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Abstract: Plants buffer increasing atmospheric CO2 concentrations through enhanced growth, 

but the question whether nitrogen availability constrains the magnitude of this ecosystem service 

remains unresolved. Synthesizing experiments from around the world, we show that CO2 

fertilization is best explained by a simple interaction between nitrogen availability and 

mycorrhizal association. Plant species that associate with ectomycorrhizal fungi show a strong 

biomass increase (30 ± 3%, P<0.001) in response to elevated CO2 regardless of nitrogen 

availability, whereas low nitrogen availability limits CO2 fertilization (0 ± 5%, P=0.946) in 

plants that associate with arbuscular mycorrhizal fungi. The incorporation of mycorrhizae in 

global carbon cycle models is feasible, and crucial if we are to accurately project ecosystem 

responses and feedbacks to climate change. 

One Sentence Summary: Only plants that associate with ectomycorrhizal fungi can overcome 

nitrogen limitation, and thus take full advantage of the CO2 fertilization effect. 

Main Text: Terrestrial ecosystems sequester annually about a quarter of anthropogenic CO2 

emissions (1), slowing climate change. Will this effect persist? Two contradictory hypotheses 

have been offered: the first is that CO2 will continue to enhance plant growth, partially mitigating 

anthropogenic CO2 emissions (1, 2), while the second is that nitrogen (N) availability will limit 

the CO2 fertilization effect (3, 4), reducing future CO2 uptake by the terrestrial biosphere (5-7). 

Plants experimentally exposed to elevated levels of CO2 (eCO2) show a range of responses in 

biomass, from large and persistent (8, 9) to transient (6), to non-existent (10), leaving the 

question of CO2 fertilization open. Differences might be driven by different levels of plant N 

availability across experiments (11), but N availability alone cannot explain contrasting results 

based on available evidence (7, 12). For instance, among two of the most studied free-air CO2 



enrichment (FACE) experiments with trees, eCO2 enhanced biomass production only during the 

first few years at ORNL-FACE (6), whereas trees in the Duke FACE experiment showed a 

sustained enhancement during the course of the experiment (8), despite N limitation. In addition 

to N limitation, other factors have been suggested as potential drivers of the response of plant 

biomass to eCO2: age of the vegetation (13), water limitation (14), temperature (15), type of 

vegetation (12), or even the eCO2 fumigation technology used (11). Although these factors may 

explain some observations, none has been found to be general, explaining the range of 

observations globally. 

About 94% of plant species form associations with mycorrhizal fungi, an ancient mutualism 

thought to have facilitated the colonization of land by early plants (16). In this mutualism, the 

fungus transfers nutrients and water to the plant in exchange for carbohydrates, necessary for 

fungal growth. Mycorrhizal fungi are critical for terrestrial C cycling (17), are known to 

influence plant growth (18), nutrient cycling (19, 20), and soil carbon storage (21), and respond 

strongly to elevated CO2 (22, 23). Yet, their impact on the N-dependence of the CO2 fertilization 

effect has not been tested, despite the increasing evidence that N limitation constrains the CO2 

fertilization effect (5). Arbuscular mycorrhizae (AM) and ectomycorrhizae (ECM) are, by far, 

the most widespread types of mycorrhizae (24): AM-plants predominate in deserts, grasslands, 

shrublands and tropical forest ecosystems, whereas ECM-fungi predominate in boreal and many 

temperate forests (e.g., those dominated by Pinus). ECM can transfer N to the host plant under 

eCO2 to sustain CO2 fertilization (25), whereas the symbiotic effects of AM fungi in N-limited 

systems can range from beneficial to parasitic (19). Hence, the association of Liquidambar 

styraciflua with AM-fungi at ORNL, and Pinus taeda with ECM-fungi at Duke, might explain 

why only trees in the latter could increase N-uptake and take advantage of eCO2 to grow faster 

for a sustained period (20, 25). Here, we tested the hypothesis that the differences in the nutrient 

economies of ECM and AM fungi influence global patterns of the magnitude of plant biomass 

responses to elevated CO2. 

We synthesized data (overview in Table S1) on total plant biomass (g m
–2

) from 83 eCO2 

experiments (Fig. S1), separating responses into aboveground biomass (n=83, Fig. S2) and 

belowground biomass (n=82, Fig. S3) in a mixed effects meta-analysis. As potential drivers of 

the plant biomass response, we considered the increase in atmospheric CO2 concentration 

(∆CO2), mean annual precipitation (MAP), mean annual temperature (MAT), age of the 

vegetation at the start of the experiment, vegetation type (e.g. grassland, forest), CO2 fumigation 

technology (e.g. FACE, growth chamber), length of the study (years), dominant mycorrhizal type 

(AM or ECM), and N-status (high or low N availability, considering soil characteristics and 

occasional fertilizer treatments, following the approach by Vicca et al. (17) and assigning all 

experiments with indications for some degree of N limitation to the “low N” class and 
experiments that were unlikely N limited to the “high N” class; Materials and Methods, Table 

S2). 

Model selection analysis, based on corrected Akaike Information Criterion (AICc), showed that 

the most parsimonious model within 2 AICc units included N-status, mycorrhizal type and ∆CO2 

(P<0.001). The relative importance of the predictors (Fig. 1) supported the removal of climate 

variables, length of the experiment, age of the vegetation, fumigation technology and system 

type. Some predictors reduced the CO2 effect on biomass (e.g. age of the vegetation), whereas 

others were associated with an increased CO2 effect (e.g. ECM, ∆CO2, high N availability) (Fig. 

S4). 



The response of total biomass to an increase of CO2 from 400 to 650 µmol mol
−1

 was larger 

(P<0.001) in ECM (30 ± 3%, P<0.001) than in AM-dominated (7 ± 4%, P=0.089) ecosystems 

(mean ± SE, mixed effects meta-regression). The overall response of total biomass was 20 ± 3% 

(P<0.001), similar to previous meta-analyses (e.g., 15), with a larger effect under high (27 ± 4%, 

P<0.001) than low N availability (15 ± 4%, P<0.001), as expected (5, 7, 11). Furthermore, we 

found a strong interaction between mycorrhizal type and N-status (P<0.001): under low N 

availability, eCO2 had no effect on total biomass of AM-dominated species (0 ± 5%, P=0.946) 

but increased biomass by 28 ± 5% in ECM-dominated species (P<0.001) (Fig. 2A). Under high 

N availability, the CO2 effect on total biomass in both AM- and ECM-dominated species was 

significant: 20 ± 6% (P=0.002) for AM and 33 ± 4% (P<0.001) for ECM (Fig. 2A), with no 

significant differences between the two groups (P=0.139). Hence, high N availability 

significantly increased the CO2 effect in AM (Post-hoc, Tukey’s HSD: adj-P=0.038) but not in 

ECM-associated species (adj-P=0.999). 

The patterns observed for total biomass were reflected in both aboveground and belowground 

biomass. Under low N availability, eCO2 stimulated aboveground biomass significantly in ECM 

plants (P<0.001), with no effect in AM plants (P=0.584) (Fig. 2B). Similarly, eCO2 enhanced 

belowground biomass in ECM plants at low N (P=0.003), but not in AM plants (P=0.907) (Fig. 

2C). 

We conducted a sensitivity analysis to ensure the findings were robust. First, we added an 

intermediate level of N availability (Table S2) by assigning some ecosystems that were initially 

classified as “low” to a “medium” class (e.g. Duke, Aspen, ORNL) (Figure S5). This enabled 

testing whether the large CO2 stimulation in ECM plants was driven by experiments with 

intermediate N availability. Second, we weighted individual experiments by the inverse of the 

mixed-model variance (Figure S6), to ensure that the weights of the meta-analysis did not affect 

the outcome. Third, we ran a separate meta-analysis with the subset of experiments with trees 

only (Figure S7). Previous meta-analysis have reported that trees are more responsive to eCO2 

than grasslands (12); as such, our findings could reflect differences of plant growth form rather 

than mycorrhizal association per se. Since trees are the only type of vegetation that can associate 

with ECM and AM (or both), an analysis of tree responses to eCO2 can thus be used to isolate 

the influence of mycorrhizal type from that of vegetation growth form. These three sensitivity 

analyses confirmed that the CO2 stimulation of total and aboveground plant biomass was 

significant and large in ECM plants regardless of N availability, whereas the effect was not 

significant in AM plants under low N availability. The trend was consistent for belowground 

biomass in ECM plants, although with high variance and low sample size, the effect was not 

significant (P=0.244) under low N when the “medium” class was included. 

Plant N uptake can be enhanced through mycorrhizal associations, or through associations with 

N fixing microbes. Some of the CO2 experiments in our study contained N-fixing species, which 

might have increased N availability (Table S3). eCO2 stimulated aboveground biomass in AM 

species under low N by 8 ± 3% (P=0.019) in this subgroup of experiments that included N-fixing 

species, whereas the remaining AM experiments under low N availability showed no biomass 

response to eCO2 (1 ± 10%, P=0.893). But even with the additional N input from N2 fixation, the 

8% biomass increase in AM plants under low N was considerably smaller than the 28 ± 5% 

increase found for ECM plants.  

Most CO2 experiments have been carried out in the Northern Hemisphere (Fig. S8, where N, 

rather than phosphorus (P), is limiting. AM fungi transfer large quantities of P to the plant, and 



hence are more likely mutualistic in P-limited ecosystems (19). Tropical forests are typically 

associated with P limitations and dominated by AM-fungi, and could potentially show enhanced 

biomass under eCO2. The role of nutrients on the CO2 fertilization effect in these P-limited 

forests has yet to be explored (26). 

Responses of plants to rising CO2 are thus well explained by a simple interaction between 

nitrogen (N) and microbial mutualists: when N availability is limited, only plant species that 

associate with ECM-fungi show an overall biomass increase due to eCO2. Several mechanisms 

could explain these responses. First, ECM-associated plants typically allocate more C to support 

mycorrhizae than AM plants, particularly under eCO2 (23). Moreover, because ECM fungi, 

unlike AM fungi, produce extracellular enzymes that degrade organic N compounds (27), 

increased allocation to ECM fungi under eCO2 may supply host plants with the N needed to 

sustain their growth response to eCO2. This may explain why eCO2 often stimulates priming 

effects in ECM-dominated ecosystems (28, 29). Second, differences in litter quality between 

ECM and AM plants may influence how much N is available to be primed or decomposed.  

Several studies have reported that AM plants produce litters that decompose faster than ECM 

plants (20, 30). Given emerging evidence that fast decomposing litters promote the formation of 

stable mineral-associated organic matter (31, 32), much of the organic N in AM-dominated 

ecosystems may be inaccessible to AM plants or their associated mycorrhizae (20). And while 

slow-degrading ECM litters may reduce N availability in the short-term, most of the N exists in 

particulate forms, which should be accessible to most microbes (including ECM fungi). 

Therefore, AM fungi are equipped with less specialized enzymes for N acquisition than ECM 

and occur in soils were N is more tightly protected. Both factors would presumably limit the 

enhancement of AM plant growth in response to eCO2.  

Mycorrhizal symbioses are not accounted for in most global vegetation models (but see ref. 24). 

Thus, the projected CO2 fertilization effect by “carbon-only models” (1) is likely overestimated 

for AM-dominated ecosystems, which cover ~65% of the global vegetated area (24), albeit only 

when N limited. On the other hand, global models that consider N limitation to constrain the CO2 

fertilization effect (4) likely underestimate responses of ECM plants to eCO2, an area that 

encompasses ~35% of the vegetated area of the earth (24), most of which is considered N limited 

by these models. Our framework reconciles the apparent discrepancy between widespread N 

limitation (3) assumed to limit C sequestration on land (4), and the observed increase over time 

of the terrestrial C sink (1, 2), thought to be driven primarily by CO2 fertilization (33). These 

results may also partly explain past findings that forests (commonly ECM) show stronger 

responses to eCO2 compared to grasslands (AM) (12). We propose that the CO2 fertilization 

effect be quantified based on mycorrhizal type and soil nitrogen status, and that large-scale 

ecosystem models incorporate mycorrhizal types to account for the differences in biomass 

enhancement by eCO2. Mycorrhizae are ubiquitous, and sort predictably with plant functional 

type (24, 34), making feasible their inclusion in models to capture this microbial influence on 

global biogeochemistry. Accounting for the influence of mycorrhizae will improve 

representation of the CO2 fertilization effect in vegetation models, critical for projecting 

ecosystem responses and feedbacks to climate change.  
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Fig. 1. Model-averaged importance of the predictors of the CO2 fertilization effect on total 

biomass. The importance is based on the sum of Akaike weights derived from model selection 

using AICc (Akaike’s Information Criteria corrected for small samples). Cutoff set at 0.8 
(dashed line) to differentiate among the most important predictors. 

 

Fig. 2. Overall effects of CO2 on plant biomass. Effects on (A) total, (B) aboveground, and (C) 

belowground biomass for two types of mycorrhizal plants species (AM: arbuscular mycorrhizae 

and ECM: ectomycorrhizae) in N limited experiments (low N) or experiments that are unlikely N 

limited (high N). Overall means and 95% confidence intervals are given; we interpret CO2 

effects when the zero line is not crossed. 
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