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Amino acid metabolism is a critical regulator of the immune response, and its modulating

becomes a promising approach in various forms of immunotherapy. Insufficient

concentrations of essential amino acids restrict T-cells activation and proliferation.

However, only arginases, that degrade L-arginine, as well as enzymes that hydrolyze

L-tryptophan are substantially increased in cancer. Two arginase isoforms, ARG1 and

ARG2, have been found to be present in tumors and their increased activity usually

correlates with more advanced disease and worse clinical prognosis. Nearly all types

of myeloid cells were reported to produce arginases and the increased numbers of

various populations of myeloid-derived suppressor cells and macrophages correlate with

inferior clinical outcomes of cancer patients. Here, we describe the role of arginases

produced by myeloid cells in regulating various populations of immune cells, discuss

molecular mechanisms of immunoregulatory processes involving L-arginine metabolism

and outline therapeutic approaches to mitigate the negative effects of arginases on

antitumor immune response. Development of potent arginase inhibitors, with improved

pharmacokinetic properties, may lead to the elaboration of novel therapeutic strategies

based on targeting immunoregulatory pathways controlled by L-arginine degradation.

Keywords: arginase, arginine, immunosuppression, tumor immunology, immunotherapy, T lymphocyte, T-cell

metabolism

INTRODUCTION

The idea that the immune system can be harnessed to destroy tumors has been pursued for over
a century (1). However, for decades the efforts have mainly focused on stimulating the immune
system with recombinant cytokines, immune adjuvants, or co-stimulatory agonists that seemed
critical for the induction of potent and sustained immune responses (1, 2). The rationale was that
the immune system in cancer patients lacks sufficient power to mount anti-tumor response. It now
seems however, that the interference with pathways dampening lymphocyte reactivity appears to be
more effective in cancer patients than over-stimulation of effector mechanisms of immune system.
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The most successful approaches to impair tumor-elicited
immunosuppressive mechanisms turned out to be monoclonal
antibodies (referred to as immune checkpoint inhibitors)
interfering with co-inhibitory molecules or their ligands,
such as CTLA-4 (cytotoxic T-lymphocyte-associated
protein 4), PD-1 (programmed cell death protein 1), or
PD-L1 (programmed death-ligand 1). The spectacular
therapeutic effects with unexpected ability to induce long-
term tumor control led to clinical approval of checkpoint
inhibitors (3–5).

Despite unprecedented antitumor efficacy, checkpoint
inhibitors are effective in a minority of cancer patients,
however. Thus, identification of response biomarkers as well
as resistance mechanisms has become a priority for cancer
researchers. A number of molecular mechanisms involved in
the evasion of the anti-tumor immunity have been characterized
in recent years (6). Central among them is the development of
chronic inflammation (7, 8). Epidemiological data indicate that
chronic inflammation is associated with poor prognosis (9).
Mounting evidence indicates that the tumor microenvironment
alters lymphoid and myeloid cells and converts them into
potent immunosuppressive cells. It has become clear that
tumor microenvironment, rich in inflammatory cells, is an
indispensable component in the neoplastic process fostering
proliferation, survival, and invasiveness of tumor cells (7).
Chronic inflammation also triggers multiple regulatory pathways

aimed at dampening immunity. The evolutionary rationale for

this is to mitigate tissue damage and fibrosis. Coincidentally,
the regulatory pathways impair development and/or activity
of adaptive immune mechanisms that could be involved in
eradication of tumor cells (8). Simultaneously, tumor cells
frequently co-opt some of the signaling molecules participating
in inflammation, such as adhesion molecules, cytokines,
and growth factors for migration, invasion, and metastasis.
Although there are many phenotypical and functional changes
in different myeloid cell subpopulations, their precise role in
the development of cancer resistance to immunotherapy is
still not well-understood. This review will address the role
of arginases (ARG), enzymes produced by tumor-infiltrating
myeloid cells. The role of L-arginine (L-arg) metabolism in
the regulation of immune response was of great interest in
the 1980s and 1990s. However, further studies were focused
mainly on L-arg-derived nitric oxide (NO) and its antimicrobial
activity (10, 11), rather than immunosuppressive effects of
L-arg deprivation. It is currently experiencing a renaissance
due to increased awareness of the role of metabolic pathways
in the regulation of immune cells function as well as due to
the development of selective arginase inhibitors with improved
pharmacokinetic properties. Novel tools and experimental
models allowed to more precisely and comprehensively address
the critical metabolic adaptations to microenvironmental
changes experienced by immune cells. This is a clearly
arginase-centered review, and it should be kept in mind
that there are multiple other independent mechanisms of
tumor immune evasion, including those affecting amino
acids metabolism.

ARGININE AND ARGINASES—BASIC
BIOCHEMISTRY

L-arginine is a dibasic cationic amino acid participating
in a variety of metabolic pathways (Figure 1) (12). There
are three major sources of L-arg in the body—dietary
intake, endogenous de novo production from L-citrulline
or recycling, i.e., retrieval from degraded proteins. Under
pathological conditions (bleeding, sepsis, trauma, cancer, or
chronic inflammation) endogenous sources of L-arg become
insufficient (13). Thus, L-arg is considered to be a semi-essential
or conditionally-essential amino acid that in stressful conditions
must be supplied in diet. Most of the endogenous L-arg synthesis
is carried out in the kidney proximal tubules from intestinal
L-citrulline (14). L-Arg plasma concentrations range between
50 and 250µM (15–18) and are much lower than those in
subcellular compartments (up to 1mM) (19). In mammalian
cells, L-arg transport through the plasma membrane is mediated
by at least eight transporters (20). The uptake of L-arg occurs
mainly via cationic amino acid transporters (CAT-1, CAT-2A,
CAT-2B, and CAT-3, SLC7A1-3) (21). In human T-cells L-arg
transport is mediated mainly by CAT-1 (22), while in myeloid
cells by CAT-2 (23). Moreover, L-arg is transported through the
plasma membrane by b0,+ AT (SLC7A9) and ATB0,+ (SLC6A14)
that also transport neutral amino acids (20, 24, 25). L-type amino
acid transporters γ+LAT1 (SLC7A7) and γ+LAT2 (SLC7A6)
mediate mostly arginine export from the cells (20, 24). L-arg is
metabolized in animal cells by four groups of enzymes, some
of which exist in various isoforms. These include arginases,
nitric oxide synthases (NOS), arginine decarboxylase (ADC), and
arginine:glycine amidinotransferase (AGAT). Moreover, arginine
deiminase (ADI) that hydrolyzes L-arg to L-citrulline and
ammonia is expressed by some bacteria (26, 27). It is the first
enzyme of the arginine dihydrolase system (ADS) that generates
alkali and ATP for growth (28). These enzymes are encoded by
arginine catabolic mobile element (ACME) (29) that was detected
in Staphylococcus aureus and Staphylococcus epidermidis (30). L-
arg metabolism by ADS enables survival in acidic environments,
including human skin, disrupts host arginine metabolism, and
contributes to the success of community-associated methicillin-
resistant S. aureus (CA-MRSA) (31).

Arginases are manganese-containing enzymes that hydrolyze
L-arg to L-ornithine and urea in the liver urea cycle (32).
This is the most important pathway responsible for the
conversion of highly toxic ammonia to excretable urea (33).
L-Ornithine is a substrate for ornithine decarboxylase (ODC)
that initiates polyamines synthesis, or it is metabolized by
ornithine aminotransferase (OAT) to proline. Polyamines, such
as putrescine, spermine, or spermidine are necessary for cell
proliferation, while proline is necessary for collagen synthesis.
Initially, it was thought that arginase is expressed only in the liver.
However, further studies revealed that arginase is ubiquitously
expressed in many types of cells (33), and that there are
two different isoforms of this enzyme that catalyze the same
biochemical reaction, but are expressed by different cells and are
located in different cellular compartments. Human arginase 1
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FIGURE 1 | Scheme for arginine metabolism. In mammalian cells, L-Arginine is a substrate for four enzymes: ARG, NOS, ADC, AGAT. L-Arginine downstream

metabolites are components of multiple metabolic pathways and are necessary for cells proliferation and collagen synthesis. ADC, arginine decarboxylase; AGAT,

arginine:glycine amidinotransferase; AGMase, agmatinase; ARG, arginase; ASL, argininosuccinate lyase; ASS, argininosuccinate synthase; GAMT, guanidinoacetate

N-methyltransferase; NOS, nitric oxide synthase; OAT; ornithine aminotransferase; OTC, ornithine transcarbamylase; P5C, pyrroline-5-carboxylic acid. Figure was

modified from Servier Medical Art, licensed under a Creative Common Attribution 3.0 Generic License. http://smart.servier.com/.

(ARG1) has 322 amino acids and is a cytosolic protein expressed
primarily in the liver cells (34) as well as in the cells of themyeloid
lineage (35). Human arginase 2 (ARG2) consists of 354 amino
acids and can be found in mitochondria (36). It has ubiquitous
expression, but usually at a lower level than ARG1. ARG2 has
58% sequence identity to ARG1 (37), but both enzymes are nearly
identical within the catalytic region. There are also types of cells,
such as endothelial cells, which have relatively high expression
of both isoenzymes (38). The summary of the most important
information on the two isoforms of arginase is presented in
Table 1.

An important metabolic pathway of L-arg involves the activity
of NOS. There are three isoforms of this enzyme—neuronal
(nNOS or NOS1), inducible (iNOS or NOS2) and endothelial
(eNOS or NOS3). NOS2 can be induced in many types of cells,
but when present in activated myeloid cells it produces NO at a
very high rate. There are multiple layers of competition between
NOS2 and ARG1 in myeloid cells and both enzymes are induced
by cytokines regulating different types of the immune response.
NOS2 in myeloid cells is induced by type 1 cytokines (mainly
IFN-γ), while ARG1 expression is regulated by IL-4 and IL-
13. Considering that Km of ARG1 is ∼1,000-fold higher than
that of NOS2, the intracellular L-arg could be expected to be
mainly metabolized to NO, rather than to L-ornithine and urea.
However, Vmax of NOS is three orders of magnitude slower
than that of ARG1 (53, 54). Thus, both enzymes compete for
the same substrate. Intriguingly, insufficient L-arg concentrations
lead to NOS uncoupling, whereby rather than NO these enzymes
generate superoxide anions. Superoxide then rapidly reacts with
any available NO molecules to form peroxinitrites that further
decrease NOS activity by oxidizing tetrahydrobiopterin (BH4)

(54). Moreover, induction of ARG1 that limits L-arg availability
is involved in the regulation of NOS2 expression as L-arg is
necessary for the translation of NOS2-encoding mRNA (55).

During acute wound healing resident myeloid cells express
high levels of NADPH oxidase (NOX2) and NOS2, which
participate in normal antimicrobial defense mechanisms by
producing superoxide anion and NO, respectively. Then, after 3–
5 days, a repair phase is initiated, which is associated with the
appearance of ARG1+ macrophages. L-arg degradation produces
L-ornithine that is converted by OAT to L-proline used as a
substrate in collagen synthesis (56). ODC converts L-ornithine to
polyamines that stimulate cell proliferation. This highly regulated
process is perpetuated in tumors that are frequently described as
wounds that never heal (57).

ARGININE AND ARGINASE IN TUMORS

Tumor progression is associated with alterations in metabolic
pathways in tumor cells as well as in the cells forming the tumor
microenvironment. Altered metabolic phenotype of tumors
includes changes in L-arg concentrations. For example, the
concentration of L-arg in the core regions of solid tumors is
about 5 times lower as compared with tumor periphery and this
difference turned out to be the highest among all of the measured
amino acids (58). Quantification of interstitial fluid metabolites
in murine tumors has also revealed that L-arg is the most strongly
depleted amino acid in the tumor microenvironment (59). The
mechanisms of L-arg depletion are incompletely elucidated. On
the one hand, L-arg can be consumed by tumor cells that have
increased metabolic demands and use it for protein synthesis, but
it can also be used by enzymes such as arginases or NOS. Many
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TABLE 1 | Properties of the two arginase isoforms.

Enzyme Arginase 1 Arginase 2

Genomic location in mouse 10; 10 A4 12; 12 C3

Number of amino acids 323 354

Genomic location in human 6q23 14q24.1

Number of amino acids 322 354

Sequence identity ARG2 has 58% sequence identity to ARG1

Structure Homotrimer

Catalyzed reaction L-arg → urea + L-ornithine

Localization Cytosol Mitochondrion

Tissue specificity Liver, to a lesser extent kidney Expressed ubiquitously, mainly kidney and prostate

Phenotype of knockout (KO)

mice

Lethal, death occurs typically by postnatal day 17 (39). In

conditional knockouts, death of adult mice occurs

typically after 21 days of KO induction (40)

KO viable and apparently indistinguishable from wild-type

mice (41, 42)

Phenotype of deficiency in

humans

Urea cycle disorder, hyperargininemia, progressive

neurologic impairment (43)

Defects not described.

ARG2 level is increased in ARG1-deficient patients (43, 44)

Effect of ARG on immune

response

Immunosuppression (45) Unclear - immunosuppression (46–49), but also expressed by

proinflammatory cells (50–52)

studies reported that arginases can be produced by tumor cells
(46, 60, 61), but even larger number of reports indicate that the
major L-arg-metabolizing cells are found in the tumor stroma. It
has not been studied in sufficient detail as to which cells in the
tumor environment are mainly responsible for L-arg depletion.
It is also entirely possible that this process is highly variable and
changes in the course of tumor progression, with tumor cells
or stromal cells predominating in L-arg metabolism at various
stages of neoplastic disease.

Arginase and Tumor Prognosis
High ARG expression and activity have been reported in many
types of human cancers, but its role as a prognosis factor remains
vastly undetermined and usually studied on small populations
of patients. Moreover, drawing conclusions from the limited
number of studies is further complicated by a lack of standardized
criteria for ARG measurements. For example, different cutoff
criteria were applied to groups of patients with “low arginase”
and “high arginase” expressing tumors, or studying either
ARG1 or ARG2 expression profiles. Nonetheless, increasing
evidence shows that overexpression of ARG1/2 (with or without
subsequent decline in serum L-arg concentrations) should be
perceived as a poor prognostic factor in a wide variety of cancer
types including head and neck cancer (62), neuroblastoma (46),
acute myeloid leukemia (AML) (61), pancreatic ductal carcinoma
(63), ovarian carcinoma (64), or colorectal cancer (65). High
expression of ARG1 in hepatocellular carcinoma also seems to
play a role as a negative predictive factor that correlates with
shorter median time to recurrence (66) and more aggressive
tumors (67), but further evidence is required to support these
observations as a contradictory report exists (68).

Although a number of studies provide strong evidence for
increased ARG activity in both tissue (69) and blood (70–72)
obtained from patients with breast cancer, so far no study was
conducted to establish the role of ARG activity in determining
the prognosis of breast cancer patients. Notably, contradictory

reports exist that show a decrease in blood plasma ARG activity
in breast cancer patients, however, these are based on very limited
number of enrolled patients (73, 74). Similarly to breast cancer,
increased ARG activity was found in skin (75), cervical (76),
thyroid follicular (77), thyroid papillary and follicular variant of
papillary (77), gastric, bile duct (78), and esophageal (79) cancers.
However, again no study exists in these types of cancers that
would demonstrate the impact of ARG activity/abundance on
patients’ prognosis.

Finally, there are tumors such as prostate (80–82) and lung
cancer (83) as well as tumors that are auxotrophic for L-arg (these
are not capable of re-synthesis of L-arg from citrulline due to
the lack of expression of argininosuccinate synthetase-1, ASS-1),
such as melanoma (84) and renal carcinoma (85, 86), where no
correlation between ARG levels and survival has been found.

A critical question arises whether ARG in tumors is produced
by tumor cells or by tumor-associated stromal cells that include
mesenchymal as well as immune cells, among which myeloid
cells seem to be the main source of the enzyme. Regrettably,
no studies have been conducted that would directly address
this issue and whether this is of any significance for cancer
patients survival, whether ARG is expressed by tumor or tumor-
infiltrating myeloid cells.

ARGINASE IN TUMOR-INFILTRATING
MYELOID CELLS

Myeloid cells are major contributors to immune defense against
pathogens and play an important role in tissue remodeling.
During acute infections GM-CSF drives myelopoiesis in the
bone marrow, and G-CSF as well as M-CSF induce further
differentiation of granulocytes and macrophages, respectively
(87). Some tissue macrophages develop from embryonic
precursors that directly home to peripheral tissues and become
a self-renewing population (88). Mature myeloid cells are
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FIGURE 2 | Cancer cells recruit myeloid cells to tumor microenvironment (TME) and induce their polarization to immunosuppressive phenotype. Myeloid cells,

including macrophages, MDSC, dendritic cells, and neutrophils create tumor-promoting, immunosuppressive TME via multiple factors including reactive oxygen

species (ROS), cytokines (IL-10, TGF-β), PD-L1, as well as ARG1. Created with BioRender.

specialized in killing infectious microorganisms and play an
important role in promoting development of adaptive immunity.
However, in cancer and other chronic inflammatory conditions
constant production of low concentrations of myeloid growth
factors and various inflammatory mediators dysregulate myeloid
cells differentiation (Figure 2) (89–94). It is currently not well-
understood what events trigger this disturbed myelopoiesis, but
it must be emphasized that this process evolves over many years
of tumor development and likely involves multiple independent
mechanisms. Some of these might be completely stochastic, but
in the course of tumor progression become promoted in a trial-
and-error process that selects for mechanisms that best fit the
demands of growing tumors.

Myeloid cells, especially tumor-infiltrating myeloid cells
(TIMs), are a highly heterogeneous population (95). TIMs
include monocytes, macrophages, dendritic cells, granulocytes,
mast cells, as well as their immature precursors that have not
completed their differentiation processes. The latter cells are
normally found in the bone marrow, but in the course of tumor
development they frequently expand and relocate to the spleen,
lymph nodes and the tumor itself, and can be found at increased
numbers in the peripheral blood (96, 97). These cells express
immune checkpoint molecules, deplete essential metabolites,
release immunosuppressive adenosine and its metabolites,
produce reactive oxygen species, secrete immunoregulatory
cytokines, growth-promoting, and proangiogenic factors

(Figure 2). Moreover, they induce various populations of
regulatory T-cells that impair antitumor immune response (98).
Due to their strong immunosuppressive functions these cells
have been termed myeloid-derived suppressor cells (MDSCs).
There are two major subsets of MDSCs—monocytic (M-MDSC)
and granulocytic (polymorphonuclear, PMN-MDSC) (99).
Both have been associated with dysregulation of immune
response in murine cancer models and in cancer patients,
although still the majority of studies report the suppressive
potential of total MDSCs (100). In mouse tumor models that
mostly involve transplantation of tumor cells, the expansion
of MDSCs is very rapid. This is in contrast to slow-growing
tumors, including diethylnitrosoamine (DEN)-induced or
MYC-expressing hepatocellular carcinoma, that in terms of
the rate of tumor progression more accurately reflect human
cancer (101). In many types of humans tumors, including lung,
colon, uterus, cervix, bladder, or thyroid gland cancers, the
increased numbers of M-MDSCs in peripheral blood correlate
with worse clinical outcomes (102). In melanoma or liver cancer,
however the increased numbers of both PMN-MDSCs and
M-MDSCs were associated with poorer outcomes (102), while
in renal cell carcinoma PMN-MDSCs seem to predominate
(103). Importantly, increased numbers of MDSCs are observed
also in patients with pancreatic premalignancy—intraductal
papillary mucinous neoplasm (IPMN), and in patients with
colon adenomas, as compared with healthy controls (97).
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TABLE 2 | Differences in arginases expression in myeloid cells between mouse

and human.

Type of cell Arginase 1 Arginase 2

Mouse Human Mouse Human

Monocytes + (106) –c (107, 108) + (109) + (50, 110)

Macrophages +
a (111) –c (105) +

b,c,d (36, 112) + (113)

M2 macrophages +
a (114) –c (108) –d,e (51) –e (50)

TAMs + (115) –f (116) + (117, 118) + (63)

MDSCs +
a (103) + (103) + – (119, 120) + (121)

Neutrophils + (122) + (105, 123) + (117, 124) + (113)

Dendritic cells +
a (112) –c (105) + – (112, 125) + (126)

a Induced by Th2 cytokines.bNot significantly modulated by Th1 cytokines.cNot

significantly modulated by Th2 cytokines. d Induced by LPS.eARG2 is proposed as a

marker of proinflammatory M1 macrophages (50–52, 127). fARG1 expression in human

TAMs was minimal and on the same level as in control tissue-resident macrophages (116).

+, expression; –, undetectable or very low expression; TAMs, tumor associated

macrophages; MDSCs, myeloid-derived suppressor cells.

Nearly all myeloid cells have been shown to produce
ARG1 in mice (Figure 2). However, there are substantial
differences in the expression of arginases by myeloid cells
between mice and men (104). In humans, arginase is
produced mainly by granulocytes and no arginase activity
is detectable in monocytes, macrophages nor dendritic cells
(105). The differences in expression of both isoforms of
arginase by myeloid cells in mice and humans is summarized
in Table 2.

The first report linking immunosuppression with arginase
activity in macrophages was published over 40 years ago (128).
However, the concept that L-arg metabolism is associated with
regulation of the immune response did not gain much attention
initially. It was suggested that suppressive effect of arginase
may be just an interesting problem of in vitro culture (129).
However, soon other studies described depletion of L-arg by
macrophages expressing arginase both in vitro (130) and in
vivo in tumor-bearing mice (131). The authors hypothesized
that arginase may be an effector mechanism of macrophages
against infectious microorganisms and tumor cells (131). After
over 30 years we know that arginase plays an opposite role
in immune response and is one of the main mechanism
of immunosuppression.

L-arg depletion by suppressive myeloid cells in the tumor
microenvironment can occur by increased L-arg uptake by CAT-
2B transporters (132), which is followed by arginase-mediated
hydrolysis (Figure 3). Myeloid cells also secrete arginase to the
microenvironment (133), where it acts mainly locally due to
short circulating half-life (134). Murine MDSCs deplete L-arg
by increased uptake and intracellular degradation, in contrast to
human MDSCs that mainly release arginase into the circulation
(103). ARG1 may also be secreted in extracellular vesicles (EVs)
by MDSCs (135). In EVs, arginase remains stable and may
exert greater than local effects, for instance in draining lymph
nodes (64).

Arginase in Myeloid-Derived Suppressor
Cells
MDSCs have been the most intensively studied cells in terms
of L-arg metabolism. Bronte et al. were the first to show that
myeloid cells accumulating in the spleens of tumor-bearing mice
express ARG1 and suppress the proliferation of allogeneic T-
cells (141). Liu et al. showed that myeloid cells in the tumor

microenvironment express arginase and suppress cytotoxic T

lymphocyte (CTL) activity in NO-independent manner (142).
Since then, many other studies confirmed that immature tumor
myeloid cells express ARG1 in mice and humans with cancer
and that the activity of this enzyme is involved in suppression of
T-cell response (132, 143–146). The majority of studies indicate
that arginase plays a more important role in PMN-MDSC rather
than M-MDSC (103, 147–149). However, the role of this enzyme
in the regulatory activities of the latter cells should not be
completely dismissed. For example, iNOS inhibitor together with
ARG inhibitor diminished the suppression driven by M-MDSC,
with no effect on PMN-MDSC (150).

In humans, PMN-MDSCs store ARG1 in granules and release
it to the extracellular milieu (103). It leads to the depletion
of L-arg and suppression of anti-tumor response. In patients
with pancreatic ductal adenocarcinoma CD13hi PMN-MDSCs
were identified that produce ARG1 and suppress alloreactive T-
cell responses in ARG1-dependent manner. Patients with more
CD13hi PMN-MDSCs had significantly shorter survival than
those with predominant CD13low PMN-MDSCs in the tumor
infiltrates (149). Similarly, ARG1-producing MDSCs in patients
with renal cell carcinoma turned out to be of granulocytic
lineage (103). Interestingly, treatment of patients with IL-2
increased the number of these cells in peripheral blood, as
well as in the plasma concentrations of ARG1 (103). Whole
mount labeling and clearing followed by three-dimensional
light sheet microscopy of head and neck carcinomas identified
intratumoral hotspots of PMN-MDSCs that co-localized with T-
cells. Those T-cells that were in close proximity to ARG1-positive
PMN-MDSCs had strongly reduced expression of granzyme B
(serpin participating in cytotoxic effects of T-cells) and Ki67
(a proliferation marker) (151). In multiple myeloma IL-18 was
shown to induce ARG1+ PMN-MDSCs that suppress immune
response (152). In KRASG12D genetically engineered mice that
develop lung tumors resembling NSCLC, PMN-MDSCs were
observed to cause T-cell suppression by L-arg depletion. Arginase
inhibitor has not only restored T-cell function, but caused
significant regressions of tumors in these mice (117). Arginase-
expressing MDSCs were also shown to induce Tregs in murine
tumor models (153) as well as in cancer patients (154). In some of
these studies, this effect was abrogated by arginase inhibitor (153)
indicating a specific role of this enzyme in Treg development
(see below).

Arginase expression in tumor MDSCs is increased as
compared with the cells of the same phenotype isolated
from spleen (155). Both inflammatory and tumor-derived
factors are involved in the regulation of ARG1 expression
in MDSCs (Figure 4). For example, tumor-infiltrating MDSCs
stimulated with TGF-β and IL-10 demonstrated high ARG1
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FIGURE 3 | L-Arginine-depleting arginases lead to the impaired anti-tumor response. Arginases may act intracellularly (cytoplasmic ARG1 and mitochondrial ARG2)

and extracellularly (secreted ARG1) leading to the local depletion of L-arginine in tumor microenvironment (TME). Moreover, ARG1 may have effects in sites distant

from the TME, when packed into extracellular vesicles (EVs), transported over long distance and internalized by myeloid cells, for instance, in tumor-draining lymph

node. Arginase inhibitors (ARGi) should target both isoforms (ARG1 and ARG2) and easily penetrate the cell membrane to block extracellular and intracellular

arginases, as well as arginase in EVs. Created with BioRender.

activity (156). One mechanism involves stress sensor C/EBP-
homologous protein (CHOP), which directly activates ARG1
gene through inhibition of LIP transcription suppressor. CHOP
expression in MDSCs is induced by ROS and further by
the activating-transcription factor-4 (ATF-4) (157). Intriguingly,
diminished L-arg concentrations have been shown to induce
accumulation of arginase-expressing MDSCs in the tumors

after administration of pegylated recombinant ARG1 to tumor-
bearing mice (158) indicating potential threats associated
with L-arg-depleting therapeutic strategies for cancer. ARG1
levels in MDSCs from patients with head and neck cancer
were regulated by STAT3 signaling (159). Accordingly, STAT3
silencing in MDSCs from prostate cancer patients abrogated
their immunosuppressive activity (160). Chronic stress, which
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FIGURE 4 | Several tumor-associated factors promote ARG1 expression in myeloid cells. ARG1 expression is mainly induced by type 2 cytokines (IL-4, IL-13), as well

as immunosuppressive cytokines (TGF-β, IL-10). Moreover, it may be promoted by TME factors including hypoxia and acidosis, as well as stress mediators. ARG1

expression is also induced by GM-CSF (136), TLR agonists (137), and cAMP (138). IL-10 and IL-21 increase IL-4-induced ARG1 expression (139, 140). Created with

BioRender.

frequently accompanies cancer, was reported to increase the
generation of ARG1+ MDSCs in mice and humans, through
catecholamines stimulating β2 adrenergic receptors (β2AR).
Induction of ARG1 by isoproterenol (a β2AR agonist) was
associated with STAT3 phosphorylation in MDSCs (161). It was
found that prostanoids produced by COX2 are responsible for
mediating ARG1 overexpression in MDSCs by lung cancer cells
in in vitro and in vivo models (162). The mechanism of ARG1
upregulation inMDSC is probably controlled by EP4 receptor for
PGE2. Those findings were confirmed in other tumors (144, 163).
MDSC not only infiltrate tumor and its environment, they were
also found in peripheral blood. (103). MDSC abundance in blood
correlated with staging in HNSCC patients. Moreover, MDSC
in HNSCC have high level of pSTAT3 and ARG1 and potently
inhibit T-cells proliferation (159).

Macrophages
Macrophages are the main phagocytic population of cells
within tumors (47). However, contrary to their natural role
in promoting immunity against infectious microorganisms,
tumor-associated macrophages (TAMs) are involved in
promoting tumor progression, partly through creating an
immunosuppressive microenvironment (47). The majority of
reports on macrophages in cancers describe their function in
the context of in vitro polarization into M1 or M2 subsets (164).
This classification is currently not recommended as TAMs are
represented by a continuum of phenotypic variants (47), but
will be incidentally used hereafter considering that the existing

literature specifically refers to M1 andM2macrophage subsets. It
must be underscored however, that TAMs are highly diverse and
form a wide range of populations with various functional roles
(165). Additionally, these cells do not form a stable population,
but are highly variable both in time and location within the
tumor milieu (165, 166). So called M1 macrophages are induced
by lipopolysaccharide (LPS) and type 1 cytokines (mainly
IFN-γ), express high levels of tumor necrosis factor (TNF),
IL-12, iNOS, and MHC class II molecules and are considered to
participate in anti-tumor immunity (47). M2 macrophages are
induced by type 2 cytokines and express ARG1, IL-4, IL-13, IL-
10, and CD206 (47, 167). Cytokines, especially those associated
with type 2 immune response (IL-4 and IL-13) that activate
the transcription factors STAT6, PU.1, and CCAAT/enhancer
binding protein β (C/EBPβ) were shown to directly induce
signaling pathways leading to increased production of ARG1
in macrophages (168). IL-4- and IL-13-activated STAT6 with
STAT3 and C/EBPβ bind to an enhancer in the ARG1 locus
(169). Some cytokines, including IL-10 and IL-21, upregulate
the expression of IL-4Rα and IL-13Rα1, leading to the increased
IL-4-induced ARG1 expression (139, 140). M2 macrophages are
the most abundant population of myeloid cells in tumors, and
their presence is usually associated with poor prognosis, tumor
cell invasion, metastasis, and neovascularization (170, 171).
Importantly, TAMs are considered to be of either embryonic
origin or to derive from hematopoietic stem cells (HSCs) (172–
175). Both populations are found in the tumors in approximately
similar ratio, but it seems that it is mainly the latter population

Frontiers in Immunology | www.frontiersin.org 8 May 2020 | Volume 11 | Article 938

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Grzywa et al. Arginase and Anti-cancer Immune Response

that includes cells with immunosuppressive properties (47).
HSC-derived macrophages in a tumor microenvironment sense
local physicochemical conditions that are different than in many
normal tissues and include hypoxia, acidosis, changes in the
composition of extracellular matrix proteins (that affects rigidity
of the tumor tissue), nutrient insufficiency, different cellular
metabolites, various growth factors and inflammatory mediators
(prostanoids, cytokines, etc.) (165). Necrosis and other forms
of cell death lead to appearance of cell debris as well as cell
death-associated molecular patterns [CDAMPs, also known
as death-associated molecular patterns—DAMPs (176)] that
additionally affect differentiation of macrophages. Many of these
environmental conditions have been shown to induce ARG1 in
TAMs including hypoxia via hypoxia-inducible factors (HIFs)
(177), lactic acid (in a HIF-1α-dependent mechanism) (178), or
COX2 via prostaglandin E2 (162) (Figure 4). Even local acidosis
might be involved in ARG1 induction as resting macrophages at
pH of 6.1 were observed to induce expression of VEGF, HIF-1α
and ARG1 (179), and induction of ARG1 by IL-4 was stronger at
pH of 6.8 (180). Cancer-associated fibroblasts (CAFs) have been
shown to regulate macrophage differentiation and confer these
immunosuppressive cells with the ability to secrete high levels
of IL-6 and to produce collagen that leads to the development
of tumor desmoplasia (181). Collagen forms a scaffold for many
secreted mediators including TGF-β. The number of ARG1
positive macrophages was decreased in Mer tyrosine protein
kinase (MERTK) knock-out mice (182). MERTK is involved
in signaling triggered by recognition of apoptotic cells. Quite
unexpectedly, a recent study revealed that type I interferons
(IFNs) inhibit monocyte to macrophage differentiation within
tumor and induce strong expression of ARG1 (183).

Macrophages are the main source of ARG1 within tumors
in a murine model of colon adenocarcinoma (115). In vivo
imaging of tumor macrophages revealed that in contrast to
tumor periphery these cells are highly mobile within the
tumor microenvironment, exhibit structural diversity and gene
expression profile that includes increased ARG1. The number of
these ARG+ macrophages significantly decreased after anti-PD-1
monoclonal antibody treatment (115). TAMs in lung cancer and
melanoma also express more ARG1 than all other cells within
tumor combined (178) and have over 20 times higher expression
of ARG1 as compared with peritoneal macrophages (184).

Arginase production by macrophages not only leads to the
inhibition of anti-tumor response via L-arg degradation, but also
increases the proliferation of tumor cells, which is associated with
the production of L-ornithine and then a polyamine—putrescine
that promote tumor cells proliferation (185). Moreover, L-
arg depletion in the tumor microenvironment attenuates NO
production and reduces its cytotoxic effects on tumor cells
(185). Several studies also indicate that arginase activity
might be associated with delivery of additional metabolites
with immunosuppressive properties. For example, inhibition
of polyamines synthesis together with blocking of dietary
polyamine transport was shown to exert antitumor effects
that were associated with decreased numbers of intratumoral
MDSCs and increased numbers of T-cells (186). Similar approach
was shown to increase in granzyme B+IFN-γ+CD8+ T-cells

and a decrease in immunosuppressive tumor-infiltrating cells
including PMN-MDSCs, Tregs, and M2 macrophages (187).

Neutrophils
Neutrophils are the most abundant leukocytes in peripheral
blood and are produced in the bone marrow at a prodigious
rate of 1 × 1011 cells per day (188). These cells constitute
a rapidly reacting part of innate immune response, playing
important role in defense against bacteria and fungi. Despite
their important role in host defense, the increased numbers
of neutrophils in blood of cancer patients correlate with poor
prognosis (189). These cells can also be found in tumors,
but their role in tumor has been largely neglected, mainly
due to the belief that their life-span is one of the shortest
among all leukocytes. However, tumor-associated neutrophils
(TANs) persist in tumor microenvironment for extended time in
response to GM-CSF and TGF-β (126). TANs are divided into
two subtypes: N1 and N2, with anti-tumor and protumorigenic
phenotype, respectively, but to date no specific molecular surface
markers have been identified to distinguish them. Nonetheless,
N2 neutrophils are characterized by high arginase expression
(132, 190). ARG1 is in fact constitutively expressed in human
neutrophils. However, these cells do not metabolize L-arg (123)
possibly due to the confinement of ARG1 in gelatinase granules
(191). Neutrophils can release ARG1 leading to the suppression
of T-cells function (192). This process requires simultaneous
exocytosis of ARG1-containg gelatinase granules and azurophil
granules (192). It was assessed that 1 × 106 of neutrophils
secrete ARG1 at amounts sufficient to catabolize all the L-arg
contained in 5ml of blood in 1 h (193). At least in some tumors
ARG1+ neutrophils are quite abundant and the presence of
ARG1+ neutrophils correlates with suppressed T-cell functions
(193, 194). Intriguingly, in non-small cell lung cancers despite
high arginase activity in tumor microenvironment, most of
the TANs display low or no ARG1 expression, in contrast to
neutrophils in peritumoral tissue that strongly stain for ARG1
(193). It turned out that tumor cells release IL-8 that induces
ARG1 exocytosis from neutrophils into extracellular milieu
(193) (Figure 4). Degranulated neutrophils are also expanded
in peripheral circulation of cancer patients, and ARG1 released
from these cells strongly contributes to general suppression of
T-cell functions (195). ARG1 released from neutrophils has also
been shown to inhibit the proliferation of NK cells and IL-
12/IL-18-induced production of IFN-γ (196). Zoledronic acid, a
bisphosphonate used in the treatment of osteoporosis has been
shown to induce ARG1 in neutrophils that suppress the activity
of γδ T-cells (197). All these observations indicate that ARG1+

neutrophils seem to play a detrimental role in tumor progression,
mainly due to immunosuppressive effects. Notably however,
a recent study indicated that high intratumoral neutrophil
numbers expressing ARG1 correlate with better survival of
patients with colorectal cancer (198).

Dendritic Cells
Dendritic cells (DCs) are classically described as professional
antigen-presenting cells that produce cytokines and provide co-
stimulatory molecules, leading to naïve T-cells activation and
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differentiation into effector cells (199). There are conventional
DCs (cDCs), plasmacytoid DCs (pDCs), and monocyte-derived
DCs (MoDCs) that have different origin and differ in function.
Within cDCs there are additional subsets both in mice and
in humans that are referred to as cDC1 and cDC2. cDCs1
are presumed to be primarily involved in cross-presentation
of antigens to CD8+ T-cells, while cDCs2 seem to be largely
associated with stimulating CD4+ T-cells (200). Another layer
of subdivision into migratory and lymph node (LN)-resident
DCs reflects location and the mechanisms of antigen acquisition
by these cells. Migratory CD103+ DCs take up antigens in
non-lymphoid tissues (including tumors) and traffic through
lymphatic vessels into LNs. LN-resident CD8αα+ DCs enter the
LNs from the blood and acquire antigens draining through the
lymphatics or transported to LNs by other cells (200).

Tumors are frequently infiltrated by various populations
of DCs. During infections DCs acquire, process and present
antigen in association with MHC molecules, deliver co-
stimulatory signals and release cytokines that shape T-cell
responses. The same role is expected to be played by DCs
in tumors. However, the stimulatory activity of these cells is
often compromised and tumor DCs often drive tolerance rather
than immunity in cancer patients (201). The mechanisms of
tumor-infiltrating DCs that hamper development of antitumor
immune response include decrease in MHC class I and
II levels as well as in co-stimulatory molecules (CD40,
CD80, CD86), rise in co-inhibitory molecules (such as PD-
L1, PD-L2, VISTA), increased tryptophan degradation by
indoleamine 2,3-dioxygenase (IDO1), decreased release of IL-
12, but increased secretion of IL-10 and TGF-β, among others
(201). Arginases can be added to this expanding list, based on
numerous reports.

Lung cancer cells isolated from murine tumors induced
DCs to differentiate into regulatory cells that suppressed T-
cell response through ARG1 (202). In another study tumor-
infiltrating DCs were observed to decrease the expression of
CD3ζ in T-cells in ARG1-dependent manner and induced
anergy in naïve CD8+ T-cells (203). ARG1 produced by DCs
promotes the generation of FoxP3+ Tregs (204, 205). Not
only ARG1 was shown to be expressed by DCs. Human fetal
cDC2 cells uniquely express constitutively high levels of ARG2,
through which these cells inhibit T-cell activation and TNF-α
release (206).

The expression of ARG1 in DCs is regulated by a number
of cytokines and tissue factors (Figure 4). As in other myeloid
cells, ARG1 is induced by type 2 cytokines, including IL-
4 and IL-13. Tregs were reported to induce ARG1 in
DCs in a TGF-β-dependent mechanism (207). Supernatants
from tumor cells experiencing endoplasmic reticulum (ER)
stress and unfolded protein response (UPR) was shown to
induce ARG1 in DCs (208). Retinoic acid was also shown
to be a key mediator regulating expression of ARG1 in
DCs, mediated by retinoic acid-responsive elements in the 5′

non-coding region of the ARG1 gene. Blockade of retinoic
acid receptors makes DCs less responsive to IL-4 and GM-
CSF (205).

MECHANISMS OF IMMUNOREGULATORY
FUNCTION OF ARGINASE

An obvious question in understanding the role of amino acid-
degrading enzymes in the regulation of the immune response
is why do myeloid cells degrade L-arg Perhaps the best answers
come from studies in mice with targeted deficiency of ARG1
in myeloid cells and the regulation of immune response and
inflammation triggered by infectious microorganisms. ARG1
induced in macrophages during Schistosoma mansoni infection
prevented cachexia, neutrophilia, and endotoxemia during acute
schistosomiasis. Moreover, ARG1+ macrophages promoted
TGF-β production and Foxp3 expression, suppressed antigen-
specific T-cell proliferation, and limited Th17 differentiation.
In mice with deficiency of ARG1 in myeloid cells infection
with Schistosoma mansoni triggered a lethal T-cell-dependent
immunopathology with non-resolving inflammation (209). On
the other side, ARG deficiency in myeloid cells results in
substantially decreased tumor growth (210) and increased
CD8+ T-cells numbers and activity as compared with wild-type
mice (211).

Effects on Effector Functions in T-Cells
Lack of any single essential amino acids restricts T-cells activation
and proliferation and this phenomenon is not specific to L-arg.
Depletion of L-histidine, L-leucine, L-lysine, L-phenylalanine, L-
threonine, and L-valine inhibited the proliferation of T-cells to a
similar extent as L-arg depletion (207). Of importance, however,
only arginases as well as IDO that hydrolyzes L-tryptophan
(212, 213) are substantially increased in cancer.

Role of L-arg in T-Cell Proliferation
One of the hallmarks of ARG activity in the immune system
is impaired T-cell proliferation (Figure 5). Proliferation of both
human and murine T-cells is completely inhibited in L-arg-
free medium after stimulation with anti-CD3- and anti-CD28-
coupled beads or different types of mitogens. A similar inhibition
of the T-cells proliferation is also triggered by ARG-producing
cells, and this effect is restored by L-arg supplementation or
arginase inhibitors (123, 132, 203, 214, 215). It is of note that T-
cells remain viable in L-arg-depleted medium (123) and resume
proliferation as soon as L-arg is added to the culturemedium. The
minimum L-arg concentration in cell culture medium necessary
for one division of murine T-cell was determined to be 23µM
(216). Upon activation, when large amounts of L-arg are needed,
T-cells rely mainly on the extracellular L-arg transport. A potent
increase in the expression of cationic amino acid transporter-1
(CAT-1) is observed in both naïve andmemory CD4+ and CD8+

T-cells after activation (22). Silencing of CAT-1 expression leads
to the inhibition of T-cell proliferation, but not impaired TNF-α,
IFN-γ, IL-2, IL-6 production (22).

Role of L-arg in T-Cell Cytokine Production
Secretion of several cytokines that play a critical role in T-
cell differentiation and effector functions is also diminished
in L-arg-starved cells (Figure 5). Conspicuously, this especially
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FIGURE 5 | L-Arginine depletion by arginase potently inhibits immune response. Lack of L-arg completely inhibits proliferation of T-cells and leads to the decreased

cytokine production. It is caused by downregulation of signal-transducing CD3ζ chain, cell cycle arrest, and affected formation of the immune synapse between T-cells

and APC. Created with BioRender.

refers to the secretion of Th1 cytokines, including IFN-γ and
tumor necrosis factor β (TNF-β) (123, 214, 217), although T-
cells cultured in L-arg-free medium also secrete lower amounts
of IL-5, and IL-10 as compared with T-cells cultured in
complete medium (218). The decrease in IFN-γ secretion is
also induced by ARG+ tumor-infiltrating DCs (203) and ARG
inhibitors administered in vivo increase IFN-γ secretion (219).
On the contrary, the synthesis of IL-2, IL-6, and IL-8 seems
to be unaffected by the absence of L-arg (217), although in
another study PMN-MDSCs were shown to suppress IL-2
production from T-cells and this effect was restored by ARG
inhibitor (220).

Role of L-arg in T-Cell Differentiation
Upon antigen recognition naïve T-cells proliferate and acquire
effector functions that are dependent on multiple additional
signals delivered in the microenvironment of secondary
lymphoid organs. The signals include various cytokines,
growth factors, and surface-associated molecules (including co-
stimulatory and adhesion molecules) (221, 222). Accumulating
evidence indicates that L-arg metabolism plays an important
role in regulating T-cell differentiation. For example, oral
administration of L-arg in a mouse model of breast cancer
increased the levels of T-bet, a transcription factor associated
with Th1 cells (223). Moreover, it increased the frequency of
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CD8+ T-cells, and mRNA levels of granzyme B and IFN-γ in
the tumor (223). High extracellular L-arg increased the survival
of T-cells stimulated with IL-2 after cytokine withdrawal and
favored the formation of central memory T-cells (224). Inhibition
of L-arg transport into the cell decreased T-cell longevity further
confirming the role of L-arg in human T-cells survival (224).

Somewhat enigmatic and to some extent contradictory reports
refer to L-arg metabolism and Treg cells development. In an
interesting study FoxP3+ Tregs were shown to induce ARG1
(as well as other enzymes involved in amino acid metabolism)
in DCs, thereby increasing amino acid consumption in local
microenvironment. This reduced mTOR signaling and favored
development of additional Tregs (207). Inhibition of mTOR
signaling by rapamycin or amino acid depletion was shown to
induce FoxP3, but L-arg deficiency was effective only when TGF-
β was added (207). Moreover, ARG2 was found in Tregs from
normal skin and its expression increased in metastatic melanoma
(225). ARG2 in Tregs was demonstrated to attenuate mTOR
activity and conferred Tregs with enhanced suppressive activity
(225) suggesting that low intracellular L-arg concentrations
may facilitate Tregs development. Consistently, with these
findings, T-cells from mTOR-deficient mice preferentially
become regulatory, but not effector T-cells (226).

However, another study showed that mice fed with L-arg-
deficient diet had modestly reduced number of peripheral
effector Tregs and these cells had reduced expression of ICOS and
CTLA4. L-arg turned out to be essential for sustaining mTORC1
activity, functional programming, and Treg cell-mediated
immunosuppression (227). Moreover, disruption of mTORC1
in FoxP3+ T-cells caused a loss of Treg suppressive activity
in vivo and led to development of systemic immunopathology
in mice indicating that Treg cell responses are critically
dependent on mTORC1 signaling (228). Clearly, the effects of
L-arg metabolism on T-cell differentiation are very complex
and require further studies, especially that still another report
indicated that ARG1 in MDSCs is participating in promotion of
Th17 differentiation (229).

Molecular Mechanisms of
Immunoregulatory Effects Associated With
L-arg Metabolism
The exact molecular mechanisms of L-arg starvation-mediated
immunosuppression still remain to a large extent enigmatic.
Up to now, L-arg starvation was shown to affect T-cell antigen
receptor ζ chain (CD3ζ) expression (230) and phosphorylation of
other signal-transducing proteins (231), and therefore to impair
transduction of activation signal, cell cycle progression (232), as
well as formation of the immune synapse (231) (Figure 5).

Downregulation of the CD3ζ and Impaired Signal

Transduction
The main mechanism by which L-arg starvation inhibits T-
cells proliferation is through downregulation of the CD3ζ
chain (230, 233). CD3ζ is a critical component of the TCR
complex that couples antigen recognition to the intracellular
signaling pathways (234). After T-cells stimulation, TCR

proteins including CD3ζ undergo internalization followed by
re-expression, externalization, or sorting to lysosomes for
degradation (235, 236). A common finding in cancer patients is a
marked decrease in the expression of CD3ζ in T-cells (143, 237).

Many studies reported that L-arg depletion in culture medium
leads to a rapid decrease of CD3ζ levels (132, 230, 238). Of note,
the changes in TCR receptor subunits expression during L-arg
starvation are observed only in stimulated T-cells (218). This
decrease is specific to L-arg-starvation, since lack of glutamine
or leucine (233) as well as glycine or lysine (218) did not
change the levels of CD3ζ. However, a decrease in CD3ζ was
also reported to be caused by hydrogen peroxide secreted from
tumor macrophages (239). The decrease in CD3ζ is completely
reversed by L-arg supplementation in cell medium (230) or ARG
inhibition when co-culture with ARG-producing cells is used
(132). A similar downregulation of CD3ζ and CD3ε levels is
induced by tumor-associated myeloid cells, which express ARG1
(132). This effect is prevented by the addition of ARG inhibitor
(N-hydroxy-nor-L-arg) or L-arg supplementation, but not by
the catalase, a hydrogen peroxide scavenger (132), as suggested
before (239).

How L-arg starvation selectively impairs CD3ζ expression
still remains unclear. L-arg starvation of human T-cells did not
affect the degradation of CD3ζ in proteasome or lysosomes (218).
Therefore, it was suggested that L-arg depletionmay impair CD3ζ
synthesis (218) or the stability of mRNA for CD3ζ (230).

Cell Cycle Arrest
Another defined mechanisms by which L-arg starvation restricts
T-cells activation and proliferation is the regulation of cell
cycle progression (232) via modulation of cyclin D3 mRNA
stability (240). Cyclins, including cyclin D3 (241), are critical
regulators of the cell cycle, immune cells development and
proliferation (242). L-arg starvation arrests human T-cells in
G0-G1 phase (232). The levels of cyclin D3 as well as CDK4
significantly increase after T-cells activation, however, not in
absence of L-arg. Moreover, silencing of cyclin D3 in Jurkat cells
reproduces effects induced by L-arg starvation (232). Cyclin D3
was shown to be regulated by L-arg through transcriptional,
posttranscriptional, and translational mechanisms (232). In the
absence of L-arg human T-cells have decreased phosphorylation
of the retinoblastoma protein (Rb), which is the major substrate
for the cyclin D/cyclin-dependent kinase complex, as well as
decreased levels of E2F-1, which is crucial for the initiation of the
transcription of genes involved in the G2/S transition (232). In
the absence of L-arg there is a global arrest in de novo protein
synthesis. L-arg starvation also affects the expression of HuR,
RNA binding protein, that stabilizes mRNA of cyclin D3 by
the binding to the 3’-untranslated region (UTR) and shuttles its
transport to the cytoplasm. Silencing of HuR exerts similar effect
on T-cells proliferation as L-arg starvation (240).

Changes in the Immune Synapse Between APC and

T-Cells
Proliferation of T-cells after antigen presenting cells (APC)-based
cellular activation is also completely inhibited in the absence
of L-arg (231). The formation of immune synapse between
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T-cell and APC is critical for the activation of effector cell
(243). In L-arg-depleted medium, the formation of the immune
synapse is impaired. T-cells activated in the absence of L-arg
have increased F-actin concentration, which may be caused by
impaired cofilin dephosphorylation (231). Cofilin is a small actin-
remodeling protein that couples T-cell activation via the TCR
and co-stimulatory receptors in the immune synapse (231, 244).
Phosphorylation of ERK1/2 is significantly reduced in L-arg
absence, however, the phosphorylation of AKT is increased to the
higher level compared to the cells activated in L-arg-containing
medium (231). It leads to the impaired dephosphorylation
of cofilin that results in impair immune synapse formation.
Impaired dephosphorylation of cofilin in human T-cells was also
induced by cell-free human pus supernatant, which is known to
contain high arginase activity (123). This effect may be prevented
by arginase inhibitor (231).

L-arg in Metabolic Regulation of T-Cells
Proliferation and differentiation of T-cells can occur only
if sufficient access to metabolites and nutrients is ensured
(245). A recent metabolomic analysis of activated T-cells
revealed that out of 429 measured metabolites only 14
were less abundant in activated T-cells, and L-arg was the
only protein amino acid among them (224). A drop in
intracellular L-arg levels was observed despite induction of
CAT-1 transporters. Interestingly, the intracellular levels of L-
glutamine, which is also intensively metabolized in activated
cells, remained high. Along with CAT-1 induction, T-cell
activation was associated with increased expression of L-
arg metabolism-related enzymes including ARG2, OAT, and
spermidine synthase (SRM). Once entering the cell, L-arg
turned out to be rapidly converted into L-ornithine, agmatine,
and putrescine. Importantly, increasing L-arg concentration in
the culture medium upregulated gluconeogenesis-related genes,
serine biosynthesis pathway, and mitochondrial tricarboxylic
acid cycle, while downregulating glucose transporter and
glycolytic enzymes. These changes promoted mitochondrial
OXPHOS in activated T-cells, while downregulating glycolysis
(224). Global analysis of T-cells proteome changes in response
to high L-arg concentration revealed several proteins that are
responsible for increased T-cells survival. These can be assigned
into four functional groups, including mRNA splicing, DNA
repair mechanisms, regulation of the cytoskeleton and the
ribosome (224).

Oral supplementation of L-arg that increased its serum
concentration over 4-fold allowed more robust induction of
antigen-specific T-cell proliferation in mice. Moreover, T-cells
from ARG2−/− mice, incubated with supplemental L-arg or
treated with ARG inhibitor reveled much better survival after
cytokine withdrawal (224). In a complementary study, CD8+

T-cells from ARG2-deficient mice showed markedly superior
antitumor activity in mice and turned out to respond stronger
to PD-1 blockade as compared with ARG2+ T-cells (246).
Moreover, ARG2-deficient T-cells were characterized by faster
acquisition of effector functions, increased persistence and
enhanced differentiation into memory cells.

Altogether, these studies indicate that ARG2 might be a
metabolic gatekeeper in T-cells. In activated T-cells ARG2
degrades L-arg and generates agmatine and polyamines. In
case of accessible L-arg in the extracellular environment the
intracellular pool of this amino acid can be replenished. However,
at sites, where extracellular L-arg is depleted (by tumor cells or
tumor-infiltrating myeloid cells) the intracellular pool cannot be
restored leading to T-cell suppression (224).

Mechanisms of arginine-starvation sensing in immune cells
are still unclear. It is suggested that mTOR together with
GCN2 kinase regulate amino acid metabolism and response to
arginine starvation (207, 227, 232, 247, 248), however, the exact
mechanism is unknown and requires further investigation.

B Cells and L-arg
The role of L-arg in B-cells functions was much less investigated
and is poorly understood. It was shown that L-arg deficiency
due to high ARG1 activity in F/A-2+/+ transgenic mice, that
overexpress arginase in enterocytes, potently impairs early B
cell maturation with no major impact on T-cells (249). F/A-
2+/+ mice have reduced number of B cells, decreased serum
IgM concentration and hampered B cell maturation in the
early pre-B cell stage (249). L-Arg-free diet fed mice which
have significantly lower concentration of plasma L-arg compared
to L-arg-supplemented diet had also impaired antigen-specific
mucosal immune response against tetanus toxoid (TT). After
oral administration, no TT-specific fecal IgA antibodies were
detected in L-arg-free diet fed mice (250). Both PMN-MDSCs
and M-MDSCs were shown to regulate key B-cell functions,
particularly B-cell proliferation and antibody production. PMN-
MDSC-mediated B-cell suppression turned out to be cell contact
dependent and involved ARG1 (251). A recent study from
the same group indicated that M-MDSCs suppress B-cell
proliferation, and downregulate IgM, HLA-DR, CD80, CD86,
TACI, and CD95 in contact independent, but ARG1 and iNOS-
dependent mechanism (252).

Myeloid Cells and L-arg
The role of L-arg in differentiation of myeloid cells is poorly
investigated. Most of the studies focused on the role of ARG1
produced by myeloid cells rather than the dependence of these
cells on L-arg. Individual results in vitro show no influence of
L-arg on macrophages differentiation, maturation, and effector
functions. In the absence of L-arg, maturation of macrophages
into classically activated macrophages (M1) and alternatively
activated macrophages (M2) was unaffected (253). Moreover,
the production of cytokines by both macrophage subtypes
was unimpaired under L-arg-starvation (253). Likewise, the
expression of iNOS by M1 cells as well as the expression of
ARG by M2 cells turned out to be independent from the L-arg
concentration (253). However, ARG1 expression was essential
for monocytic DC differentiation (254). ARG1 was also recently
shown to be crucial in efferocytic clearance of apoptotic cells by
macrophages (255).

In vivo however, L-arg supplementation was shown
to promote Gr-1+CD11b−F4/80+, but suppressed Gr-
1+CD11b+F4/80+ macrophages in a murine model of breast
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cancer (223). However, these effects might not be caused
directly, but rather result from the effects on T-cells activation.
Another study showed that L-arg starvation promotes tumor
G-MDSC accumulation, which further suppress T-cells anti-
tumor response (158). Similar results were obtained with
PEG-asparaginase administration, suggesting that generally
amino acid starvation results in MDSC accumulation. PEG-
ARG1-induced MDSC accumulation was found to be regulated
by GCN2, since the accumulation of MDSCs in GCN2-
deficient mice treated with PEG-ARG1 was negligible (158).
Importantly, MDSCs isolated from GCN2-deficient mice
had similar immunosuppressive properties as compared with
MDSCs isolated from wild-type mice, which suggests that
GCN2 is involved in the accumulation of MDSC, but not
in their effector functions. Moreover, it was observed that
ARG2-releasing AML blasts as well as ARG2-rich plasma of
patients with AML promotes the differentiation of monocytes
toward M2 macrophages. These effects were diminished by L-arg
supplementation or arginase inhibitors (61).

NK Cells and L-arg
NK cells are less sensitive to low L-arg concentrations as
compared with T-cells however, L-arg starvation affects the main
effector functions of NK cells (196). L-arg starvation decreases
NK cells proliferation and viability, as well as cytotoxic activity
(210, 256). Depletion of L-arg leads to the reduction in the
expression of NKp46 and NKp30 activating receptors, as well
as the NK cell ζ chain expression in the FcγRIIIA, similar to
the CD3ζ chain in T-cells. Moreover, in the absence of L-arg
the production of IFN-γ by NK cells is significantly decreased
(256). Similar effect is exert by arginase from human neutrophils
(196). However, NK cell degranulation and cytotoxicity seems to
be unaffected by L-arg depletion (196).

L-arg Metabolites and Immune Response
L-arg is in the center of many metabolic pathways. Arginase
not only depletes L-arg, but also creates multiple downstream
metabolites including L-ornithine and urea, as well as L-proline,
glutamate, agmatine, putrescine, L-citrulline, and polyamines.

Ornithine
L-arg is degraded by arginase to L-ornithine and urea. While
the concentration of L-arg substantially decreases in cancer,
the concentration of L-ornithine increases (59, 75, 257). High
concentration of L-ornithine in tumor interstitial fluid may
inhibit anti-tumor cytotoxic response of CD8+ T-cells (258, 259),
and together with L-arg depletion, that affects T-cells properties
but not cytotoxicity (214), provide effective tumor evasion of
the immune system. Reversible inhibition of cytotoxicity of T-
cells in the presence of L-ornithine is independent from the type
of stimulation and it seems that it affects early stages of CTL
activation (258). However, L-ornithine did not impair mitogenic
response to the stimulation (258, 259), as well as IL-2 and IL-3
production (258). ODC catalyzes the conversion of L-ornithine
to polyamines.

Polyamines
A diamine putrescine, triamine spermidine, and tetraamine
spermine are ubiquitous L-ornithine metabolites associated
with important cellular processes. Polyamines are essential
for cell growth and proliferation during development, wound
healing, and tissue regeneration. ODC catalyzes the conversion
of L-ornithine into putrescine, which is then metabolized to
spermidine by spermidine synthase and spermine by spermine
synthase (260). At physiological pH polyamines are positively
charged and bind to acidic sites in DNA and RNA, controlling
gene expression (261). Moreover, polyamines have antioxidative
properties, bind to K+ channels, NMDA receptors, andmodulate
the activity of various enzymes (261).

Growth promoting functions of polyamines are best described
in tumors. However, it seems that polyamines are also important
in T-cell clonal expansion. It has been suggested that the synthesis
of polyamines in T-cells is under the direction of Myc, as Myc-
deficient T-cells fail to induce ODC and other genes involved in
polyamine synthesis, leading to decreased polyamine production
(262). Spermidine is also a precursor of hypusine, which post-
translationally binds to eukaryotic initiation factor 5a (eIF5a).
Intriguingly, eIF5a, which prevents ribosomal stalling during
translation of certain mRNAs, is one of the most strongly
expressed proteins in activated T-cells (263).

Polyamines were reported to exert anti-inflammatory effects
in macrophages by restraining activation of M1 while promoting
differentiation of M2 subtype. For example, LPS-induced
expression of TNF, IL-1, IL-6, IL-12, iNOS, and CD80 was
suppressed by polyamines (264–266). Polyamines also modulate
immunoregulatory activities of DCs. IDO1 activity in TGF-β-
treated DCs requires ARG-1-dependent spermidine synthesis
that activates Src tyrosine kinase, which participates in IDO1
phosphorylation (267).

ARGINASE INHIBITORS

Expanding knowledge on the biological role of arginases
prompts the idea of therapeutic inhibition of these enzymes.
The interplay between ARG and NOS resulting mainly from
the competition for the common substrate L-arg makes
ARG inhibition an attractive approach in the treatment of
cardiovascular and inflammatory conditions (such as asthma,
diabetes, hypertension, atherosclerosis, coronary artery disease,
heart failure or erectile dysfunctions). Furthermore, inhibition
of immunosuppressive functions of arginases is being explored
in the treatment of cancer. Modulation of L-arg metabolism
is also being explored as a therapeutic strategy in Alzheimer’s
disease (268).

As many pathogenic bacteria (such as Helicobacter,
Mycobacterium, Salmonella), fungi (Candida) and parasites
(Trypanosoma, Leishmania, Schistosoma) express species-specific
isoforms of ARG to facilitate their survival in the host, finding
pathogen-ARG-specific inhibitors emerges as a timely approach
in the antibiotic-resistance era. Interestingly, Leishmania
parasites induce ARG1 expression in infected macrophages to
decrease L-arg availability for iNOS and thus to avoid NO toxicity
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(269). The latter observation further supports the potential use
of ARG inhibitors in the treatment of infectious diseases.

Currently, almost all ARG inhibitors being developed as
drug candidates are competitive inhibitors of both isoenzymes
(ARG1 and ARG2) and in vast majority are L-arg analogs (270).
Finding an isoform-specific ARG inhibitor is challenging as 100%
homology exists in the active site between human ARG1 and
ARG2. As the results of the preclinical, mainly in vitro, testing
of ARG inhibitors have been extensively reviewed elsewhere
(270, 271), here we just briefly summarize the data on in vivo and
clinical activity of selected ARG inhibitors.

So called first generation of ARG inhibitors such as
N-hydroxy-nor-L-arginine (nor-NOHA) (272), (S)-2-amino-6-
boronohexanoic acid (ABH) (273) and (S)-(2-boronoethyl)-L-
cysteine (BEC) (274) are reversible, modest inhibitors of ARG1
and ARG2 enzymatic activity with either poor pharmacokinetic
properties or insufficient penetration through the plasma
membrane. In mouse models nor-NOHA has been shown
to inhibit local tumor growth in B- and T-cells-dependent
manner as well as to reduce metastatic burden (132, 178,
275). Second generation compounds are characterized by
better pharmacokinetic and pharmacodynamic properties. As an
example, so called compound 9 [(R)-2-amino-6-borono-2-(2-
(piperidin-1-yl)ethyl)hexanoic acid] has been recently showed
to decrease the growth of KRAS mutated murine lung tumors
via inhibition of ARG activity in tumor-infiltrating myeloid
cells (117).

Up to date, there are only two ARG inhibitors being tested
in clinical trials. Both drug candidates have been developed by
Calithera Biosciences and are orally available small-molecule
compounds. INCB001158 (CB-1158) is being evaluated in
Phase 2 as a single agent and in combination with immune
checkpoint inhibitors in cancer (both solid tumors and multiple
myeloma), while CB-280 in Phase 1 in cystic fibrosis, exploiting
the novel idea of increasing NO production to improve lung
function. CB-1158 has been shown ex vivo to reverse human
T-cell immunosuppression mediated by ARG1 produced by
neutrophils as well as MDSCs (210). It also exerts immune-
based antitumor effects in syngeneic mouse tumor models in vivo
as a single agent as well as in combination with the immune
checkpoint inhibitors (210). An interesting ARG inhibitor to
watch is OATD-02 (276), a compound being developed by
Oncoarendi Therapeutics. In preclinical models it has been
shown to delay ovarian cancer progression and to revert ARG1-
mediated inhibition of antigen-specific T-cells proliferation and
to restore their CD3ζ levels (64). Moreover, in syngeneic
mouse tumors it potentiated the antitumor efficacy of immune
checkpoint inhibitors (277). The company claims OATD-02
Phase 1 trial in cancer patients to begin in 2020-2021.

Arginase inhibition cannot be replaced, however, by chronic
L-arg supplementation. Dietary intake of L-arg results only
in a transient increase of L-arg plasma concentration (278).
Moreover, if arginases are active in blood or body tissues, it is
very likely that they easily degrade the excessive amounts of this
amino acid.

Global ARG1 inhibition rises significant safety concerns.
ARG1 gene knockout mice die 10–14 days post-birth (39).

Similarly, induction of whole body Arg1 KO in adult “floxed”
Arg1 CreETT2 transgenic mice leads to the animals death in up to
2 weeks post-tamoxifen administration (279). The major cause of
death in Arg1 KO mice is hyperammonemia resulting from the
defect of the liver urea cycle. It is the lack of Arg1 expression
in the liver that is fatal, as hepatocyte-specific knockout
of Arg1 mimics the whole body deficiency of this enzyme
(280). Lack of Arg1 expression leads to altered hepatocytes
morphology, significantly increased plasma L-arg and L-
citrulline concentrations accompanied by decreased plasma L-
ornithine and L-proline concentrations (39). Interestingly, Arg2
knockout mice are viable and do not have a disabling phenotype
apart from high plasma L-arg concentrations and decreased male
fertility. Moreover, Arg2 KO mice have significantly extended
lifespan, indicating some role of this enzyme in aging (41).
Double Arg1 and Arg2 KO mice show the same phenotype
as Arg1-lacking animals. Unexpectedly, in Arg1 KO mouse
embryo no compensatory Arg2 expression was observed (281),
suggesting non-overlapping role of both arginase isoenzymes in
murine embryonal development. In humans, ARG1 deficiency
is a rare autosomal recessive disorder, resulting from over 40
reported mutations in ARG1. In the most severe form ARG1
deficiency results in hyperargininemia, neurological impairment
and eventually fatal episodes of hyperammonemia (282).
ARG1 deficiency is frequently accompanied by a compensatory
increase in ARG2 activity in the kidney, ameliorating metabolic
disturbances (44). The latter observation encourages a still very
challenging attempt to develop ARG1-specific inhibitors.

Animal studies confirmed that there is a safe therapeutic
window for tested ARG inhibitors. In both mice and rats, over
2-months long daily systemic administration of nor-NOHA did
not result in detectable toxicity. It is likely, that due to the
quantitative differences in ARG1 expression between the liver
and other tissues way lower ARG inhibitors concentrations are
needed to exert immunomodulatory and/or vascular effects than
to block the Krebs cycle in hepatocytes (270).

Initial results of the investigational trial of the oral
ARG inhibitor INCB001158 in colon cancer patients proved
acceptable safety profile of this drug candidate. A maximum
tolerated dose was not reached even for the twice daily total
dose of 150mg. Moreover, clinically significant urea cycle
inhibition was not observed. In microsatellite stable (MSS)
colorectal cancer patients involved in this study, 7 and 6%
of partial responses to the INCB001158 and pembrolizumab
(anti-PD1 monoclonal antibody) combination or INCB001158
monotherapy, respectively, were reported. Importantly, objective
pharmacodynamic parameters such as an increase in the
intratumoral CD8+ T-cells as well as dose-related increase in
plasma L-arg were achieved in the treated individuals (283).

To evaluate the clinical efficacy of ARG inhibition in a
comprehensive way we need much more data. Nonetheless,
existing preclinical and initial clinical evidence seems
to support the idea that therapeutic targeting of the
immunomodulatory ARG might serve as a potent addition
to the other immunotherapeutic strategies rather than as an
effective single agent treatment. Moreover, it would be crucial
not only to evaluate proper dosing, timing and treatment
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duration but also to find reliable biomarkers predicting desirable
clinical effects.

Although recent data support the idea that ARG
overexpression correlates with poor prognosis, a number of
studies indicate that arginine depletion may also be beneficial for
subgroups of patients, especially those with inactivation of ASS1
in cancer cells that leads to the dependence on exogenous L-arg
(284). L-Arg deprivation by ADI conjugated with polyethylene
glycol (ADI-PEG) (84, 285) as well as pegylated recombinant
human ARG (rhARG-PEG) (286, 287) were applied to the
treatment of arginine-auxotrophic tumors and showed potent
anticancer effects [reviewed in (288)].

Noteworthy, L-arg-restriction as the regulation of immune
response is not specific to the cancer. It was shown that
Helicobacter pylori by arginase not only produces urea which
can be used to CO2 and NH3 production by urease to support
acid tolerance (289). H. pylori using ARG also depletes L-arg
which leads to the downregulation of CD3ζ and inhibition
of T-cells proliferation during infection (290). T-cells response
is also suppressed via ARG by human embryonic stem cells
(291). ARG also mediates T-cells hyporesponsiveness in human
pregnancy (292), post-stroke immunosuppression (293), as well
as in the control of autoimmunity (294). Moreover, H. pylori
induces ARG2 expression in macrophages contributing to the
immune evasion by limiting production of antimicrobial NO
(48). Crucial role of ARG in the regulation of immune response
by impairing NO production was also described in the model of
cutaneous contact hypersensitivity (295) as well as in immune
response to Leishmania major infections (296). Importantly,
some intracellular pathogens induce expression of ARG1 in
macrophages that hampers effective immune response (137).
A recent study revealed that increased ARG levels may play
a role in fatigue intensification in cancer patients undergoing
external-beam radiation therapy (297)

FINAL REMARKS

ARG expression is substantially elevated in myeloid cells
in cancer and mitigate antitumor response via multiple
mechanisms. Intriguingly, cytotoxic effects of T-cells are
unaffected by a lack of L-arg, despite the fact that CD3ζ and
CD3ε are downregulated and thus TCR signal transduction
should be inhibited. In contrast, T-cell proliferation is strongly
suppressed, but it must be emphasized that T-cells proliferate
extensively in tumor-draining lymph nodes, and not in
the tumor. L-arg concentrations in tumor-draining LN have
not been measured so far. It would also be interesting to
see whether increased ARG activity contributes to fibrotic
processes leading to desmoplastic changes in some types
of tumors, such as pancreatic cancer. Increased activity of
arginases could limit L-arg availability to NOS—could it be
responsible for vascular abnormalities frequently described
in tumorsxx Altogether, increasing evidence indicates that
arginases become potentially important targets for therapeutic
interventions that might improve the efficacy of immunotherapy,
decrease infectious complications and improve quality of life of
cancer patients.
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