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Metastatic disease is the leading cause of death in patientswith solid cancers. The progression
to metastasis is a multistep process that involves detachment of tumor cells from their con-
straining basement membrane at the primary site, migration and intravasation into the circu-
lation, survival in the circulation, extravasation into the secondary organ, and survival and
growth at the secondary site. During these steps, tumor and immune cells interact and influ-
ence each other both within the tumor microenvironment and systemically. In particular,
myeloid cells such as monocytes, macrophages, neutrophils, and myeloid-derived suppres-
sor cells (myeloid regulatory cells) have been shown to play important roles in the metastatic
process. These interactions open new avenues for targeting cancer metastasis, especially
given the increasing interest in development of cancer immunotherapies. In this review,
we describe the currently reported pathways and mechanisms involved in myeloid cell
enhancement of the metastatic cascade.

C
ancer metastasis is the major cause of mor-
bidity and mortality in patients. Although

improvements have been made for early diag-
nosis of cancer, and treatment of primary can-
cers leading to significantly increased survival,
limited progress has been made in the treatment
of metastasis. In fact, inmany cancer types, such
as breast and prostate, there has been little
change in overall survival of metastatic cancer
patients suggesting resistance to the usual stan-
dard of care such as chemotherapy and radiation,
as well as new targeted biologics. However, sig-
nificant progress in immunotherapies, particu-
larly checkpoint inhibitors aimed to activate
cytotoxic T cells, have shown success inmetastat-
ic melanoma, thus adding considerable impetus
to develop new immune-oncological treatments.
Despite striking success with these therapeutics

most metastatic cancers are still resistant, there-
fore there is a need for a better understanding of
the cancer microenvironment in regulating im-
mune cell-mediated attack of cancer.

This renewed interest is based on the reali-
zation that the tumor microenvironment is
complex and is populated with many immune
cell types of both the innate and acquired im-
mune systems. Importantly, this cellular com-
position evolves as the tumor progresses to
malignancy and it is also becoming apparent
that different cancers have different immune
composition both in the primary and metastatic
site. Studies have also indicated that rather than
rejecting tumors, the immune cells, particularly
those of the innate system (Cotechini et al. 2015)
are polarized to be tumor promoting and to sup-
press cytotoxic cell responses (Condeelis and
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Pollard 2006; Cassetta and Pollard 2018). Thus,
it is imperative that this immune infiltration into
tumors is characterized spatially and tempora-
rally and the function and regulation of these
cells is defined mechanistically so that new im-
proved therapeutics can be developed.

The majority of solid tumors originate in
the epithelial cell population. Successful metas-
tasis requires induction of the ability to break
through the basement membrane and invade
through the extracellular matrix (ECM) and
stromal layers, intravasation into the vasculature
or lymphatic system, transport and survival in
the circulatory system, extravasation into the
parenchyma of distant tissues, seeding at the
secondary site, and survival and growth into
metastatic tumors, a process termed the meta-
static cascade (Fidler 2003; Joyce and Pollard
2009; Lambert et al. 2017). Throughout this pro-
cess, tumor cells interact with various cells of the
immune system, which canmodulate every step.
A link between tumors and immune cells was
first proposed by Virchow, in 1863, when he
noticed infiltrating blood cells in malignant tis-
sues (Balkwill and Mantovani 2001). However,
the role of the immune system in metastasis
is complex and immune responses can play
dual, pro- and antitumoral, roles during cancer
spread to secondary sites. This reviewwill define
the prometastatic roles of innate immune cells
particularly those of the myeloid compartment
in the metastatic cascade from primary tumors
to their final destination in the lung.

LOCAL INVASION AND INTRAVASATION

The first step of the metastatic cascade involves
invasion of the cancer cells through the primary
tumor into surrounding tissues and entry into
blood vessels or lymphatic system. To spread out
from the primary site, cancer cells need to break
through the surrounding extracellular matrix.
Epithelial–mesenchymal transition (EMT) has
been proposed to be a key mechanism in the
acquisition of an invasive phenotype by epi-
thelial cancer cells. During EMT, a polarized
epithelial cell transitions to a mesenchymal
phenotype. These changes result in increased
migratory capacity, invasiveness, resistance to

apoptosis, and increased production of ECM
components. The final step results in the degra-
dation of the underlying basement membrane
and migration of the cell out of the epithelial
layer (Lamouille et al. 2014). Although the exact
mechanism and definition of this EMT process
are debated, for epithelial cells to invade they
need to change morphology and gain migratory
properties. Activation of these programs is often
dependent on a cross-talk between cancer cells
and the local microenvironment including im-
mune cells.

In ovarian tumors, tumor associated neutro-
phils (TANs) were shown to cluster with cells
expressing the EMT transcription factor ZEB1,
and this was associated with areas of loss of tu-
mor-expressed E-cadherin (Mayer et al. 2016).
Similarly, in lung adenocarcinoma, the neutro-
phil count was negatively associated with
E-cadherin expression (Hu et al. 2015). In pan-
creatic ductal adenocarcinoma (PDAC) biopsies
with high TAN numbers, a nuclear accumula-
tion of β-catenin and ZEB1 (markers of EMT)
was observed and, in the same study, coculture
of neutrophils isolated fromhealthy donors with
pancreatic tumor cells resulted in tumor cell dys-
hesion, down-regulation of keratins, up-regula-
tion of TWIST, translocation of β-catenin to the
nucleus, and appearance of ZEB1 in the nucleus
(Große-Steffen et al. 2012). In vitro studies on
PDAC, lung adenocarcinoma, and ovarian can-
cer cell lines showed that neutrophil-derived
elastase resulted in digestion of E-cadherin
on tumor cells resulting in a transition toward
a mesenchymal-like phenotype (Gaida et al.
2012; Hu et al. 2015; Mayer et al. 2016), whereas
interactions with TANs have been reported to
activate the ERK pathway and induce expression
of EMT transcription factors in gastric cancer
cells lines (Zhang et al. 2017).

In non-small-cell lung carcinoma (NSCLC),
a positive correlation between tumor-associated
macrophage (TAM) densities and EMTmarkers
was found (Bonde et al. 2012), and in hepato-
cellular carcinoma (HCC) EMT markers were
found primarily at sites of TAM infiltration
(Fu et al. 2015). F9, Hepa1-6, and NMuMG
cell line exposure to “TAM”-conditioned
medium was shown to decrease expression of
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E-cadherin, activate the β-catenin pathway, and
increase expression of mesenchymal markers
(Bonde et al. 2012; Fan et al. 2014), and cocul-
ture of macrophages with various cancer cells
and cell lines resulted in increased expression
of the mesenchymal markers vimentin, SNAIL,
and N-cadherin, and down-regulation of E-cad-
herin (Liu et al. 2013; Su et al. 2014; Fu et al.
2015; Hu et al. 2016; Gao et al. 2018). In human
breast cancer tissue, TAMs were found in juxta-
positionwith cancer stem cells (CSCs) andTAM
numbers correlated with numbers of invading
CSCs, while co-injection of TAMs with murine
breast cancer cells enhanced metastasis, indicat-
ing that TAM–CSC interactions induce a tu-
mor-supportive stroma and enhance tumor
cell invasiveness (Lu et al. 2014). In support of
this mechanism, a study inmurine breast cancer
found that TAMs provide a permissive niche for
CSCs and actively support their maintenance
via a paracrine EGF/EGFR/STAT3 signaling
loop that was critical for SOX-2 expression in
CSCs (Yang et al. 2013). Overall, these data in-
dicate that both TAMs and TANs can induce
EMT/stem cell phenotypes in tumor cells and
thus promote tumor cell acquisition of an inva-
sive phenotype.

Once the tumor cells have acquired an inva-
sive phenotype, they need to break out of the
tumor matrix. ECM degradation is thought
to occur primarily through the actions of mat-
rix metalloproteinases (MMPs), in particular
MMP-2 and MMP-9, as these proteases prefer-
entially degrade type IV collagen (Clavel et al.
1992). Both TAMs and TANs can act as sig-
nificant sources of MMPs in primary tumors
(Nielsen et al. 1996; Pollard 2008; Bausch et al.
2011). Additionally, TAN-derived MMP-9 is
typically not associated with tissue inhibitor of
metalloproteinases (TIMPs), and therefore it is
more easily activated (Ardi et al. 2007).

TAMs also produce a number of other mol-
ecules that promote tumor cell invasion such as
osteonectin (SPARC), which increases tumor
cell–ECM interactions (Sangaletti et al. 2008),
urokinase-type plasminogen activator (uPA),
which increases tumor cell invasiveness (Hil-
denbrand et al. 1999), and cathepsin proteases,
which remodel the ECM (Laoui et al. 2011).

Similarly, TANs also secrete a number of other
proteases capable of ECM remodeling, such as
neutrophil elastase (NE), cathepsins, and pro-
teinase-3, which enhance tumor cell invasion
(Sato et al. 2006; Tan et al. 2013) and cleave
cell surface adhesion molecules on tumor cells
(Gaida et al. 2012).

In a seminal study, it was found that TANs
increased the invasion of tumor cells in vitro and
increased rat mammary tumor metastasis to
lung in vivo compared with normal and inflam-
matory neutrophils (Welch et al. 1989). In
the PyMT mammary tumor model, increased
number of TAMs were observed at sites of base-
ment membrane breakdown (Lin et al. 2001,
2003) and an enrichment of extracellular prote-
ases has been reported in the tumor stroma of
PyMT animals in areas corresponding to TAM
localization (Pedersen et al. 2005; Wyckoff et al.
2007). In human gastric cancer, both TAMs and
TANs have been found to concentrate at the
invasive front of the tumor (Liu et al. 2009,
2017), and in human fibrosarcoma and prostate
tumors, TANs expressing MMP-9 were associ-
ated with increased tumor cell intravasation
(Bekes et al. 2011).

TAM-derived cathepsins, (CTs) B and S,
have been shown to be critical for tumor inva-
sion in mouse models of pancreatic islet cancers
and mammary tumors. Tumor-derived inter-
leukin 4 (IL-4) was responsible for inducing ca-
thepsin activity in TAMs and thus a model was
proposed whereby tumor-derived IL-4 stimu-
lates CTs B and S production in TAMs at the
tumor–stromal interface, which degrade ECM
substrates and create a path for the migration/
invasion of cancer cells (Gocheva et al. 2010). In
addition, CD4+ T cell-derived IL-4 has been re-
ported to induce a protumoral phenotype in
TAMs, which then enhance tumor cell invasion
via production of proinvasive factors such as
EGF (DeNardo et al. 2009).

TAMs not only promote tumor cell invasion
via ECM breakdown but have also been shown
to promote directional tumor cell migration.
This occurs via a paracrine loop consisting of
tumor cell-derived colony stimulating factor
(CSF)-1 and macrophage-derived EGF that in-
duces tumor cells and macrophages to move in
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conjunction along collagen fibers ending in
tumor cell clustering around blood vessels (Con-
deelis and Pollard 2006; Wyckoff et al. 2007).
Furthermore, a structure consisting of macro-
phages, endothelial, and tumor cells, termed
the tumor microenvironment for metastasis
(TMEM) that predicts metastasis in human
breast cancers (Rohan et al. 2014), has been as-
sociated with tumor cell intravasation in mouse
models of breast cancer (Wyckoff et al. 2007;
Roh-Johnson et al. 2014). Within the TMEM,
macrophage and tumor cell contact induces
the formation of invadopodia (actin-rich matrix
degrading protrusions) in tumor cells via a
Notch1/MenaINV signaling pathway (Roh-John-
son et al. 2014; Pignatelli et al. 2016), and tran-
sient vascular permeability has been reported at
TMEM sites resulting in increased tumor cell
intravasation into the circulation (Harney et al.
2015). Thus, TAMs alone, or as part of the
TMEM complex, attract invasive tumor cells to
blood vessels where they increase vascular per-
meability and allow for tumorcell escape into the
circulation.

TAMs can also increase the density of blood
vessels (De Palma et al. 2003; Lin et al. 2006,
2007; Riabov et al. 2014). TAM-induced
angiogenesis has been reported to be promoted,
at least in part, through vascular endothelial
growth factor (VEGF)A expression in the
PyMT model of breast cancer (Lin et al. 2007),
and inhibition of angiogenesis in PyMTprimary
tumors reduces metastasis (Zabuawala et al.
2010; Yeo et al. 2014). A subset of TAMs that
areTie2+ canmigrate to blood vessels where they
differentiate into perivascular macrophages,
promote vascular leakiness, and cancer cell in-
travasation (Wyckoff et al. 2007; Mazzieri et al.
2011; Arwert et al. 2018).

TANs have also been reported to boost tu-
mor cell intravasation, although via different
mechanisms. In a normal inflammatory re-
sponse, neutrophils extravasate from the circu-
lation into affected tissues. It has been proposed
that neutrophil migration into the tumor creates
a channel in the ECM throughwhich tumor cells
can more easily escape into the vasculature, this
has been termed the countercurrent model (Op-
denakker and Van Damme 2004; Piccard et al.

2012). It has also been proposed that tumor cells
may in fact attach to neutrophils and traverse the
endothelium in conjunction with neutrophils as
they exit the primary tumor site (Wu et al. 2001;
Strell et al. 2010). (See Figure 1 for a summary of
the roles of myeloid cells in local invasion and
intravasation.)

SURVIVAL AND DISSEMINATION THE
CIRCULATION

Once the tumor cells have successfully invaded
into the blood vessels, they need to survive a
number of stresses to reach distant organs;
(1) they are deprived of the integrin-dependent
adhesion to ECM components that is normally
essential for epithelial cell survival, (2) theymust
survive shear forces and, (3) they must evade
killing by immune cells.

Loss of cell–cell and cell–ECM contact and
shear forces constitute significant challenges for
cancer cells entering the circulation. One of the
ways that the cancer cells overcome this problem
is by forming cell aggregates (Choi et al. 2015).
In vitro, neutrophils have been shown to pro-
mote breast cancer and colorectal carcinoma cell
clustering (Jadhav et al. 2001; Yui et al. 2005;
Morimoto-Kamata et al. 2012), and in a mam-
mary cancermodelNETosis was associatedwith
the appearance of venous thrombi in the lung
(Demers et al. 2012). In the 4T1 mammary tu-
mor model, as well as in breast cancer patients,
circulating tumor cells (CTCs) formed clusters
with neutrophils and this induced a protumor
gene expression profile in the neutrophils. Path-
way analysis showed that the CTCs from these
clusters were enriched in positive regulators of
cell cycle and DNA replication programs when
compared with CTCs alone. Further, these neu-
trophil-associated CTCs showed higher levels of
Ki67, a marker of DNA synthesis, which was
retained in disseminated tumor cells. Blockade
of neutrophils ablated these clusters and re-
duced metastasis, whereas overexpression of
granulocyte-colony stimulating factor (G-CSF)
led to earlier release of CTCs, more CTC–neu-
trophil clusters and enhanced metastasis
(Szczerba et al. 2019). Thus, CTC–neutrophil
clustering induces a protumor phenotype in
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the neutrophils, which then support tumor cell
cycle progression in the circulation leading to
enhanced metastatic seeding.

The formation of platelet-rich thrombi
around the tumor cells has also been proposed
to shield these cells from stresses in the circula-
tion. In the vascular circulation, tumor cells
activate platelets either via direct contact or
through the release of mediators such as ADP,
thrombin, TxA2, or proteinases, which in turn
induce tumor cell–platelet aggregation (Schle-
singer 2018). Coculture of tumor cells induces
aggregation of platelets in vitro (Heinmöller
et al. 1995; Medina et al. 2012; Lian et al. 2013)
and the ability to do so increases with increasing
metastatic potential (Honn et al. 1992; Zarà et al.
2017). Inhibition of platelet aggregation resulted
in reduced bone and visceral metastasis in a
model ofmelanoma (Bakewell et al. 2003). Plate-
let–tumor cell aggregates may also protect CTCs
by conferring resistance against detachment-

induced death. Coculture of platelets with hu-
man ovarian cancer cell lines prevented anoikis
via activation of the YAP1 signaling pathway in
vitro (Haemmerle et al. 2017). However, this has
yet to be confirmed in vivo.

Platelets may act as more than just a shield
for tumor cells and actively manipulate tumor
cells in the circulation to enhance metastatic
phenotypes. Coculture of colon carcinoma cells
with platelets before tumor cell injection into
mice increased the number of metastatic foci
via transforming growth factor β (TGFβ) and
nuclear factor (NF)κB signaling-mediated in-
duction of a prometastatic phenotype in tumor
cells (Labelle et al. 2011). Coculture of ovarian
cancer cells and ascites with platelets induced
stromal-like phenotypic changes in the tumor
cells (Orellana et al. 2015). Addition of washed
thrombin-activated membranes to breast can-
cer, melanoma, and lymphoma cell cultures
enhanced the ability of tumor cells to degrade
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Circulation
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Figure 1.Myeloid cells promote tumor cell escape from the primary tumor. Tumor-associated macrophages and
neutrophils (TAMs and TANs, respectively) induce an invasive phenotype in tumor cells by up-regulating
mesenchymal markers (ZEB1, β-catenin) and down-regulating epithelial markers (E-cadherin). TAMs and
TANs also secrete proteases and cathepsins, which degrade the extracellular matrix (ECM) and allow the tumor
cells to invade through their basementmembrane. The tumor cells can then attach to neutrophils and use them to
intravasate into the circulation, or the tumor cells can use channels left by extravasating neutrophils tomore easily
escape into the blood vessels. TAMs guide tumor cells to blood vessels along collagen fibers via an EGF/CSF1
signaling loop, induced by CD4 T cell-derived interleukin 4 (IL-4). Once at the vessel, the TAMs, either alone or
as part of a TMEM complex, induce vascular leakiness thus enhancing tumor cell escape into the circulation.
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matrigel, and stimulation of cancer cells with
platelet activated membranes before injection
into mice increased tumor cell infiltration into
the lung and metastatic nodule numbers (Pang
et al. 2015). Hence, platelets may induce an in-
vasive phenotype in circulating cancer cells.

Natural killer (NK) cells are thepredominant
immune cell type involved in immune surveil-
lance and destruction of circulating cancer
cells (Morvan and Lanier 2016). Platelets inhibit
NK-mediated lysis of target cells in vitro and
disruption of platelet aggregation subverts this
protection (Honn et al. 1992). Depletion of
platelets results in reduced tumor cell seeding
inmetastatic organs but only in tumors typically
sensitive toNKcell-mediated killing (Honn et al.
1992). In another study, disruption of platelet
function significantly reduced CTC survival
and metastasis. This was associated with in-
creased NK cell killing of CTCs and inhibition
of NK cell function reversed this (Palumbo et al.
2005). Platelet–tumor cell aggregates can also
secrete various factors such as interferon
(IFN)γ and TGFβ, which down-regulate
NKG2D receptors on NK cells, thus impairing
their ability to become activated and kill tumor
cells (Kopp et al. 2009). Furthermore, platelet
coating can confer major histocompatibility
complex (MHC) class I expression onto tumor
cells, which also protects cancer cells against NK
cell-mediated killing (Placke et al. 2012).

Neutrophils too protect CTCs against im-
mune-mediated destruction. In a mammary tu-
mor model, neutrophils suppressed NK cell
ability to respond to signaling via cell surface
receptors and hence as a consequence sup-
pressed NK-cell activation leading to enhanced
survival of D2A1mammary tumor cells (Spiegel
et al. 2016). In addition to shielding CTCs
against NK cell killing, neutrophils can also pro-
tect tumor cells against antitumor T-cell re-
sponses. In amammary tumormodel a systemic
expansion of T-cell suppressive neutrophils was
observed (Casbon et al. 2015), and neutrophils
isolated from melanoma and renal cell carcino-
ma (RCC) patients showed increased expression
of ARG1 when compared with neutrophils iso-
lated from normal controls (Zea et al. 2005;
De Santo et al. 2010). ARG1 has been shown

to inhibit T-cell responses by inhibiting re-ex-
pression of the ζ-chain of CD3 after TCR-sig-
naling–induced internalization (Rodriguez et
al. 2004). A negative correlation was observed
between arginase activity and CD3ζ-chain
expression in the RCC patient blood, and deple-
tion of neutrophils resulted in recovery of CD3ζ-
chain expression and T-cell proliferation (Zea
et al. 2005). The neutrophils from the melanoma
patients also suppressed lymphocyte prolifera-
tion and were associated with a reduction in tu-
mor-specific CD8+ T cells, although in this case
the T-cell suppression was linked to IL-10 and
serum amyloid A (SAA) (De Santo et al. 2010).

Recently, it was proposed that CTCs insti-
gate a reciprocal activation loop between
neutrophils and platelets. Tumor cell-derived
mucins bind to P-selectin on platelets and L-
selectin on neutrophils initiating cell–cell
contact. Interaction of P-selectin with PSGL-1
on neutrophils stimulates release of cathepsin G
from the neutrophils, which in turn activates
platelets (Shao et al. 2011). Neutrophil extracel-
lular traps (NETs) have also been shown to stim-
ulate platelet aggregation (Fuchs et al. 2010).
Thus, platelets and neutrophils may work to-
gether to protect CTCs from mechanical and
immune-regulated destruction in the vascula-
ture. (See Figure 2 for a summary of the roles
of myeloid cells in tumor cell survival and dis-
semination in the circulation.)

ARREST AND EXTRAVASATION AT DISTANT
ORGANS

Having successfully disseminated and survived
the intravascular environment tumor cells must
now arrest and transmigrate from the vessel at
themetastatic tissue site.Myeloid cells have been
shown to support circulating tumor cell adhe-
sion and transmigration into metastatic sites.
For example, murine mammary tumor cell at-
tachment to vessels at metastatic sites induces
the endothelial activation markers vascular cell
adhesion protein-1 (VCAM-1) and vascular ad-
hesion protein-1 (VAP-1), which in turn recruits
myeloid cells. These myeloid cells were found to
be essential to tumor cell survival during early
metastatic outgrowth (Ferjančič et al. 2013).
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Neutrophils have been shown to colocalize
with tumor cells in, or near, vessels at sites of
metastasis (McDonald et al. 2009; Spicer et al.
2012) and it has been proposed that direct in-
teractions between adherent neutrophils and
CTCs increases tumor cell adhesion in the
lung (Spicer et al. 2012) and tumor cell arrest
in the liver (McDonald et al. 2009). Addition
of neutrophils to melanoma cells in a flow mi-
gration chamber significantly enhanced tumor
cell extravasation when compared with melano-
ma cells alone and blocking neutrophil tethering
reduced melanoma cell adhesion efficacy (Dong
et al. 2005). Similar results were seen in amurine
model in which it was shown that presence of

neutrophils enhanced retention of melanoma
cells in the lung. Neutrophils-bound tumor cells
and interaction of ICAM-1 and β2 integrin pro-
moted anchoring to the vascular endothelium
(Liang and Dong 2008; Huh et al. 2010). This
data indicates that on tethering to the vessel,
neutrophils capture and/or trap tumor cells
and subsequently allow for more efficient tumor
cell arrest at distant sites.

Neutrophil-derived NETs may also aug-
ment tumor cell adhesion to vessels at distant
sites. Indeed, more aggressive mammary tumor
models were found to have higher numbers of
NETs in the lungs when compared with less
aggressive models, and in human breast cancer

NETs
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Figure 2. Myeloid cells protect tumor cells in the circulation. Circulating tumor cells have a higher chance of
survival when in clusters.Neutrophil-derived neutrophil extracellular traps (NETs) induce tumor cell aggregation
in the circulation and circulating tumor cells release various factors such as ADP, thrombin, TxA2, and protein-
ases to stimulate platelet–tumor cell aggregation. This tumor cell–platelet clustering induces an invasive pheno-
type in the tumor cells and the release of IFNγ and TGFβ from platelets, which then suppress antitumor NK cell
responses. Additionally, neutrophils themselves cluster with circulating tumor cells and this induces a protumor
phenotype in the neutrophils and increases tumor cell proliferation within these clusters. This protects the tumor
cells against shear forces and immune-mediated destruction by cytotoxic T andNK cells via neutrophil release of
ARG1, IL-10, and SSA. Tumor cells also engage L-selectin on neutrophils and P-selectin on platelets, which
causes these cells to interact and neutrophils to release cathepsin G and NETs, which in turn activate platelets.
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higher numbers of NETs were seen in TNBC
primary tumors, when compared with luminal
and ER positive (Park et al. 2016). Induction of
NETosis enhanced tumor cell adhesion to neu-
trophil monolayers in a flow chamber, and
inhibition of NET formation reduced this. Fur-
ther, the NETs appeared to be wrapped around
the adherent tumor cells (Cools-Lartigue et al.
2013). Tumor cell trapping by NETs was also
visualized in murine lung and liver in real time
and NETosis was associated with an increase in
metastatic burden in these models (Cools-Lar-
tigue et al. 2013; Najmeh et al. 2017). Moreover,
inhibition of NET formation has been shown to
reduce metastasis in a number of in vivo models
(Cools-Lartigue et al. 2013; Park et al. 2016;
Najmeh et al. 2017). Thus, it is possible that it
is the neutrophil-derived NETs that trap CTCs
at the vessel.

Neutrophils have also been shown to assist
tumor cell extravasation via endothelial activa-
tion. Neutrophils from tumor-bearing mice in-
creased transendothelialmigration ofmammary
tumor cells in vitro, and this was attenuated on
inhibition of MMP-8 and MMP-9 (Spiegel et al.
2016). In vivo, adoptive transfer of neutrophils
from MMP-9 knockout mice showed reduced
metastasis when compared with neutrophils
fromWTmice (Spiegel et al. 2016). In this study,
the increase in tumor cell extravasation was at-
tributed to neutrophil-mediated effects on the
endothelial cells as pretreatment of endothelial
cells with neutrophil conditioned medium en-
hanced transendothelial migration rate in vitro
and also induced MMP-9 expression and secre-
tion (Spiegel et al. 2016).

Two circulating monocyte populations
have been described: classical “inflammatory”
monocytes (IMo, CCR2highLy6C+ in mouse;
CCR2highCD14++CD16− in human) and non-
classical “patrolling” monocytes (PMo,
CX3CR1highLy6C− in mouse; CXRCR1high

CD14+CD16+ in human). Monocytes in cancer
have been typically studied as one total popula-
tion. However, more studies are now assessing
the roles of monocyte subpopulations. IMo are
typically recruited to sites of inflammation
whereas PMo are localized in the microvascula-
ture where they patrol the capillaries (Auffray

et al. 2007; Saha and Geissmann 2011). PMo
have not been well studied in cancer, however
a recent report indicates they may have antitu-
mor functions. In murine models of Lewis ling
carcinoma (LLC), melanoma, and mammary
tumors, PMo were found to establish early in-
teractions with metastatic tumor cells in the
lung, scavenge tumor debris from the lung vas-
culature, and recruit and activate NK cells lead-
ing to increased tumor cell killing (Hanna et al.
2015). The antitumor activity of PMo was only
evident during the early stages of metastatic
seeding, and not after metastases were already
established.

Conversely, IMo appear to have a protumor
function. Coculture of human breast cancer cells
with monocytes increased cancer cell MMP-9,
TNFα, and tissue factor production in vitro
(Blot et al. 2003), indicating that monocytes
can induce an invasive phenotype in tumor cells.
Indeed, studies of lung metastasis have shown
that tumor cell arrest at distant tissue vessels
induces CCL2 production by the tumor cells,
which in turn generates a chemoattractive gra-
dient that recruits CCR2+Ly6C+ monocytes
(IMos). The IMos then promote the extravasa-
tion of breast carcinoma cells into the lung tissue
via VEGFA production (Qian et al. 2011). Ad-
ditionally, IMo promote tumor cell extravasa-
tion via production of MMP-9 (Hiratsuka
et al. 2002). Given that VEGF and MMP9 can
increase vascular permeability it is possible that
IMo may induce vascular leakiness leading to
enhanced tumor cell extravasation into the
lung. It also appears that IMo can manipulate
the permeability of the endothelium atmetastat-
ic sites. In a murine model of colorectal cancer
(CRC), IMos were recruited to lungs in which
they promoted transendothelial migration of tu-
mor cells via induction of E-selectin–dependent
endothelial retractions and modulation of tight
junctions through dephosphorylation of VE-
cadherin (Häuselmann et al. 2016). In another
study, Gr-1+CD11b+ cells (which contain neu-
trophils and monocytes/macrophages) secreted
MMP-9, which induced a disruption and diffu-
sion of VE–cadherin expression on endothelial
cell monolayers thus increasing permeability
(Yan et al. 2010). These data indicated that
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both neutrophils and monocytes may increase
CTC extravasation possibly by modifying the
permeability of endothelial cell barrier and/or
inducing vascular leakiness.

A unique population of macrophages,
termed metastasis-associated macrophages
(MAMs) have been found in metastatic lungs
that are distinct from resident lung macrophag-
es, and interact with CTCs at lung vessels during
extravasation (Qian et al. 2009). MAMs are de-
rived from circulating Ly6C+ monocytes whose
accumulation is increased during metastatic
growth (Qian et al. 2011; Kitamura et al. 2018).
Tumor cells interact withMAMs at the site of the
vessel, which promotes tumor cell extravasation
and loss of MAMs significantly reduced the
number of extravasated tumor cells (Qian et al.
2009). MAMs are activated by CCL2 to produce
CCL3, and this enhances the interaction be-
tween VCAM-1 on tumor cells and α4 integrin
on MAMs resulting in a reciprocal augmented
retention and extravasation of macrophages and
CTCs (Kitamura et al. 2018). Other “metastasis-
associated macrophage” populations have been
reported in the liver and are required for colo-
rectal cancer metastasis (Zhao et al. 2013) and
PDAC metastasis (Nielsen et al. 2016).

Platelets can also mediate tumor cell arrest
and adhesion to the vascular endothelium, as
well as transmigration of CTCs. In vitro platelets
were shown to enhance colon adenocarcinoma
cell tethering to the endothelium (Burdick and
Konstantopoulos 2004). Pretreatment of mouse
prostate and mammary tumor cells with plate-
lets increased their invasiveness and transendo-
thelial migration in vitro and increased vascular
permeability andmetastatic burden in vivo. Dis-
ruption of platelet–tumor cell interactions ablat-
ed this (Ward et al. 2018). Platelet-derived
adenine nucleotides can also increase perme-
ability of the endothelium thus allowing for en-
hanced transendothelial migration of tumor
cells (Schumacher et al. 2013). This indicates
that platelets enhance CTC transendothelial mi-
gration via direct effects on the tumor cells
themselves, but also by modifying the endothe-
lial barrier. In P-selectin deficient mice, platelets
failed to adhere to tumor cells resulting in fewer
platelet–tumor cell complexes in the lungs and

fewer metastases (Kim et al. 1998; Becker et al.
2017).

Platelets, neutrophils, andmonocytes can all
regulate and recruit each other. Hence, it is likely
that reciprocal signaling occurs between these
cells during metastasis that can enhance or pro-
mote CTC adhesion and transmigration into the
metastatic site. In support of this, in a murine
model of colon cancer, platelet–tumor aggre-
gateswereobserved in the vicinityofneutrophils.
Platelet–tumor cell aggregates were found in the
lungs 1min after intravenous injectionof tumors
cells, whereas neutrophils progressively in-
creased in number over the next 30 min indicat-
ing that the platelet–tumor aggregates recruit
neutrophils. Indeed, plateletswere shown topro-
duce CXCL2, CXCL5, and CXCL7 on contact
with tumor cells and blockade of the CXCL5/7
receptor, CXCR2, or depletion of platelets or
neutrophils significantly reduced metastatic
seeding and progression (Labelle et al. 2014).
In another study, human microvascular endo-
thelial cells were activated by colorectal cancer
cells only when in the presence of platelets
and neutrophils, and this activation resulted
in up-regulation of CCL5 and an increase in
monocyte migration and adherence to the
endothelial cells (Läubli et al. 2009). In a mouse
model of colorectal cancer, CCL5 also recruited
monocytes to themetastatic lung and themajor-
ity of CCL5 expression in metastatic lungs was
from CD31+ endothelial cells suggesting that in
the presence of tumor cells platelets and neutro-
phils initiate activation of endothelium and this
in turn recruits monocytes. Blockade of this
monocyte recruitment significantly reduced
metastasis (Läubli et al. 2009). (See Figure 3
for a summary of the roles of myeloid cells in
tumor cell arrest and extravasation at metastatic
sites.)

SURVIVAL AND METASTATIC GROWTH

For successful metastatic growth, extravasated
tumor cells must survive in the foreignmicroen-
vironment of the distant tissue, one that usually
differs greatly from the primary site. It has been
proposed that cancers overcome this problemby
establishment of a “premetastatic niche,”where-
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by primary tumors release systemic signals that
induce changes at the secondary site to make
these distant microenvironments favorable for
metastatic cell seeding (Psaila and Lyden
2009). For example, by the LOX-mediated
up-regulation of fibronectin from resident fibro-
blasts and recruitment of myeloid cells (Erler
et al. 2009), or through recruitment of VEGFR1+

hematopoietic progenitor cells to metastatic
sites (Kaplan et al. 2005).

A study in the KEP mammary tumor model
showing the importance of neutrophils during
early steps of the metastatic cascade, and the
fact that these neutrophils produced Bv8, a pro-
tein involved in tumor cell migration, led the
investigators to speculate that neutrophils may
be involved in establishing the premetastatic

niche (Coffelt et al. 2015). Indeed, primary tu-
mor-derived exosomal RNAs induced epithelial
cell-mediated chemokine secretion in the pre-
metastatic lung that resulted in recruitment of
neutrophils in models of LLC and melanoma
(Liu et al. 2016). In the PyMT mammary tumor
model, neutrophils were found to accumulate in
the lungs before infiltration by tumor cells and
it was proposed that neutrophil-derived leuko-
trienes altered the cancer cells to favor metas-
tasis-initiating cells (Wculek and Malanchi
2015). Neutrophils have also been shown to
accumulate in premetastatic livers of mice
bearing colorectal tumors (Wang et al. 2017)
and neutrophil accumulation in the premeta-
static liver has been shown to be required for
pancreatic cancer metastasis (Steele et al. 2016).

Metastatic site

Metastatic

site

Myeloid cell

recruitment

Extravasion
VCAM1

CCL2 VEGFA
CCL3

CXCL2

CXCL5

CXCL7

CCL5

ICAM-1

MMP-9

NETs

α4

β2

Adhesion

Extravasion
Extravasion

Extravasion

MAM
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Platelet
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tumor cell
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nucleotides

Figure 3.Myeloid cells promote tumor cell extravasation into metastatic sites. Tumor cell attachment to vessels
induces expression of vascular cell adhesion protein-1 (VCAM-1) and vascular adhesion protein (VAP) on the
endothelium and secretion of CCL2 from the tumor cells, which then recruits classical monocytes (IMo) and
neutrophils. IMo produce vascular endothelial growth factor (VEGF), which stimulates vascular leakiness and
enhances tumor cell extravasation. Tumor cell/platelet aggregates release neutrophil and monocyte recruit-
ment factors such as CXCL2, CXCL5, CXCL7, and CCL5, which direct these myeloid cells to sites of tumor
cell extravasation where they promote tumor cell adhesion to vessel walls and extravasation via production of
proteases such as MMP-9. Neutrophils also help circulating tumor cells to adhere to vessels by tethering them
via β2/ICAM-1 binding and NETs trap circulating tumor cells at vessel walls. Platelets also trap circulating
tumor cells at vessels and enhance their extravasation via release of adenine nucleotides, which enhance
permeability of the endothelium. IMo extravasate and differentiate into metastasis-associated macrophages
(MAMs). MAM α4 integrin-binding to VCAM-1 on tumor cells promotes extravasation of tumor cells into
metastatic sites.
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SDF-1/CXCR4-mediated neutrophil recruit-
ment to the liver was shown to be essential
for TIMP-1-induced premetastatic niche for-
mation in a model of colon cancer (Seubert
et al. 2015).

Monocytes and macrophages are also re-
cruited to premetastatic sites. Ly6C+ mono-
cytes increased in the premetastatic lungs in a
melanoma model (van Deventer et al. 2013)
and monocyte/macrophage recruitment to pre-
metastatic lungs was shown to be essential for
circulating melanoma cell homing and survival
in a process involving coagulation (Gil-Bernabé
et al. 2012). It has been reported that bone
marrow-derived cells form clusters in the pre-
metastatic lung and these clusters then enhance
the adherence and promote the growth of tu-
mor cells (Kaplan et al. 2005). An increase in
macrophages has also been observed in pre-
metastatic livers (Wang et al. 2017) and exo-
somes derived from human pancreatic cancer
cell lines expressing macrophage migration in-
hibitory factor (MIF) were shown to influence
resident Kupffer cells to produce TGFβ that
then induced up-regulation of fibronectin pro-
duction leading to recruitment of bone mar-
row-derived macrophages (Costa-Silva et al.
2015).

TAMs can even influence the premetastatic
site fromtheprimary tumor. Forexample, TAMs
can produce systemic factors that then affect
neutrophil recruitment to sites of metastasis. In
the KEP mammary tumor model it was found
that CCL2 induces IL1β expression by TAMs
that contributes to mammary tumor-induced
immunosuppression at distant sites. TAM-de-
rived IL1β led to the systemic induction of
IL-17 and IL-12 by γδ T cells, G-CSF mediated
expansion of immunosuppressive neutrophils in
the lung and the suppression of CD8+ T cells
(Coffelt et al. 2015; Kersten et al. 2017). Further-
more, TAM-derived CXCL1 has been shown to
induce accumulation of neutrophils at pre-met-
astatic sites in a colorectal cancer model (Wang
et al. 2017).

Although we know that myeloid cells are
important for the formation of metastasis in
preclinical studies, little is known about the
mechanisms by which they support metastatic

cell growth. Nonetheless, some recent studies
have shed light on how myeloid cells enhance
growth of metastases. MAMs are important for
metastatic growth as depletion of macrophages
resulted in a reduced metastatic load (Qian et al.
2009). One possible mechanism for this is
MAM-induced enhanced survival via induction
of Akt activation that protects cancer cells from
proapoptotic cytokines. This activation was re-
ported to be triggered by VCAM-1 tethering of
MAMs to circulating mammary tumor cells via
α4 integrins and subsequent VCAM-1 cluster-
ing on the cell surface (Chen et al. 2011; Kita-
mura et al. 2018). FLT1 (VEGFR1) signaling in
MAMs has also been shown to support meta-
static tumor cell survival through the induction
of CSF1 after metastatic seeding (Qian et al.
2015). Similarly, in murine models of colorectal
and pancreatic cancer metastasis neutrophil
depletion significantly reducedmicrovessel den-
sity and vascular branching and this was associ-
ated with reduced metastatic colony growth
(Gordon-Weeks et al. 2017). Gr-1+CD11b+ cells
have also been shown to support metastatic tu-
mor cell growth via PDGF-BB–mediated angio-
genesis in the lung of mammary tumor bearing
mice (Hsu et al. 2019), and the production of
CCL9, which supported tumor cell survival in
the lungs of mammary and melanoma tumor
models (Yan et al. 2015). Unfortunately, the
monocytic or granulocytic identity of these cells
was not defined.

One very important step formetastatic tumor
cell survival is the return to an epithelial pheno-
type via mesenchymal–epithelial transition
(MET) to regain the ability of proliferation and
differentiation. Myeloid cell conditioned media
can induce up-regulation of the epithelial cell
markers E-cadherin and inhibition of themesen-
chymal marker vimentin on tumor cells in vitro.
In vivo depletion of myeloid cells was associated
with a switch from vimentinlow/E-cadherin+ mi-
croscopic lesions to vimentinhigh/E-cadherin le-
sions indicating a failure of MET. This was also
associated with a significant reduction in meta-
static tumor growth (Gao et al. 2012). Macro-
phages in metastatic lungs have been implicated
in inducing MET in tumor cells in a mammary
tumor model via IL-35 activated JAK-STAT6
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signaling, althoughmuch of this work is yet to be
confirmed in vivo (Lee et al. 2018).

Finally, tumor cells at metastatic sites must
also avoid immune-mediated destruction. In a
model of PDAC, neutrophil depletion resulted
in reduced metastasis and a marked increase of
T lymphocytes. CXCR2 inhibition showed a
similar result and also substantially enhanced
sensitivity to anti-PD-1 immunotherapy (Steele
et al. 2016) suggesting that neutrophils were sup-
pressing T-cell recruitment to the metastatic
site. Metastasis-associated neutrophils also sup-
press proliferation of cytotoxic CD8+ T cells
(Coffelt et al. 2015), and in a model of cecal
cancer, neutrophils isolated from the premeta-
static liver were able to inhibit proliferation of
and production of IFNγ by CD8+ T cells in vitro
(Wang et al. 2017). MAM precursor cells
(MAMPC), a transient stage between recruited
monocytes and fully mature MAMS, suppress
T-cell cytotoxicity in models of mammary me-
tastasis to the lung. Mechanistically, this is via a
ROS-and CTLA4- mediated mechanism, in
MAMPC and MAMs, respectively, (Kitamura
et al. 2018). Gr-1+CD11b+ myeloid cells create
an immunosuppressive environment at meta-
static sites via the secretion of suppressive
factors such as b-FGF, IGF-1, IL-10, IL-4,
MMP-9, and S100A8/A9; but again the identity
of these cells has not been elucidated (Hiratsuka
et al. 2006;Yan et al. 2010). Inbreast cancermod-
els, it was reported that increased frequency of
Gr-1+CD115+CCR2highCX3CR1low cells (likely
IMos) in the lungs of tumor-bearing mice was
associated with an increase of CD25+FoxP3+

Tregs and a decrease in NK cell numbers. Fur-
thermore, it was shown that NK cell activity was
suppressed in the presence of thesemyeloid cells
and Tregs (Eisenblaetter et al. 2017).

Recently, an immunosuppressive metasta-
ses-associated dendritic cell (DC) subpopula-
tion has been reported. In mice bearing PDAC
tumors, an enrichment of DCs was seen border-
ing micrometastases and these expressed vari-
ous immunosuppressive molecules. These DCs
were shown to expand Treg numbers around the
micrometastases and suppress CD8+ T cells via
the PD-L2 pathway (Kenkel et al. 2017). It has
also been proposed that tumor-derived exo-

somes can influence DCs toward a protumor
phenotype (Shen et al. 2017). A recent study
suggest that eosinophils may also suppress anti-
tumor immune responses in the metastatic
lung, and hence promote metastatic growth.
Inhibition of IL-5 (a key eosinophil factor) re-
duced experimental lung metastasis of LLC,
melanoma, and adenocarcinoma and this was
associated with a reduction in eosinophil num-
ber in the lung. In this study, eosinophil-derived
CCL22 recruited Tregs to the lung, which then
suppressed NK cell activation and altered
macrophage phenotypes toward protumor
(Zaynagetdinov et al. 2015). (See Figure 4 for a
summary of the roles of myeloid cells in tumor
survival and growth at metastatic sites.)

Not all disseminated tumor cells grow into
overt metastases immediately after colonization
of the metastatic site. Some will become dor-
mant and remain as either circulating tumor
cells, individual disseminated cells, or microme-
tastases, where the cancer cells are present, but
not proliferating (Aguirre-Ghiso 2007). Dor-
mant cells can be present for months or even
decades before they awaken. The mechanisms
behind the awakening and growth of dormant
cells are still largely unknown. However, inflam-
mation has been implicated in this process (De
Cock et al. 2016). In a model of melanoma, neu-
trophil-derived MMP-9 was found to be essen-
tial for triggering angiogenesis during the
growth of dormant micrometastases (Luo et al.
2016). In a recent study, sustained inflammation
was found to increase neutrophil infiltration and
NET formation at metastatic sites in mouse
models of breast and prostate cancer. These neu-
trophil-derived NETs concentrated netrophil
elastase (NE) andMMP-9 at laminin sites, lead-
ing to remodeling of the laminin, which revealed
a epitope that triggered awakening and pro-
liferation of dormant cancer cells via integrin
activation and FAK/ERK/MLCK/YAP signaling
(Albrengues et al. 2018).

CONCLUSIONS

Significant advances have been made in treating
cancer but sadly metastasis is still essentially
untreatable. The studies described above, in a
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number of different animal models, have now
established that myeloid cells are critical in met-
astatic spread of tumors. It is clear that myeloid
cells, in particular TAMs, play a key role in tu-
mor invasion and egress into the circulation
from the primary tumor site. However, the
mechanisms by which myeloid cells support
and promote metastasis in the circulation and
at the metastatic site remain largely unknown.
Preclinical data suggest that in some cases, but

not all, myeloid cells cluster with tumor cells in
the circulation where they protect tumor cells
from destruction by shear forces and immune-
mediated attacks, as well as provide survival
signals. Furthermore, it appears that platelets,
neutrophils, and monocytes work together to
assist with tumor cell arrest and extravasation
into metastatic sites. Myeloid cells are also re-
cruited early to sites of metastasis, often before
the arrival of tumor cells, in which they can
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Figure 4. Myeloid cells promote tumor cell survival and growth at metastatic sites. Tumor-derived exosomes
recruit neutrophils tometastatic sites by inducing CXCL2 and SDF-1 secretion by epithelial cells. Once recruited,
neutrophils secrete Bv8 and leukotrienes, which enhance tumor cell migration into the tissue. Neutrophils also
stimulate new blood vessel formation, which promotes growth of metastatic tumor cells by giving them access to
nutrients and oxygen. Neutrophils, metastasis-associated DCs, eosinophils, and MAMs suppress antitumor NK
and cytotoxic T-cell responses. Dendritic cells (DCs) and eosinophils also expand Treg populations leading to
further suppression of antitumor immune responses. Monocytes (IMo) and BMDMs are recruited to sites of
metastasis via resident macrophage-induced up-regulation of fibronectin on endothelial cells. IMos then differ-
entiate intoMAMs, which support tumor cell survival by inducing AKTexpression in the tumor cells on binding
of VCAM-1 to α4 integrins. MAMs also induce transition from a mesenchymal state to an epithelial one in the
tumor cells thus allowing them to proliferate. Lastly TAM-derived IL-1β (released from the primary tumor into
the circulation) instigates IL-17 and IL-12 production in circulating γδ T cells resulting in G-CSF-mediated
neutrophil recruitment to metastatic sites and suppression of antitumor immune responses.
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create a permissive niche for metastatic cells to
grow. Some of the currently reported functions
of myeloid cells at metastatic sites include
induction of fibrin deposition, suppression of
immune cells, induction of MET, protection
against apoptosis, induction of blood vessel
development and suppression of antitumor im-
mune responses. However, many of these func-
tions have yet to be established in vivo and there
is still much to be discovered about the mecha-
nisms by these cells promote and/or enhance
metastatic growth.

On a cautionary note, many studies, par-
ticularly at the metastatic site, use selected
homogenous cell lines that do not resemble
truly autochthonous tumor metastasis. These
tumors will contain heterogeneous populations
of cells with different ranges of phenotype
from dormant to aggressively growing cells.
It is important, therefore to validate results
using cell lines in spontaneously evolving tumor
models (Qian et al. 2009,2015; Kitamura et al.
2015, 2018).

Because of technical reasons, most of the
studies described above have focused on a par-
ticular cell type, or a group of cell types defined
by a single marker such as the generic Gr-1.
These studies have been informative but they
cannot dissect the complexity of different sub-
populations nor their dynamic behavior in re-
sponse to tumor cells or damage induced signals.
This is particularly apparent with macrophages
in which both pro- and antitumoral types exist-
ing within the tumor (Zhu et al. 2017). Indeed,
recent evidence shows the need to target TAM
protumoral roles while preserving their antitu-
moral activities to induce an effective antitumor
immune response through checkpoint inhibi-
tion (Hoves et al. 2018). Advances in single-
cell sequencing, more sophisticated multichan-
nel fluorescence-activated cell sorting (FACS) or
similar methods using mass cytometry such as
CyTOF, together with high-resolutionmultiplex
immunohistochemical/fluorescent imaging will
help define cancer-associated immune cell het-
erogeneity, their evolution as tumors become
metastatic, and the differences between metas-
tases and primary tumors. The response of these
immune populations in their “niches” to im-

munotherapy or conventional therapies defined
by these methods may very well lead to identi-
fication of unique subpopulations that could be
specifically targeted therapeutically (Cassetta
and Pollard 2018).

Experimentally, and ultimately clinically,
real-time imaging will be enormously beneficial
to understand these changing microenviron-
ments, particularly with refinements in MRI,
PET, and use of smart-enzyme activated probes
or probes for specific biomarkers (Condeelis and
Weissleder 2010). In mouse models, advanced
multiphoton microscopy will expand the ability
to visualizemany different cell types in real-time
and the use of indwelling windows (Entenberg
et al. 2018) will allow their visualization over
tumor progression and in response to therapy.
In this case, seeing-is-believing and the true in-
teraction between cells can be determined. For
example, it will be able us to attribute whether
the education ofmacrophages to promote tumor
cell invasion by IL-4 produced from CD4+ T
cells results from direct interaction or through
long-term signals (DeNardo et al. 2009). Simi-
larly, these methods will show whether cells in
the circulation are truly chaperoned by platelets
or neutrophils or that these observations are the
result of isolation artifacts. Indeed, immune cells
never act alone and there is dynamic interplay
between the innate and acquired immune sys-
tems, which is only recently being appreciated
and yet to be visualized.

Several mechanisms have been described
whereby macrophages and neutrophil promote
steps in extravasation through different mecha-
nisms. In evolving tumors, all these mechanism
might be in play with some dominating whereas
others might be minor unless the dominant one
is blocked. Similar problems arise for over-
coming immunosuppression, for example, we
showed that recruited IMos and MAMs sup-
press antitumor T-cell killing using different
mechanisms dependent on stage of differentia-
tion (Kitamura et al. 2018). And this is only one
cell type! Furthermore, most systems use redun-
dancy and resilience to prosper. Tumor cells are
masters at these activities, mutating to exploit
compensatory or alternative mechanisms to
thrive.
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Immunotherapy is a beacon of hope for
many patients with startlingly beneficial results
in some cases. These methods do bring the
promise of treating established metastases
from which most patients die, but current data
suggests that multipronged approaches will
be required to enhance immunotherapies. We
would contend that to be successful a greater
understanding of the complexity of myeloid-
suppression of cytotoxic cells in the metastatic
environment will be needed in mouse and non-
human primates and then translation of these
data into human clinical trials.
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