [61]. Whether these motifs play a part in AnsA

secretion will need to be understood; equally important will be to

understand the role of AnsA beyond nitrogen supply to the

pathogen, possibly in asparagine depletion and immune cell

exhaustion, as reported for other pathogens [57].

In conclusion, our study provides yet another example of the

tight connections forged throughout evolution between physiology

and virulence in microbial pathogens. It also highlights the need to

further explore the expanding field of metabolism and infection in

order to accelerate the identification and validation of novel

strategies to combat infections and disease.

Materials & Methods

Mycobacteria and culture conditions
Mycobacteria were grown at 37uC in Middlebrook 7H9

medium (Difco) supplemented with 10% albumin-dextrose-cata-

lase (ADC, Difco) and 0.05% Tween-80 (Sigma), or on

Middlebrook 7H11 agar medium (Difco) supplemented with

10% oleic acid-albumindextrose- catalase supplement (OADC,

Difco). When required, kanamycin, hygromycin, streptomycin

(50 mg/mL) or zeocin (25 mg/mL) were added to the culture

media. The ESX-1 and ESX-5 mutants have been described

Figure 5. In vitro expression and localization of recombinant AnsA-His6 in M. tuberculosis wild-type and ESX-1, ESX-5 or SecA2
mutant strains. (A) Asparaginase activity in the supernatant of M. tuberculosis ansA-KO mutant and its wild-type and complemented counterparts.
Fifty mL of cultures (OD600<0.5) were concentrated 50 times. The concentrates were incubated with 15N1 (amine)-asparagine at 37uC; at the indicated
time points, the reaction mixtures were mixed with an equal volume of acetonitrile:methanol:water (2:2:1) and analyzed by MS for the presence of
15N-aspartate. (B) Expression and secretion of AnsA-His6 in M. tuberculosis wild-type and DESX-1 [63], DESX-5 [62], DSecA2 (Bottai et al. unpublished
data) mutants. Fifteen mg of total cell lysates or culture filtrate proteins from the different mycobacterial strains were subjected to SDS-PAGE and
tested in Western blotting by using a mouse anti-His6 monoclonal antibody. As control, samples were tested with the anti-ESAT-6 and anti-SodA
monoclonal antibodies. Preparations were also tested with the anti-GroEL2 antibody, which was used for lysis control. As expected, cell lysates and
cell culture filtrates from all M. tuberculosis strains transformed with the empty vector p-VV16 were negative when tested with the anti-His6
monoclonal antibody (data not shown). (C) Quantification of the relative expression of AnsA-HIS6 in the culture filtrate, as compared to in the cell
pellet, in the WT and ESX-5-KO strains. Data represent mean6s.d. of triplicate samples, and were analyzed using the Student’s t test. ****, P,0.0001.
(D) Ni-NTA-Nanogold detection of AnsA-HIS6 by electron microscopy in ultrathin sections of M. tuberculosis-infected BMMs. Bar indicates 0.5 mm;
arrowheads indicate gold particles in the phagosomal lumen.
doi:10.1371/journal.ppat.1003928.g005
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previously [62,63]. A SecA2 mutant carrying a kanamycin-

inactivated copy of the secA2/rv1821 gene was constructed using

a similar strategy based on the ts-SacB technology (Bottai et al.

Unpublished data). For growth tests with asparagine as a carbon

source, bacteria were grown in Sauton’s modified medium

(pH 6.5–7.0) containing, 0.5 g/L KH2PO4, 0.5 g/L MgSO4,

50 mM asparagine, 0.05% tyloxapol (Sigma) and supplemented

with or without 10 g/L glycerol and 15 mM (NH4)2SO4. For

growth tests with asparagine as sole nitrogen source, bacteria were

grown in Sauton’s modified medium containing 0.05% Tween-80,

0.5 g/L KH2PO4, 0.5 g/L MgSO4, 2 g/L citric acid, 10 g/L

glycerol and 5 mM asparagine prepared in tap water and

neutralized to pH 7.0 or pH 5.5 with NaOH before autoclaving.

Cultures were performed in triplicate in glass tubes and bacterial

growth was monitored measuring turbidity (in McFarland units)

over time using a Densimat apparatus (BioMerieux).

Construction of ansP2-KO and ansA-KO mutants and
complemented strains
The ansP2-KO mutant strain of Mycobacterium tuberculosis H37Rv

containing a disrupted ansP2 (Rv0346c)::KanR allele was con-

structed by allelic exchange using recombineering [30,37].

H37Rv:pJV53 was grown in 7H9-ADC-Tween 80 in the presence

of hygromycin until mid-log phase and expression of the

recombineering enzyme was induced by 0.2% acetamide (Sigma)

overnight at 37uC. After induction, electrocompetent bacteria

were prepared. Electroporation was performed with a linearized

fragment of a kanamycin resistance cassette-interrupted ansP2

gene flanked with homologous regions (400–500 bp length). After

72 h incubation at 37uC, bacteria were plated onto 7H11-OADC

agar medium in the presence of kanamycin. For the complemen-

tation of the ansP2-KO strain, we used the pYUB412-derived

integrative cosmid I541, which contains a hygromycin resistance

cassette and harbors a fragment encompassing the region 398 to

432 kbp in the genome of M. tuberculosis H37Rv. For the ansA-KO

strain construction, a second copy of the ansA gene was first

integrated in the chromosome of wild type H37Rv at the

bacteriophage insertion site attL5. For this, we used the plasmid

pGMCS-Puv15-ansA which contains the ansA gene under the

control of the Psmyc promoter and a streptomycin resistance

cassette[64]. After selection of streptomycin resistant clones, the

original ansA gene was disrupted using a linearized digestion

fragment of kanamycin resistance cassette-interrupted ansA gene

flanked with homologous regions (450–600 bp length). The

additional copy of ansA was then deleted by replacing pGMCS-

Puv15-ansA with the plasmid pGMCZq17, which contains a

zeocine resistance cassette. Selection of a zeocin resistant clone

resulted in an ansA-KO strain and proved that ansA is not essential.

For complementation of the ansA-KO strain, the pYUB412-

derived integrative cosmid I16 encompassing the region 1,719 to

1,756 kbp in the genome of M. tuberculosis H37Rv, and containing

a hygromycin resistance cassette was used.

Figure 6. Schematic representation of the role of asparagine catabolism in nitrogen incorporation, resistance to acid and
intracellular survival. Within macrophages, asparagine enters the M. tuberculosis phagosome through an unknown mechanism. Asparagine is
captured by M. tuberculosis through AnsP2 and one or more other yet to be identified transporter(s), and hydrolyzed by cytosolic AnsA resulting in
nitrogen assimilation into glutamine and glutamate, and release of ammonia. AnsA is secreted in the lumen of the phagosome through, at least in
part, an ESX-5-dependent mechanism. AnsA can also hydrolyze asparagine in the lumen of the phagosome, resulting in the production of aspartate
and ammonia. Aspartate is imported by AnsP1 [30] for nitrogen assimilation. In the phagosomal lumen, ammonia reacts with protons transported by
the V-ATPase to form ammonium ions allowing phagosomal pH buffering.
doi:10.1371/journal.ppat.1003928.g006
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14C-Asparagine uptake experiment
Asparagine uptake experiments were carried out as described

elsewhere with minor modifications [46]. Briefly, bacteria were

grown in Middlebrook 7H9 containing 0.05% Tween 80 and

asparagine (5 mM) at 37uC. Bacteria were harvested by centrifu-

gation when an OD600,0.5 was reached. Bacterial pellets were

washed twice in uptake buffer [50 mM Tris-HCl pH 6.9, 15 mM

KCl, 10 mM (NH4)2SO4, 0.05% Tween 80] and resuspended in

the same buffer. Radiolabeled 14C-asparagine (PerkinElmer) and

non-labeled asparagine (Sigma) were mixed (3:1) and added to

5 mL of cell suspensions to obtain a final concentration of 20 mM

asparagine. The mixtures were incubated at 37uC and 250 mL of

samples were removed at the indicated time points. Bacteria were

collected on a 0.45 mm Spin-X centrifuge tube filter (Costar) by

mixing with an equal volume of 10% paraformaldehyde (Poly-

science, Inc) containing 0.1 M LiCl (Sigma). Filters radioactivity

was determined in a liquid scintillation counter (Packard). The

uptake rate was expressed in desintegration per minute (DPM) per

total protein concentration (14C-Asn (DPM). mg protein-1).

Ammonium and pH measurement
Bacteria were grown in supplemented 7H9 with 0.05% Tween-

80 until OD600,1. 10 mL of cultures were removed and washed

twice with DPBS and used for inoculation of 200 mL Sauton’s

modified medium containing 0.05% Tween-80, 0.5 g/L KH2PO4,

0.5 g/L MgSO4, 2 g/L citric acid, 10 g/L glycerol and 5 mM

asparagine prepared in tap water and buffered to pH 5.5 with

NaOH before autoclaving. Bacteria were incubated at 37uC and,

at indicated time points, 1 mL of culture was removed and

centrifuged at 1,300 rpm for 2 min to collect supernatants. To

determine ammonium concentration, supernatants were diluted 4-

fold in DPBS and 50 mL of diluted samples were mixed in a 96

plate with 50 mL of Nessler’s reagent (Fluka) and incubated for

20 min at room temperature. 100 mL of NaOH were then added

to stop the reaction prior to measurement of OD520 using a

mQuant apparatus (BIO-TEK instruments, Inc). pH was measured

directly in 1 mL of culture supernatant using a pH-meter.

Expression, purification and measure of enzymatic
activity of recombinant HIS6-tagged AnsA
The ansA gene was cloned into a pVV16 vector allowing the

constitutive expression of C-terminus HIS6-tagged fusion proteins

under the control of a GroEL2 promoter and carrying kanamycin

and hygromycin resistance cassettes. The pVV16 ansA-his6 vector

was electroporated into the non-pathogenic fast-grower Mycobac-

terium smegmatis mc2155 strain and clones containing pVV16 ansA-

his6 were selected on solid medium containing kanamycin and

hygromycin.

At OD600,1,5, 15 mL of cultures were centrifuged and washed

with DPBS and bacteria were resuspended in 1 mL of lysis buffer

containing 50 mM NaH2PO4 pH 8.0, 300 mM NaCl and 10 mM

imidazole and broken with glass beads (0.1–0.25 mm) for 10 min

at 30 m/s using a Bead Beater apparatus (Retscher, BioBrock

scientific). AnsA-HIS6 protein was purified from 600 mL of lysates

using the Ni-NTA Spin kit (QIAGEN) and eluted in an elution

buffer containing 50 mM NaH2PO4, 300 mM NaCl and 400 mM

imidazole at pH 8. AnsA-HIS6 purified fraction was quantified

using the Bradford method.

For enzymatic tests, we used the L-Asparagine/L-Glutamine/

Ammonia Assay Kit (Megazyme) following manufacturer’s recom-

mendations and using asparagine or glutamine (final concentration

0.6 mM) as substrates. The buffer used in this assay contains

glutamate dehydrogenase, NADPH and 2-oxoglutarate, so that

enzymatic activities were measured by following the disappearance

of NADPH along time as an indirect indication of asparagine

deamination at 340 nm using a SAFAS Monaco mc2 spectropho-

tometer and the SAFAS SP 2000 software.

Preparation of culture filtrates and total lysates from M.

tuberculosis strains and immunoblotting
The procedures were as previously described [62]. Immunoblot

analyses were carried out with mouse monoclonal antibodies

raised against EsxA (Hyb76-08, Antibodyshop, BioPorto Diag-

nostics) or SodA (NR-13810, clone CS-18, produced in vitro,

received from BEI resources NuSOE76725), or with a rabbit

polyclonal antibody against the HIS6 tag (eBioscience). As control,

culture supernatants were also analyzed by Western blot for the

presence of GroEL2 (anti-GroEL2 monoclonal antibody, Colora-

do State University, NIH, NIAID contract NuAI75320).

Metabolite extraction experiments
Bacteria were cultivated to an OD600 of 1 in 7H9-0.05%

Tween-80. Bacteria were centrifuged and resuspended in DPBS

(3-fold concentration). 1 mL was transferred to a filter (Fisher)

mounted on a filtration device (Fisher) and connected to a trap and

vacuum line. Filters were transferred to a 7H10 based agar

medium (Sigma) supplemented with asparagine (2 mM) or to solid

media containing 0.5 g/L KH2PO4, 0.5 g/L MgSO4, 2 g/L citric

acid, 10 g/L glycerol, aspartate (2 mM) and 1.5% agar (Invitro-

gen) prepared in tap water and neutralized to pH 6.5–7.0 with

NaOH before autoclaving. Plates were incubated for 5 days at

37uC. Three filters were used per strain and time point. For

labeling experiments, filters were transferred on equivalent plates

where aspartate was replaced by 15N2-asparagine (2 mM, Sigma,

Purity 98 atom % 15N) and incubated for 0.5, 2, 4 or 8 h at 37uC.

At each time point, filters were plunged into 1 mL acetonitrile/

methanol/water (2:2:1, v/v/v) mixture at 240uC. Bacteria were

then broken by glass beads using a bead-beater (5 min at 30 m/s).

After centrifugation, supernatants were collected and filtered

through a Spin-X column 0.2 mm at 14,000 rpm for 15 min.

Extracts were stored at 280uC before analysis.

Liquid chromatography-mass spectrometry
Aqueous normal phase liquid chromatography was performed

using an Agilent 1200 LC system equipped with a solvent degasser,

binary pump, temperature-controlled auto-sampler (set at 4uC)

and temperature-controlled column compartment (set at 20uC),

containing a Cogent Diamond Hydride Type C silica column

(150 mm62.1 mm; dead volume 315 ml), from Microsolv Tech-

nology Corporation. Flow-rate of 0.4 ml/min was used. Elution of

polar metabolites was carried out using gradient 3[65]. Briefly,

solvent A consists in deionized water (Resistivity , 18 MV cm),

0.2% acetic acid and solvent B consists in acetonitrile and 0.2%

acetic acid, and the gradient as follows: 0 min 85% B; 0–2 min

85% B; 2–3 min to 80% B; 3–5 min 80% B; 5–6 min to 75% B;

6–7 min 75% B; 7–8 min to 70% B; 8–9 min 70% B; 9–10 min to

50% B; 10–11 min 50% B; 11–11.1 min to 20% B; 11.1–14 min

hold 20% B. Accurate mass spectrometry was carried out using an

Agilent Accurate Mass 6230 TOF apparatus. Dynamic mass axis

calibration was achieved by continuous infusion, post-chromatog-

raphy, of a reference mass solution using an isocratic pump

connected to a multimode ionization source, operated in the

positive-ion mode. ESI capillary and fragmentor voltages were set

at 3,500 V and 100 V, respectively. The nebulizer pressure was set

at 40 psi and the nitrogen drying gas flow rate was set at 10 L/

min. The drying gas temperature was maintained at 250uC. The
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MS acquisition rate was 1.5 spectra/sec and m/z data ranging

from 80-1,200 were stored. This instrument routinely enabled

accurate mass spectral measurements with an error of less than 5

parts-per-million (ppm), mass resolution ranging from 10,000–

25,000 over the m/z range of 121–955 atomic mass units, and a

100,000-fold dynamic range with picomolar sensitivity. Data were

collected in the centroid mode in the 4 GHz (extended dynamic

range) mode. Detected m/z were deemed to be identified

metabolites on the basis of unique accurate mass-retention time

identifiers for masses exhibiting the expected distribution of

accompanying isotopomers (21035735). Typical variation in

abundance for most of the metabolites stayed between 5 and

10% under these experimental conditions.

15N-labeling analysis
Under the experimental conditions described above, M+1

arising from 15N incorporation can be readily distinguished from

M+1 arising from natural abundance 13C, therefore allowing

direct monitoring of 15N labeling. The extent of 15N labeling for

each metabolite was determined by dividing the summed peak

height ion intensities of all 15N labeled species by the ion intensity

of both labeled and unlabeled species, expressed in percent.

Macrophages & infection procedure
Bone marrow cells were flushed from the femurs and tibias of 6–

8 weeks old female C57BL/6 mice, and cultured in Petri dishes

(2.106 cells/dish) in RPMI 1640 GlutaMax (GIBCO) supplement-

ed with 10% fetal calf serum (FCS, Pan-Biotech) and 20 ng/mL

macrophage colony-stimulating factor (M-CSF, Peprotech) at

37uC in the presence of 5% CO2. At day 6, cells were transferred

to 24-well plastic plates (2.105 cells/well). For macrophage

activation, cells were incubated with 10 ng/mL interferon gamma

(IFNc, Peprotech) and 5 ng/mL LPS (Invivogen) overnight prior

to infection. Infection was performed in triplicate at a multiplicity

of infection of 0.1 bacterium per cell for 4 h at 37uC. Cells were

then washed 2 times with DPBS before addition of fresh medium.

At day 0, 2 and 5, cells were lysed in 0.01% Triton X-100 (Sigma),

and serial dilutions of the lysates were plated onto 7H11-OADC

agar medium for CFU scoring. For infection experiments using

Bafilomycin A1 (Sigma), cells were pre-incubated 1 h with

100 nM bafilomycin A1 prior to infection and removed at 24 h

post-infection.

Secondary ion mass spectrometry
SIMS analysis was carried out using a modified version of a

previously described protocol [30]. Briefly, for 13C labeling,

bacteria were grown in minimal medium containing 0.5 g/L

KH2PO4, 0.5 g/L MgSO4, 15 mM NH4SO4, 10 g/L 13C

glycerol supplemented with 0.05% tyloxapol (Sigma) and neutral-

ized to pH 6.5–7.0 with NaOH before filtration. In order to

overcome the difficulties encountered during the sample prepara-

tion stage in our previous experiments due to incomplete resin

infiltration [30], in the present study cells were deposited directly

on clean Silicon chips, and were infected and labeled. Macro-

phages were infected at a multiplicity of infection of 10 bacteria

per cell with 13C labeled-bacteria for 4 hours. At 20 h post-

infection, the culture medium was replaced by fresh RPMI

containing 10% FCS and 5 mM 15N1 (amine)-asparagine. After 4 h

at 37uC, cells were fixed with 4% PFA, 2.5% glutaraldehyde in a

0.1 M cacodylate buffer (pH 7.4). The detailed analytical condi-

tions for SIMS imaging were described previously [30]. Briefly, a

NanoSIMS-50 Ion microprobe (CAMECA, Gennevilliers, France)

operating in scanning mode was used [66]. A Cs+ primary ion

beam steps over the surface of the sample and four secondary ion

species (12C2, 13C2, 12C14N2, 12C15N2) were monitored simul-

taneously to create images of these selected ion species. The

identification of bacteria location was highlighted by high 13C

content while the asparagine uptake was revealed by 15N

enrichment. Prior to image acquisition, the upper layer of the

cells was eroded away using high density primary Cs+ ion

bombardment until the underlying structures with 13C-labeled

bacteria could be observed. Consequently, analysis of 15N

enrichment could be performed. The image acquisition was then

carried out using multiframe mode. The primary beam intensity

was 1 pA with a typical probe size of 100 nm (distance between

16%–84% of peak intensity from a line scan) and the raster size

ranges from 40 to 50 mm in order to image a whole cell with an

image definition of 5126512 pixels. With a dwell time of 2 ms per

pixel, up to 25 frames were acquired and the total analysis time

was 3 hours. Image treatment was performed using ImageJ

software [67]. First, multiframe images were properly aligned

using CN2 images as reference before a summed image was

obtained for each ion species. A map of 13C atomic fraction was

deduced from 12C2 and 13C2 images. In parallel, regions of

interest were manually defined based on the 13C2 map so as to

outline individual bacterium for data extraction. For 15N/14N

ratio quantification, a sample containing no labeled cells was used

as working reference for adjusting the detectors. Finally, the 13C

map, as well as the one for 15N/14N ratio, are displayed in Hue-

Saturation-Intensity (HSI) mode. These HSI color images were

generated using OpenMIMS, an ImageJ plugin developed

by Claude Lechene’s Laboratory (http://nrims.harvard.edu/

software) [68]. Although the cellular structures were less visible

using this method compared to the ones obtained with thin

sections of resin-embedded cells, we have shown in the previous

study [30] that the results were similar, either for 13C labeling, or

for 15N enrichment.

Immuno-electron microscopy
Mouse bone marrow-derived macrophages infected with either

the wild type strain of M. tuberculosis H37Rv or the recombinant

strain over-expressing His-tagged AnsA were first fixed for 1 h at

room temperature with a mixture of EM grade 2.5% paraformal-

dehyde (Euromedex) and 0.1% glutaraldehyde (Sigma) prepared

in 0.1 M Na-cacodylate buffer, pH 7.2, containing 5 mM CaCl2,

5 mM MgCl2 and 0.1 M sucrose. Cells were then washed twice

with the same buffer for 15 min each, once with the same buffer

containing 50 mM NH4Cl for 15 min and once with the same

buffer devoid of sucrose for 5 min. Cells were scraped off the

culture dishes with a rubber policeman and concentrated in 1%

agar prepared in the same buffer devoid of sucrose. Cells were

then processed for embedding in Lowicryl HM20 using the PLT

(progressive lowering of temperature) procedure [69]. High-

resolution labeling of His-tagged AnsA was performed on thin

sections (90 nm-thick) deposited onto carboned-coat nickel EM

grids as previously described [70,71]. Briefly, grids were sequen-

tially floated on i) water for 5–10 min, ii) PBS-1% BSA for 5 min

to block unspecific sites, iii) 5 nm Ni-NTA-Nanogold diluted 5-

fold in PBS containing 0.5% BSA and 0.05% Tween 20 for

30 min, iv) 5 mM imidazole for 1 min, v) PBS for 361 min, and

vi) distilled H2O for 265 min. All incubations were carried out at

room temperature. Sections were either not stained or slightly

stained for 30 sec with 1% uranyl acetate in distilled water, and

observed under the electron microscope (Zeiss 912).

Confocal microscopy & flow cytometry
Murine macrophages were prepared as described above, plated

after 6 days of differentiation on cover glasses at 2.105 cells/well in
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a 24-well plates, and activated with IFNc (10 ng/mL) and LPS

(5 ng/mL) overnight prior to infection. 10 mL of bacteria grown

until OD600 of 1 in complete 7H9 were centrifuged for 7 min at

4,000 rpm, and washed two times with 20 mL DPBS. For bacteria

labeling, pellets were suspended in 250 mL of Alexa Fluor 488

succinimidyl ester (Fisher) (1.5 mL Alexa Fluor 488 in 248.5 mL

DPBS) or, for intra-phagosomal pH measurement, in 250 mL

Alexa Fluor 647-NHS ester and 5-carboxyfluorescein succinimidyl

ester (Fisher) (1.5 mL each in 247 mL DPBS), and incubated at

room temperature for 45 min. Bacteria were then washed two

times with 20 mL DPBS and disaggregated manually for 30 sec

with sterile glass beads. Bacteria were then resuspended in 7 mL of

complete RPMI and centrifuged for 5 min at 1,200 rpm to

remove aggregates. The OD600 of bacterial suspensions was then

measured to determine the number of bacteria. Cells were infected

at an MOI of 10 bacteria/cell for 1 h at 37uC and washed two

times with DPBS before addition of fresh medium. After 1 and 3 h

infection, cells were stained with 1 mM LysoTracker Red DND-99

(Molecular Probes) in complete RPMI for 1 h, washed with DPBS

and fixed for 2 h with PFA 4% at room temperature. For

immuno-detection of the V-ATPase, a rabbit polyclonal antibody

(Synaptic Systems) was used at 1/100 dilution. Cover glasses were

then mounted on glass slides using a VECTASHIELD Hardset

Mounting Medium with DAPI (Cliniscience) and stored overnight

at 4uC. Images were acquired with an LSM710 microscope

equipped with a 406 1.30 NA objective (Carl Zeiss, Inc.),

recorded with Zen software (Carl Zeiss, Inc.), and analyzed with

ImageJ software. All images were acquired with the same confocal

microscope settings. The LysoTracker or V-ATPase signal

intensity of every phagosome was measured with ImageJ software

and the same threshold was applied for each condition to count

the proportions of LysoTracker- or V-ATPase-positive phago-

somes. See Figure 3 and S6 for examples of phagosomes that were

considered positive for LysoTracker and V-ATPase, respectively.

Quantification of LysoTracker- and V-ATPase-positive phago-

somes was realized for <300 phagosomes per condition. For

phagosomal pH measurement, we used a modified version of a

protocol we previously described [72]. Briefly, macrophages were

pulsed with the dual dye-coupled (Alexa Fluor 647, 5-Carboxy-

fluorescein) mycobacteria (MOI 50) for 15 min and washed 3

times with PBS. The cells were then incubated at 37uC for the

indicated times and immediately analyzed by FACS, using a

gating FSC/SSC selective for macrophages. The ratio of the mean

fluorescence intensity (MFI) emission between the two dyes was

determined. Values were compared with a standard curve

obtained by resuspending the cells that had phagocytosed labeled

bacteria for 1 h at a fixed pH (ranging from pH 5.7 to 7.3) and

containing 0.1% Triton X-100. Cells were immediately analyzed

by FACS to determine the emission ratio of the two fluorescent

probes at each pH value.

Mouse infection
All animal experiments were performed in animal facilities that

meet all legal requirements in France and by qualified personnel in

such a way to minimize discomfort for the animals. All procedures

including animal studies were conducted in strict accordance with

French laws and regulations in compliance with the European

community council directive 68/609/EEC guidelines and its

implementation in France. All protocols were reviewed and

approved by the Comité d’Ethique Midi-Pyrénées (reference MP/

04/26/07/03). Six- to eight-week-old female C57BL/6 mice were

anesthetized with a cocktail of ketamine (60 mg/kg; Merial) and

xylasine (10 mg/kg; Bayer) and infected intranasally with

1,000 CFUs of the various mycobacterial strains in 25 mL of

PBS-0.01% Tween 80. At 21 days post-infection, five mice per

strain tested were sacrificed and lung and spleen homogenates

were plated onto 7H11 agar plates for CFU scoring.

Supporting Information

Figure S1 A genetic strategy to construct the ansA-KO

mutant in M. tuberculosis, including the assessment of

its essentiality. (a) Genetic organization of the ansA locus in M.

tuberculosis. (b) We first generated a merodiploid strain harboring

an additional copy of ansA at the phage recombination site attL5

[43]. (c) The original ansA gene was replaced by a kanamysin-

resistance cassette through recombination. (d) Exogenously

inserted ansA allele was replaced by a zeocin resistance cassette.

(JPG)

Figure S2 Growth of ansA-KO with asparagine or

glutamate as sole nitrogen source. Growth of M. tuberculosis

H37Rv or the ansA-KO mutant strains in minimal medium

containing 5 mM asparagine (ASN) or 5 mM glutamate (GLU) as

sole nitrogen source. Growth was measured by monitoring

turbidity; data represent mean6s.d. of triplicate samples and are

representative of two independent experiments.

(JPG)

Figure S3 Asparagine supports M. tuberculosis growth

mostly through providing nitrogen. Growth of M. tuberculosis

H37Rv in minimal medium containing 50 mM asparagine (Asn),

50 mM asparagine and 15 mM ammonium (Asn + NH4
+) or

50 mM asparagine and 10 g/L glycerol (Asn + Gro). Growth was

measured by monitoring turbidity; data represent mean6s.d. of

triplicate samples and are representative of at least three

independent experiments.

(JPG)

Figure S4 AnsA is essential for nitrogen assimilation

from asparagine at acidic pH. (A) Frequency of 15N-

glutamate (GLU) and 15N-glutamine (GLN) detected in M.

tuberculosis wild type (H37Rv), the ansA-KO mutant and its

complemented strain (Compl.) cultivated in minimal medium in

the presence of 2 mM 15N-asparagine as sole nitrogen source at

pH 5.5. Data represent mean6s.d. of triplicate samples and are

representative of at least two independent experiments. #, not

detected. (B–D) Same experiment as in Fig. 3E,F with a dense

bacterial suspension (OD600=1.5), and with asparagine (B,C) or

aspartate (D) as sole nitrogen source.

(JPG)

Figure S5 AnsP2 is not involved in M. tuberculosis

intracellular survival. IFNc- and LPS-activated mouse bone

marrow-derived macrophages were infected with M. tuberculosis

wild type (H37Rv) or the ansP2-KO mutant at a multiplicity of

infection of 0.1 bacterium/cell for 4 h at 37uC. Cells were washed

and further incubated with fresh medium for 0, 2 or 5 days. At the

indicated time-points, cells lysates were plated for CFU scoring.

(JPG)

Figure S6 V-ATPase accumulates in phagosomes con-

taining the M. tuberculosis ansA-KO mutant. IFNc- and

LPS-activated mouse bone marrow-derived macrophages were

infected with M. tuberculosis wild type (H37Rv), the ansA-KO

mutant or the complemented strain at a multiplicity of infection of

0.1 bacterium/cell for 4 h at 37uC. Cells were washed, fixed,

stained with an anti-V-ATPase antibody and a Texas Red-coupled

secondary antibody, and processed for confocal microscopy

analysis (A). Bar represents 10 mm. Arrowheads point to example

phagosomes considered positive for V-ATPase staining. (B)
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Colocalisation events were recorded in <300 phagosomes

observed in <10 different fields. Data are representative of three

independent experiments. In (B), data represent mean6s.d. of

phagosomes recorded in one representative experiment, and were

analyzed using the Student’s t test; **, P,0.01.

(JPG)

Acknowledgments

We thank Geanncarlo Lugo-Villarino, Alan Bénard, Denis Hudrisier and

Claude Gutierrez for reading the manuscript and helpful suggestions. We

thank Laurence Lepourry and Flavie Moreau for technical assistance with

mouse infections, and Isabelle Vergne and Catherine Astarie-Dequeker for

technical assistance with confocal microscopy. We acknowledge the PICT-

IBiSA imaging facility at the Institut Curie for using the NanoSIMS

microprobe. This work also benefited from the TRI RIO Optical Imaging

Platform at the Institute of Pharmacology and Structural Biology

(Genotoul, Toulouse, France).

Author Contributions

Conceived and designed the experiments: AG LPSdC YP ON. Performed

the experiments: AG GLM DB FL AD JBW ICB TDW RP YP. Analyzed

the data: AG GLM DB CdC JLGK LPSdC YP ON. Contributed

reagents/materials/analysis tools: JBW RB DS. Wrote the paper: AG

LPSdC YP ON.

References

1. Cook GM, Berney M, Gebhard S, Heinemann M, Cox RA, et al. (2009)

Physiology of mycobacteria. Adv Microb Physiol 55: 81–182, 318–189.

2. Schnappinger D, Schoolnik GK, Ehrt S (2006) Expression profiling of host

pathogen interactions: how Mycobacterium tuberculosis and the macrophage adapt

to one another. Microbes Infect 8: 1132–1140.

3. Zhang YJ, Rubin EJ (2013) Feast or famine: the host-pathogen battle over amino

acids. Cell Microbiol 15: 1079–1087.

4. Lee BY, Clemens DL, Horwitz MA (2008) The metabolic activity of

Mycobacterium tuberculosis, assessed by use of a novel inducible GFP expression

system, correlates with its capacity to inhibit phagosomal maturation and

acidification in human macrophages. Mol Microbiol 68: 1047–1060.

5. Simeone R, Bobard A, Lippmann J, Bitter W, Majlessi L, et al. (2012)

Phagosomal rupture by Mycobacterium tuberculosis results in toxicity and host cell

death. PLoS Pathog 8: e1002507.

6. van der Wel N, Hava D, Houben D, Fluitsma D, van Zon M, et al. (2007) M.

tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in

myeloid cells. Cell 129: 1287–1298.

7. de Chastellier C (2009) The many niches and strategies used by pathogenic

mycobacteria for survival within host macrophages. Immunobiology 214: 526–

542.

8. Ehrt S, Schnappinger D (2009) Mycobacterial survival strategies in the

phagosome: defence against host stresses. Cell Microbiol 11: 1170–1178.

9. Russell DG (2001) Mycobacterium tuberculosis: here today, and here tomorrow. Nat

Rev Mol Cell Biol 2: 569–577.

10. Russell DG (2011) Mycobacterium tuberculosis and the intimate discourse of a

chronic infection. Immunol Rev 240: 252–268.

11. Schaible UE, Sturgill-Koszycki S, Schlesinger PH, Russell DG (1998) Cytokine

activation leads to acidification and increases maturation of Mycobacterium avium-

containing phagosomes in murine macrophages. J Immunol 160: 1290–1296.

12. Via LE, Fratti RA, McFalone M, Pagan-Ramos E, Deretic D, et al. (1998)

Effects of cytokines on mycobacterial phagosome maturation. J Cell Sci 111 (Pt

7): 897–905.

13. Appelberg R (2006) Macrophage nutriprive antimicrobial mechanisms. J Leukoc

Biol 79: 1117–1128.

14. Homolka S, Niemann S, Russell DG, Rohde KH (2010) Functional genetic

diversity among Mycobacterium tuberculosis complex clinical isolates: delineation of

conserved core and lineage-specific transcriptomes during intracellular survival.

PLoS Pathog 6: e1000988.

15. Rohde KH, Abramovitch RB, Russell DG (2007) Mycobacterium tuberculosis

invasion of macrophages: linking bacterial gene expression to environmental

cues. Cell Host Microbe 2: 352–364.

16. Rohde KH, Veiga DF, Caldwell S, Balazsi G, Russell DG (2012) Linking the

transcriptional profiles and the physiological states of Mycobacterium tuberculosis

during an extended intracellular infection. PLoS Pathog 8: e1002769.

17. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, et al. (2003)

Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages:

Insights into the Phagosomal Environment. J Exp Med 198: 693–704.

18. Tailleux L, Waddell SJ, Pelizzola M, Mortellaro A, Withers M, et al. (2008)

Probing host pathogen cross-talk by transcriptional profiling of both Mycobac-

terium tuberculosis and infected human dendritic cells and macrophages. PLoS One

3: e1403.

19. de Carvalho LP, Fischer SM, Marrero J, Nathan C, Ehrt S, et al. (2010)

Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-

catabolism of carbon substrates. Chem Biol 17: 1122–1131.

20. Marrero J, Trujillo C, Rhee KY, Ehrt S (2013) Glucose phosphorylation is

required for Mycobacterium tuberculosis persistence in mice. PLoS Pathog 9:

e1003116.

21. McKinney JD, Honer zu Bentrup K, Munoz-Elias EJ, Miczak A, Chen B, et al.

(2000) Persistence of Mycobacterium tuberculosis in macrophages and mice requires

the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735–738.

22. Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the

utilization of host cholesterol. Proc Natl Acad Sci U S A 105: 4376–4380.

23. Rhee KY, de Carvalho LP, Bryk R, Ehrt S, Marrero J, et al. (2011) Central

carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. Trends

Microbiol 19: 307–314.

24. Griffin JE, Pandey AK, Gilmore SA, Mizrahi V, McKinney JD, et al. (2012)

Cholesterol catabolism by Mycobacterium tuberculosis requires transcriptional and

metabolic adaptations. Chem Biol 19: 218–227.

25. Amon J, Titgemeyer F, Burkovski A (2009) A genomic view on nitrogen

metabolism and nitrogen control in mycobacteria. J Mol Microbiol Biotechnol

17: 20–29.

26. Carroll P, Pashley CA, Parish T (2008) Functional analysis of GlnE, an essential

adenylyl transferase in Mycobacterium tuberculosis. J Bacteriol 190: 4894–4902.

27. Harper C, Hayward D, Wiid I, van Helden P (2008) Regulation of nitrogen

metabolism in Mycobacterium tuberculosis: a comparison with mechanisms in

Corynebacterium glutamicum and Streptomyces coelicolor. IUBMB Life 60: 643–650.

28. Harth G, Maslesa-Galic S, Tullius MV, Horwitz MA (2005) All four

Mycobacterium tuberculosis glnA genes encode glutamine synthetase activities but

only GlnA1 is abundantly expressed and essential for bacterial homeostasis. Mol

Microbiol 58: 1157–1172.

29. Tullius MV, Harth G, Horwitz MA (2003) Glutamine synthetase GlnA1 is

essential for growth of Mycobacterium tuberculosis in human THP-1 macrophages

and guinea pigs. Infect Immun 71: 3927–3936.

30. Gouzy A, Larrouy-Maumus G, Wu T-D, Peixoto A, Levillain F, et al. (2013)

Mycobacterium tuberculosis nitrogen assimilation and host colonization require

aspartate. Nat Chem Biol 9: 674–676.

31. Gouzy A, Poquet Y, Neyrolles O (2013) A central role for aspartate in

Mycobacterium tuberculosis physiology and virulence. Front Cell Infect Microbiol 3:

68.

32. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, et al. (1998) Deciphering

the biology of Mycobacterium tuberculosis from the complete genome sequence.

Nature 393: 537–544.

33. Lyon RH, Hall WH, Costas-Martinez C (1970) Utilization of Amino Acids

During Growth of Mycobacterium tuberculosis in Rotary Cultures. Infect Immun 1:

513–520.

34. Lyon RH, Hall WH, Costas-Martinez C (1974) Effect of L-asparagine on growth

of Mycobacterium tuberculosis and on utilization of other amino acids. J Bacteriol

117: 151–156.

35. Jennings MP, Anderson JK, Beacham IR (1995) Cloning and molecular analysis

of the Salmonella enterica ansP gene, encoding an L-asparagine permease.

Microbiology 141 (Pt 1): 141–146.

36. Rachman H, Strong M, Ulrichs T, Grode L, Schuchhardt J, et al. (2006) Unique

transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis.

Infect Immun 74: 1233–1242.

37. van Kessel JC, Hatfull GF (2007) Recombineering in Mycobacterium tuberculosis.

Nat Methods 4: 147–152.

38. Katayama T, Tanaka S, Aoki K (1954) [Aminoacids metabolism of tubercle

bacillus. II. Studies on the asparaginase].Kekkaku 29: 472–476; English

summary, 510–471 .

39. Kirchheimer F, Whittaker CK (1954) Asparaginase of Mycobacteria. Am Rev

Tuberc 70: 920–921.

40. Cai X, Wu B, Fang Y, Song H (2012) [Asparaginase mediated acid adaptation of

mycobacteria]. Wei Sheng Wu Xue Bao 52: 1467–1476.

41. Jack DL, Paulsen IT, Saier MH (2000) The amino acid/polyamine/

organocation (APC) superfamily of transporters specific for amino acids,

polyamines and organocations. Microbiology 146 (Pt 8): 1797–1814.

42. Srikhanta YN, Atack JM, Beacham IR, Jennings MP (2013) Distinct

physiological roles for the two L-asparaginase isozymes of Escherichia coli.

Biochem Biophys Res Commun 436(3):362–5.

43. Ehrt S, Guo XV, Hickey CM, Ryou M, Monteleone M, et al. (2005) Controlling

gene expression in mycobacteria with anhydrotetracycline and Tet repressor.

Nucleic Acids Res 33: e21.

44. Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial

growth defined by high density mutagenesis. Mol Microbiol 48: 77–84.

Asparagine Metabolism in M. tuberculosis

PLOS Pathogens | www.plospathogens.org 13 February 2014 | Volume 10 | Issue 2 | e1003928



45. Zhang YJ, Ioerger TR, Huttenhower C, Long JE, Sassetti CM, et al. (2012)
Global assessment of genomic regions required for growth in Mycobacterium
tuberculosis. PLoS Pathog 8: e1002946.

46. Song H, Huff J, Janik K, Walter K, Keller C, et al. (2011) Expression of the
ompATb operon accelerates ammonia secretion and adaptation of Mycobacterium
tuberculosis to acidic environments. Mol Microbiol 80: 900–918.

47. Recchi C, Chavrier P (2006) V-ATPase: a potential pH sensor. Nat Cell Biol 8:
107–109.

48. Braunstein M, Brown AM, Kurtz S, Jacobs WR, Jr. (2001) Two nonredundant
SecA homologues function in mycobacteria. J Bacteriol 183: 6979–6990.

49. Braunstein M, Espinosa BJ, Chan J, Belisle JT, Jacobs WR, Jr. (2003) SecA2
functions in the secretion of superoxide dismutase A and in the virulence of
Mycobacterium tuberculosis. Mol Microbiol 48: 453–464.

50. Abdallah AM, Gey van Pittius NC, Champion PA, Cox J, Luirink J, et al. (2007)
Type VII secretion—mycobacteria show the way. Nat Rev Microbiol 5: 883–
891.

51. Cooney DA, Capizzi RL, Handschumacher RE (1970) Evaluation of L-
asparagine metabolism in animals and man. Cancer Res 30: 929–935.

52. Canepa A, Filho JC, Gutierrez A, Carrea A, Forsberg AM, et al. (2002) Free
amino acids in plasma, red blood cells, polymorphonuclear leukocytes, and
muscle in normal and uraemic children. Nephrol Dial Transplant 17: 413–421.

53. Lin W, Mathys V, Ang EL, Koh VH, Martinez Gomez JM, et al. (2012) Urease
activity represents an alternative pathway for Mycobacterium tuberculosis nitrogen
metabolism. Infect Immun 80: 2771–2779.

54. Reyrat JM, Lopez-Ramirez G, Ofredo C, Gicquel B, Winter N (1996) Urease
activity does not contribute dramatically to persistence of Mycobacterium bovis
bacillus Calmette-Guerin. Infect Immun 64: 3934–3936.

55. Sendide K, Deghmane AE, Reyrat JM, Talal A, Hmama Z (2004) Mycobacterium
bovis BCG urease attenuates major histocompatibility complex class II trafficking
to the macrophage cell surface. Infect Immun 72: 4200–4209.

56. Hofreuter D, Novik V, Galan JE (2008) Metabolic diversity in Campylobacter jejuni
enhances specific tissue colonization. Cell Host Microbe 4: 425–433.

57. Kullas AL, McClelland M, Yang HJ, Tam JW, Torres A, et al. (2012) L-
asparaginase II produced by Salmonella typhimurium inhibits T cell responses and
mediates virulence. Cell Host Microbe 12: 791–798.

58. Leduc D, Gallaud J, Stingl K, de Reuse H (2010) Coupled amino acid
deamidase-transport systems essential for Helicobacter pylori colonization. Infect
Immun 78: 2782–2792.

59. Scotti C, Sommi P, Pasquetto MV, Cappelletti D, Stivala S, et al. (2010) Cell-
cycle inhibition by Helicobacter pylori L-asparaginase. PLoS One 5: e13892.

60. Shibayama K, Takeuchi H, Wachino J, Mori S, Arakawa Y (2011) Biochemical

and pathophysiological characterization of Helicobacter pylori asparaginase.

Microbiol Immunol 55: 408–417.

61. Daleke MH, Ummels R, Bawono P, Heringa J, Vandenbroucke-Grauls CM,

et al. (2012) General secretion signal for the mycobacterial type VII secretion

pathway. Proc Natl Acad Sci U S A 109: 11342–11347.

62. Bottai D, Di Luca M, Majlessi L, Frigui W, Simeone R, et al. (2012) Disruption

of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein

secretion, reduction of cell wall integrity and strong attenuation. Mol Microbiol

83: 1195–1209.

63. Bottai D, Majlessi L, Simeone R, Frigui W, Laurent C, et al. (2011) ESAT-6

secretion-independent impact of ESX-1 genes espF and espG1 on virulence of

Mycobacterium tuberculosis. J Infect Dis 203: 1155–1164.

64. Woong Park S, Klotzsche M, Wilson DJ, Boshoff HI, Eoh H, et al. (2011)

Evaluating the sensitivity of Mycobacterium tuberculosis to biotin deprivation using

regulated gene expression. PLoS Pathog 7: e1002264.

65. Pesek JJ, Matyska MT, Fischer SM, Sana TR (2008) Analysis of hydrophilic

metabolites by high-performance liquid chromatography-mass spectrometry

using a silica hydride-based stationary phase. J Chromatogr A 1204: 48–55.

66. Guerquin-Kern JL, Wu TD, Quintana C, Croisy A (2005) Progress in analytical

imaging of the cell by dynamic secondary ion mass spectrometry (SIMS

microscopy). Biochim Biophys Acta 1724: 228–238.

67. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25

years of image analysis. Nat Methods 9: 671–675.

68. Lechene C, Hillion F, McMahon G, Benson D, Kleinfeld AM, et al. (2006)

High-resolution quantitative imaging of mammalian and bacterial cells using

stable isotope mass spectrometry. J Biol 5: 20.

69. Carlemalm E, Villiger W, Hobot JA, Acetarin JD, Kellenberger E (1985) Low

temperature embedding with Lowicryl resins: two new formulations and some

applications. J Microsc 140: 55–63.

70. Hainfeld JF, Liu W, Halsey CM, Freimuth P, Powell RD (1999) Ni-NTA-gold

clusters target His-tagged proteins. J Struct Biol 127: 185–198.

71. Reddy V, Lymar E, Hu M, Hainfeld JF (2005) 5 nm Gold-Ni-NTA Binds His

Tags. Microsc Microanal 11 Suppl 2: 1118–1119.

72. Brodin P, Poquet Y, Levillain F, Peguillet I, Larrouy-Maumus G, et al. (2010)

High content phenotypic cell-based visual screen identifies Mycobacterium

tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodel-

ing. PLoS Pathog 6: e1001100.

Asparagine Metabolism in M. tuberculosis

PLOS Pathogens | www.plospathogens.org 14 February 2014 | Volume 10 | Issue 2 | e1003928


