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Abstract

Background: Bacterial non-coding RNAs act by base-pairing as regulatory elements in crucial biological processes.
We performed the identification of trans-encoded small RNAs (sRNA) from the genomes of Mycoplama
hyopneumoniae, Mycoplasma flocculare and Mycoplasma hyorhinis, which are Mycoplasma species that have been
identified in the porcine respiratory system.

Results: A total of 47, 15 and 11 putative sRNAs were predicted in M. hyopneumoniae, M. flocculare and M.
hyorhinis, respectively. A comparative genomic analysis revealed the presence of species or lineage specific sRNA
candidates. Furthermore, the expression profile of some M. hyopneumoniae sRNAs was determined by a reverse
transcription amplification approach, in three different culture conditions. All tested sRNAs were transcribed in at
least one condition. A detailed investigation revealed a differential expression profile for two M. hyopneumoniae
sRNAs in response to oxidative and heat shock stress conditions, suggesting that their expression is influenced by
environmental signals. Moreover, we analyzed sRNA-mRNA hybrids and accessed putative target genes for the
novel sRNA candidates. The majority of the sRNAs showed interaction with multiple target genes, some of which
could be linked to pathogenesis and cell homeostasis activity.

Conclusion: This study contributes to our knowledge of Mycoplasma sRNAs and their response to environmental
changes. Furthermore, the mRNA target prediction provides a perspective for the characterization and
comprehension of the function of the sRNA regulatory mechanisms.

Keywords: Mycoplasma hyopneumoniae, Mycoplasma flocculare, Mycoplasma hyorhinis, Small RNAs, Porcine
respiratory system

Background
In bacterial genomes the non-coding RNAs (ncRNA)
identified were the ribosomal RNAs (rRNA) and transfer
RNAs (tRNA), which are important components of the
protein synthesis machinery [1–3]. In addition, cis-encoded
antisense RNAs (asRNA) and trans-encoded small RNAs
(sRNA) were also identified. Analyses of asRNAs and

sRNAs targets have shown that these ncRNAs could
alter the translation process or mRNA stability by
target base pairing [3–6]. Moreover, sRNAs may have
multiple targets [4, 5].
Non-coding RNA elements present in many bacterial ge-

nomes add a further complexity to the comprehension of
bacterial gene regulation [7]. Recently, several ncRNAs with
different genomic origins, lengths, functions, and gene
regulation mechanisms have been identified [6, 8–10].
There are evidences that ncRNAs may regulate important
processes, such as pathogenesis, iron metabolism, and
quorum sensing [4, 11, 12].
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Novel ncRNAs are difficult to detect by conventional
biochemical screenings [13]. As an alternative, in silico
approaches associated to a functional analysis validation
have proved to be effective in the identification of
ncRNAs [14–17]. In AT-rich genomes, the ncRNA genes
show a relatively higher GC-content [18] and therefore,
compositional-based analyses that scan for local GC-
content have had success in detecting ncRNAs. The
algorithm Single Genome ncRNA Search (SIGRS) [19] is
a whole-genome eukaryote predictor that uses these
features. Given that most functional RNAs rely on a
stable secondary structure, prediction of the minimum
free energy of a transcript is also used as a means of
detecting ncRNA genes [20].
Target prediction is the main step in understanding

bacterial sRNA function. Recently, computational target
prediction methods had their performance improved by
inclusion of RNA accessibility and conservation informa-
tion [21–24]. Interacting RNA (IntaRNA) and RNAplex
are reliable sRNA target prediction software [25].
IntaRNA uses the energy score of the interaction, which is
calculated as the sum of the free energy of hybridization
and the free energy required for making the interaction
sites accessible [22]. RNAplex [21] is a refinement of the
RNAhybrid software and uses a simplified algorithm to
reduce the time needed to localize putative hybridization
sites, mainly by neglecting intramolecular interactions and
by using a slightly simplified energy model. The RNAplex
tool is combined with the RNAup tool and can find
high-confidence targets, with only a slight loss of sensi-
tivity. Moreover, RNAplex also uses an energy score of
the interaction of sRNA and putative targets to predict
molecule interactions.
Mycoplasmas are bacteria of the class Mollicutes charac-

terized by small genomes and low GC content. Myco-
plasma hyopneumoniae, Mycoplasma flocculare and
Mycoplasma hyorhinis are important species that have been
identified in the porcine respiratory system [26–28]. M.
hyopneumoniae is the etiological agent of porcine enzootic
pneumonia [29], while M. hyorhinis can also cause swine
polyserositis and arthritis [30]. Although M. flocculare is
widespread in swine herds, it has so far been recognized as
a commensal species [31]. Currently, the genome sequences
of several Mycoplasma species are available, allowing a
comparative analysis of the gene content among different
species. However, information related to regulatory ele-
ments is very limited in these organisms. Furthermore, the
Mycoplasma species present a low number of proteins
involved in transcriptional regulation [32, 33]. These evi-
dences suggest the presence of alternative transcriptional
regulatory mechanisms in mycoplasmas.
It was previously shown that most genes from the

genomes of M. hyopneumoniae, M. flocculare and M.
hyorhinis are expressed at some basal level and that the

majority of the genes are co-transcribed [34, 35]. Therefore,
a global determination of the genomic functional elements
is a prerequisite to expand our knowledge regarding tra-
nscriptional small RNA regulation in swine respiratory
mycoplasmas.In the current study, we have analyzed and
predicted trans-encoded small RNAs from M. hyopneumo-
niae, M. flocculare and M. hyorhinis genomes. Moreover,
we have analyzed RNA-RNA interaction and accessed
target genes for the sRNA candidates. Some predicted M.
hyopneumoniae sRNAs were also experimentally investi-
gated by a reverse transcription amplification approach in
three different culture conditions.

Results
Global screening for small RNAs
Knowledge related to the presence and role of small
RNAs in mycoplasma remains limited, therefore a
genome-wide screen for sRNAs was conducted using in
silico prediction approaches. Only sRNAs present in the
intergenic regions (IGRs) were searched as the input file,
since all regions marked as coding sequence (CDS) and
known ncRNAs, such as rRNA, tRNA, RNase P and
others, were masked. These IGRs have a GC content of
21 % for M. hyopneumoniae, 23 % for M. flocculare and
21 % for M. hyorhinis representing, respectively, 13, 12
and 14 % of the total genome. The segments with a high
GC cumulative, comparable to the known ncRNAs, were
considered sRNA candidates.
The analysis of the M. hyopneumoniae genome using

the SIGRS software allowed the identification of 17
previously known ncRNAs and 26 predicted putative
novel sRNAs. However, the SIGRS outputs associate
with distinct regions, defined some of them as unique
ncRNA candidates. Therefore, a fragmentation algorithm
(FraPS) was applied, resulting in 25 previously known
ncRNAs (representing 71 % of the recovered input) and
47 putative novel sRNAs, named sRNA_1 to sRNA_47
(Additional file 1: Table S1). The sequences of these
predicted sRNAs including their information related to
genome location, length, GC content, and free energy of
the secondary structure of the sRNA are supplied in
Additional file 2: Table S2. The RNAspace software re-
covered 87 % of the SIGRS/FraPS predictions supporting
the previous SIGRS/FraPS results for the sRNA genes.
M. hyopneumoniae sRNAs have an average length of

128 bp, ranging from 61 to 424 bp and 40.8 % of GC
content. Furthermore, the minimum fold energy (ΔG)
among the putative sRNAs varies from −0.057 kcal/mol
to −0.296 kcal/mol (Additional file 2: Table S2). The
sRNA sequences were analyzed by Blast search to locate
homologous sequences in the genomes of the other M.
hyopneumoniae strains available. Remarkably, 35 pre-
dicted novel sRNAs (74 %) were present in all M. hyop-
neumoniae genome strains (J, 7422, 232, 168 and 168-L),
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while only the sRNA_42 was exclusive to the M. hyop-
neumoniae 7448 genome (see Additional file 1: Table
S1). Interestingly, only the sRNA_31 was identified in
the genomes of all pathogenic strains and was absent in
the genome of the non-pathogenic M. hyopneumoniae J
strain. Moreover, sRNA_07 was found only in the
genome of the two pathogenic strains 7448 and 7422
isolated from Brazilian swine herds.
In order to evaluate if some of the predicted sRNA

genes were transcribed, a stem-loop-RT-PCR analysis
was used to investigate the presence of sRNA transcripts
in three different culture conditions. Figure 1b illustrates
the primers design for the stem-loop-RT-PCR approach.
Primer pair positions were based on a full-length sRNA
prediction, for both strands using specific primers for
each sRNA tested. The low GC content of the M. hyop-
neumoniae genome and the mandatory full-length primers
position with high specificity resulted in 19 sRNAs subject
to experimental analysis. It was possible to show that all
the 19 predicted and experimentally analyzed sRNAs were
detected as transcribed in the three different growth
conditions, except for sRNA_05 and sRNA_09, which
were not transcribed in the standard condition or heat
shock condition, respectively (Additional file 3: Table S3).
The possible presence of sequences homologous to the

novel sRNAs predicted for M. hyopneumoniae in other
Mycoplasma species, also found in the swine respiratory
tract, was analyzed by Blast search. Sequences homolo-
gous to the novel sRNAs of M. hyopneumoniae were not
found in the genomes of M. flocculare and M. hyorhinis,
supporting the notion that these novel sRNAs are species-
specific. Therefore, the genomes of M. flocculare and M.
hyorhinis were screened for the presence of sRNAs apply-
ing the same methodology used for M. hyopneumoniae.
Using SIGRS plus FraPS, it was possible to predict 15

novel sRNAs for M. flocculare, which were named
sRNA_F1 to sRNA_F15 (Additional file 4: Table S4) and
11 novel sRNAs for M. hyorhinis, which were named

sRNA_R1 to sRNA_R11 (Additional file 5: Table S5).
RNAspace predictor was able to identify approximately
50 % of the SIGRS/FraPS predictions, for both genomes.
Furthermore, the main profile of the new predicted
sRNAs was similar to that found for the sRNAs pre-
dicted in M. hyopneumoniae. The sRNAs of M. floccu-
lare have an average length of 167 bp, ranging from 76
to 402 bp and 36.7 % of GC content (Additional file 6:
Table S6), while the minimum fold energy (ΔG) among
the putative sRNAs varies from −0.063 kcal/mol to
−0.493 kcal/mol (Additional file 6: Table S6). The sRNAs
of M. hyorhinis have an average length of 85 bp, ranging
from 35 to 209 bp with 44.4 % of GC content and the
minimum fold energy (ΔG) varied from −0.123 kcal/mol
to −0.392 kcal/mol (Additional file 7: Table S7).
A homologous sequence search was carried out for each

novel putative M. flocculare and M. hyorhinis sRNA in the
available genomes of other M. flocculare, M. hyorhinis and
M. hyopneumoniae strains. All predicted sRNAs were
present only in the corresponding genomes of M. floccu-
lare (strain 27399) or M. hyorhinis (strains DBS1050,
MCLD and SK76), as shown in Additional file 4: Table S4
and Additional file 5: Table S5.

Small RNA targets prediction
The importance of sRNAs as a distinct class of gene
regulators in bacteria is well established, as many diverse
processes have been shown to be controlled by sRNAs
in different species [4, 11, 12]. The interaction of sRNAs
with different targets is an important mechanism to
control the complex regulatory networks in bacterial
cells. Therefore, to analyze the interaction of sRNAs to a
multitude of different target mRNAs and their role in
gene regulation, the binding region of the sRNA:target
duplex needs to be investigated.
A computational analysis of the potential targets for

the sRNAs identified using RNAplex and IntaRNA pre-
dicted 204 targets for the sRNAs of M. hyopneumoniae

Fig. 1 Schematic representation of sRNA position at M. hyopneumoniae 7448 genome and primers design. a Overview of the location of
sRNA_35 in the M. hyopneumoniae 7448 genome region from 582,636 to 593,642 base pair. White arrows represent the genes position and the
sRNA_35 is represented by a gray box. Representation from Artemis. b Primers location for the RT-PCR stem-loop reaction. Slim arrows indicate
the amplicon orientation. Black portions represent amplification and gray portions represent the primers location. The amplification from specific
forward primer to universal reverse primer is the entire sRNA length
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(see Additional file 1: Table S1 and Additional file 8:
Table S8), 35 targets for the sRNAs of M. flocculare (see
Additional file 4: Table S4 and Additional file 9: Table
S9) and 42 targets for the sRNAs of M. hyorhinis (see
Additional file 5: Table S5 and Additional file 10: Table
S10). An interaction was deemed functional only if
respecting both criteria free energy smaller or equal to a
threshold of −13 kcal/mol and equally predicted by the
two software. Detailed information (i.e., gene ID, gene
name, gene product and interaction energy - kcal/mol)
related to the sRNAs/targets interactions is available in
each Additional file.
The in silico predictions identified interaction with

target genes for 44 novel M. hyopneumoniae sRNAs.
The majority of the sRNAs showed multiple target genes
varying from 1 to 26 (Additional file 1: Table S1), how-
ever most of them (90 %) interacted with up to seven
target genes (Additional file 1: Table S1). Considering
the whole genome of M. hyopneumoniae, 145 genes out
of 678 showed a predicted interaction with at least one
novel sRNA, representing 21 % of the M. hyopneumo-
niae genes used as input (Additional file 8: Table S8). In
general, the genes that showed such predicted inter-
action were also found to pair with multiple sRNAs,
although some genes interact with only a single sRNA.
From the 145 genes, 108 (74 %) were found as single

target, meaning that the mRNAs encoded by these genes
could potentially interact with only one of the predicted
novel sRNAs (Additional file 8: Table S8). The products
of these genes are mainly related to basal cell metabol-
ism, transport system and lipoproteins; many products
are related to protein synthesis while most are related
with unknown products (hypothetical proteins). A de-
tailed analysis of the data (Additional file 8: Table S8)
revealed that approximately 25 % of the target genes
were predicted as capable to interact with up to three
sRNAs. Nevertheless, some targets are ubiquitous: for
example the gene AAZ53944.1, which encodes the
exonuclease protein, showed interactions with six
predicted sRNAs. Another gene with multiple sRNA
interactions is AAZ54018.1 gene, which codes for the
prolipoprotein p65, which may interact with three
different sRNAs.
The three novel sRNAs without target prediction were

sRNA_27, sRNA_28 and sRNA_37. Detailed analysis of
the interaction predictions revealed that these sRNAs have
putative target genes found by the two algorithms, how-
ever the energy interaction in the IntaRNA software was
higher than −13 kcal/mol. The sRNA_37, experimentally
analyzed, has two putative target genes: MHP7448_0312,
encoding glycine cleavage system H protein, and the
MHP7448_0704, encoding a hypothetical protein, with
energy interactions around −12 kcal/mol for both of them.
In turn, the sRNA_27 and sRNA_28 interact with targets

with energy around −10 kcal/mol as: the MHP7448_0293
(ychF GTP binding protein) and MHP7448_0166 (riboso-
mal large subunit pseudouridine synthase B) as targets for
sRNA_27; and MHP7448_0362 (ABC transport system
permease protein p69-like), MHP7448_0022 (hypothetical
protein) and MHP7448_0601 (hypothetical protein) as
targets for sRNA_28 (Additional file 8: Table S8).
Similarly to the M. hyopneumoniae results, RNAplex

and IntaRNA predicted target gene interactions for 13
novel M. flocculare sRNAs and for all novel M. hyorhinis
sRNAs. Most of the sRNAs were predicted to bind to
multiple targets and the number of targets for each
sRNA ranged from one to nine for M. flocculare and
from one to 13 for M. hyorhinis (Additional file 9: Table S9
and Additional file 10: Table S10). As shown in Additional
file 4: Table S4 and Additional file 5: Table S5, the majority
of the predicted novel sRNAs from both genomes were
able to interact with a restricted number of target
genes. The sRNAs with the higher interaction number
were the sRNA_F7 and the sRNA_R6, with 13 and 9
target interactions, respectively.
Data analyses, as presented in Additional file 9: Table

S9 and Additional file 10: Table S10, showed that 33 of
the encoded mRNAs of M. flocculare and 41 of the
encoded mRNAs of M. hyorhinis interact with at least
one novel sRNA, representing, respectively, 5 and 6 % of
all the genes used as input. As expected, the different
products of the target genes have different metabolic
functions as observed in the M. hyopneumoniae analysis.
Some of the genes encode for enzymes involved in cell
metabolism, cell division proteins, transcription regula-
tion, adhesins, while a high number of the gene products
are classified as unknown or hypothetical proteins.
The M. flocculare sRNAs without target prediction

were sRNA_F5 and sRNA_F15. Detailed analysis of the
interaction predictions shows these sRNAs with putative
target genes found by the two algorithms, however the
energy interaction in the IntaRNA software was higher
than −13 kcal/mol. Focusing in these in silico inte-
ractions, the sRNA_F5 was able to bind to genes rpsk
(30S ribosomal protein S11), trxA (thioredoxin), and
MF01218 (P37-like ABC transporter substrate binding
lipoprotein). Furthermore, sRNA_F15 could interact
with MF01377 and MF01379 (both hypothetical pro-
teins) and also with MF00736 (ABC transport permease
protein). The interaction energies for both sRNAs were
around −10 kcal/mol.

Discussions
Small bacterial RNAs generally act by base pairing with
mRNAs, regulating many aspects of bacterial physiology
leading to positive or negative regulation of target
protein synthesis. To search for sRNAs in the genomes
of M. hyopneumoniae, M. flocculare and M. hyorhinis,
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we combined in silico prediction approaches with tran-
scription analysis (RT-PCR).
The in silico prediction of novel trans-acting sRNAs in

the three mycoplasma genomes was performed by apply-
ing two different methods, ncRNA Search (SIGRS) and
RNAspace, allowing the in silico identification of sRNAs
following the combination of the results generated by
both algorithms. Using this approach, 47, 15 and 11
putative novel sRNAs were predicted in the genomes of
M. hyopneumoniae, M. flocculare and M. hyorhinis, re-
spectively. The average length of these putative sRNAs
in the genomes of the three mycoplasma species ranged
from 85 to 167 bp. Previously, the availability of tran-
scriptome maps of M. hyopneumoniae, M. flocculare and
M. hyorhinis allowed the in silico identification of 78,
130 and 72 putative novel ncRNAs, respectively, with
lengths ranging from 30 to 600 nucleotides [35]. How-
ever, this approach was unable to identify the sRNAs
among the ncRNAs [35]. Although in Escherichia coli
the majority of the new sRNAs, varying in length from
50 to 400 nucleotides, have been identified through an
in silico prediction [36, 37], the application of this
proposed methodology to other bacterial species has had
only limited success as it requires reliable species-
specific consensus promoter and terminator sequences.
In Vibrio cholerae, 32 candidates for novel sRNAs were
predicted by relying only on putative terminators and
regions of sequence conservation in intergenic regions
[38]. Previous studies on the M. pneumoniae genome
demonstrated the presence of 311 ncRNAs, the majority
of which were classified as asRNAs, and probably only
19 are sRNAs [10, 39]. Among other bacteria, the num-
ber of sRNAs is variable as 83 trans-encoded sRNAs
found in the Listeria monocytogenes genome [12, 40–44].
Taken together, it is possible to suggest that the number
and size of the sRNAs predicted in the genomes of M.
hyopneumoniae, M. flocculare and M. hyorhinis are vari-
able as those found in other bacterial species.
Aiming to validate the in silico sRNA prediction, some

M. hyopneumoniae sRNAs were amplified. Nineteen out
of 47 predicted sRNAs were tested, corresponding to all
candidates that could be full-length amplified by stem-
loop RT specific primers. The experimental data were
able to validate the in silico approach as transcripts were
detected from all tested sRNAs. Interestingly, two of the
sRNAs (sRNA_05 and sRNA_09) showed differential
expression dependent on the growth conditions tested.
The sRNA_05 was transcribed in both stress conditions
tested and the presence of the sRNA_09 transcript was
detected only in normal culture and oxidative stress
conditions. These results support the notion that the
expression of regulatory RNAs (such as sRNAs) changes
in response to external stimuli and therefore contributes
to an adaptive expression program. Moreover, different

studies have also established the indispensable nature
of bacterial sRNAs in cell adaptation, immediate re-
sponses to changing environments, survival, and patho-
genesis [45, 46].
No homologs of the 47 M. hyopneumoniae sRNAs

were found in the genomes of the other swine respira-
tory tract Mycoplasma species. The same result was
observed when sRNAs from M. flocculare and M. hyor-
hinis were analyzed. These results demonstrate that the
sRNAs of these three swine respiratory tract Mycoplas-
mas are species-specific. We have looked for any differ-
ence that could be associated to the non-conservation
among species. However, the genome composition, in-
cluding GC content within the coding and non-coding
regions is very similar in mycoplasmas species. More-
over, the species-specific sRNAs were identified in the
genomes of the different strains of each species analyzed.
Previous studies have demonstrated that, although some
sRNAs are conserved in closely related species, a similar
species-specific sRNA pattern appears to be found in
other bacterial species [14, 36, 37, 47, 48].
The number of regulatory RNAs predicted in M. hyop-

neumoniae, M. flocculare and M. hyorhinis indicates that
many diverse processes could be controlled by bacterial
sRNAs. In order to predict targets for the novel sRNAs,
two algorithms were used. A genome-wide COG analysis
of sRNA–mRNA target interactions demonstrated the
absence of correlation to specific classes of genes, sug-
gesting that sRNAs might be used to control general
processes within the mycoplasma cell as found in other
bacteria [44]. Moreover, we observed that the ortholog
target genes predicted for a Mycoplasma species could
interact with another species; so, target genes could be
considered as not species-specific.
Similarly to data previously described for other bacteria,

some M. hyopneumoniae, M. flocculare and M. hyorhinis
sRNAs have a predicted interaction with single targets
(e.g., sRNA_02 from M. hyopneumoniae, sRNA_F2 from
M. flocculare and sRNA_R1 from M. hyorhinis) while
others show a multitude of targets (e.g., sRNA_06 from
M. hyopneumoniae, sRNA_F7 from M. flocculare and
sRNA_R6 from M. hyorhinis), possibly acting as global
regulators. Taken together, our results indicate that the
majority of the predicted mRNA targets are encoded
hypothetical proteins or genes involved in the cellular
general metabolism.
Previous analyses described the presence of differential

transcription in the M. hyopneumoniae transcriptome
[35, 49–52]. Therefore, the genes up or down-regulated
in the above studies were correlated with the genes
predicted as interacting with sRNAs. Among all differen-
tially expressed genes [49–52], 24 (20 %) were predicted
as target genes for at least one novel sRNA. The gene
MHP7448_0656 that encode the p65 prolipoprotein,
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which can interact with three different sRNAs (sRNA_10,
sRNA_20 and sRNA_26) have been shown to be differen-
tially expressed in heat chock condition [50]. p65 is an
immunodominant surface lipoprotein of M. hyopneumo-
niae used in the serological diagnosis of infections [35].
Moreover, the gene MHP7448_0487 that encodes a pu-
tative MgtE transporter and is also responsive to heat
chock stress [50] showed putative interaction with three
different sRNAs (sRNA_7, sRNA_20 and sRNA_29).
MgtE is a magnesium transporter protein expressed in a
number of Gram-negative and Gram-positive bacteria that
can modulate bacteria virulence and cytotoxicity [53].
Homologous sequences for the small RNAs were

searched in the genomes of other M. hyopneumoniae
strains available. Interestingly, only one sRNA (sRNA_31)
was exclusive of the genomes of pathogenic strains of M.
hyopneumoniae (Additional file 1: Table S1). The sRNA_31
interacts in silico with two mRNAs encoding hypothetical
products and one mRNA, which encodes a protoporphiro-
gen oxidase that has methylase activity. So, further analysis
will be required to characterize the hypothetical proteins
and identify a possible function for this exclusive sRNA of
M. hyopneumoniae.

Conclusions
In the current study, we have analyzed and predicted
trans-encoded small RNAs from the genomes of M.
hyopneumoniae, M. flocculare and M. hyorhinis. Mo-
reover, we have analyzed RNA-RNA interaction and
accessed putative target genes for the sRNA candidates.
Some predicted M. hyopneumoniae sRNAs were also
experimentally investigated by a reverse transcription
amplification approach, in three different culture condi-
tions. In conclusion, we were able to identify 47, 15 and
11 novel sRNAs in M. hyopneumoniae, M. flocculare
and M. hyorhinis, respectively. The number of sRNAs is
similar to the one predicted in other bacterial species.
All M. hyopneumoniae sRNAs tested were transcribed in
at least one condition; however, the differential expres-
sion profile of two sRNAs in response to oxidative stress
and heat shock stress suggests that its expression is
influenced by environmental signals. Target genes for
the novel sRNA candidates were accessed showing that
many sRNAs can interact with different targets, and that
different sRNAs could regulate the same mRNAs. In this
context, complex global regulatory networks might be
implicated in Mycoplasma.

Methods
In silico analysis of small RNAs
The prediction of sRNAs was performed in M. hyopneu-
moniae 7448 (NSDC AE017244.1), M. hyorhinis HUB-1
(INSDC CP002170.1) and M. flocculare ATCC 27716
(INSDC AFCG00000000.1) using two software: Single

Genome ncRNA Search (SIGRS) [19] and RNAspace
[54]. SIGRS is a nucleotide contrast-based tool, which
screens an input genome and indicates regions with
similar nucleotide composition to known ncRNA se-
quences. SIGRS computes a scoring scheme that allows
the transformation of the nucleotide genome sequence
into a numeric one. Subsequences that aggregate a par-
tial sum above a significant threshold are considered
ncRNA gene candidates. RNAspace uses a similar strat-
egy, screening for rich atypical GC regions, and only the
regions with a GC value above the mean plus twice the
standard deviation for the whole genome are considered
as atypical. This method detects signals intrinsic to
ncRNAs, differentiating them from other elements in
the genome by exploiting the compositional bias be-
tween ncRNAs and other regions of the genome.
Initially, the SIGRS method was used as the Mycoplas-

mas sRNA predictor with a set of known ncRNAs to
guide the search for new ncRNAs with a similar nucleo-
tide composition profile and structural-based features.
Known ncRNA sequences of Mollicutes (rRNA, tRNA,
RNase P and other functional ncRNAs) were obtained
from the Bacterial sRNA Database (BSRD) [55] and from
the bacterial genome annotation. The genomes used for
the new sRNAs search were masked in all regions
marked as coding sequence (CDS) in the annotation files
of M. hyopneumoniae, M. flocculare and M. hyorhinis.
Therefore, the search was performed within the inter-
genic regions, which potentially harbor the sRNAs. The
set of known ncRNAs and the masked genomes were
provided as input to SIGRS, which creates a scoring sys-
tem based on the nucleotide composition of the known
ncRNAs to transform the genome in a numerical se-
quence. The segments with a high cumulative sum are
thus considered as sRNA candidates. However, SIGRS
was unable to distinguish different ncRNA candidates
when the distance between them was too small. To solve
this problem, a segmentation of the numerical sequence
that represents the ncRNA candidates was required in
order to identify the largest local slopes in a given se-
quence. Therefore, the algorithm by Kadane [56] to find
these slopes was adapted, allowing for the fragmentation
of the output into the correct number of candidates.
This methodology was defined as Fragmentation of
SIGRS Predictions (FraPS) and the adapted algorithm
and script are available in Additional file 11: Figure S1.
To improve the quality of the predicted sRNAs, the free
energy of the RNA secondary structures was computed
by RNAfold from the Vienna package [57] and normal-
ized by the length of each sequence.
In order to support the evidence for the sRNAs

predicted by SIGRS, the RNAspace pipeline [54] was
used as a second method for sRNA prediction. The
same input files of the set of known ncRNA genes
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and masked CDSs from the genomes described above
were used.

In silico analysis of gene targets
The novel sRNAs identified were analyzed by the Inter-
acting RNA (IntaRNA) and RNAplex packages in order
to find target genes for sRNA interaction. The IntaRNA
software uses free energy of hybridation, target site
accessibility and the presence of a seed to determine an
RNA-RNA interaction [22]. RNAplex was designed to
quickly find possible hybridization sites for a query RNA
in large RNA databases, using a slightly different energy
model that reduces the computational time. It also has a
length penalty that allows to focus the target search on
short highly stable interactions. The input for both
IntaRNA and RNAplex was the set of sRNAs, and the
targets used were all CDSs from each of the three
species: M. hyopneumoniae, M. flocculare and M. hyor-
hinis. The input sequences to screen for the targets
comprised 150 nucleotides upstream of the start codon
until 150 nucleotides downstream start codon of each
annotated gene.
To consider an interaction as positive, an energy thresh-

old of −13 kcal/mol was set as follows. The free energies
of the 390 validated interactions from the sRNATarBase
2.0 [58] were computed with IntaRNA. A regression was
then calculated and plotted between the GC content and
the free energy of each interaction. The GC% of M. hyop-
neumoniae is 28.5 %, of M. flocculare 28.9 %, and of M.
hyorhinis 25.5 %. To effectively set a threshold, the mean
of the three GC percentages was calculated and the corre-
sponding energy value of −13 kcal/mol was taken as the
threshold. The resulting predictions of both tools were
compared to find ncRNA and target predictions shared by
or specific to the two tools.

Experimental analysis of the predicted M.
hyopneumoniae sRNAs
Culture conditions and RNA isolation
Mycoplasma hyopneumoniae strain 7448 was subjected to
three different culture conditions. In the standard condi-
tion, bacteria were grown in 40 ml Friis broth [59] at 37 °C
for 24 h with gentle agitation in a roller drum. A heat shock
stress condition was performed by incubation of the stand-
ard cultures (after the 37 °C for 24 h) at 30 °C for 2 h, and
then shifting to 42 °C for 30 min [50]. Finally, the oxidative
stress condition was obtained by addition of hydrogen
peroxide (1%) to the standard cultures followed by incuba-
tion at 37 °C for 15 min according to Schafer et al. [51].
Cells were pelleted by centrifugation at 3360 × g

for 20 min. Total RNA was isolated with TRIzol® Re-
agent (Invitrogen) following the manufacturer’s in-
structions including DNaseI digestion with 13U of
DNase I (Fermentas). Absence of DNA in the RNA

preparations was monitored by PCR assays. The extracted
RNA was analyzed by gel electrophoresis and quantified
in the Qubit™ system (Invitrogen).

Stem loop reverse transcription PCR
Primers were chosen to enable the amplification of full-
length predicted sRNA sequences. The designed specific
stem-loop RT primer and forward primer were per-
formed according to Chen et al. [60] searching for a
target transcription at a specific predicted position of
each sRNA (see example in Fig. 1a). The specificity of
the stem-loop RT primers was conferred by a nine to
ten nucleotide extension at the 3′ end. Primer design
was performed on the M. hyopneumoniae 7448 genome
using the Primer3 Program [61] and the sequences are
described in Additional file 12: Table S12. The primer
extension is a reverse complement of the last 10 nucleo-
tides at the 3′ end of the sRNA (Fig. 1b) followed by
specific forward primers.
Reverse transcriptase reactions containing 300 ng of

total RNA and 10 mM deoxynucleotide triphosphates
(dNTPs) were heated at 65 °C for 5 min and then incu-
bated on ice for 2 min. ImProm II™ (Promega Inc) 5×
reaction buffer (1×), 3 mM of MgCl2, 10 pmol of each
stem–loop RT primer (Additional file 12: Table S12) and
1 μl of of ImProm II™ Reverse Transcriptase were then
added to a total volume of 20 μl. The reaction mixture
was incubated for 30 min at 16 °C, followed by pulsed RT
of 60 cycles at 30 °C for 30 s, 42 °C for 30 s and 50 °C for
1 s, and then by reverse transcriptase inactivation at 85 °C
for 5 min. Negative control was prepared in parallel,
differing only by the absence of reverse transcriptase.
An end-point PCR was performed to amplify the RT

product using an sRNA-specific forward primer and the
universal reverse primer (Fig. 1 and Additional file 12:
Table S12). GoTaq DNA Polymerase (5U – Promega
Inc) was used with the following cycling parameters:
94 °C for 2 min, then 35 cycles at 94 °C for 15 s,
melting temperature (Tm) ranging from 55 to 60 °C
for 1 min (Tms are indicated in Additional file 12:
Table S12), 72 °C for 30 s, and a final step at 72 °C
for 7 min. The amplification products were visualized
on a 2 % agarose. The reactions were performed in
experimental triplicates.
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Additional file 1: Table S1. Small RNA (sRNA) predicted in Mycoplasma
hyopneumoniae 7448. (XLSX 54 kb)

Additional file 2: Table S2. Mycoplasma hyopneumoniae sRNAs
sequence and features predicted. (XLSX 15 kb)

Additional file 3: Table S3. Transcriptional analysis of the predicted M.
hyopneumoniae sRNAs from different culture cultivations. (XLSX 69 kb)
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Additional file 6: Table S6. Small RNA (sRNA) prediction in
Mycoplasma hyorhinis HUB-1. (XLSX 52 kb)
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Additional file 8: Table S8. Target prediction for the sRNAs from M.
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Additional file 9: Table S9. Target prediction for the sRNAs from M.
flocculare. (XLS 1863 kb)

Additional file 10: Table S10. Target prediction for the sRNAs from M.
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