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Prostate cancer (PC) is the second most often diagnosed malignancy in men and one of
the major causes of cancer death worldwide. Despite genetic predispositions,
environmental factors, including a high-fat diet, obesity, a sedentary lifestyle, infections
of the prostate, and exposure to chemicals or ionizing radiation, play a crucial role in PC
development. Moreover, due to a lack of, or insufficient T-cell infiltration and its
immunosuppressive microenvironment, PC is frequently classified as a “cold” tumor.
This is related to the absence of tumor-associated antigens, the lack of T-cell activation
and their homing into the tumor bed, and the presence of immunological cells with
regulatory functions, including myeloid-derived suppressor cells (MDSCs), regulatory T
cells (Treg), and tumor-associated macrophages (TAMs). All of them, by a variety of
means, hamper anti-tumor immune response in the tumor microenvironment (TME),
stimulating tumor growth and the formation of metastases. Therefore, they emerge as
potential anti-cancer therapy targets. This article is focused on the function and role of
MDSCs in the initiation and progression of PC. Clinical trials directly targeting this cell
population or affecting its biological functions, thus limiting its pro-tumorigenic activity, are
also presented.

Keywords: prostate cancer, myeloid-derived suppressor cells, immunosuppression, immunotherapy, anti-tumor
immune response
PROSTATE CANCER—EPIDEMIOLOGY

Prostate cancer (PC) is the most common, after lung cancer, malignancy in men—in 2020, more
than 1.4 million new cases of PC were diagnosed worldwide (1, 2). Advanced age, race, and
ethnicities such as African descent and family history are well-established risk factors of PC (3–6).
Additionally, a higher incidence of PC has been associated with a diet rich in saturated animal fat
and red meat, low intake of fruits/vegetables, obesity, hyperglycemia, lack of physical activity,
prostate inflammation, as well as exposure to chemicals or ionizing radiation (6–8). The most
common genetic predispositions for PC development are related to aberrations of the PTEN tumor
suppressor gene. Inactivation of PTEN by deletion or mutations is identified in ∼20% of primary PC
and as many as 50% of advanced castration-resistant tumors (9). The role of the immune system
and prostatitis in PC development was also confirmed, indicating that inflammatory mediators may
promote prostatic carcinogenesis via inhibition of apoptosis, promotion of cell proliferation, and
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even loss of the tumor suppressor genes (10). Importantly, not
only the local, prostate inflammation, but also systemic reaction
associated with chronic inflammatory diseases, including asthma
and allergies, are associated with the higher risk of PC (11).

Most of the patients develop a low-risk neoplasm (12);
however, approximately 15% of men with localized PC present
with high-risk tumors, which will progress, metastasize, and
finally result in death (13). In men with advanced metastatic
prostate cancer (mPC), hormonal–androgen deprivation therapy
is a method of choice with a good response rate. In some patients,
however, the mPC will evolve into metastatic castration-resistant
prostate cancer (mCRPC) (14). While a radical prostatectomy
may be beneficial for patients with high-risk PC (15), only
multimodal treatment, including surgery, radiation, and
systemic therapy, gives the best chance for a long-term
progression-free outcome (13). Nowadays, immunotherapy
options, including anti-PC vaccines, e.g., Sipuleucel-T
(Provenge), and the use of immune checkpoint inhibitors
(anti-CTLA-4 and anti-PD-1/PD-L1 monoclonal antibodies or
antagonists) further improve the effectiveness of the PC
treatment (16).

PC is often considered a “cold” tumor, meaning that due to
the reduced or complete lack of T-cell infiltration, e.g., because of
the missing tumor-associated antigens, lack of T-cell activation
and the i r homing into the tumor bed , and loca l
immunosuppression, it does not trigger a strong immune
response. This term emphasizes the role of the immune system
in PC progression (16, 17). Studies indicate that regulatory T
cells (Tregs) and other cell populations, namely, myeloid-
derived suppressor cells (MDSCs; attracted to TME by low-
grade chronic inflammatory signals) and tumor-associated
macrophages (TAMs) (17), are mainly responsible for the
immunosuppression observed in PC (18). Among them,
MDSCs emerge as potential therapeutic targets (19).
MYELOID-DERIVED SUPPRESSOR CELLS
—THEIR ORIGIN AND ACTIVITY

The term “myeloid-derived suppressor cells” has been used in
the literature since 2007; however, the history of these cells dates
back to the early 20th century, when it was shown that cancer is
often accompanied by extra-medullary hematopoiesis (EMH)
and neutrophilia (20, 21). These immature leukocytes were
further characterized by their suppressive activity and called
myeloid suppressor cells (MSC) (22). This term was
further changed to MDSCs (22), and although current, the
progress in resolution techniques, including a high-
dimensional single-cell analysis, has raised concerns regarding
the development and activation state of MDSCs (23); it is still
accepted that MDSCs represent a heterogeneous population of
immature myeloid cells, promptly expanding during
pathological conditions, including infection, inflammation, and
cancer (24). With respect to their origin, MDSCs have been
divided into two main subsets—monocytic (Mo-MDSCs) and
granulocytic or polymorphonuclear (PMN-MDSCs). Recently, a
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third population of the so-called early-stage MDSCs (e-MDSCs)
was also described (25). In cancer, the accumulation of MDCSs is
inseparably related to the production of pro-inflammatory
mediators by the tumor microenvironment (TME), which
activate and drive their suppressive activity (26). The
immunosuppressive mechanisms developed by MDSCs are
diverse and may include arginase-1 (ARG1) and inducible
nitric oxide synthase (iNOS) activity; secretion of TGFb, IL-10,
and cyclooxygenase-2 (COX-2); and depletion of tryptophan by
indoleamine 2,3-dioxygenase (IDO) (27). Although the
immunosuppressive nature and the induction of antigen-
specific T-cell tolerance is common for all the MDSCs subsets
(28), they differ in the mechanism of action. In this context, Mo-
MDSCs suppress T-cell response in both an antigen-specific and
an unspecific manner, utilizing the mechanisms associated with
iNOS activity and production of nitric oxide (NO) (29, 30). In
contrast, PMN-MDSCs suppress immune response primarily in
an antigen-specific manner, using the STAT3-mediated
mechanisms of NADPH-oxidase and ARG1 activities (31).
PMN-MDSCs store ARG1 in the granules and release it to the
extracellular milieu, leading to the local depletion of L-arginine,
affecting T-cell functionality. Both MDSCs subsets release ROS,
which are essential for their immunosuppressive activity, and for
retaining their undifferentiated status. Numerous studies
confirmed the interplay between chronic inflammatory factors
and expansion of MDSCs (24, 32). The transcription factor
STAT3 plays a central role in the generation and functioning
of MDSCs (33–35). Various cytokines, including IL-6, IL-1b, IL-
10, GM-CSF, and VEGF, secreted mainly in the TME by tumor
cells (26), are involved in the activation of pSTAT3. Conversely,
chronic inflammation is associated with the initiation and
progression of the tumor (10). In this context, chemokines and
their receptors, e.g., CCL2/CCL12-CCR2, CXCL5/2/1-CXCR2,
CCL3/4/5-CCR5, CCL15-CCR1, and CXCL8-CXCR1/2, are
relevant for a rapid progression of PC and the recruitment of
MDSCs (36, 37). PC patients were shown to have higher MDSCs
infiltration than those with a benign prostate hyperplasia (38).
Therefore, the role of inflammation in the development and
expansion of MDSCs, and hence in PC progression,
is unquestionable.
EXPANSION OF MDSCs IN PC

Studies with the use of PTEN KO murine PC model documented
that lack of this gene was associated with upregulated
inflammatory response (enhanced production of CSF-1 and IL-
1b), and an extensive MDSCs tumor infiltration (39). Another
mechanism involved in the recruitment of MDSCs in PC could
be linked to the Hippo–YAP signaling. This pathway, relevant
for the regulation of cell proliferation and apoptosis, is often
deregulated in human solid tumors and associated with
enhanced cancer cell proliferation (40). In PC, the
hyperactivated Hippo–YAP signaling causes the upregulation
of CXCL5 in cancer cells, which promotes the MDSCs
recruitment via the CXCL5–CXCR2 axis (41, 42). The
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recruitment of MDSCs to the tumor mass may also benefit from
the tumor-related hypoxia. This is supported by the observation
that the hypoxia-targeted therapy may lead to a long-lasting
decrease in the accumulation of MDSCs in the tumor (43). A
significant role in the recruitment of MDSCs to PC has also been
assigned to chromodomain helicase DNA-binding protein 1
(CHD1), an essential tumor suppressor (44). Its depletion was
found in 29.7% of cases in African Americans, and 11.0% of
European PC patients (45). It has been shown that CHD1
deficiency may recruit MDSCs via an IL-6-dependent
mechanism (46). Interestingly, a positive correlation between
CHD1 and CD15 expression (a surface marker of PMN-MDSCs)
in PC was also documented (46).

A growing list of evidence suggests that miRNA carried by
tumor-derived extracellular vesicles (TEVs) may also play a role
in the generation of MDSCs in many types of cancer (47–49).
Although there are no data confirming such a role of EV miRNA
in PC, some miRNAs already shown as relevant in the induction
of MDSCs in other cancers have also been considered for
PC (50).

The crosstalk between MDSCs and the TME in PC is
schematically presented in Figure 1.
ROLE OF MDSCs IN PC DEVELOPMENT
AND PROGRESSION

In various cancers, the level of tumor-infiltrating MDSCs has
been proposed as a prognostic marker (51, 52). In PC, however,
such data are scarce and refer mainly to the PTEN mouse model
(39). In contrast, there are observations that the MDSCs’ blood
level could be a useful parameter for monitoring the disease
burden in PC, allowing researchers to distinguish between
metastatic cancer, localized PC, and cancer-free men (53).
Additionally, circulating MDSCs correlate well with PSA level
and metastasis (33, 54). The pivotal role of MDSCs in the
Frontiers in Oncology | www.frontiersin.org 3
development and progression of PC was further confirmed in
randomized clinical studies showing that the increased level of
MDSCs after the treatment is associated with the overall worse
patients’ survival (55, 56). Moreover, in a mouse model of PC,
the lung infiltration by MDSCs was associated with the
formation of lung metastases (57). However, what type of
MDSCs subpopulation is pivotal and prevalent in PC remains
controversial, mainly due to the lack of reproducibility and
standardization of such research. The work showing MDSCs as
a negative prognostic marker in mCRPC indicates only blood
Mo-MDSCs as relevant (58). Furthermore, in patients with
mCRPC, a positive correlation between Mo-MDSCs and Treg
cells has been described (58), suggesting a mutual positive
feedback loop (59). Generally, most of the studies in PC have
focused on Mo-MDSCs rather than on PMN-MDSCs (55, 58,
60). Even early reports on circulating immunosuppressive cells in
patients with PC were concentrated on CD14+HLA-DRlow/-

monocytes (54). This may result from the fact that Mo-MDSCs
are more frequent in peripheral blood than PMN-MDSCs (61,
62). Another reason could be the fact that, in many studies, a
cryopreserved material was used (63), affecting the recovery of
PMN-MDSCs (64). Recently, Wen et al. documented infiltration
of the primary prostate tumor by cells referred to as PMN-
MDSCs (65); however, the markers used for their identification
did not allow researchers to distinguish them from the
population of tumor-associated neutrophils (TANs) (25). In
this context, the phenotype definition of circulating blood
PMN-MDSCs seems to be more reliable, but still, this should
be further confirmed by functional tests that document the
immunosuppressive nature of these cells (25).

Studies in PC showed that Mo-MDSCs and PMN-MDSCs are
transcriptomically different (61), pointing out the ARG1 as
typical for PMN-MDSCs (66) and iNOS or IDO for Mo-
MDSCs (58, 60). Moreover, PMN-MDSCs can exert their
immunosuppressive action also by the release of neutrophil
elastase (NE), which was shown to stimulate the proliferation,
FIGURE 1 | Crosstalk between MDSCs and tumor microenvironment in prostate cancer (created with BioRender.com).
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migration, and invasion of cancer cells both in vitro and in vivo
in a mouse model of PC (67, 68).

It is proposed that, in PC, the tumor-infiltrating PMN-
MDSCs express upregulated IL-1b and IL-23a (66). Although
the IL-1b-restrained antitumor immunity was described before
for other tumors (69), the secretion of IL-23 by PMN-MDSCs so
far has been documented only for PC. In this context, it was
shown that IL-23 preserves the androgen receptor’s (AR)
functionality, enabling survival and proliferation of PC in the
androgen-deprived environment. The same mechanism is
postulated as a driving force in the development of castration
resistance (40). However, castration resistance may also be
related to the secretion of IL-8 and subsequent tumor
infiltration by PMN-MDSCs (66).
TARGETING MDSCs IN PC

Due to a lack of, or insufficient T-cell infiltration and
immunosuppressive microenvironment in PC, there is a need
to design new therapies that could “turn up the heat on the cold
immune microenvironment” (17), to enhance the local anti-
tumor immune response (16). Radiation per se has been found to
activate the immune response (70); however, studies using the
animal models of PC revealed that radiotherapy induces a rapid
increase in the tumor-infiltrating MDSCs (71). Our previous
studies showed that surgery or hormonal therapy alone did not
reduce the level of circulating Mo-MDSCs in PC patients (62). In
this context, in addition to the standard treatment,
immunotherapy (72) or dietary strategies (73) are
implemented, targeting cells with immunosuppressive
potential, including MDSCs. One of the major challenges in
targeting human MDSCs is their heterogeneous nature, e.g.,
differences in phenotype and mechanisms of suppression. A
type of “universal” approach, covering the above aspects, may
be the use of gemtuzumab ozogamicin, a calicheamicin-
conjugated anti-CD33 humanized monoclonal antibody,
already approved to treat a subset of patients with acute
myeloid leukemia, which has also been highly effective against
MDSCs in many solid tumors, including PC in vitro (61).

Clinically, MDSCs may be targeted by different approaches,
including, e.g., inhibition of MDSCs expansion, MDSCs
depletion, induction of their differentiation, functional
inhibition, or multifactorial treatment. The clinical trials
concerning all these potentially therapeutic strategies in PC
have been described below Table 1.

Inhibition of MDSCs Expansion
Currently, there are three registered clinical trials, aiming at the
inhibition of MDSCs expansion in PC. As mentioned,
chemokines and their receptors are pivotal for the recruitment
of MDSCs and the rapid progression of PC (36, 37); therefore,
targeting the chemokine receptors or the use of chemokine
inhibitors seems to be a promising form of immunotherapy in
PC (74). One of the ongoing clinical trials (NCT03177187) seems
to verify this hypothesis by using the CXCR2 antagonist
Frontiers in Oncology | www.frontiersin.org 4
AZD5069 in combination with enzalutamide—the androgen
receptor’s antagonist in patients with mCRPC (75). An
important additional factor associated with MDSCs expansion
is VEGF (26); thus, administration of cabozantinib (a small-
molecule inhibitor of tyrosine kinase receptor, including the
VEFG pathway) followed by radical prostatectomy vs.
prostatectomy alone (NCT03964337) is being tested in men
with high-risk PC. Moreover, cabozantinib has already shown
inhibitory effects on MDSCs (76). Another trial concerning
dietary intervention, NCT03654638, is focused on soy bread,
containing isoflavones, which were shown to reduce the level of
pro-inflammatory cytokines and MDSCs (77).

MDSCs Depletion
MDSCs isolated from both mice and humans display elevated
levels of STAT3, while inhibition of its pathway resulted in
enhanced antitumor activity (28, 78). Circulating Mo-MDSCs
maintain high levels of STAT3 until they reach the tumor, where
hypoxia induces its rapid downregulation, causing differentiation
of MDSCs to TAMs (79). STAT3 regulates the expression of the
main factors of MDSCs activity, e.g., IDO, ARG1, IL-6, IL-10, IL-
1b, and VEGF, among others, suggesting this pathway as an
attractive therapeutic option (26). In this context, a fungal-
derived pSTAT3 inhibitor, galiellalactone, was recently assessed
for its ability to prevent PC-induced generation of MDSCs in
vitro (53). In keeping with this, the clinical trial NCT03709550,
aiming at testing decitabine (5-aza-2′-deoxycytidine), a
hypomethylating agent with the ability to selectively deplete
Mo-MDSCs, in mCRPC patients was implemented (80).

Inhibition of MDSCs Differentiation
Another therapeutic option involves a controlled differentiation
of MDSCs towards the M1 anti-tumor macrophages with the use
of curcumin (81). This approach will be considered in the
recruiting clinical trial (NCT03769766). A similar approach
will be used in the phase I clinical study in patients with
biochemically recurrent PC, testing the effectiveness of the
white button mushroom (WBM) extract containing b-glucan
(NCT04519879). b-glucans, the most abundant carbohydrates
found in yeast and mushrooms (82), may induce MDSCs
differentiation to antigen-presenting cells, eliminating their
suppressive abilities (83). The rationale for this concept was
additionally grounded on the preclinical data showing that
dietary WBM powder reduced not only the frequency of
circulating MDSCs but also the level of prostate-specific
antigen (PSA) (84).

Inhibition of MDSCs Induced
Suppressive Circuits
There is also a possibility to inhibit some of the MDSCs-induced
suppressive mechanisms operating in PC. One of such
approaches is represented by a combination of abiraterone, a
novel hormone therapy available for CRPC (85), and
tildrakizumab (anti-IL-23 mAb) (NCT04458311), altering the
production of IL-23 and therefore having a potential to target the
MDSCs function specific for PC (41). In another clinical trial, a
July 2022 | Volume 12 | Article 862416
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TABLE 1 | Clinical trials targeting MDSCs in PC patients.
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combination of ipatasertib (inhibitor of all three isoforms of
protein kinase AKT, which blocks the PI3K/AKT signaling
pathway—a key driver of cancer cell growth and proliferation
in PC), atezolizumab (anti-PD-L1 monoclonal antibodies)—a
checkpoint inhibitor on MDSCs (86), and docetaxel
(NCT03673787) will be tested in patients with mCRPC.
Currently, in Europe, there is one registered clinical trial
focused on blocking the MDSCs function in PC patients (no.
2017-001857-14). It tests the combination of vinorelbine, a
cytostatic drug, and two checkpoint inhibitors, durvalumab
and tremelimumab, which are anti-PD-L1 and anti-CTLA-4
mAb, respectively.

Multifactorial Intervention: Inhibition of
MDSCs Expansion and Blocking Their
Suppressive Activity
Combinations of both the inhibition of MDSCs expansion and
blocking their suppressive activity provide the opportunity for
multifactorial interventions with potential better therapeutic
effectiveness. One of such trials tests the combination of
STAT3 inhibitor (AZD9150), a selective CXCR2 antagonist
(AZD5069), and the PD-L1 inhibitor (MEDI4736) (no. 2015-
002525-19), where each can inhibit either MDSCs expansion or
function. Another drug combination that is being tested is
gemcitabine and RQ-00000007 (grapiprant) , where
gemcitabine inhibits MDSCs expansion (87), while grapiprant
—an inhibitor of PGE2-receptor—reduces the differentiation,
expansion, and suppressive activities of Mo-MDSCs (88),
confirming its role in MDSCs functioning (26).

Potential New Targets
Despite a wide scope of the ongoing clinical research, there are
other available potential therapeutic options targeting MDSCs in
PC. One, yet unexplored route, concerns the angiotensin-
converting enzyme (ACE)–angiotensin pathway, where the
overexpression of ACE in monocytic cells was shown to reduce
the generation of MDSCs (89), while angiotensin was able to
reduce the tumor malignancy in PC (90). Nowadays, during the
SARS-CoV-2 pandemic, this pathway, however, takes on a quite
different significance. However, other forms of angiotensin may
impact the biological properties of PC cells by modulating
inflammatory reac t ion , or even genes , inc lud ing
downregulation of HIF1a and upregulation of CDH-1 (91)
expression, both associated with MDSCs recruitment. Another
potential approach involves estrogen, used previously in PC
therapy (92). The combined therapy, linking activation of
estrogen receptor b (ERb) and the checkpoint inhibitor anti-
PD-1 mAb, diminishes MDSCs infiltration in mouse models of
colorectal and breast cancer (93). Interestingly, apoptosis and/or
differentiation of PC cells may be promoted during the ERb
activation (94). Additionally, studies confirmed the benefits of
ERb activation in androgen-dependent CRPC, decreasing the
viability of the tumor cells (95). Also, ARG1 is a potential
therapeutic target in PC, and its inactivation through STAT3
inhibition was already confirmed (34). The ongoing clinical trials
aiming at targeting MDSCs may be a trigger for more frequent
T
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use of immunotherapy in combination with other forms of
PC treatment.
CONCLUSION

Although thefirst observations reporting the negative role ofMDSCs
inantitumorresponses inPCdateback fromthebeginningof the21st
century, the last decade saw an upsurge of studies indicating their
mechanisms of action and clinical relevance (96). Although several
questions remainunanswered, the roleofMDSCs in thedevelopment
and progression of PC seems unquestionable, suggesting their
potential as a therapeutic target. Hence, the implementation of the
combination therapy, e.g., radiotherapy and immunotherapy,
targeting both the tumor and MDSCs in PC seems crucial. Such
therapymay increase the frequencyof the abscopal response,which is
a phenomenon associated with tumor shrinkage, occurring not only
locally at the siteof the treatmentbutalso inother locations,where the
tumor has already spread (97).
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