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Abstract

Cyclic diguanosine monophosphate (c-di-GMP) and cyclic diadenosine monophosphate (c-di-AMP) are recently identified
signaling molecules. c-di-GMP has been shown to play important roles in bacterial pathogenesis, whereas information
about c-di-AMP remains very limited. Mycobacterium tuberculosis Rv3586 (DacA), which is an ortholog of Bacillus subtilis
DisA, is a putative diadenylate cyclase. In this study, we determined the enzymatic activity of DacA in vitro using high-
performance liquid chromatography (HPLC), mass spectrometry (MS) and thin layer chromatography (TLC). Our results
showed that DacA was mainly a diadenylate cyclase, which resembles DisA. In addition, DacA also exhibited residual ATPase
and ADPase in vitro. Among the potential substrates tested, DacA was able to utilize both ATP and ADP, but not AMP, pApA,
c-di-AMP or GTP. By using gel filtration and analytical ultracentrifugation, we further demonstrated that DacA existed as an
octamer, with the N-terminal domain contributing to tetramerization and the C-terminal domain providing additional
dimerization. Both the N-terminal and the C-terminal domains were essential for the DacA’s enzymatically active
conformation. The diadenylate cyclase activity of DacA was dependent on divalent metal ions such as Mg2+, Mn2+ or Co2+.
DacA was more active at a basic pH rather than at an acidic pH. The conserved RHR motif in DacA was essential for
interacting with ATP, and mutation of this motif to AAA completely abolished DacA’s diadenylate cyclase activity. These
results provide the molecular basis for designating DacA as a diadenylate cyclase. Our future studies will explore the
biological function of this enzyme in M. tuberculosis.

Citation: Bai Y, Yang J, Zhou X, Ding X, Eisele LE, et al. (2012) Mycobacterium tuberculosis Rv3586 (DacA) Is a Diadenylate Cyclase That Converts ATP or ADP into c-
di-AMP. PLoS ONE 7(4): e35206. doi:10.1371/journal.pone.0035206

Editor: Tanya Parish, Queen Mary University of London, United Kingdom

Received February 6, 2012; Accepted March 10, 2012; Published April 17, 2012

Copyright: � 2012 Bai et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the Potts Memorial Foundation (to GB) and by grant CA092596 from the National Cancer Institute, National Institutes of
Health (to XD) (http://www.cancer.gov). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: baig@mail.amc.edu.

Introduction

Tuberculosis (TB) remains a global epidemic, with one-third of

the world’s population infected and approximately 9 million new

active cases annually [1]. The TB epidemic is exacerbated by a

synergy with human immunodeficiency virus (HIV) and steadily

increasing rates of drug resistance [2,3]. The efficacy of the only

vaccine strain, Mycobacterium bovis BCG, varies from 0 to 80% in

preventing pulmonary TB [4]. Therefore, new strategies for TB

therapy and novel vaccines for eradication of the infection are

urgently needed. A better understanding of the signaling

mechanism of Mycobacterium tuberculosis could facilitate these goals.

Several cyclic nucleotides have been shown to play important

roles in bacterial gene regulation and pathogenesis. These

nucleotides include cyclic adenosine monophosphate (cAMP),

cyclic guanosine monophosphate (cGMP), cyclic diguanosine

monophosphate (c-di-GMP) and cyclic diadenosine monophos-

phate (c-di-AMP) [5]. cAMP has been well studied in a large

number of bacteria. This signaling molecule regulates gene

expression in response to diverse environmental conditions [6].

InM. tuberculosis, at least 15 adenylate cyclases have been identified

[7,8,9,10]. The M. tuberculosis complex bacteria are able to secrete

significant amount of cAMP into infected macrophages

[11,12,13]; this event may play a role during infection [11]. c-di-

GMP is another important second messenger that is widespread in

bacteria. It is synthesized from two GTP molecules by diguanylate

cyclase and can be converted into pGpG or GMP by various

phosphodiesterases [14,15,16]. c-di-GMP has been known to play

a role in the regulation of the biological cascades relevant to

bacterial pathogenesis [14,15,17,18,19,20].

c-di-AMP has recently been recognized as a signaling molecule.

This nucleotide is synthesized from ATP by diadenylate cyclase

and is linearized to pApA by c-di-AMP phosphodiesterase. The

diadenylate cyclase has been identified in Bacillus subtilis, Thermotoga

maritima [21,22], Listeria monocytogenes [23], Staphylococcus aureus [24]

and Streptococcus pyogenes [25]. In B. subtilis, the cyclase is named as

DisA (or YacK) for DNA integrity scanning protein A, which is

involved in cell-cycle checkpoints. DisA forms a large octamer,

and each monomer consists of a nucleotide-binding domain and

two DNA binding domains [22]. DisA converts ATP into c-di-

AMP, but does not utilize GTP as a substrate [22]. In B. subtilis,

bacterial c-di-AMP levels are reduced in response to DNA

damage, which results in a delay of sporulation. This phenotype

can be corrected by supplementation of exogenous c-di-AMP [26].
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A diadenylate cyclase and a c-di-AMP phosphodiesterase have

been characterized in S. aureus. Deletion of the phosphodiesterase

in this pathogen results in smaller bacterial size and alteration in

biofilm formation [24]. B. subtilis YybT protein hydrolyzes c-di-

AMP and c-di-GMP into linear pApA and pGpG, respectively

[16]. Bacterial c-di-AMP also modulates host immune responses.

It has been reported that c-di-AMP secreted by L. monocytogenes
represents a putative secondary signaling molecule that triggers a

cytosolic pathway of innate immunity [23]. This response is likely

mediated by Sting, a host transmembrane protein [27,28]. In

addition, c-di-AMP has been recognized as an effective immuno-

adjuvant that promotes strong Th1/Th2/Th17 responses [29].

The M. tuberculosis Rv3586 protein is a putative DisA ortholog.

The two motifs (DGA and RHR) that are conserved in DisA

proteins of T. maritima and B. subtilis are also conserved in the

Rv3586 [22]. The significance of c-di-AMP in other pathogens

implicates that characterization of the Rv3586 might provide new

insights into the biology of signal transduction in TB pathogenesis.

However, Rv3586 and c-di-AMP in mycobacteria have not been

experimentally explored. In this study, we show that the Rv3586

protein is functional as a diadenylate cyclase (Dac). Therefore, we

designated this protein DacA and its encoding gene dacA, based on

our results and the published records of other bacteria [23,24].

This is the first report describing the existence of a functional

diadenylate cyclase in M. tuberculosis.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee of Albany Medical College (Permit Number: 11-

02005). All efforts were made to minimize suffering.

Bacterial strains and culture conditions
M. tuberculosis H37Rv was grown in Difco Middlebrook 7H9

medium (BD) supplemented with 0.5% glycerol, 10% oleic acid-

albumin-dextrose-catalase (OADC), 0.05% Tween-80, as previ-

ously described [30]. Bacteria were grown to late log phase to

isolate genomic DNA. E. coli DH5a and BL21(DE3) were grown

in Luria-Bertani broth or on Luria-Bertani agar plates. Kanamy-

cin at 25 mg/ml was added for all recombinant strains. All cultures

were grown at 37uC.

Protein expression and purification
The M. tuberculosis dacA open reading frame (ORF) and the

truncated DNA fragments encoding the first 287 aa (DacA1–287)

and the last 219 aa (DacA140–358) of DacA were PCR amplified

using the primers listed in Table 1. The M. tuberculosis H37Rv

genomic DNA was used as a template. The PCR products for

DacA, DacA1–287 and DacA140–358 were cloned into pET28a(+)

vector (Novagen) between NcoI and HindIII sites to generate

pMBC1218, pGB067 and pGB068, respectively. These plasmids

were sequence verified and maintained in E. coli BL21(DE3).

Mutations of DGA (aa 72–74) and RHR (aa 105–107) motifs in

DacA were generated using SOEing PCR similarly as we reported

[31]. Primers KM2948, JY199, JY200 and KM2949 (Table 1)

were used to replace DGA with AAL (DacADGA); primers

KM2948, JY178, JY179 and KM2949 (Table 1) were used to

replace DGA with AAA (DacADG); and primers KM2948, JY201,

JY202 and KM2949 (Table 1) were used to substitute RHR with

AAA (DacARHR). Since expression of both DacADGA and DacADG

was only detected in inclusion bodies, a point mutation

(DacAG73A) in DGA motif of DacA was generated using primers

KM2948, JY218, JY219 and KM2949 (Table 1). All the final PCR

products were digested with NcoI and HindIII, cloned into

pET28a(+) vector as described above, and verified by sequencing.

The plasmids for DacADGA, DacARHR, DacADG and DacAG73A

were designated as pGB125, pGB126, pGB137 and pGB141,

respectively. These plasmids were maintained in BL21(DE3) for

protein expression.

The expression of the proteins was induced with 0.05 mM

isopropyl b-D-1-thiogalactopyranoside (IPTG) for 3 h at room

temperature, except that DacARHR was expressed at 16uC. The C-

His-tagged recombinant proteins were purified using a Ni-NTA

resin (Qiagen) with buffers as we previously reported [32,33].

Gel filtration
Size-exclusion chromatography experiments were performed

with a Superdex 200 column (106300 mm) connected to a

Gradiphrac Automatic Sampler (Amersham Biosciences). The

column was equilibrated and eluted with the running buffer (10%

glycerol in PBS at pH 7.4) at a constant flow rate of 0.5 ml/min.

Molecular mass of the proteins was determined by using Gel

Filtration Standard (Bio-Rad) per the instruction in Gel Filtration

Principles and Methods (GE Healthcare). The protein concentra-

tions were then determined using BCA Protein Assay Kit (Thermo

Scientific). The purified proteins were stored in aliquots at 280uC.

Analytical ultracentrifugation
Sedimentation velocity studies were performed using a Beck-

man Coulter XL-1 analytical ultracentrifuge and an An-60 Ti

rotor at 4uC as described earlier [34], except that the proteins were

analyzed in a buffer containing 10% glycerol in PBS. DacA and

DacA1–287 were analyzed at 40 000 rpm, and DacA140–358 was

analyzed at 50 000 rpm. The volume of protein samples was

400 ml, and the reference buffer volume was 420 ml. The viscosity

and the density of the buffer and the partial specific volume of the

proteins were determined using the SEDNTERP software. The

data were analyzed by the c(s) and the c(M) methods found in

SEDFIT, a program developed by Schuck [35]. Because the

molecular distribution consisted of a single major peak, the c(M)

method was used to estimate the molecular mass of the main

species [36].

High-performance liquid chromatography (HPLC)
Determination of DacA’s enzymatic activities using HPLC was

performed as reported [22,37] with minor modification. Briefly,

reaction mixtures (10 ml) contained 40 mM Tris-HCl (pH 7.5),

10 mM MgCl2, 100 mM NaCl and nucleotide as specified. The

reaction was initiated by adding 2.5 mM protein and was

incubated at 37uC for 1 h. The reaction was then terminated by

adding 1 ml of 0.5 M EDTA, followed by a 1:5 dilution with water.

Finally, 20 ml of each sample was injected and separated by

reverse-phase HPLC with a C18 column (25064.6 mm, Vydac)

using a Waters 625 LC system equipped with a 996 Photodiode

Array Detector and a 717 Autosampler (Waters). Samples were

eluted using the same buffers and program as reported [38].

Nucleotides were monitored at 254 nm. c-di-AMP and pApA

standards were purchased from BioLog. ATP, GTP, ADP and

AMP were purchased from Sigma.

Mass spectrometry (MS)
The reaction mixture (10 ml) as described for HPLC analysis

was diluted 50 times, and 10 ml was analyzed using an LC/UV/

M. tuberculosis Rv3586 Is a Diadenylate Cyclase
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MS system consisting of an Agilent 1200 separation module, an

Agilent 1260 photodiode array detector (Agilent) and an ABI

4000 Q-Trap mass spectrometer (Applied Biosystems). The

chromatographic separation of products was achieved on a 5-

mm Gemini C18 (15062.0 mm) column (Phenomenex). The

mobile phase consisted of solvent A (10 mM ammonium acetate

in water) and solvent B (100% acetonitrile). The samples were

eluted, at a flow rate of 0.2 ml/min, with 100% A for 5 min,

followed by linear increases from 0% B to 100% B between 5 and

10 min, and then 100% B for a further 2.5 min. The enhanced

full mass scan (EMS) was conducted at a mass range of 100 to

1000 amu with a scan rate of 1000 Da/s, and the mass

spectrometer was operated in a negative ion mode with an

electrospray ionization source. The parameters for the chamber

were as follows: curtain gas, 50 psi; heated nebulizer temperature

400uC; ion spray voltage, 24500 V; gas 1, 50 psi; gas 2, 50 psi,

declustering potential, 250 V; collision energy 210 eV; CAD

gas, medium.

Hydrolysis of nucleotides and thin layer chromatography
(TLC)
For TLC samples, reaction mixture (10 ml) contained 40 mM

Tris-HCl (pH 7.5), 10 mM MgCl2, 100 mM NaCl, 100 mM

unlabeled ATP and 0.01 mCi/ml of [a-33P]ATP (MP Biomedicals).

The reaction was initiated by adding proteins as specified and

incubated at 37uC for various time periods as indicated in Results.

An aliquot of 2.5 ml was removed at each time point and

immediately mixed with an equal volume of 0.5 M EDTA. One

microliter of this mixture was finally spotted onto a pre-coated

polyethyleneimine-cellulose plate (Sigma) and was separated with

a solvent containing 1:1.5 (v/v) saturated (NH4) 2SO4 and 1.5 M

KH2PO4 (pH 3.6) for 1 h. The dried plate was exposed on a

phosphor screen, scanned with a Storm 860 PhosphorImager

(Molecular Dynamics), and analyzed using ImageQuant software

(Molecular Dynamics). For nucleotide standards, one microliter

from a 5-mM stock of each unlabeled nucleotide was spotted onto

a TLC plate and separated using the same solvent. Image was

taken under 254 nm UV light.

Metal ion and pH dependence
The assay conditions used for metal ion screening were: 40 mM

Tris-HCl (pH 7.5), 100 mM NaCl, 2 mM [metal2+], 2.5 mM

DacA and 2 mM ATP or 0.5 mM ADP. For pH analysis,

reactions consisted of 100 mM NaCl, 10 mM MgCl2, 2.5 mM

DacA, 2 mM ATP or 0.5 mM ADP, and 40 mM Tris-HCl at

pH 6.0, 6.5, 7.0, 7.5 and 8.0, respectively. Reactions were

incubated for 1 h at 37uC, terminated by adding 1 ml of 0.5 M

EDTA and analyzed by HPLC. The peak areas of c-di-AMP were

compared and presented as arbitrary units.

Preparation of polyclonal antibody against DacA
Five female BALB/c mice (Taconic) were immunized subcuta-

neously with 50 mg of purified DacA emulsified 1:1 with Alum

(Thermo Scientific) in 100 ml and boosted twice biweekly with the

same amount of the protein and the adjuvant. The specificity of

serum was analyzed by Western blot with the purified DacA

protein. The protein was blotted onto polyvinylidene fluoride

(PVDF) membranes and sequentially probed with the anti-DacA

antibody we generated and with a peroxidase-conjugated goat

anti-mouse IgG secondary antibody (Thermo Scientific). Peroxi-

dase detection was carried out with the ECL Western blotting

detection reagents and analysis system (Thermo Scientific).

Cross-linking of protein
Cross-linking of purified DacA, DacA1–287 and DacA140–358 was

performed as described earlier [32,39] with slight modification.

Each protein was diluted in cross-linking buffer (50 mM sodium

phosphate, pH 7.4, 20% glycerol, 5 mM MgCl2) to 1.5 mM, and

was then incubated with glutaraldehyde at a final concentration of

35 mM for 1 h at room temperature. The reaction was quenched

by the addition of SDS-PAGE sample buffer, and a portion of

each protein sample was separated on a 10% SDS-PAGE gel. The

protein was transferred onto a PVDF membrane and visualized

after Western blot with the anti-DacA antibody.

ATP binding assay
The ATP binding with DacA, DacA1–287, DacA140–358,

DacAG73A and DacARHR was analyzed using a gel mobility shift

assay. Briefly, the reaction mixture (10 ml) contains 40 mM Tris-

Table 1. Primers used for protein expression in this studya.

Protein Primer Oligo sequence (59 to 39)

DacA KM2948 GCGCCATGGAGCACGCTGTGACTCGTCCGACC

KM2949 GCGAAGCTTTTGATCGCTGATGGTCGATTCC

DacA1–287 JY078 GCGAAGCTTCGAATCCTGCGCTTCCGTGG

DacA140–358 JY077 GCGCCATGGTATTGACCGACTCGGCAACC

DacADG JY178 GAGCTGTGCAAGATGGCCGCCGCCGTGGTGCTGTC

JY179 GACAGCACCACGGCGGCGGCCATCTTGCACAGCTC

DacADGA JY199 TACGCGAGCTGTGCAAGATGGCAGCATTAGTGGTGCTGTCCACCGACGG

JY200 CCGTCGGTGGACAGCACCACTAATGCTGCCATCTTGCACAGCTCGCGTA

DacARHR JY201 CCACCGACGAATCGGGGACCGCTGCTGCATCGGCCGAGCGGGCCGCGAT

JY202 ATCGCGGCCCGCTCGGCCGATGCAGCAGCGGTCCCCGATTCGTCGGTGG

DacAG73A JY218 GCTGTGCAAGATGGACGCCGCCGTGGTGCTGTCC

JY219 GGACAGCACCACGGCGGCGTCCATCTTGCACAGC

a, Primer JY078 was used in combination with KM2948, and primer JY077 was used in combination with KM2949. The mutations for the respective amino acids in
primers JY178 to JY219 are indicated in bold.
doi:10.1371/journal.pone.0035206.t001
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HCl (pH 7.5), 100 mM NaCl and 2 mg of protein either in the

presence or in the absence of 10 mM ATP. The reaction mixtures

were prepared and incubated on ice for 10 min. Samples were

then loaded onto a 6% polyacrylamide native gel and separated

with 0.56TBE at 4uC. Proteins were visualized by staining with

0.25% Coomassie Brilliant Blue G250.

Bioinformatics and structural modeling
The amino acid sequence of M. tuberculosis DacA was aligned

with that of T. maritima DisA using the Clustal W method of

MegAlign software (DNAStar). For structural modeling, the crystal

structure of T. maritima DisA was obtained from the entry 3C23 of

Protein Data Bank (PDB) [22] using the Cn3D program of the

National Center for Biotechnology Information (NCBI, version

4.3).

Results

Oligomerization of DacA
We expressed and purified the C-terminal His-tagged DacA in

E. coli to high homogeneity. The apparent molecular weight of this

protein was about 43 kDa on a SDS-PAGE gel (Fig. 1A), which is

consistent with the calculated molecular weight (41.4 kDa). Gel

filtration analysis with the purified protein revealed that DacA

formed a highly stable octamer with an estimated molecular mass

of 330 kDa (Fig. 1B), which is equivalent to the calculated

molecular weight of octamerized DacA (331.2 kDa). In addition,

sedimentation velocity study of DacA demonstrated a molecular

mass of ,307 kDa (Fig. 1C), supporting the notion that DacA

exists as an octamer.

DacA is an ortholog of DisA as a diadenylate cyclase
Amino acid sequence alignment revealed that M. tuberculosis

DacA shares 42% identity with B. subtilis DisA. The two putative

motifs of DisA, DGA and RHR, are conserved in DacA. These

analyses suggest that DacA is a putative diadenylate cyclase. We

first performed an enzymatic analysis of DacA with ATP by using

HPLC. The results showed that DacA converted ATP into a

major product with the same retention time as that of the product

of DisA, which is c-di-AMP (Fig. 2A). This result was also

supported by HPLC of the c-di-AMP standard (Fig. 2A).

Interestingly, we noticed that three minor peaks were also present

in the reaction of DacA with ATP (Fig. 2A), but not in a control

reaction that was carried out in the absence of ATP (not shown),

suggesting that DacA may have activities other than that of a

diadenylate cyclase. The identities of the DacA-catalyzed products

were detected using LC/UV/MS. The total ion chromatogram

(TIC) of EMS analysis displayed four products derived from ATP

(Fig. 2B). Extracted ion chromatogram (EIC) processing of the

EMS dataset for m/z 346, 426, 675 and 657 revealed the identities

of the products, which are consistent with the molecular ion of

AMP, ADP, pApA and c-di-AMP, respectively. The identities of

the products were confirmed based on coelution with authentic

standards under the same LC conditions (Fig. 2C) or by

comparing the retention times with those of purified standards

(Fig. 2A).

We further analyzed [a-33P]-labeled nucleotides in the catalytic

reaction by using TLC (Fig. 3A), in which the order of migration

away from the origin (Rf) was c-di-AMP, AMP, ADP and ATP, as

determined through comparisons with unlabeled standards

(Fig. 3B). By mixing DacA with [a-33P]ATP, c-di-AMP was

formed in a time-dependent manner (Fig. 3A). The reaction rate of

DacA was slower than DisA (Fig. 3A,C). At ,50 min, the

production of c-di-AMP catalyzed by DacA was equivalent to that

by DisA, which was saturated at ,6 min (Fig. 3A, C). This result

indicates that DacA is ,5 to 10-fold less active in synthesis of c-di-

AMP than that of the DisA control.

ADP and AMP were also detected using TLC from the reaction

catalyzed by DacA, while AMP was detected in the reaction with

DisA (Fig. 3A), similar to the HPLC data (Fig. 2A). These

nucleotides are likely secondary products produced by DacA or

DisA. Noticeably, the ADP in DacA reactions and the AMP in

DisA reactions were more abundant at 10 to 40 min than those at

50 to 60 min (Fig. 3A), indicating that these nucleotides may also

be used as substrates by the respective diadenylate cyclase. In the

presence of increasing amounts of DacA in the reaction, the c-di-

AMP production, but not the yield of the secondary products, was

clearly dependent on the enzyme concentration (Fig. 3D, E).

In addition to ATP, we also determined the enzymatic activity

of DacA with GTP as a potential substrate using HPLC. We did

Figure 1. Purification and oligomerization of DacA. (A) SDS-PAGE of purified DacA. Lane M, EZ-Run Pre-stained Rec Protein Ladder (Fischer
Scientific); lane 1, purified DacA. (B) Gel filtration chromatograph of DacA. The molecular weights (in kDa) and the retention volumes of the standards
are indicated on the top. (C) Analytical ultracentrifugation of DacA. Molecular mass of DacA was estimated using the c(M) method.
doi:10.1371/journal.pone.0035206.g001
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not find any peak other than GTP, indicating that the activity of

DacA is specific to ATP, but not GTP (data not shown).

Taken together, these results indicate that the major activity of

DacA is as a diadenylate cyclase, while the minor activities may

include those of ATPase and ADPase.

DacA utilizes both ATP and ADP as substrates
It has been well known that c-di-GMP can be hydrolyzed into

pGpG and GMP by various phosphodiesterases. Many diguanylate

cyclases also have a c-di-GMP phosphodiesterase domain. In this

study, we noticed that in the reaction with ATP and DacA, AMP,

ADP, pApA and c-di-AMP were all present as products (Fig. 2).

These products might be converted directly from either ATP or c-

di-AMP. Therefore, we determined the enzymatic activity of DacA

with ADP, AMP, c-di-AMP and pApA, respectively. Interestingly,

DacA converted ADP into AMP, pApA and c-di-AMP, although

the yield of c-di-AMP from ADP was much lower compared with

that from ATP (Fig. 4A). In contrast, no additional product was

detected in reactions of DacA with AMP, c-di-AMP or pApA

(Fig. 4A). These results suggest that DacA does not have c-di-AMP

phosphodiesterase activity. Based on our results, we have proposed

a model of DacA’s activities (Fig. 4B), which shows that DacA

catalyzes the conversion of both ATP and ADP into c-di-AMP.

Meanwhile, DacA also produces ADP, AMP and pApA.

Effect of metal ion and pH on DacA’s activity
The effect of metal ion on the diadenylate cyclase activity of

DacA was analyzed using six divalent ions: Mg2+, Mn2+, Co2+,

Ni2+, Ca2+ and Fe2+. When ATP was provided, the production of

c-di-AMP was detected in the reactions with Mg2+, Mn2+ or Co2+,

but not with the other ions. Under our testing conditions, DacA

preferred Mn2+.Mg2+.Co2+ as co-factors (Fig. 5A). When ADP

was utilized, the diadenylate cyclase activity was also detected in

the presence of Mg2+, Mn2+ or Co2+, but not with the other ions

(Fig. 5B). More c-di-AMP was converted from ADP in the

presence of Mg2+ than in the presence of Mn2+ or Co2+ (Fig. 5B).

As controls, DacA did not show any enzymatic activity in the

absence of any divalent metal ion when either ATP or ADP was

provided (Fig. 5A, B).

It is well known that environmental pH may affect the structures

and activities of enzymes. In this study, we determined the

diadenylate cyclase activity of DacA at pH 6.0, 6.5, 7.0, 7.5 and

8.0, respectively, using either ATP or ADP as a substrate. In the

presence of ATP, DacA produced more c-di-AMP at a basic pH

than at an acidic pH; the activity was increased by almost two fold

at pH 8.0, compared to that at pH 6.0 (Fig. 5C). However, when

ADP was provided, no difference was detected by changing pH

from 6.0 to 8.0 (Fig. 5D).

Figure 2. Determination of DacA’s activities using HPLC and LC-MS. (A) Analysis of the products from reaction of ATP with DacA using HPLC.
Reaction of ATP with DisA was included as a positive control. The reactions were carried out as described in the Methods. ATP, c-di-AMP, ADP, AMP
and pApA standards were also analyzed under the same conditions. (B and C) LC/UV/MS profiles of the products formed by DacA with ATP. The
products were detected by monitoring EMS at mass range from 100 to 1000 amu (B) or monitored by UV absorption at 254 nm (C).
doi:10.1371/journal.pone.0035206.g002
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Both the N-terminal and the C-terminal domains are
required for DacA’s activity
Based on the sequence analysis using the Web CD Search

Tool (http://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.

cgi) and the sequence alignment with DisA [22], DacA possesses

three domains (Fig. 6A). To determine which domain is important

for DacA’s activity, we generated two truncated forms of DacA,

DacA1–287 and DacA140–358, which lacks the C-terminal domain

and the N-terminal domain, respectively. We then determined the

oligomerization of these proteins and their enzymatic activity as a

diadenylate cyclase. The apparent molecular weights of DacA1–287

and DacA140–358 were about 37 kDa and 27 kDa, respectively, on

a SDS-PAGE gel (Fig. 6B), which are consistent with their

calculated molecular weights (33.8 kDa and 26.3 kDa, respective-

ly). Ultracentrifugation analysis revealed that DacA1–287 corre-

sponded to a stable tetramer with an estimated molecular mass of

150 kDa (Fig. 6C). DacA140–358 was detected with an estimated

molecular mass of 42 kDa (Fig. 6C), which is between a monomer

and a dimer. Similar results, for either DacA1–287 or DacA140–358,

were obtained using gel filtration (data not shown). To further

determine the oligomerization of DacA140–358, we treated

DacA140–358 with glutaraldehyde and then analyzed by Western

blot with the anti-DacA antibody. A dominant dimer-sized band

was detected in the glutaraldehyde-treated sample, whereas the

untreated sample was detected exclusively as a monomer (Fig. 6D).

Therefore, DacA140–358 is stable as a dimer at the native condition.

According to the structural study of DisA and the sequence

similarity between DacA and DisA [22], ATP might interact with

DacA at the N-terminal domain. In this study, we analyzed the

ATP binding by DacA using a gel mobility shift assay. In this

assay, no divalent ion was provided, thus no c-di-AMP could be

formed from ATP. In the absence of ATP, both DacA and DacA1–

287 showed multiple bands in a native gel. However, with the

presence of ATP in the protein samples, all the proteins migrated

Figure 3. Determination of DacA’s activities using TLC. (A)
Separation of nucleotides generated from [a-33P]ATP by DacA and DisA.
The positions of ATP, ADP, AMP and c-di-AMP are indicated based on
the Rf of each standard analyzed in panel B under the same conditions.
(B) Separation of nucleotide standards using TLC. Spots 1–5 are ATP,
ADP, AMP, c-di-AMP and pApA, respectively. (C) Quantitation of c-di-
AMP production. The relative intensity of c-di-AMP generated by DacA
or DisA at various time points as in panel A was analyzed using the
ImageQuant software. Data shown are representative of two repeat
experiments. (D) Production of c-di-AMP with various concentrations of
DacA at 30 min of incubation. Reactions contain 2-fold serial diluted
DacA protein as indicated on the top of the TLC graph (in log2 mg). ‘‘N’’
indicates a control with no protein, and ‘‘Ctl’’ contains 1 mg DisA as a
positive control. ‘‘0’’ equals 1 mg of protein. (E) Quantitation of ATP
depletion and c-di-AMP production by DacA from panel D. Data shown
are representative of two repeat experiments.
doi:10.1371/journal.pone.0035206.g003

Figure 4. Catalytic activities of DacA with different nucleotides.
(A) Reaction of DacA with ADP, AMP, c-di-AMP or pApA. Samples were
separated by HPLC. The peaks in ‘‘DacA+ADP’’ are labeled according to
the retention time of each standard as shown in Fig. 2A. (B) Reactions
catalyzed by DacA using ATP as a substrate, based on the results shown
in Fig. 2 and Fig. 4A. ‘‘A’’ stands for adenosine, and ‘‘P’’ stands for
phosphate. The thickness of arrows denotes priority of reaction, and the
thickest arrow shows the major catalytic reaction.
doi:10.1371/journal.pone.0035206.g004
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as a single band. Additionally, DacA migrated faster in the

presence of ATP than in the absence of ATP (Fig. 6E), suggesting

that ATP interacts with DacA and likely alters DacA’s conforma-

tion. A similar result was observed with DacA1–287, but not

DacA140–358 (Fig. 6E), indicating that the N-terminal domain of

DacA is responsible for ATP binding.

To test whether the truncated proteins still have diadenylate

cyclase activity, these proteins were incubated with ATP followed

by HPLC analysis. When 2.5 mM protein was used, no enzymatic

activity was detected with either protein (data not shown). At

10 mM protein, DacA1–287 showed weaker activities than that of

DacA, while DacA140–358 did not show any enzymatic activity

(Fig. 6F). These data suggest that both the N-terminal and the C-

terminal domains of DacA are required for DacA’s activities.

However, the catalytic domain is located at the N-terminus of the

protein.

RHR motif is essential for ATP binding and the
diadenylate cyclase activity
It has been shown structurally that the functional motifs (DGA

and RHR) of DisA interact with c-di-AMP [22]. These motifs are

also conserved in DacA (Fig. 7A). According to structural

modeling using the DisA protein of T. maritima, these motifs may

be in contact with ATP (Fig. 7B). In this study, we substituted the

residuals within DGA and RHR motifs of DacA to determine the

function of these motifs in the ATP binding and the diadenylate

cyclase activity. Mutation of DGA to AAL (DacADGA) or AAA

(DacADG) resulted in expression within inclusion bodies. Structural

studies with DisA showed that the glycine in the DGA motif that

interacts with c-di-AMP [22]. Therefore, we mutated this glycine

to alanine (DacAG73A) and RHR to AAA (DacARHR). We purified

DacAG73A and DacARHR to high homogeneity; the protein

showed the same apparent molecular weight as the native DacA

(Fig. 7C). The interaction of ATP with these two proteins was

analyzed using gel mobility shift assay. The result showed that the

mobility of DacAG73A was identical to the native DacA either in

the presence or absence of ATP. In contrast, the mobility of

DacARHR was not shifted in the presence of ATP (Fig. 7D),

indicating that the RHR motif is important in the interaction with

ATP. The diadenylate cyclase activity of DacAG73A and DacARHR

was also determined using HPLC. The result showed that

mutation of RHR in DacA completely abolished the production

of c-di-AMP (Fig. 7E), whereas DacAG73A retained the diadenylate

cyclase activity, suggesting that RHR, but not the glycine in DGA,

is essential for DacA’s diadenylate cyclase activity.

Discussion

In this study, we identified M. tuberculosis DacA as a diadenylate

cyclase similar to the B. subtilis DisA protein, as predicted [22].

DacA also exhibited residual ATPase and ADPase activities, which

have not been described with the DisA proteins of B. subtilis and T.

maritima [22]. There may be several possible explanations for the

ATPase and the ADPase activities of DacA. When one molecule of

c-di-AMP is synthesized from two ATP molecules, b- and c-
phosphates are eventually removed, and only a-phosphate remains

in c-di-AMP (Fig. 4B). Hydrolysis of b- and c-phosphate by DacA

could be catalyzed either by the specific structure of ATPase and

ADPase, or more likely as a part of the diadenylate cyclase activity.

Thus, ADP might be an intermediate product, which can be

utilized by DacA to produce c-di-AMP. Furthermore, the ATPase

Figure 5. Effect of divalent metal ions and pH on DacA’s activities. (A and B) Effect of metal ions on c-di-AMP production catalyzed by DacA
in the presence of 2 mM ATP (A) or 0.5 mM ADP (B). (C and D) Effect of pH on c-di-AMP production catalyzed by DacA in the presence of 2 mM ATP
(C) or 0.5 mM ADP (D). Note that less ADP was used in the reactions compared with ATP, and thus the arbitrary units between reactions with ATP and
ADP are not directly comparable.
doi:10.1371/journal.pone.0035206.g005
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and the ADPase activities are unlikely due to contaminations in

the purified DacA. Our data clearly showed that, with higher

concentration of DacA, the yields of ADP and AMP became lower

(Fig. 3D), rather than proportionally higher, as would be expected

if the activity was due to contaminations in the DacA preparation.

Additionally, GTPase activity has been previously observed in a

GGDEF domain protein [38], and an atypical GGDEF domain of

YybT exhibited unexpected ATPase activity as well [16].

Many diguanylate cyclases also have a phosphodiesterase

domain, which converts c-di-GMP to pGpG. However, a

phosphodiesterase domain was not predicted from the DisA

structural study, whereas B. subtilis YybT protein functions partly

as c-di-AMP phosphodiesterase [16]. In our reactions with DisA

and DacA, we detected several nucleotides in addition to c-di-

AMP that were generated from ATP. In particular, the presence of

AMP and trace amount of pApA led us to determine whether

DacA also has a phosphodiesterase activity. By providing c-di-

AMP in the reaction, we demonstrated that DacA was unable to

hydrolyze c-di-AMP. Therefore, DacA does not have c-di-AMP

phosphodiesterase activity. The AMP and pApA products that we

detected in the reactions might be intermediates formed during

synthesis of c-di-AMP. In addition, M. tuberculosis Rv0805 has been

reported as a phosphodiesterase of certain cyclic nucleotides

[40,41]. In this study, we also incubated Rv0805 protein with c-di-

AMP and analyzed the products using TLC. Our preliminary

study showed that this protein could not hydrolyze c-di-AMP

either (data not shown). Therefore, the phosphodiesterase of c-di-

AMP in M. tuberculosis remains unknown.

DisA forms a large octamer, and each monomer contains three

domains including an N-terminal catalytic domain and a C-

terminal HhH domain [22]. The structural study of DisA has

shown that two tetramers interact via domain 1. The main

interaction for a four-fold symmetry is mediated by domain 2, but

also includes domains 1 and 3 [22]. In the present study, DacA

was purified as an octamer, which is comparable to the

oligomerization of DisA. Deletion of the C-terminal domain of

DacA revealed a tetramer, while deletion of the N-terminal

domain of DacA exhibited a dimer. These data suggest that in the

oligomerization of DacA, the N-terminal domain contributes to

tetramerization, and the C-terminal HhH domain is responsible

for additional dimerization. This model deviates from the DisA

model that has been reported [22], possibly because DacA differs

from DisA.

According to the sequence alignment with DisA and our

mutagenesis results of DacA, the catalytic moiety of DacA is

located at the N-terminal domain. Furthermore, the RHR motif is

essential for DacA’s ATP-binding and the enzymatic activity.

Deletion of the N-terminal catalytic domain of DacA completely

abolishes DacA’s ATP binding and the enzymatic activity.

Surprisingly, the activities of DacA are dramatically reduced by

Figure 6. Function of the N-terminal and the C-terminal domains of DacA in oligomerization and enzymatic activity. (A) Schematic
representation of the primary structures of DacA, DacA1–287 and DacA140–358, as indicated with black lines. DacA1–287 lacks the C-terminal HhH
domain, while DacA140–358 lacks the N-terminal Dac domain. (B) SDS-PAGE of purified DacA1–287 and DacA140–358. Lane M, MW marker; lanes 1 and 2
are purified DacA1–287 and DacA140–358, respectively. (C) Analytical ultracentrifugation of DacA1–287 and DacA140–358. (D) Cross-linking of DacA140–358

with glutaraldehyde. Lane M, MW marker; lane 1, untreated DacA140–358; and lane 2, glutaraldehyde-treated DacA140–358. Lanes 1 and 2 were analyzed
using Western blot with the anti-DacA antibody. (E) ATP binding by DacA, DacA1–287 and DacA140–358. Proteins, either in the presence (+) or absence
(2) of ATP, were separated by electrophoresis with a native gel and stained with Coomassie Brilliant Blue. (F) Enzymatic activity of 10 mM DacA1–287

and DacA140–358 analyzed using HPLC.
doi:10.1371/journal.pone.0035206.g006
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deletion of the HhH domain, while the tetrameric catalytic

domains and the ATP binding ability are still retained. This

suggests that the enzymatically active conformation is required,

and that the HhH domain plays a role in stabilizing the active

conformation. Therefore, we have proposed a structural model of

DacA based on our results (Fig. 7F). In this model, we hypothesize

that the removal of the C-terminal domain results in a

conformational alteration, which significantly reduces the diade-

nylate cyclase activity, but retains the capability to bind ATP. On

the other hand, deletion of the N-terminal domain or mutation of

the RHR motif abolishes the ATP-binding and the diadenylate

cyclase activity.

The activities of DacA are strictly dependent on divalent metal

ions. Generally, the catalytic activities are exhibited in the

presence of Mg2+, Mn2+ or Co2+. These divalent ions are co-

factors for enzymes, such as adenylate cyclases and phosphodies-

terases [16,42]. In M. tuberculosis, Mg2+ or Mn2+ is needed for the

activity of Cya (Rv1625c), an adenylate cyclase [42]. We have also

detected that Rv0805 has a preference for Mn2+ or Co2+ (Bai and

McDonough, manuscript submitted). These results suggest that

such cations play important roles in bacterial signaling. Further-

more, similar to several enzymes, such as YybT and Rv0805 [16],

the diadenylate cyclase activity of DacA is more active at a basic

pH, rather than at an acidic or a neutral condition. The biological

equivalence of the pH effect warrants further investigation.

The roles of c-di-GMP in bacterial pathogenesis have been well

established. However, little is known about the function of c-di-

AMP. Our future studies will explore the role of c-di-AMP in the

biology and pathogenesis of M. tuberculosis.
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