NCCN NCCN NCCN Network[®]

NCCN

Myeloid Growth Factors, Version 2.2017

Clinical Practice Guidelines in Oncology

Jeffrey Crawford, MD; Pamela Sue Becker, MD, PhD; James O. Armitage, MD; Douglas W. Blayney, MD; Julio Chavez, MD; Peter Curtin, MD; Shira Dinner, MD; Thomas Fynan, MD; Ivana Gojo, MD;

Elizabeth A. Griffiths, MD; Shannon Hough, PharmD, BCOP; Dwight D. Kloth, PharmD, BCOP; David J. Kuter, MD, DPhil; Gary H. Lyman, MD, MPH, FRCP; Mary Mably, RPh, BCOP; Sudipto Mukherjee, MD, PhD, MPH; Shiven Patel, MD; Lia E. Perez, MD; Adam Poust, PharmD;

Raajit Rampal, MD, PhD; Vivek Roy, MD; Hope S. Rugo, MD;

Abstract

Myeloid growth factors (MGFs) are given as supportive care to patients receiving myelosuppressive chemotherapy to reduce the incidence of neutropenia. This selection from the NCCN Guidelines for MGFs focuses on the evaluation of regimenand patient-specific risk factors for the development of febrile neutropenia (FN), the prophylactic use of MGFs for the prevention of chemotherapy-induced FN, and assessing the risks and benefits of MGF use in clinical practice.

> J Natl Compr Canc Netw 2017;15(12):1520–1541 doi: 10.6004/jnccn.2017.0175

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate. **Category 2A:** Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate.

Category 2B: Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise noted.

Clinical trials: NCCN believes that the best management for any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged. Ayman A. Saad, MD; Lee S. Schwartzberg, MD; Sepideh Shayani, PharmD; Mahsa Talbott, PharmD; Saroj Vadhan-Raj, MD; Sumithira Vasu, MBBS; Martha Wadleigh, MD; Peter Westervelt, MD, PhD; Jennifer L. Burns; and Lenora Pluchino, PhD

Overview

Myeloid growth factors (MGFs) are a class of biologic agents that regulate the proliferation, differentiation, survival, and activation of cells in the myeloid lineage. In patients with cancer receiving myelosuppressive chemotherapy, MGFs are primarily used to reduce the incidence of neutropenia. Neutropenia is defined as an absolute neutrophil count (ANC) of <500 neutrophils/mcL or an ANC of <1,000 neutrophils/mcL and a predicted decline ≤500 neutrophils/mcL over the next 48 hours. Neutropenia can

Please Note

The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines[®]) are a statement of consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines[®] is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient's care or treatment. The National Comprehensive Cancer Network[®] (NCCN[®]) makes no representation or warranties of any kind regarding their content, use, or application and disclaims any responsibility for their applications or use in any way. **The full NCCN Guidelines for Myeloid Growth Factors are not printed in this issue of JNCCN but can be accessed online at NCCN.org.**

© National Comprehensive Cancer Network, Inc. 2017, All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN.

Disclosures for the NCCN Myeloid Growth Factors

At the beginning of each NCCN Guidelines panel meeting, panel members review all potential conflicts of interest. NCCN, in keeping with its commitment to public transparency, publishes these disclosures for panel members, staff, and NCCN itself.

Individual disclosures for the NCCN Myeloid Growth Factors Panel members can be found on page 1541. (The most recent version of these guidelines and accompanying disclosures are available on the NCCN Web site at NCCN.org.)

These guidelines are also available on the Internet. For the latest update, visit NCCN.org.

Shiven Patel, MD†

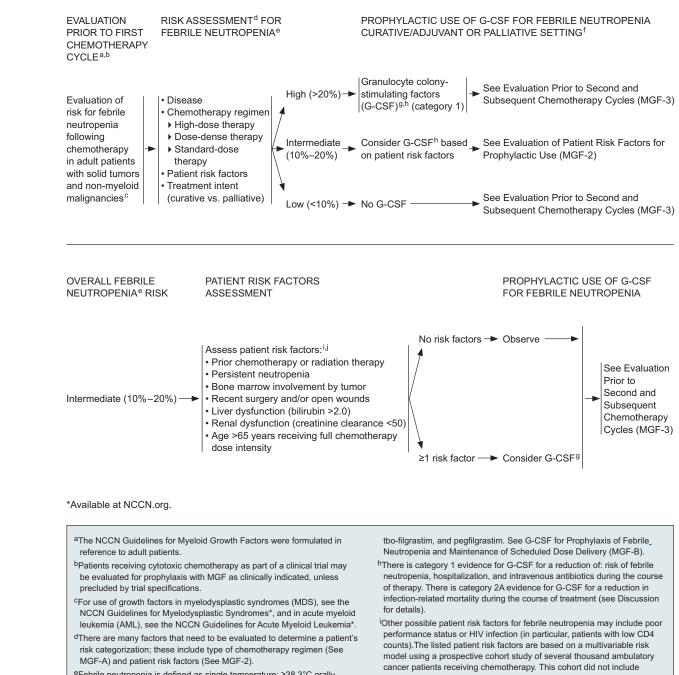
NCCN Guidelines®

Myeloid Growth Factors

Journal of the National Comprehensive Cancer Network

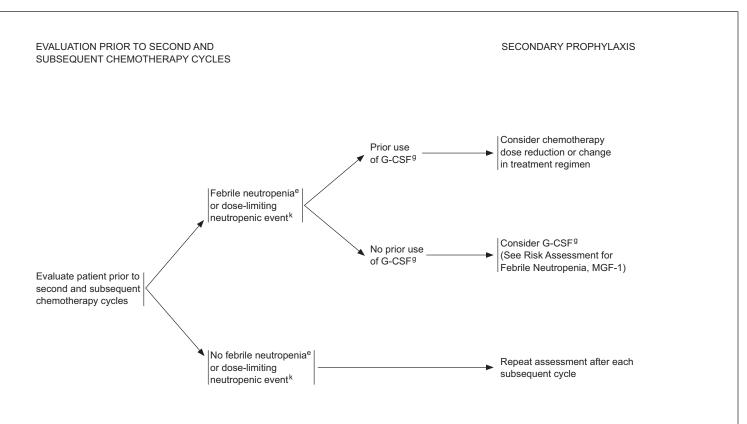
progress to febrile neutropenia (FN; \geq 38.3°C orally or \geq 38.0°C duration over 1 hour), which is a major doselimiting toxicity of chemotherapy that often requires prolonged hospitalization and broad-spectrum antibiotic use.¹ Occurrences of severe neutropenia or FN can prompt dose reductions or treatment delays in subsequent chemotherapy cycles and compromise clinical outcome. A review by Dale² showed that approximately 25% to 40% of treatment-naive patients develop FN with common chemotherapy regimens. Development of FN increases diagnostic and treatment costs and often leads to longer hospital stays. In addition, correlations have been reported between changes in neutrophil counts and quality of life, as measured by physical functioning, vitality, and mental health.³

The risk of FN is related to the treatment regimen and delivered dose intensity. However, a survey of the


NCCN Myeloid Growth Factors

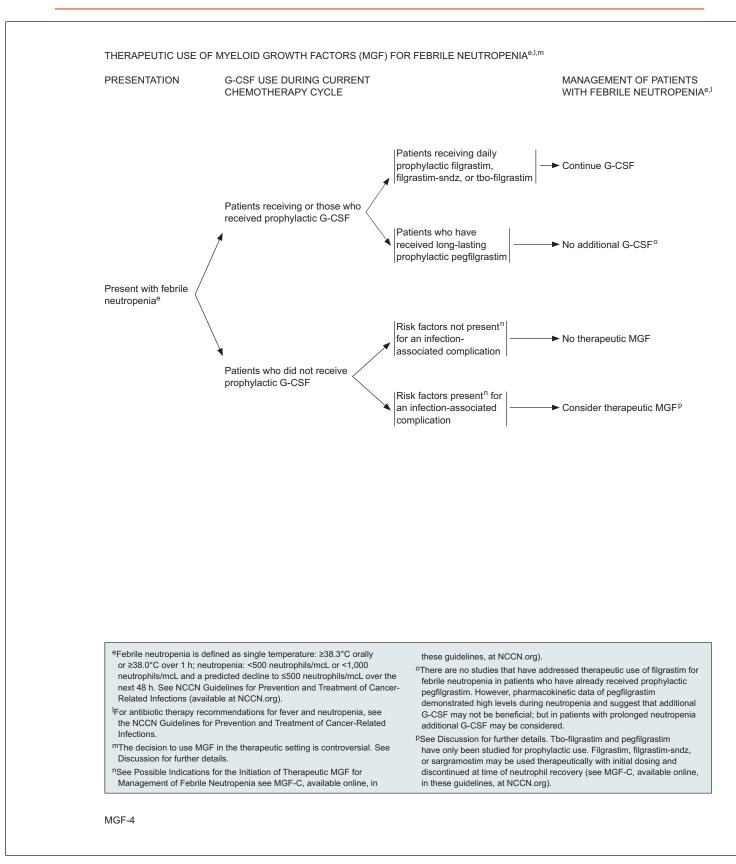
literature on randomized clinical trials of chemotherapy in patients with early-stage breast cancer and non-Hodgkin's lymphoma (NHL) has shown that the rates of myelosuppression and delivered dose intensity are underreported.⁴ Due to individual patient risk factors, the rates of myelosuppression with the same or similar regimens varied greatly, making it difficult to determine the actual risk for neutropenic complications associated with common chemotherapy regimens.⁴ Treatment dose intensity was reported with even less consistency, complicating interpretation of the reported rates of toxicity or treatment efficacy. Thus, differences in the reported rates of myelotoxicity may be attributed to intrinsic variation in the patient population as well as differences in the delivered dose intensities.

Text cont. on page 1531.


Huntsman Cancer Institute at the University of Utah **Panel Members** Lia E. Perez, MD‡ Moffitt Cancer Center *Jeffrey Crawford, MD/Chairt‡ Adam Poust, PharmD† **Duke Cancer Institute** University of Colorado Cancer Center *Pamela Sue Becker, MD, PhD/Vice Chair‡Pč Raajit Rampal, MD, PhD‡Þ† Fred Hutchinson Cancer Research Center/ Memorial Sloan Kettering Cancer Center Seattle Cancer Care Alliance Vivek Roy, MD‡ James O. Armitage, MD†ξ‡ Mayo Clinic Cancer Center Fred & Pamela Buffett Cancer Center Hope S. Rugo, MD†‡ Douglas W. Blayney, MD†‡ UCSF Helen Diller Family Comprehensive Cancer Center Stanford Cancer Institute Ayman A. Saad, MD‡ξ Julio Chavez, MD† University of Alabama at Birmingham Moffitt Cancer Center **Comprehensive Cancer Center** Peter Curtin, MD $\ddagger\xi$ Lee S. Schwartzberg, MD[†][‡]^P UC San Diego Moores Cancer Center St. Jude Children's Research Hospital/ Shira Dinner, MD†‡ The University of Tennessee Health Science Center Robert H. Lurie Comprehensive Cancer Center of Sepideh Shayani, PharmDӇ Northwestern University City of Hope Comprehensive Cancer Center Thomas Fynan, MD† Mahsa Talbott, PharmD‡Σ Yale Cancer Center/Smilow Cancer Hospital Vanderbilt-Ingram Cancer Center Ivana Gojo, MD‡ Saroj Vadhan-Raj, MD†Þ The Sidney Kimmel Comprehensive Cancer Center at The University of Texas MD Anderson Cancer Center Johns Hopkins Sumithira Vasu, MBBS‡ Elizabeth A. Griffiths, MD‡P† The Ohio State University Comprehensive Cancer Center -Roswell Park Cancer Institute James Cancer Hospital and Solove Research Institute Shannon Hough, PharmD, BCOPΣ Martha Wadleigh, MD‡† University of Michigan Comprehensive Cancer Center Dana-Farber/Brigham and Women's Cancer Center Dwight D. Kloth, PharmD, $BCOP\Sigma$ Peter Westervelt, MD, PhD†ξ‡ Fox Chase Cancer Center Siteman Cancer Center at Barnes-Jewish Hospital and David J. Kuter, MD, DPhil†‡ Washington University School of Medicine Massachusetts General Hospital Cancer Center Gary H. Lyman, MD, MPH, FRCP†‡ NCCN Staff: Jennifer L. Burns, and Lenora Pluchino, PhD Fred Hutchinson Cancer Research Center/ Seattle Cancer Care Alliance KEY: Mary Mably, RPh, BCOPӇ University of Wisconsin Carbone Cancer Center *Discussion Section Writing Committee Sudipto Mukherjee, MD, PhD, MPH[‡]P Specialties: †Medical Oncology; ‡Hematology/Hematology Case Comprehensive Cancer Center/ oncology; PInternal Medicine; ΣPharmacology; ξBone Marrow University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute Transplantation

- ^eFebrile neutropenia is defined as single temperature: ≥38.3°C orally or ≥38.0°C over 1 h; neutropenia: <500 neutrophils/mcL or <1,000 neutrophils/mcL and a predicted decline to ≤500 neutrophils/mcL over the next 48 h. See NCCN Guidelines for Prevention and Treatment of Cancer-Related Infections*
- fSee Toxicity Risks with Myeloid Growth Factors (MGF-E). ^gG-CSF refers to the following approved agents: filgrastim, filgrastim-sndz,
- patients with HIV, acute leukemia, or hematopoetic cell transplant. (Lyman GH, Abella E, Pettengell R. Risk factors for febrile neutropenia among patients with cancer receiving chemotherapy: A systematic review. Crit Rev Oncol Hematol 2014;90:190-199)
- ^jOther factors may warrant the use of G-CSF (eg, chronic immunosuppression in the post-transplant setting, including organ transplant).

MGF-1 MGF-2



^eFebrile neutropenia is defined as single temperature: ≥38.3°C orally or ≥38.0°C over 1 h; neutropenia: <500 neutrophils/mcL or <1,000 neutrophils/mcL and a predicted decline to ≤500 neutrophils/mcL over the next 48 h. See NCCN Guidelines for Prevention and Treatment of Cancer-Related Infections.
 ^gG-CSF refers to the following approved agents: filgrastim, filgrastim-sndz, tbo-filgrastim, and pegfilgrastim. See G-CSF for Prophylaxis of Febrile Neutropenia and Maintenance of Scheduled Dose Delivery (MGF-B).

^kDose-limiting neutropenic event could be a nadir count or day of treatment count that could otherwise impact planned dose of chemotherapy.

MGF-3

Version 2.2017, 10-13-17 ©2017 National Comprehensive Cancer Network, Inc. All rights reserved. The NCCN Guidelines[®] and this illustration may not be reproduced in any form without the express written permission of NCCN[®].

EXAMPLES OF DISEASE SETTINGS AND CHEMOTHERAPY REGIMENS WITH A HIGH RISK FOR FEBRILE NEUTROPENIA (>20%)^a

- This list is not comprehensive; there are other agents/regimens that have a high risk for the development of febrile neutropenia. Regimens recommended in the NCCN Guidelines for treatment by cancer site are considered when updating this list of examples.
- The type of chemotherapy regimen is only one component of the Risk Assessment. (See Patient Risk Factors for Developing Febrile Neutropenia, MGF-2)
- The exact risk includes agent, dose, and the treatment setting (ie, treatment naive vs. heavily pretreated patients). (See MGF-1)

Acute Lymphoblastic Leukemia (ALL)

· Select ALL regimens as directed by treatment protocol (See NCCN Guidelines for ALL, available at NCCN.org)

Bladder Cancer

• Dose-dense MVAC^b (methotrexate, vinblastine, doxorubicin, cisplatin)1

Breast Cancer

- Dose-dense AC followed by T^b (doxorubicin, cyclophosphamide, paclitaxel)²
- TAC (docetaxel, doxorubicin, cyclophosphamide)³
- TC^{a,c} (docetaxel, cyclophosphamide)⁴ TCH^a (docetaxel, carboplatin,
- trastuzumab)5

Hodgkin Lymphoma

• Escalated BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, prednisone)7

Kidney Cancer

Doxorubicin/gemcitabine⁸

- Non-Hodgkin's Lymphomas
- · Dose-adjusted EPOCH^a (etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin)⁹
- ICE (ifosfamide, carboplatin, etoposide)^{a,10,11} • Dose-dense CHOP-14^{a,b} (cyclophosphamide,
- doxorubicin, vincristine, prednisone)12,13 • MINE^a (mesna, ifosfamide, mitoxantrone,
- etoposide)14
- DHAP^a (dexamethasone, cisplatin, cytarabine)15
- ESHAP^a (etoposide, methylprednisolone, cisplatin, cytarabine)¹⁶
- · HyperCVAD^a (cyclophosphamide, vincristine, doxorubicin, dexamethasone)^{17,18} Melanoma

- · Dacarbazine-based combination with IL-2, interferon alfa (dacarbazine, cisplatin, vinblastine, IL-2, interferon alfa)19
- Multiple Myeloma
- DT-PACE (dexamethasone/thalidomide/ cisplatin/doxorubicin/cyclophosphamide/ etoposide)²⁰ ± bortezomib (VTD-PACE)²¹

- **Ovarian Cancer** Topotecan^{a,22} Docetaxel²³
- Soft Tissue Sarcoma
- MAID (mesna, doxorubicin, ifosfamide,
- dacarbazine)24
- Doxorubicin^{a,25}
- Ifosfamide/doxorubicin²⁶
- Small Cell Lung Cancer
- Topotecan²

Testicular Cancer

- VeIP (vinblastine, ifosfamide, cisplatin)²⁸
- · VIP (etoposide, ifosfamide, cisplatin)
- BEP (bleomycin, etoposide, cisplatin)^{29,30}
- TIP (paclitaxel, ifosfamide, cisplatin)³¹

See Disease Settings and Chemotherapy Regimens with an Intermediate Risk for Febrile Neutropenia, MGF-A (2 of 4)

See References, MGF-A (3 of 4)

^aGuidelines apply to chemotherapy regimens with or without monoclonal antibodies (eg, trastuzumab, rituximab). There is the potential for increased neutropenia risk with the addition of monoclonal antibodies. Rituximab has been associated with prolonged neutropenia with or without chemotherapy. For details on when monoclonal antibodies are recommended with the regimens listed above in clinical practice, see NCCN Guidelines for treatment by cancer site (available at NCCN.org)

^bIn general, dose-dense regimens require growth factor support for chemotherapy administration.

^cRisk for febrile neutropenia has been reported variably as intermediate risk or high risk depending on the study.

MGF-A 1 of 4

Version 2.2017, 10-13-17 @2017 National Comprehensive Cancer Network, Inc. All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®.

EXAMPLES OF DISEASE SETTINGS AND CHEMOTHERAPY REGIMENS WITH AN INTERMEDIATE RISK FOR FEBRILE NEUTROPENIA (10%–20%)^a

- This list is not comprehensive; there are other agents/regimens that have an intermediate risk for the development of febrile neutropenia.
- Regimens recommended in the NCCN Guidelines for treatment by cancer site are considered when updating this list of examples. • The type of chemotherapy regimen is only one component of the Risk Assessment. See Patient Risk Factors for Developing Febrile Neutropenia (MGF-2).
- The exact risk includes agent, dose, and the treatment setting (ie, treatment naive vs. heavily pretreated patients). (See MGF-1)

Occult Primary-Adenocarcinoma

Gemcitabine/docetaxel³²

Breast Cancer

• Docetaxel^{a,33,34}

- \bullet CMF classic (cyclophosphamide, methotrexate, fluorouracil) 35
- AC (doxorubicin, cyclophosphamide) + sequential
- docetaxel (taxane portion only)^{a,36} • FEC (fluorouracil, epirubicin, cyclophosphamide) +
- sequential docetaxel^{a,37}
- Paclitaxel every 21 days^{a,38}

Cervical Cancer

- Cisplatin/topotecan^{39,40,41}
- Paclitaxel/cisplatin^{a,41}
- Topotecan⁴²
- Irinotecan⁴³
- Colorectal Cancer
- FOLFOX^a (fluorouracil, leucovorin, oxaliplatin)⁴⁴

- Esophageal and Gastric Cancers
- Irinotecan/cisplatin^{a,45}
 Epirubicin/cisplatin/5-fluorouracil⁴⁶
- Epirubicin/cisplatin/s-indologracitatine
 Epirubicin/cisplatin/capecitabine
- Non-Hodgkin's Lymphomas
- GDP (gemcitabine, dexamethasone, cisplatin/carboplatin)^{a,47}
- CHOPa (cyclophosphamide, doxorubicin, vincristine, prednisone)^{48,49} including
- regimens with pegylated liposomal doxorubicin^{50,51}
- Non-Small Cell Lung Cancer
- Cisplatin/paclitaxel⁵²
- Cisplatin/vinorelbine⁵³
- Cisplatin/docetaxel^{52,54}
- Cisplatin/etoposide⁵⁵
- Carboplatin/paclitaxel^{a,d,56}
- Docetaxel⁵⁴

- Ovarian Cancer • Carboplatin/docetaxel⁵⁷
- Pancreatic Cancer • FOLFIRINOX^e
- Prostate Cancer
- Cabazitaxel^{f,58}
- Small Cell Lung Cancer
- Etoposide/carboplatin⁵⁹
- Testicular Cancer
- Etoposide/cisplatin⁶⁰
- Uterine Sarcoma
- Docetaxel⁶¹

See References, MGF-A (4 of 4)

^aGuidelines apply to chemotherapy regimens with or without monoclonal antibodies (eg, trastuzumab, rituximab). There is the potential for increased neutropenia risk with the addition of monoclonal antibodies. Rituximab has been associated with prolonged neutropenia with or without chemotherapy. For details on when monoclonal antibodies are recommended with the regimens listed above in clinical practice, see NCCN Guidelines for treatment by cancer site (available at NCCN.org).

^dIf carboplatin dose is AUC >6 and/or patient is of Japanese ancestry.

^eA small retrospective trial had a 17% risk of febrile neutropenia in the neoadjuvant setting⁶² and a randomized trial had a 5.4% risk in the metastatic setting (G-CSF was administered to 42.5% of patients who received FOLFIRINOX).⁶³ While G-CSF was not recommended as primary prophylaxis, it may be considered in patients with high-risk clinical features.

^fThe published results for cabazitaxel have an 8% rate of febrile neutropenia but neutropenic deaths were reported. Primary prophylaxis with G-CSF should be considered in patients with high-risk clinical features.

MGF-A 2 of 4

CHEMOTHERAPY REGIMEN REFERENCES

Note: The references listed for each regimen are limited by the specific populations studied, methods, and collection of data for febrile neutropenia in the clinical trial.

- ¹Sternberg CN, de Mulder PH, Schornagel JH, et al. Randomized phase III trial of high-dose-intensity methotrexate, vinblastine, doxorubicin, and cisplatin (MVAC) chemotherapy and recombinant human granulocyte colony stimulating factor versus classic MVAC in advanced urothelial tract tumors: European Organization for Research and Treatment of Cancer Protocol no. 30924. J Clin Oncol 2001;19:2638-2646.
- ²Citron ML, Berry DA, Cirrincione C, et al. Randomized trial of dosedense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J Clin Oncol 2003;21:1431-1439.
- ³Martin M, Lluch A, Segui MA, et al. Prophylactic growth factor (GF) support with adjuvant docetaxel, doxorubicin, and cyclophosphamide (TAC) for nodenegative breast cancer (BC): An interim safety analysis of the GEICAM 9805 study [abstract]. Proc Amer Soc Clin Oncol 2004;23:Abstract 620.
- ⁴Kosaka Y, Rai Y, Masuda N, et al. Phase III placebo-controlled, double-blind, randomized trial of pegfilgrastim to reduce the risk of febrile neutropenia in breast cancer patients receiving docetaxel/cyclophosphamide chemotherapy. Support Care Cancer 2015;23(4):1137-1143.
- ⁵Gilbar P, McPherson I, Sorour N, Sanmugarajah J. High incidence of febrile neutropenia following adjuvant breast chemotherapy with docetaxel, carboplatin and trastuzumab. Breast Cancer Manag 2014;3:327-333.
- ⁶Chihara D, Kantarjian H, O'Brien S, et al. Long-term durable remission by cladribine followed by rituximab in patients with hairy cell leukemia: update of a phase II trial. Br J Haematol 2016 Sep;174(5):760-6.
- ⁷Diehl V, Franklin J, Pfreundschuh M, et al. Standard and increased-dose BEACOPP chemotherapy compared with COPP-ABVD for advanced Hodgkin's disease. N Engl J Med 2003;348:2386-2395.
- ⁸Nanus DM, Garino A, Milowsky MI, et al. Active chemotherapy for sarcomatoid and rapidly progressing renal cell carcinoma. Cancer 2004;101:1545-1551.
- ⁹Gutierrez M, Chabner B, Pearson D, et al. Role of a doxorubicin-containing regimen in relapsed and resistant lymphomas: An 8-Year follow-up study of EPOCH. J Clin Oncol 2000;18:3633-3642.
- ¹⁰Hertzberg MS, Crombie C, Benson W, et al. Outpatient fractionated ifosfamide, carboplatin and etoposide as salvage therapy in relapsed and refractory non-Hodgkin's and Hodgkin's lymphoma. Ann Oncol 2006;Suppl 4:iv25-30.
- ¹¹Kewalramani T, Zelenetz AD, Nimer SD, et al. Rituximab and ICE as second-line therapy before autologous stem cell transplantation for relapsed or primary refractory diffuse large B-cell lymphoma. Blood 2004;103:3684-3688.
- ¹²Blayney DW, LeBlanc ML, Grogan T, et al. Dose-intense chemotherapy every 2 weeks with dose-intense cyclophosphamide, doxorubicin, vincristine, and prednisone may improve survival in intermediate- and high-grade lymphoma: a phase II study of the Southwest Oncology Group (SWOG 9349). J Clin Oncol 2003;21:2466-2473.
- ¹³Watanabe T, Tobinai K, Shibata T, et al. Phase II/III study of R-CHOP-21 versus R-CHOP-14 for untreated indolent B-cell non-Hodgkin's lymphoma: JCOG 0203 trial. J Clin Oncol 2011;29:3990-3998.
- ¹⁴Rodriguez MA, Cabanillas FC, Hagemeister FB, et al. A phase II trial of mesna/ifosfamide, mitoxantrone and etoposide for refractory lymphomas. Ann Oncol 1995;6:609-611.

- ¹⁵Velasquez WS, Cabanillas F, Salvador P, et al. Effective salvage therapy for lymphoma with cisplatin in combination with high-dose Ara-C and dexamethasone (DHAP). Blood 1988;71:117-122.
- ¹⁶Velasquez WS, McLaughlin P, Tucker S, et al. ESHAP--an effective chemotherapy regimen in refractory and relapsing lymphoma: A 4-year follow-up study. J Clin Oncol 1994;12:1169-1176.
- ¹⁷Thomas DA, Faderl S, O'Brien S, et al. Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia. Cancer 2006;106:1569-1580.
- ¹⁸Romaguera JE, Fayad L, Rodriguez MA, et al. High rate of durable remissions after treatment of newly diagnosed aggressive mantle-cell lymphoma with rituximab plus hyper-CVAD alternating with rituximab plus high-dose methotrexate and cytarabine. J Clin Oncol 2005;23:7013-7023.
- ¹⁹Eton O, Legha S, Bedikian A, et al. Sequential biochemotherapy versus chemotherapy for metastatic melanoma: Results from a phase III randomized trial. J Clin Oncol 2002;20:2045-2052.
- ²⁰Lee CK, Barlogie B, Munshi N, Zangari M, Fassas A, Jacobson J, van Rhee F, Cottler-Fox M, Muwalla F, Tricot G. DTPACE: An effective, novel combination chemotherapy with thalidomide for previously treated patients with myeloma. J Clin Oncol 2003;21:2732-2739.
- ²¹Barlogie B, Anaissie E, van Rhee F, et al. Incorporating bortezomib into upfront treatment for multiple myeloma: early results of total therapy 3. Br J Haematol 2007;138:176-185.
- ²²Swisher EM, et al. Topotecan in platinum- and paclitaxel-resistant ovarian cancer. Gynecol Oncol 1997;66:480-486.
- ²³Verschraegen CF, Sittisomwong T, Kudelka AP, et al. Docetaxel for patients with paclitaxel-resistant Mullerian carcinoma. J Clin Oncol 2000;18:2733-2739.
- ²⁴Antman K, Crowley J, Balcerzak SP, et al. A Southwest Oncology Group and Cancer and Leukemia Group B phase II study of doxorubicin, dacarbazine, ifosfamide, and mesna in adults with advanced osteosarcoma, Ewing's sarcoma, and rhabdomyosarcoma. Cancer 1998;82:1288-1295.
- ²⁵Nielsen OS, Dombernowsky P, Mouridsen H, et al. High-dose epirubicin is not an alternative to standard-dose doxorubicin in the treatment of advanced soft tissue sarcomas. A study of the EORTC soft tissue and bone sarcoma group. Br J Cancer 1998;78:1634-1639.
- ²⁶Patel SR, Vadhan-Raj S, Burgess MA, et al. Results of two consecutive trials of dose-intensive chemotherapy with doxorubicin and ifosfamide in patients with sarcomas. AJCO 1998;21:317-321.
- ²⁷Von Pawel J, Schiller JH, Shepherd FA, et al. Topotecan versus cycylophosphamide, doxorubicin, and vincristine for the treatment of recurrent small-cell lung cancer. J Clin Oncol 1999;17:658-667.
- ²⁸Miller KD, Loehrer PJ, Gonin R, et al. Salvage chemotherapy with vinblastine, ifosfamide, and cisplatin in recurrent seminoma. J Clin Oncol 1997;15:1427-1431.
- ²⁹Motzer RJ, Nichols CJ, Margolin KA et al. Phase III randomized trial of conventional-dose chemotherapy with or without high-dose chemotherapy and autologous hematopoietic stem-cell rescue as first-line treatment for patients with poor-prognosis metastatic germ cell tumors. J Clin Oncol 2007;25:247-256. d dexamethasone (DHAP). Blood 1988;71:117-122.

Continued on next page

MGF-A 3 of 4 1527

Version 2.2017, 10-13-17 ©2017 National Comprehensive Cancer Network, Inc. All rights reserved. The NCCN Guidelines[®] and this illustration may not be reproduced in any form without the express written permission of NCCN[®].

National Comprehensive Cancer Network®

CHEMOTHERAPY REGIMEN REFERENCES

Note: The references listed for each regimen are limited by the specific populations studied, methods, and collection of data for febrile neutropenia in the clinical trial.

- ³⁰Nichols CR, Catalano PJ, Crawford ED, et al. Randomized comparison of cisplatin and etoposide and either bleomycin or ifosfamide in treatment of advanced disseminated germ cell tumors: An Eastern Cooperative Oncology Group, Southwest Oncology Group, and Cancer and Leukemia Group B Study. J Clin Oncol 1998;16:1287-1293.
- ³¹Kondagunta GV, Bacik J, Donadio A, et al. Combination of paclitaxel, ifosfamide, and cisplatin is an effective second-line therapy for patients with relapsed testicular germ cell tumors. J Clin Oncol 2005;23:6549-6555.
- ³²Pouessel D, Culine S, Becht C, et al. Gemcitabine and docetaxel as front line chemotherapy in patients with carcinoma of an unknown primary site. Cancer 2004;10:1257-1261.
- ³³Marty M, Cognetti F, Maraninchi D et al. Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2–positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol 2005:23:4265-4274.
- ³⁴Burris HA. Single-agent docetaxel (Taxotere) in randomized phase III trials. Seminars in Oncol 1999;26:1-6.
- ³⁵Poole CJ, Earl HM, Dunn JA, et al. NEAT (National Epirubicin Adjuvant Trial) and SCTBG BR9601 (Scottish Cancer Trials Breast Group) phase III adjuvant breast trials show a significant relapse-free and overall survival advantage for sequential ECMF [abstract]. Proc Am Soc Clin Oncol 2003;22:Abstract 13.
- ³⁶Sparano JA, Wang M, Martino S, et al. Phase III study of doxorubicincyclophosphamide followed by paclitaxel or docetaxel given every 3 weeks or weekly in patients with axillary node-positive or high-risk node-negative breast cancer: Results of North American Breast Cancer Intergroup Trial E1199. SABCS 2005 #48.
- ³⁷Roché H, Fumoleau P, Spielmann M, et al. Sequential adjuvant epirubicinbased and docetaxel chemotherapy for node-positive breast cancer patients: The FNCLCC PACS 01 Trial. J Clin Oncol 2006;24:1-8.
- ³⁸AD, Tiersten A, Hudis C, et al. Phase II trial of paclitaxel by 3-hour infusion as initial and salvage chemotherapy for metastatic breast cancer. J Clin Oncol 1995;13:2575-2581.
- ³⁹Long III HJ, Bundy BN, Grendys Jr EC, et al. Randomized phase III trial of cisplatin with or without topotecan in carcinoma of the uterine cervix: A Gynecologic Oncology Group Study. J Clin Oncol 2005;23:4626-4633.
- ⁴⁰Monk B, et al. Phase III trial of four cisplatin-containing doublet combinations in stage IVB, recurrent, or persistent cervical carcinoma: a Gynecologic Oncology Group study. J Clin Oncol 2009;7:4649-4655.
- ⁴¹Long, H. et al. Randomized phase III trial of cisplatin with or without topotecan in carcinoma of the uterine cervix: a Gynecologic Oncology Group Study. J Clin Oncol 2005;23:4626-4633.
- ⁴²Muderspach LI, Blessing JA, Levenback C, et al. A phase II study of topotecan in patients with squamous cell carcinoma of the cervix: A Gynecologic Oncology Group Study. Gynecologic Oncology 2001;81:213-215.
- ⁴³Verschraegen CF, Levy T, Kudelka AP, et al. Phase II study of irinotecan in prior chemotherapy-treated squamous cell carcinoma of the cervix. J Clin Oncol 1997;15:625-631.
- ⁴⁴Goldberg RM, Sargent DJ, Morton, et al. Randomized controlled trial of reduced-bolus fluorouracil plus leucovorin and irinotecan or infused fluorouracil plus leucovorin and oxaliplatin in patients with previously untreated metastatic colorectal cancer: A North American Intergroup Trial. J Clin Oncol 2006;24:3347-3353.
- ⁴⁵Ilson DH. A multicenter phase II trial of weekly irinotecan/cisplatin in advanced esophageal cancer. Oncology (Williston Park) 2004;18(14 Suppl 14):22-25.
- ⁴⁶Cunningham D, Starling N, Rao S, et al. Capectiabine and oxaliplatin for advanced esophagogastric cancer. N Eng J Med 2008;358:36-46.

- ⁴⁷Crump M, Baetz T, Couban S, et al. Gemcitabine, dexamethasone, and cisplatin in patients with recurrent or refractory aggressive histology B-cell non-hodgkin lymphoma. Cancer 2004;101:1835-1842.
- ⁴⁸Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002;346:235-242.
- ⁴⁹Lyman G, Delgado DJ. Risk of febrile neutropenia among patients with intermediate-grade non-Hodgkin's lymphoma receiving CHOP chemotherapy. Leuk Lymphoma 2003;44:2069-2076.
- ⁵⁰Martino R, Perea G, Caballero MD, et al. Cyclophosphamide, pegylated liposomal doxorubicin (Caelyx), vincristine and prednisone (CCOP) in elderly patients with diffuse large B-cell lymphoma: results from a prospective phase II study. Haematologica 2002;87:822-827.
- ⁵¹Zaja F, Tomadini V, Zaccaria A, et al. CHOP-rituximab with pegylated liposomal doxorubicin for the treatment of elderly patients with diffuse large B-cell lymphoma. Leuk Lymphoma 2006;47:2174-2180.
- ⁵²Schiller JH, Harrington D, Belani CP, et al. Comparison of four chemotherapy regimens for advanced non-small cell lung cancer. N Engl J Med 2002;346:92-98.
- ⁵³Pujol J-L, Breton J-L, Gervais R, et al. Gemcitabine-docetaxel versus cisplatinvinorelbine in advanced or metastatic non-small-cell lung cancer: a phase III study addressing the case for cisplatin. Ann Oncol 2005;16:602-610.
- ⁵⁴Fossella F, Pereira JR, von Pawel J, et al. Randomized, multinational, phase III study of docetaxel plus platinum combinations versus vinorelbine plus cisplatin for advanced non–small-cell lung cancer: The TAX 326 Study Group. J Clin Oncol 2003;21:3016-3024.
- ⁵⁵Cardenal F, Lopez-Cabrerizo P, Anton A, et al. Randomized phase III study of gemcitabine-cisplatin versus etoposide-cisplatin in the treatment of locally advanced or metastatic non–small-cell lung cancer. J Clin Oncol 1999;17:12-18.
- ⁵⁶Ohe Y, Ohashi Y, Kubota K, et al. Randomized phase III study of cisplatin plus irinotecan versus carboplatin plus paclitaxel, cisplatin plus gemcitabine, and cisplatin plus vinorelbine for advanced non-small-cell lung cancer: Four-Arm Cooperative Study in Japan. Ann Oncol 2007;18:317-323.
- ⁵⁷Vasey, PA, Jayson GC, Gordon, A, et al. Phase III randomized trial of docetaxel-carboplatin versus paclitaxel-carboplatin as first line chemotherapy for ovarian carcinoma. J Nat Can Inst 2004;96:1682-1691.
- ⁵⁸de Bono JS, Oudard S, Ozguroglu M, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet 2010;376:1147-1154.
- ⁵⁹Kosmidis PA, Samantas E, Fountzilas G, et al. Cisplatin/etoposide versus carboplatin/ etoposide chemotherapy and irradiation in small cell lung cancer randomized phase II study. Hellenic Cooperative Oncology Group for Lung Cancer Trials. Semin Oncol 1994;21(3 Suppl 6):23-30.
- ⁶⁰Motzer RJ, Sheinfeld J, Mazumdar M, et al. Etoposide and cisplatin adjuvant therapy for patients with pathologic stage II germ cell tumors. J Clin Oncol 1995;13:2700-2704.
- ⁶¹van Hoesel Q, Verweij J, Catimel G, et al. Phase II study with docetaxel (Toxotere) in advanced soft tissue sarcomas of the adult. Ann Oncol 1994;5:539-542.
- ⁶²Hosein PJ, Macintyre J, Kawamura C, et al. A retrospective study of neoadjuvant FOLFIRINOX in unresectable or borderline-resectable locally advanced pancreatic adenocarcinoma. BMC Cancer 2012;12:199.
- ⁶³Conroy T, Desseigne F, Ychou M et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011;364:1817-1825.

MGF-A 4 of 4

G-CSF FOR PROPHYLAXIS OF FEBRILE NEUTROPENIA AND MAINTENANCE OF SCHEDULED DOSE DELIVERY

- Filgrastim (category 1), tbo-filgrastim^a (category 1), or filgrastim-sndz^b (category 1)
- Daily dose of 5 mcg/kg (rounding to the nearest vial size by institution-defined weight limits) until post-nadir ANC recovery to normal or near-normal levels by laboratory standards.
- > Start the next day or up to 3–4 days after completion of chemotherapy and treat through post-nadir recovery.^c
- Pegfilgrastim (category 1)
- One dose of 6 mg per cycle of treatment.
- Sased on clinical trial data, pegfilgrastim should be administered the day after chemotherapy (category 1).
- ◊ For patients who cannot return to the clinic for next-day administration, alternative options exist.^d
- ◊ Administration of pegfilgrastim up to 3–4 days after chemotherapy is also reasonable based on trials with filgrastim.
- There is evidence to support use for chemotherapy regimens given every 3 weeks (category 1).
- There are phase II studies that demonstrate efficacy for chemotherapy regimens given every 2 weeks.
- There are insufficient data to support use for cytotoxic chemotherapy regimens administered every week; therefore, pegfilgrastim should not be used.
- Prophylactic use of G-CSF in patients given concurrent chemotherapy and radiation is not recommended.
- · Subcutaneous route is preferred for all G-CSF listed above.
- For information regarding prophylactic anti-infectives (ie, viral, fungal, bacterial) see NCCN Guidelines for Prevention and Treatment of Cancer-Related Infections (available at NCCN.org).

See Toxicity Risks with Myeloid Growth Factors (MGF-E)

^aTbo-filgrastim is a human G-CSF approved by the FDA through an original biologic license application. All of these G-CSF are indicated for reducing the duration of severe neutropenia in patients with nonmyeloid malignancies receiving myelosuppressive chemotherapy associated with a clinically significant incidence of febrile neutropenia.

^bFilgrastim-sndz is the first biosimilar to be approved by the FDA. See Discussion for more details.

^cStudies suggest that shorter durations of G-CSFs may be less efficacious. (Weycker D, Li X, Tzivelekis S, et al. Burden of chemotherapy-induced febrile neutropenia hospitalizations in US clinical practice, by use and patterns of prophylaxis with colony-stimulating factor. Support Care Cancer 2017;25:439-447.)

^dAn FDA-approved delivery device is available that can be applied the same day as chemotherapy in order to deliver the full dose of pegfilgrastim the following day (approximately 27 hours after application). (Yang BB, Morrow PK, Wu X, et al. Comparison of pharmacokinetics and safety of pegfilgrastim administered by two delivery methods: on-body injector and manual injection with a prefilled syringe. Cancer Chemother Pharmacol 2015;75:1199-1206.)

MGF-B

Version 2.2017, 10-13-17 ©2017 National Comprehensive Cancer Network, Inc. All rights reserved. The NCCN Guidelines[®] and this illustration may not be reproduced in any form without the express written permission of NCCN[®].

National Comprehensive Cancer Network®

TOXICITY RISKS WITH MYELOID GROWTH FACTORS

Filgrastim and derivative products including pegfilgrastim^{a,b,c}

Warnings

Allergic reactions

- Skin: rash, urticaria, facial edema
- Respiratory: wheezing, dyspnea
- \Diamond Cardiovascular: hypotension, tachycardia, anaphylaxis
- Bleomycin-containing regimens: pulmonary toxicity^d
- Splenic rupture^d
- Acute respiratory distress syndrome
- Alveolar hemorrhage and hemoptysis
- Sickle cell crises (only in patients with sickle cell disease)
- MDS and AML^e
- Precautions
- Cutaneous vasculitis
- Immunogenicity
- Adverse reactions
- Bone pain

- Sargramostim^{a,c}
- Warnings
- Fluid retention: edema, capillary leak syndrome, pleural and/or pericardial effusion
- Respiratory symptoms: Sequestration of granulocytes in pulmonary circulation, dyspnea
- Cardiovascular symptoms: Occasional transient supraventricular arrhythmia. Use with caution in patients with preexisting cardiac disease.
- Renal and hepatic dysfunction: Elevation of serum creatinine or bilirubin and hepatic enzymes. Monitor patients who display renal or hepatic dysfunction prior to initiation of treatment.
- Adverse events occurring in >10% of patients receiving sargramostim in controlled clinical trials and reported in a higher frequency than placebo
- AML fever, skin reactions, metabolic disturbances, nausea, vomiting, weight loss, edema, anorexia
- Autologous hematopoietic cell transplant or peripheral blood progenitor cell transplant - asthenia, malaise, diarrhea, rash, peripheral edema, urinary tract disorder
- Allogeneic hematopoietic cell transplant or peripheral blood progenitor cell transplant - abdominal pain, chills, chest pain, diarrhea, nausea, vomiting, hematemesis, dysphagia, Gl hemorrhage, pruritus, bone pain, arthralgia, eye hemorrhage, hypertension, tachycardia, bilirubinemia, hyperglycemia, increased creatinine, hypomagnesemia, edema, pharyngitis, epistaxis, dyspnea, insomnia, anxiety, high blood urea nitrogen (BUN), and high cholesterol

^aSee full prescribing information for specific product information.

^bNot all of the toxicities listed have been seen with each preparation, but similar toxicities are expected with filgrastim and pegfilgrastim.

^cThe toxicities listed are from the prescribing information and are based on studies from different patient populations. For filgrastim and derivative products, the toxicities are based on non-myeloid malignancies. For sargramostim, the toxicities are based primarily on studies from leukemia and transplant patients, and the listed toxicities may reflect intravenous route of administration and may differ from those of subcutaneous administration.

dSee Discussion for details.

^eLyman et al reported an increase in absolute and relative risk of AML/MDS of 0.41% and 1.92, respectively, related to G-CSF. Overall mortality was decreased. See Discussion for details and reference.

MGF-E

Cont. from page 1521.

1531

Studies have demonstrated that prophylactic use of MGFs can reduce the risk, severity, and duration of FN, but the cost has prevented its routine use in all patients receiving myelosuppressive chemotherapy. Selective use of MGFs in patients at increased risk for neutropenic complications may enhance the cost-effectiveness. These NCCN Guidelines focus on the 2 MGFs that have shown the most promise in terms of clinical use: granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF). For simplicity, the term "MGF" will be used when the data are supported by studies for both G-CSF and GM-CSF.

Filgrastim, filgrastim-sndz, tbo-filgrastim, and pegfilgrastim are G-CSFs currently approved by the FDA for the prevention of chemotherapy-induced neutropenia. Both tbo-filgrastim and pegfilgrastim are restricted in their FDA approval for use in patients with nonmyeloid malignancies receiving myelosuppressive anticancer drugs. Tho-filgrastim was approved by the FDA in an original biologic license application in August 2012,^{5,6} and therefore has a more restricted indication.7 Filgrastim-sndz was approved as a biosimilar, allowing it to gain approval for the broader indications of the originator product filgrastim. A biosimilar is a biological product that is highly similar to the FDA-approved reference product with the exception of minor differences in clinically inactive components, and no differences regarding efficacy, safety, and purity between the biosimilar and the reference product. Additional indications for filgrastim and filgrastim-sndz include treatment for patients with acute myeloid leukemia (AML) receiving induction or consolidation chemotherapy, patients with cancer receiving bone marrow transplant, patients undergoing peripheral blood progenitor cell (PBPC) collection and therapy, and patients with severe chronic neutropenia. Filgrastim is also approved by the FDA for the treatment of patients acutely exposed to myelosuppressive doses of radiation.⁸ Although the European guidelines also include lenograstim as a recommended G-CSF in solid tumors and nonmyeloid malignancies,⁹ it is not approved for use in the United States and is therefore not addressed in the NCCN Guidelines.

The only GM-CSF that is FDA-approved is sargramostim, although some clinical trials have used the GM-CSF molgramostim. Molgramostim is not recommended by the NCCN Panel due to the increased adverse events compared with sargramostim¹⁰ and the lack of FDA approval. Sargramostim is limited to use following induction therapy for AML and in various hematopoietic cell transplantation settings. It should be noted that there is a lack of head-to-head comparative studies on the clinical benefits of G-CSFs versus GM-CSFs.

These NCCN Guidelines focus on the use of MGFs in the cancer setting, primarily addressing the use of MGFs in adult patients with solid tumors and nonmyeloid malignancies. The NCCN Panel convenes annually to update their recommendations for the use of MGFs, which are based on a review of recently published clinical trials that have led to significant improvements in treatment or have yielded new information regarding biologic factors that may have prognostic importance. This portion of the NCCN Guidelines discusses recommendations outlined for the evaluation of regimen- and patient-specific risk factors for the development of FN, the prophylactic use of MGFs for the prevention of chemotherapy-induced FN, and assessing the risks and benefits of MGF use in clinical practice. For the complete version of these Guidelines, visit NCCN.org.

Evaluating Regimen- and Patient-Specific Risk Factors for Developing FN Risk Assessment

The risk for chemotherapy-induced FN should be evaluated before the first cycle of chemotherapy. Risk assessment includes disease type, chemotherapy regimen, patient risk factors, and treatment intent. Based on the chemotherapy regimen and patient-related risk factors, the patient is assigned to either an overall high-risk group (>20% risk of FN), intermediaterisk group (10%–20% risk), or low-risk group. The NCCN Panel recommends that independent clinical judgment be exercised in the assessment of a patient's FN risk. The panel also recommends that patients receiving cytotoxic chemotherapy as part of a clinical trial be evaluated for prophylactic use of MGFs based on both regimen-specific and patient-specific risk factors, unless precluded by trial specifications.

Chemotherapy Regimens and Risk for FN

FN is a common dose-limiting toxicity of many single-agent and combination chemotherapy regimens that is directly related to the intensity of the regimen. Clinical trial data of chemotherapy regimens that have an FN incidence >20% in chemotherapynaive patients are considered by the NCCN Panel as high risk. It should be noted that the addition of monoclonal antibodies to chemotherapy regimens has the potential to increase FN risk. Of particular concern is rituximab, an anti-CD20 monoclonal antibody used in the treatment of CD20+ hematologic malignancies, which is known to have an independent potential to cause severe neutropenia. It has been associated with prolonged, delayed-onset neutropenia both with or without chemotherapy.¹¹ It is emphasized that the type of chemotherapy regimen is only one component of the risk assessment and needs to be combined with patient risk factors for an estimation of the overall FN risk.

The algorithm lists common chemotherapy regimens associated with a high risk or intermediate risk of developing FN based on published data. These lists are not comprehensive and are meant to serve as examples only, as the exact risk will depend on the agent, dose, and treatment setting.

Patient Risk Factors for Developing FN

Patient risk factors are an important consideration in estimating the overall risk of FN, particularly when chemotherapy regimens are considered an intermediate risk.¹² Patient factors may elevate the overall risk to a high-risk category, wherein prophylactic MGFs are more routinely recommended. For example, many regimens for breast and lung cancer are associated with an intermediate risk of neutropenic complications, and it is important to identify which patients would be considered high risk. Even a lowrisk regimen does not necessarily preclude the use of MGFs in a patient with high-risk factors.

The most important risk factor for developing severe neutropenia is higher age, notably >65 years, in patients who receive full chemotherapy dose intensity.^{13–18} Other risk factors include prior chemotherapy or radiotherapy, preexisting neutropenia or tumor involvement in the bone marrow, poor performance status, comorbidities including renal or liver dysfunction, HIV infection, and preexisting conditions such as neutropenia and infection. Most of these have been confirmed as independent risk factors for neutropenic complications in a risk model developed by Lyman et al¹⁹ that was validated in a study population of 3,760 patients with cancer beginning chemotherapy treatment.

High FN Risk

The NCCN Guidelines recommend prophylactic use of MGFs if the risk of FN is >20%. The most recent update of the ASCO guidelines and the EORTC both adopted the 20% threshold for considering routine prophylactic treatment.^{20,21}

These consistent recommendations are based on the results of several large randomized trials that have documented a significant reduction of FN following primary prophylaxis when the risk of FN without prophylaxis is 20%. For example, Vogel et al²² reported on the results of a double-blind, randomized, placebocontrolled, multicenter study to demonstrate whether first-and subsequent-cycle prophylactic MGF support with pegfilgrastim would significantly reduce FN in a regimen that had previously been associated with an expected FN incidence of 20%. This is the largest randomized study of prophylactic growth factor support that has been performed. In this double-blind study designed with FN as the primary end point, women with breast cancer receiving docetaxel at 100 mg/m² every 3 weeks were randomized to either placebo injection (n=465) or pegfilgrastim (n=463), each administered 24 hours after chemotherapy. The placebo group had a 17% overall incidence of FN, whereas the pegfilgrastim group had a 1% incidence. In the pegfilgrastim group, the incidence of hospitalization was 1% versus 14% for the placebo group, and the use of intravenous anti-infectives was reduced from 2% versus 10%, with all of these differences being statistically significant (P<.001). In cycle 1, there was an 11% rate of FN for the placebo group versus <1% in the pegfilgrastim group. For cycles 2 through 4, the placebo group had a 6% rate of FN with a rate of <1% in the pegfilgrastim group.

A second trial reported the results for 175 patients with small cell lung cancer who were randomized to receive prophylactic antibiotics with or without prophylactic G-CSF.²³ In cycle 1, 20 patients (24%) in the antibiotics-only group developed FN compared with 9 patients (10%) in the antibiotics plus G-CSF group (P=.01). In cycles 2 to 5, the incidences of FN were similar in both groups (17% vs 11%). The authors concluded that primary FN prophylaxis added to primary antibiotic prophylaxis was effective in reducing FN and infections in patients with small cell lung cancer when given with the first cycle of chemotherapy. Furthermore, this strategy could be considered for other patients with cancer who have a high risk of FN.

The NCCN, ASCO, and EORTC guidelines all recognize a variety of special circumstances in which patients treated with relatively nonmyelosuppressive chemotherapy regimens are at high risk for FN due to bone marrow compromise or comorbidity. Prophylactic MGF is recommended for any patient considered at high risk, regardless of the treatment intent.

Intermediate FN Risk

The NCCN Panel defines intermediate risk as a 10% to 20% probability of developing FN or a neutropenic event that would compromise treatment. The panel recommends individualized consideration of MGFs based on physician-patient discussion of the risk/benefit ratio with respect to the likelihood of developing FN, the potential consequences of a neutropenic event, and the implications of reduced chemotherapy dose delivery. When the intent of chemotherapy is to prolong survival or for symptom management, the use of MGF is a difficult decision and requires careful discussion between physician and patient. If the increased risk for FN is a result of patient risk factors, MGF is reasonable; however, if the risk is due to the chemotherapy regimen, other alternatives such as the use of less myelosuppressive chemotherapy or dose reduction, if of comparable benefit, should be explored.

Low FN Risk

For low-risk patients, as defined by risk less than 10%, routine use of MGF is not recommended as alternative treatment options are appropriate and more cost-effective.^{20,24–26} However, MGF may be considered if the patient is receiving curative or adjuvant treatment and is at a significant risk for serious medical consequences of FN, including death.

Risk Evaluation for Subsequent Chemotherapy Cycles

After the first cycle of chemotherapy, patient evaluation should be performed before each subsequent cycle to determine the risk categorization and treatment intent. If the patient experienced a previous episode of FN or a dose-limiting neutropenic event (a nadir or a day-of-treatment count impacting the planned dose of chemotherapy) during the previous treatment cycle, with the same dose and schedule planned for the current cycle, this patient moves to the high-risk group.

If the patient experiences such an episode despite receiving MGF, the panel recommends a chemotherapy dose reduction or change in treatment regimen unless there is an impact on patient survival. If the patient does not develop FN or a dose-limiting neutropenic event and is thought to be benefiting from chemotherapy, the previous assessment should be repeated after each subsequent cycle.

Prophylactic Use of MGFs

Filgrastim, filgrastim-sndz, tbo-filgrastim, pegfilgrastim, and sargramostim are FDA-approved options for the prophylactic treatment of FN. Although data from randomized studies support the use of filgrastim, filgrastim-sndz, tbo-filgrastim, and pegfilgrastim in patients with solid malignancies, randomized studies of sargramostim have focused on its use after induction therapy for AML and in various hematopoietic cell transplantation settings. The subcutaneous administration of filgrastim, filgrastim-sndz, tbo-filgrastim, or pegfilgrastim is a category 1 recommendation for the prophylactic treatment of FN. Sargramostim is no longer recommended in this setting. The NCCN Panel does not routinely recommend prophylactic antibiotics for standard-dose chemotherapy. In addition, prophylactic use of MGF in patients given concurrent chemotherapy and radiation has not been evaluated and is therefore not recommended.

Filgrastim, Tbo-filgrastim, and Filgrastim-sndz

Initial doses of filgrastim are initiated the next day or up to 3 to 4 days after completion of chemotherapy in a daily dose of 5 mcg/kg until postnadir ANC recovers to normal or near-normal levels by laboratory standards. The dose may be rounded to the nearest vial size by institution-defined weight limits. The NCCN Panel recommends treatment of patients through postnadir recovery because studies have shown that shorter durations of G-CSF treatment are less efficacious.²⁷

Pegfilgrastim

Clinical trials both in support of and against sameday pegfilgrastim have been published. The original rationale for not giving same-day MGF was the potential for increased neutropenia resulting from MGF stimulation of myeloid progenitors at the time of cytotoxic chemotherapy.^{28–30} In a direct comparison, Kaufman et al³¹ administered either same-day or next-day pegfilgrastim in women with breast cancer receiving docetaxel, doxorubicin, and cyclophosphamide. FN was observed in 33% of patients treated in the same-day group compared with only 11% of patients treated in the next-day group.³¹ A similar trend was seen in a prospective randomized doubleblind trial of patients receiving CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) or CHOP-like therapy for NHL wherein same-day pegfilgrastim was associated with enhanced myelosuppression and no reduction in leukopenia was seen.³² However, despite longer duration of grade 4 neutropenia in the same-day group, there was no increase in the overall incidence of neutropenia, and the increased duration did not meet the noninferiority margin. However, the study recommends administration of pegfilgrastim 24 hours after chemotherapy.

In a retrospective review of same-day pegfilgrastim in patients with breast cancer receiving dosedense doxorubicin, Vance and Carpenter³³ observed no increased neutropenia. Another retrospective study from a community-based oncology practice showed similar incidence of myelosuppressive adverse events when comparing the 2 groups.³⁴ This study of 159 patients spanned 15 different tumor types and 50 different chemotherapy regimens.³⁴ A double-blind phase II study in patients with nonsmall cell lung cancer treated with carboplatin and docetaxel showed no increase of neutropenia nor any adverse events in patients receiving same-day pegfilgrastim compared with those receiving nextday pegfilgrastim treatment.³⁵ The benefit of sameday pegfilgrastim was also observed in patients with non-small cell lung cancer treated with weekly chemotherapy regimens. Same-day pegfilgrastim in these patients was shown to be beneficial from not only a safety perspective but also a logistical one, wherein next-day pegfilgrastim would have compromised the weekly chemotherapy schedule.³⁶ Another study in patients with lung cancer showed an unexpected low rate of severe neutropenia (only 2 patients per group), suggesting that same-day filgrastim is a reasonable option.³⁵ Other retrospective studies in patients with gynecologic malignancies have also demonstrated the safety and efficacy of pegfilgrastim administered within 24 hours of chemotherapy.^{37,38}

Because pegfilgrastim is longer-acting than filgrastim, a single injection of 6 mg is sufficient per chemotherapy cycle (category 1 recommendation). Because most clinical studies administer the agent the day after chemotherapy completion, next-day administration is preferred.³⁹ Based on trials of filgrastim, panelists agreed that giving pegfilgrastim up to 3 to 4 days after chemotherapy is also reasonable. In addition, panelists recognized that some institutions have administered "same-day" pegfilgrastim, defined as administration of pegfilgrastim on the same day patients receive chemotherapy, for logistical reasons and to minimize burdens on long-distance patients.⁴⁰ However, the recent FDA-approved delivery device that can be applied the same day as chemotherapy and set to deliver the full dose of pegfilgrastim the following day is an alternative to same-day administration for patients who cannot return to the clinic for next-day administration of pegfilgrastim.⁴¹

The NCCN Panel also set criteria for the use of pegfilgrastim in chemotherapy regimens of different cycle length. Based on phase III clinical trials,^{22,42} use of pegfilgrastim after chemotherapy given every 3 weeks is a category 1 recommendation. Pegfilgrastim treatment is a category 2A recommendation for chemotherapy regimens administered every 14 days based on phase II studies.^{43–48} Data are insufficient to support the dose and schedule for weekly regimens; therefore, pegfilgrastim should not be used.

Risks and Benefits of MGF Use

MGFs are incorporated into chemotherapy regimens to prevent the development of FN and improve the care of patients. Studies have shown that the prophylactic use of MGFs reduced the incidence, length, and severity of chemotherapy-related neutropenia in small cell lung cancer, breast cancer, sarcoma, solid tumors, non–small cell lung cancer, and NHL.^{22,23,49–63} Additionally, the benefit of GM-CSF therapy was seen in the treatment of myeloid malignancies.⁶⁴ MGFs improved the delivery of full dose-intensity chemotherapy on schedule, although this has not been shown to lead to better response or higher overall survival in most studies.^{49–51,54–57,61,65,66} However, in node-positive breast cancer^{61,67} and aggressive lymphoma,^{63,68,69} dose-dense regimens supported by MGFs improved disease-free and/or overall survival compared with conventional chemotherapy.

Meta-analyses confirmed the efficacy of prophylactic MGFs in decreasing rates of infection and risk of neutropenia.^{70–73} The meta-analysis from Clark et al⁷² included 13 studies, of which 6 involved treatment of patients with G-CSF, 6 involved treatment of patients with GM-CSF, and one 3-arm study included G-CSF, GM-CSF, or a placebo in the treatment. In total, 1,518 patients were evaluated for overall mortality, infection-related mortality, length of hospitalization, and time to neutrophil recovery. Although overall mortality did not appear to reach statistical significance (odds ratio [OR], 0.68; 95% CI, 0.43-1.08; P=.10), the infection-related mortality had a borderline significant benefit with the use of MGFs (OR, 0.51; 95% CI, 0.26-1.00; P=.05). A clear reduction in the length of hospitalization (hazard ratio [HR], 0.63; 95% CI, 0.49–0.82; P=.0006) and time to neutrophil recovery (HR, 0.32; 95% CI, 0.23-0.46; P<.0001) was observed with the addition of MGFs.

In a systematic review of 17 randomized trials including 3,493 adult patients with solid tumors and lymphoma, G-CSF as primary prophylaxis reduced the risk of FN (relative risk [RR], 0.54; 95% CI, 0.43-0.67; P<.001) and improved the relative dose intensity of the chemotherapy, delivered with an average difference between study arms of 8.4% (P=.001).74 For the first time, this analysis also reported a substantial reduction in risk of infection-related mortality (RR, 0.55; 95% CI, 0.33-0.90; P=.018) and early death during chemotherapy (RR, 0.60; 95%) CI, 0.43-0.83; P=.002). The survival advantage was confirmed in a systematic review by Lyman et al⁷⁵ of 25 randomized controlled trials that involved more than 12,000 patients undergoing chemotherapy with or without G-CSF support. With an average followup of 5 years, G-CSF was associated with a 3.40% reduction in absolute risk and a RR of 0.90 for allcause mortality, although an increased risk for AML and myelodysplastic syndromes (MDS) was observed (see later discussion). The degree of benefit correlated with the chemotherapy dose intensity.

Several randomized trials have also demonstrated improved outcomes with the prophylactic use of tbo-filgrastim for the prevention of FN. One trial randomized 348 patients with breast cancer receiving docetaxel/doxorubicin therapy to either tbo-filgrastim, filgrastim, or placebo.⁷⁶ Tbo-filgrastim was equivalent to filgrastim and superior to placebo in reducing the duration of severe neutropenia and incidence of FN. Two other randomized studies of patients with lung cancer and NHL receiving chemotherapy also reported similar efficacy of tbo-filgrastim and filgrastim,^{77,78} and toxicities were also similar. A meta-analysis of the 3 trials concluded tbo-filgrastim to be noninferior to filgrastim for the reduced incidence of FN, irrespective of the myelotoxicity of the chemotherapy regimen.⁷⁹ Studies in healthy subjects demonstrated similar pharmacokinetic and pharmacodynamic profiles.^{80,81}

MGFs also have associated toxicity risks that have been reported in various studies. Similar toxicities to filgrastim are expected for pegfilgrastim and filgrastim biosimilars, although not all toxicities have been reported with each preparation. To date, the main consistently observed toxicity associated with G-CSF therapy is mild to moderate bone pain in 10% to 30% of patients.^{82–88} This is usually effectively controlled by non-narcotic analgesics.^{82,83} The meta-analysis by Kuderer et al⁸⁹ confirmed a heightened risk of musculoskeletal pain associated with MGFs (RR, 4.03; 95% CI, 2.15–7.52; P<.001).⁷⁴

There have also been reports of rare cases of splenic rupture with G-CSF use, some of which were fatal.⁹⁰⁻⁹⁵ These cases occurred in patients with underlying hematopoietic disorders, patients with solid tumors, and healthy donors of PBPC. The exact mechanism of G-CSF-induced splenic rupture is unknown, but is thought to involve intrasplenic accumulation of circulating granulocytes and myeloid precursors.92 Although G-CSF-induced splenic rupture is rare, it is potentially life-threatening. Therefore, physicians should monitor patients closely for signs of splenic rupture, including abdominal pain (especially in the upper left quadrant), nausea, vomiting, and progressively worsening anemia, in order to prevent a fatal outcome. Prospective studies on health status, baseline spleen size, and CBC count may be required to identify risk factors for rupture in individual patients.94

Additionally, some patients develop allergic reactions involving the skin, respiratory system, or cardiovascular system (filgrastim only). Other warnings from the prescribing information include acute respiratory distress syndrome, alveolar hemorrhage, and hemoptysis.^{82,83,96} Sickle cell crisis, sometimes fatal, has been reported in patients with sickle cell disease, but not those with sickle cell trait.^{97–99} Worsening of amyloidosis after G-CSF administration has been reported; however, this is based on 2 case reports in patients who were already prone to life-threatening complications.^{100,101}

Pulmonary toxicity has been reported following the use of G-CSFs for patients with Hodgkin lymphoma undergoing bleomycin-containing chemotherapy, especially ABVD (doxorubicin, bleomycin, vinblastine, and dacarbazine). An increased risk of bleomycin pulmonary toxicity has been reported with G-CSF use for this disease in a retrospective study of 141 patients.¹⁰² In a systematic review of case reports by Azoulay et al,¹⁰³ 70 cases of G-CSFrelated pulmonary toxicity were identified in patients with cancer and neutropenia. Thirty-six patients had received bleomycin, but most with NHL had also received drugs known to induce pulmonary toxicity (cyclophosphamide and/or methotrexate). The toxicity potential for patients after BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone) is more unclear, although bleomycin is given every 3 weeks in this regimen as opposed to every 2 weeks in ABVD. Conversely, an increase in bleomycininduced pulmonary toxicity has not been reported with G-CSF use in bleomycin-containing chemotherapy regimens for testicular cancer.⁶⁶ Due to the controversy regarding G-CSF use during bleomycincontaining chemotherapy, clinicians should be highly alert to signs and symptoms of pulmonary toxicity. The routine use of G-CSF is not recommended in conjunction with the most common chemotherapy regimens for classical Hodgkin lymphoma (ie, ABVD and Stanford V). Furthermore, 2 studies have shown that ABVD can be safely administered at full dose without G-CSF support.^{104,105} However, due to the high incidence of toxicity and treatment delays, G-CSF support is recommended for patients with Hodgkin lymphoma treated with the escalated BEA-COPP regimen.

Adverse events have also been reported with GM-CSF. An early study of patients with advanced malignancy evaluated side effects after administration of GM-CSF. Adverse reactions were seen in 65% of these patients, although they were not severe and were reversible. These reactions included mild myalgias, facial flushing, low-grade fever, headache, bone

discomfort, nausea, and dyspnea.¹⁰⁶ A side-effect profile of GM-CSF, completed several years later, reported a lower rate of 20% to 30% of patients experiencing mild-to-moderate adverse events, and attributed this decline to improved dosing and delivery.¹⁰⁷

Although uncommon, severe side effects have been reported for GM-CSF; <1% of patients will develop blood clots.¹⁰⁸⁻¹¹⁰ Although blood clots rarely lead to pulmonary embolism or stroke, these lifethreating conditions are possible. There have also been reports in clinical trials of capillary leak syndrome,¹¹¹⁻¹¹³ a condition in which fluids move from the vascular system into the interstitial space, resulting in hypotension and reduced blood flow to internal organs.¹⁰⁸ Although this more commonly occurs with GM-CSF, it has also been reported with G-CSF therapy.^{114,115}

Although there have been suggestions of a potentially increased risk for AML/MDS with MGF administration from epidemiologic studies, this was not observed in individual randomized trials.^{90,116–118} The meta-analysis by Lyman et al⁷⁵ reported an increase in absolute risk of 0.41% and an RR of 1.92 for the development of AML/MDS related to G-CSF. It is not possible from this meta-analysis to determine whether the risk for AML/MDS is secondary to G-CSF or related to the higher total doses of chemotherapy. As discussed earlier, overall mortality was nevertheless decreased. These data mirror an earlier report based on the SEER database that showed an elevated risk for development of AML/MDS in patients receiving either G-CSF or GM-CSF therapy.¹¹⁸ One caveat of the study was that it could not exclude the possibility that the increase was due to the use of growth factors in cases that were more likely to progress into AML/ MDS, regardless of the presence or absence of adjuvant therapy.

The recommendations in these NCCN Guidelines are based on therapeutic efficacy and clinical benefit of treatment. However, in addition to evaluating the clinical benefits and risks of MGF therapy, an increasing number of studies have assessed the financial implications of its use. During the past decade, the costs of inpatient hospitalization have escalated, changing the risk threshold on a pure cost basis from 40% to approximately 20%.²⁵ Economic analyses of MGFs have yielded mixed results, depending on the context of use.^{119–123} Although the addition of MGFs to treatment regimens inevitably increases the drug cost, it may actually equate to substantial savings compared with the cost of hospitalization and subsequent treatment of neutropenia.

Summary

MGFs can be used in the supportive care of patients receiving myelosuppressive chemotherapy to prevent severe complications, such as FN and associated infections, and improve overall quality of life. Prophylactic use of MGFs has been shown to reduce the risk, severity, and duration of chemotherapy-related FN in a variety of cancers. The risk of developing FN is related to the treatment regimen and delivered dose intensity as well as individual patient risk factors, such as increased age (>65 years), comorbidities

References

- Lyman GH, Kuderer NM. Epidemiology of febrile neutropenia. Support Cancer Ther 2003;1:23–35.
- Dale DC. Colony-stimulating factors for the management of neutropenia in cancer patients. Drugs 2002;62(Suppl 1):1–15.
- **3.** Fortner BV, Schwartzberg L, Tauer K, et al. Impact of chemotherapyinduced neutropenia on quality of life: a prospective pilot investigation. Support Care Cancer 2005;13:522–528.
- Dale DC, McCarter GC, Crawford J, Lyman GH. Myelotoxicity and dose intensity of chemotherapy: reporting practices from randomized clinical trials. J Natl Compr Canc Netw 2003;1:440–454.
- 5. US Food and Drug Administration. FDA Medical Imaging Drugs Advisory Committee and the Oncologic Drugs Advisory Committee Advisory Committee Briefing Materials: Available for public release. Tbo-filgrastim. 2013. Accessed July 28, 2016.
- Hirsch BR, Lyman GH. Will biosimilars gain momentum? J Natl Compr Canc Netw 2013;11:1291–1297.
- Food and Drug Administration. Tbo-filgrastim [prescribing information]. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/ label/2012/125294s0000lbl.pdf. Accessed July 28, 2016.
- Farese AM, Cohen MV, Katz BP, et al. Filgrastim improves survival in lethally irradiated nonhuman primates. Radiat Res 2013;179:89–100.
- **9.** Sourgens H, Lefrere F. A systematic review of available clinical evidence filgrastim compared with lenograstim. Int J Clin Pharmacol Ther 2011;49:510–518.
- Dorr RT. Clinical properties of yeast-derived versus Escherichia coliderived granulocyte-macrophage colony-stimulating factor. Clin Ther 1993;15:19–29; discussion 18.
- Moore DC. Drug-induced neutropenia: a focus on rituximab-induced lateonset neutropenia. P T 2016;41:765–768.
- Lyman GH, Lyman CH, Agboola O. Risk models for predicting chemotherapy-induced neutropenia. Oncologist 2005;10:427–437.
- **13.** Aslani A, Smith RC, Allen BJ, et al. The predictive value of body protein for chemotherapy-induced toxicity. Cancer 2000;88:796–803.
- 14. Chrischilles E, Delgado DJ, Stolshek BS, et al. Impact of age and colonystimulating factor use on hospital length of stay for febrile neutropenia in CHOP-treated non-Hodgkin's lymphoma. Cancer Control 2002;9:203– 211.
- **15.** Lyman GH, Dale DC, Friedberg J, et al. Incidence and predictors of low chemotherapy dose-intensity in aggressive non-Hodgkin's lymphoma: a nationwide study. J Clin Oncol 2004;22:4302–4311.
- Lyman GH, Delgado DJ. Risk and timing of hospitalization for febrile neutropenia in patients receiving CHOP, CHOP-R, or CNOP chemotherapy for intermediate-grade non-Hodgkin lymphoma. Cancer 2003;98:2402–2409.

including renal or liver dysfunction, and preexisting infections. Because development of FN can prompt dose reductions or treatment delays, use of MGFs can help ensure the delivery of full dose-intensity chemotherapy on schedule, resulting in improved clinical outcome. However, associated costs have prevented their routine use in all patients receiving myelosuppressive chemotherapy. In addition to the clinical benefits of their prophylactic use, MGFs also have associated toxicities, including bone pain, splenic rupture, allergic reactions, and pulmonary complications. Therefore, selective use of MGFs in patients at increased risk for neutropenic complications may enhance both the safety and cost-effectiveness of these agents.

- Lyman GH, Morrison VA, Dale DC, et al. Risk of febrile neutropenia among patients with intermediate-grade non-Hodgkin's lymphoma receiving CHOP chemotherapy. Leuk Lymphoma 2003;44:2069–2076.
- 18. Morrison VA, Picozzi V, Scott S, et al. The impact of age on delivered dose intensity and hospitalizations for febrile neutropenia in patients with intermediate-grade non-Hodgkin's lymphoma receiving initial CHOP chemotherapy: a risk factor analysis. Clin Lymphoma 2001;2:47–56.
- **19.** Lyman GH, Kuderer NM, Crawford J, et al. Predicting individual risk of neutropenic complications in patients receiving cancer chemotherapy. Cancer 2011;117:1917–1927.
- 20. Smith TJ, Bohlke K, Lyman GH, et al. Recommendations for the use of WBC growth factors: American society of clinical oncology clinical practice guideline update. J Clin Oncol 2015;33:3199–3212.
- 21. Aapro MS, Bohlius J, Cameron DA, et al. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur J Cancer 2011;47:8–32.
- **22.** Vogel CL, Wojtukiewicz MZ, Carroll RR, et al. First and subsequent cycle use of pegfilgrastim prevents febrile neutropenia in patients with breast cancer: a multicenter, double-blind, placebo-controlled phase III study. J Clin Oncol 2005;23:1178-1184.
- 23. Timmer-Bonte JN, de Boo TM, Smit HJ, et al. Prevention of chemotherapyinduced febrile neutropenia by prophylactic antibiotics plus or minus granulocyte colony-stimulating factor in small-cell lung cancer: a Dutch randomized phase III study. J Clin Oncol 2005;23:7974–7984.
- 24. Crawford J, Dale DC, Lyman GH. Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer 2004;100:228–237.
- 25. Lyman GH, Kuderer NM. The economics of the colony-stimulating factors in the prevention and treatment of febrile neutropenia. Crit Rev Oncol Hematol 2004;50:129–146.
- Lyman GH. Risk assessment in oncology clinical practice. From risk factors to risk models. Oncology (Williston Park) 2003;17:8–13.
- 27. Weycker D, Li X, Tzivelekis S, et al. Burden of chemotherapy-induced febrile neutropenia hospitalizations in US clinical practice, by use and patterns of prophylaxis with colony-stimulating factor. Support Care Cancer 2017;25:439–447.
- **28.** Neupogen (filgrastim) [prescribing information]. Thousand Oaks, CA: Amgen; 2016.
- 29. Meropol NJ, Miller LL, Korn EL, et al. Severe myelosuppression resulting from concurrent administration of granulocyte colony-stimulating factor and cytotoxic chemotherapy. J Natl Cancer Inst 1992;84:1201–1203.
- 30. Rowinsky EK, Grochow LB, Sartorius SE, et al. Phase I and pharmacologic study of high doses of the topoisomerase I inhibitor topotecan with granulocyte colony-stimulating factor in patients with solid tumors. J Clin Oncol 1996;14:1224–1235.

- 31. Kaufman PA, Paroly W, Rinaldi D. Randomized double blind phase 2 study evaluating same-day vs. next-day administration of pegfilgrastim with docetaxel, doxorubicin and cyclophosphamide (TAC) in women with early stage and advanced breast cancer. Breast Cancer Res Treat 2004;88:S59.
- 32. Saven A, Schwartzberg L, Kaywin P, et al. Randomized, double-blind, phase 2, study evaluating same-day vs next-day administration of pegfilgrastim with R-CHOP in non-Hodgkin's lymphoma patients [abstract]. J Clin Oncol 2006;24(Suppl 18):Abstract 7570.
- 33. Vance KT, Carpenter J. Same day administration of pegfilgrastim with dose dense doxorubicin in early breast cancer patients [abstract]. J Clin Oncol 2006;24(Suppl 18):Abstract 671.
- 34. Hoffmann PS. Administration of pegfilgrastim on the same day or next day of chemotherapy [abstract]. J Clin Oncol 2005;23(Suppl 16):Abstract 8137.
- 35. Belani CP, Ramalingam S, Al-Janadi A, et al. A randomized doubleblind phase II study to evaluate same-day vs next-day administration of pegfilgrastim with carboplatin and docetaxel in patients with NSCLC [abstract]. J Clin Oncol 2006;24(Suppl 18):Abstract 7110.
- **36.** Lokich J. Same-day pegfilgrastim and chemotherapy. Cancer Invest 2005;23:573–576.
- Schuman SI, Lambrou N, Robson K, et al. Pegfilgrastim dosing on same day as myelosuppressive chemotherapy for ovarian or primary peritoneal cancer. J Support Oncol 2009;7:225–228.
- 38. Whitworth JM, Matthews KS, Shipman KA, et al. The safety and efficacy of day 1 versus day 2 administration of pegfilgrastim in patients receiving myelosuppressive chemotherapy for gynecologic malignancies. Gynecol Oncol 2009;112:601–604.
- Neulasta (pegfilgrastim) [prescribing information]. Thousand Oaks, CA: Amgen; 2015.
- 40. American Society of Clinical Oncology. Letter to CMS regarding "Neulasta administered same day as chemotherapy." 2012. Available at: http://www. wsmos.org/assets/Letter%20to%20CMS%20RAC%20Audit%20on%20 Neulasta%20110912%20lthd.pdf. Accessed July 28, 2016.
- 41. Yang BB, Morrow PK, Wu X, et al. Comparison of pharmacokinetics and safety of pegfilgrastim administered by two delivery methods: on-body injector and manual injection with a prefilled syringe. Cancer Chemother Pharmacol 2015;75:1199–1206.
- 42. Green MD, Koelbl H, Baselga J, et al. A randomized double-blind multicenter phase III study of fixed-dose single-administration pegfilgrastim versus daily filgrastim in patients receiving myelosuppressive chemotherapy. Ann Oncol 2003;14:29–35.
- 43. Watanabe T, Tobinai K, Shibata T, et al. Phase II/III study of R-CHOP-21 versus R-CHOP-14 for untreated indolent B-cell non-Hodgkin's lymphoma: JCOG 0203 trial. J Clin Oncol 2011;29:3990–3998.
- **44.** Hecht JR, Pillai M, Gollard R, et al. A randomized, placebo-controlled phase ii study evaluating the reduction of neutropenia and febrile neutropenia in patients with colorectal cancer receiving pegfilgrastim with every-2-week chemotherapy. Clin Colorectal Cancer 2010;9:95–101.
- 45. Brusamolino E, Rusconi C, Montalbetti L, et al. Dose-dense R-CHOP-14 supported by pegfilgrastim in patients with diffuse large B-cell lymphoma: a phase II study of feasibility and toxicity. Haematologica 2006;91:496–502.
- 46. Burstein HJ, Parker LM, Keshaviah A, et al. Efficacy of pegfilgrastim and darbepoetin alfa as hematopoietic support for dose-dense every-2-week adjuvant breast cancer chemotherapy. J Clin Oncol 2005;23:8340–8347.
- 47. Jones RL, Walsh G, Ashley S, et al. A randomised pilot phase II study of doxorubicin and cyclophosphamide (AC) or epirubicin and cyclophosphamide (EC) given 2 weekly with pegfilgrastim (accelerated) vs 3 weekly (standard) for women with early breast cancer. Br J Cancer 2009;100:305–310.
- 48. Pirker R, Ulsperger E, Messner J, et al. Achieving full-dose, on-schedule administration of ACE chemotherapy every 14 days for the treatment of patients with extensive small-cell lung cancer. Lung 2006;184:279–285.
- 49. Gisselbrecht C, Haioun C, Lepage E, et al. Placebo-controlled phase III study of lenograstim (glycosylated recombinant human granulocyte colony-stimulating factor) in aggressive non-Hodgkin's lymphoma: factors influencing chemotherapy administration. Groupe d'Etude des Lymphomes de l'Adulte. Leuk Lymphoma 1997;25:289–300.
- **50.** Trillet-Lenoir V, Green J, Manegold C, et al. Recombinant granulocyte colony stimulating factor reduces the infectious complications of cytotoxic chemotherapy. Eur J Cancer 1993;29A:319–324.
- Bui BN, Chevallier B, Chevreau C, et al. Efficacy of lenograstim on hematologic tolerance to MAID chemotherapy in patients with advanced soft tissue sarcoma and consequences on treatment dose-intensity. J Clin Oncol 1995;13:2629–2636.

- 52. Chevallier B, Chollet P, Merrouche Y, et al. Lenograstim prevents morbidity from intensive induction chemotherapy in the treatment of inflammatory breast cancer. J Clin Oncol 1995;13:1564–1571.
- 53. Crawford J, Ozer H, Stoller R, et al. Reduction by granulocyte colonystimulating factor of fever and neutropenia induced by chemotherapy in patients with small-cell lung cancer. N Engl J Med 1991;325:164–170.
- 54. Gatzemeier U, Kleisbauer JP, Drings P, et al. Lenograstim as support for ACE chemotherapy of small-cell lung cancer: a phase III, multicenter, randomized study. Am J Clin Oncol 2000;23:393–400.
- 55. Muhonen T, Jantunen I, Pertovaara H, et al. Prophylactic filgrastim (G-CSF) during mitomycin-C, mitoxantrone, and methotrexate (MMM) treatment for metastatic breast cancer. A randomized study. Am J Clin Oncol 1996;19:232–234.
- 56. Osby E, Hagberg H, Kvaloy S, et al. CHOP is superior to CNOP in elderly patients with aggressive lymphoma while outcome is unaffected by filgrastim treatment: results of a Nordic Lymphoma Group randomized trial. Blood 2003;101:3840–3848.
- Pettengell R, Gurney H, Radford JA, et al. Granulocyte colony-stimulating factor to prevent dose-limiting neutropenia in non-Hodgkin's lymphoma: a randomized controlled trial. Blood 1992;80:1430–1436.
- 58. Zinzani PL, Pavone E, Storti S, et al. Randomized trial with or without granulocyte colony-stimulating factor as adjunct to induction VNCOP-B treatment of elderly high-grade non-Hodgkin's lymphoma. Blood 1997;89:3974–3979.
- 59. Burdach SE, Muschenich M, Josephs W, et al. Granulocyte-macrophagecolony stimulating factor for prevention of neutropenia and infections in children and adolescents with solid tumors. Results of a prospective randomized study. Cancer 1995;76:510–516.
- **60.** Eguchi K, Kabe J, Kudo S, et al. Efficacy of recombinant human granulocyte-macrophage colony-stimulating factor for chemotherapy-induced leukopenia in patients with non-small-cell lung cancer. Cancer Chemother Pharmacol 1994;34:37–43.
- 61. Jones SE, Schottstaedt MW, Duncan LA, et al. Randomized double-blind prospective trial to evaluate the effects of sargramostim versus placebo in a moderate-dose fluorouracil, doxorubicin, and cyclophosphamide adjuvant chemotherapy program for stage II and III breast cancer. J Clin Oncol 1996;14:2976–2983.
- 62. Arnberg H, Letocha H, Nou F, et al. GM-CSF in chemotherapy-induced febrile neutropenia—a double-blind randomized study. Anticancer Res 1998;18:1255–1260.
- 63. Gerhartz HH, Engelhard M, Meusers P, et al. Randomized, double-blind, placebo-controlled, phase III study of recombinant human granulocytemacrophage colony-stimulating factor as adjunct to induction treatment of high-grade malignant non-Hodgkin's lymphomas. Blood 1993;82:2329– 2339.
- 64. Rowe JM, Andersen JW, Mazza JJ, et al. A randomized placebo-controlled phase III study of granulocyte-macrophage colony-stimulating factor in adult patients (> 55 to 70 years of age) with acute myelogenous leukemia: a study of the Eastern Cooperative Oncology Group (E1490). Blood 1995;86:457–462.
- 65. Doorduijn JK, van der Holt B, van Imhoff GW, et al. CHOP compared with CHOP plus granulocyte colony-stimulating factor in elderly patients with aggressive non-Hodgkin's lymphoma. J Clin Oncol 2003;21:3041–3050.
- 66. Fossa SD, Kaye SB, Mead GM, et al. Filgrastim during combination chemotherapy of patients with poor-prognosis metastatic germ cell malignancy. European Organization for Research and Treatment of Cancer, Genito-Urinary Group, and the Medical Research Council Testicular Cancer Working Party, Cambridge, United Kingdom. J Clin Oncol 1998;16:716–724.
- 67. Citron ML, Berry DA, Cirrincione C, et al. Randomized trial of dosedense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of nodepositive primary breast cancer: first report of Intergroup Trial C9741/ Cancer and Leukemia Group B Trial 9741. J Clin Oncol 2003;21:1431– 1439.
- 68. Pfreundschuh M, Trumper L, Kloess M, et al. Two-weekly or 3-weekly CHOP chemotherapy with or without etoposide for the treatment of elderly patients with aggressive lymphomas: results of the NHL-B2 trial of the DSHNHL. Blood 2004;104:634–641.
- **69.** Gutierrez M, Chabner BA, Pearson D, et al. Role of a doxorubicincontaining regimen in relapsed and resistant lymphomas: an 8-year followup study of EPOCH. J Clin Oncol 2000;18:3633–3642.
- **70.** Bohlius J, Herbst C, Reiser M, et al. Granulopoiesis-stimulating factors to prevent adverse effects in the treatment of malignant lymphoma. Cochrane Database Syst Rev 2008:CD003189.

- Sung L, Nathan PC, Alibhai SM, et al. Meta-analysis: effect of prophylactic hematopoietic colony-stimulating factors on mortality and outcomes of infection. Ann Intern Med 2007;147:400–411.
- 72. Clark OA, Lyman GH, Castro AA, et al. Colony-stimulating factors for chemotherapy-induced febrile neutropenia: a meta-analysis of randomized controlled trials. J Clin Oncol 2005;23:4198–4214.
- Mhaskar R, Clark OA, Lyman G, et al. Colony-stimulating factors for chemotherapy-induced febrile neutropenia. Cochrane Database Syst Rev 2014:CD003039.
- **74.** Kuderer NM, Dale DC, Crawford J, Lyman GH. Impact of primary prophylaxis with granulocyte colony-stimulating factor on febrile neutropenia and mortality in adult cancer patients receiving chemotherapy: a systematic review. J Clin Oncol 2007;25:3158–3167.
- **75.** Lyman GH, Dale DC, Wolff DA, et al. Acute myeloid leukemia or myelodysplastic syndrome in randomized controlled clinical trials of cancer chemotherapy with granulocyte colony-stimulating factor: a systematic review. J Clin Oncol 2010;28:2914–2924.
- 76. del Giglio A, Eniu A, Ganea-Motan D, et al. XM02 is superior to placebo and equivalent to Neupogen in reducing the duration of severe neutropenia and the incidence of febrile neutropenia in cycle 1 in breast cancer patients receiving docetaxel/doxorubicin chemotherapy. BMC Cancer 2008;8:332.
- 77. Engert A, Griskevicius L, Zyuzgin Y, et al. XM02, the first granulocyte colony-stimulating factor biosimilar, is safe and effective in reducing the duration of severe neutropenia and incidence of febrile neutropenia in patients with non-Hodgkin lymphoma receiving chemotherapy. Leuk Lymphoma 2009;50:374–379.
- 78. Gatzemeier U, Ciuleanu T, Dediu M, et al. XM02, the first biosimilar G-CSF, is safe and effective in reducing the duration of severe neutropenia and incidence of febrile neutropenia in patients with small cell or nonsmall cell lung cancer receiving platinum-based chemotherapy. J Thorac Oncol 2009;4:736–740.
- 79. Engert A, del Giglio A, Bias P, et al. Incidence of febrile neutropenia and myelotoxicity of chemotherapy: a meta-analysis of biosimilar G-CSF studies in breast cancer, lung cancer, and non-Hodgkin's lymphoma. Onkologie 2009;32:599–604.
- Lubenau H, Bias P, Maly AK, et al. Pharmacokinetic and pharmacodynamic profile of new biosimilar filgrastim XM02 equivalent to marketed filgrastim Neupogen: single-blind, randomized, crossover trial. BioDrugs 2009;23:43– 51.
- Lubenau H, Sveikata A, Gumbrevicius G, et al. Bioequivalence of two recombinant granulocyte colony-stimulating factor products after subcutaneous injection in healthy volunteers. Int J Clin Pharmacol Ther 2009;47:275–282.
- 82. Food and Drug Administration. Filgrastim label information. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/103353s5188. pdf. Accessed August 22, 2017.
- 83. Food and Drug Administration. Pegfilgrastim label information. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/ label/2016/125031s184lbl.pdf. Accessed August 22, 2017.
- 84. Bennett CL, Djulbegovic B, Norris LB, Armitage JO. Colony-stimulating factors for febrile neutropenia during cancer therapy. N Engl J Med 2013;368:1131–1139.
- **85.** Kirshner JJ, Heckler CE, Janelsins MC, et al. Prevention of pegfilgrastiminduced bone pain: a phase III double-blind placebo-controlled randomized clinical trial of the university of rochester cancer center clinical community oncology program research base. J Clin Oncol 2012;30:1974–1979.
- **86.** Kubista E, Glaspy J, Holmes FA, et al. Bone pain associated with onceper-cycle pegfilgrastim is similar to daily filgrastim in patients with breast cancer. Clin Breast Cancer 2003;3:391–398.
- 87. Heil G, Hoelzer D, Sanz MA, et al. A randomized, double-blind, placebocontrolled, phase III study of filgrastim in remission induction and consolidation therapy for adults with de novo acute myeloid leukemia. The International Acute Myeloid Leukemia Study Group. Blood 1997;90:4710–4718.
- Kroschinsky F, Holig K, Ehninger G. The role of pegfilgrastim in mobilization of hematopoietic stem cells. Transfus Apher Sci 2008;38:237– 244.
- 89. Kuderer NM, Dale DC, Crawford J, et al. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer 2006;106:2258–2266.
- 90. Tigue CC, McKoy JM, Evens AM, et al. Granulocyte-colony stimulating factor administration to healthy individuals and persons with chronic neutropenia or cancer: an overview of safety considerations from the Research on Adverse Drug Events and Reports project. Bone Marrow Transplant 2007;40:185–192.

- Akyol G, Pala C, Yildirim A, et al. A rare but severe complication of filgrastim in a healthy donor: splenic rupture. Transfus Apher Sci 2014;50:53–55.
- 92. Funes C, Garcia-Candel F, Majado MJ, et al. Splenic rupture in a plasma cell leukemia, mobilized with G-CSF for autologous stem cell transplant. J Clin Apher 2010;25:223–225.
- 93. O'Malley DP, Whalen M, Banks PM. Spontaneous splenic rupture with fatal outcome following G-CSF administration for myelodysplastic syndrome. Am J Hematol 2003;73:294–295.
- 94. Veerappan R, Morrison M, Williams S, Variakojis D. Splenic rupture in a patient with plasma cell myeloma following G-CSF/GM-CSF administration for stem cell transplantation and review of the literature. Bone Marrow Transplant 2007;40:361–364.
- **95.** Watring NJ, Wagner TW, Stark JJ. Spontaneous splenic rupture secondary to pegfilgrastim to prevent neutropenia in a patient with non-small-cell lung carcinoma. Am J Emerg Med 2007;25:247–248.
- D'Souza A, Jaiyesimi I, Trainor L, Venuturumili P. Granulocyte colonystimulating factor administration: adverse events. Transfus Med Rev 2008;22:280–290.
- 97. Adler BK, Salzman DE, Carabasi MH, et al. Fatal sickle cell crisis after granulocyte colony-stimulating factor administration. Blood 2001;97:3313–3314.
- 98. Grigg AP. Granulocyte colony-stimulating factor-induced sickle cell crisis and multiorgan dysfunction in a patient with compound heterozygous sickle cell/beta+ thalassemia. Blood 2001;97:3998–3999.
- 99. Kang EM, Areman EM, David-Ocampo V, et al. Mobilization, collection, and processing of peripheral blood stem cells in individuals with sickle cell trait. Blood 2002;99:850–855.
- 100. Gertz MA, Lacy MQ, Bjornsson J, Litzow MR. Fatal pulmonary toxicity related to the administration of granulocyte colony-stimulating factor in amyloidosis: a report and review of growth factor-induced pulmonary toxicity. J Hematother Stem Cell Res 2000;9:635–643.
- 101. Bashir Q, Langford LA, Parmar S, et al. Primary systemic amyloid light chain amyloidosis decompensating after filgrastim-induced mobilization and stem-cell collection. J Clin Oncol 2011;29:e79–80.
- 102. Martin WG, Ristow KM, Habermann TM, et al. Bleomycin pulmonary toxicity has a negative impact on the outcome of patients with Hodgkin's lymphoma. J Clin Oncol 2005;23:7614–7620.
- 103. Azoulay E, Attalah H, Harf A, et al. Granulocyte colony-stimulating factor or neutrophil-induced pulmonary toxicity: myth or reality? Systematic review of clinical case reports and experimental data. Chest 2001;120:1695–1701.
- 104. Evens AM, Cilley J, Ortiz T, et al. G-CSF is not necessary to maintain over 99% dose-intensity with ABVD in the treatment of Hodgkin lymphoma: low toxicity and excellent outcomes in a 10-year analysis. Br J Haematol 2007;137:545–552.
- 105. Boleti E, Mead GM. ABVD for Hodgkin's lymphoma: full-dose chemotherapy without dose reductions or growth factors. Ann Oncol 2007;18:376–380.
- 106. Herrmann F, Schulz G, Lindemann A, et al. Yeast-expressed granulocytemacrophage colony-stimulating factor in cancer patients: a phase ib clinical study. Behring Inst Mitt 1988:107–118.
- 107. Stern AC, Jones TC. The side-effect profile of GM-CSF. Infection 1992;20(Suppl 2):S124–127.
- **108.** Food and Drug Administration. Sargramostim label information. Accessed July 28, 2016.
- 109. Amato RJ, Hernandez-McClain J, Henary H. Phase 2 study of granulocytemacrophage colony-stimulating factor plus thalidomide in patients with hormone-naive adenocarcinoma of the prostate. Urol Oncol 2009;27:8– 13.
- 110. Winer ES, Miller KB, Chan GW. GM-CSF and low-dose cytosine arabinoside in high-risk, elderly patients with AML or MDS. Oncology (Williston Park) 2005;19:11–14.
- 111. Arning M, Kliche KO, Schneider W. GM-CSF therapy and capillary-leak syndrome. Ann Hematol 1991;62:83–83.
- 112. Al-Homaidhi A, Prince HM, Al-Zahrani H, et al. Granulocyte-macrophage colony-stimulating factor-associated histiocytosis and capillary-leak syndrome following autologous bone marrow transplantation: two case reports and a review of the literature. Bone Marrow Transplant 1998;21:209–214.
- **113.** Emminger W, Emminger-Schmidmeier W, Peters C, et al. Capillary leak syndrome during low dose granulocyte-macrophage colony-stimulating factor (rh GM-CSF) treatment of a patient in a continuous febrile state. Blut 1990;61:219–221.

- 114. Deeren DH, Zachee P, Malbrain ML. Granulocyte colony-stimulating factor-induced capillary leak syndrome confirmed by extravascular lung water measurements. Ann Hematol 2005;84:89–94.
- 115. Vial T, Descotes J. Clinical toxicity of cytokines used as haemopoietic growth factors. Drug Saf 1995;13:371–406.
- **116.** Relling MV, Boyett JM, Blanco JG, et al. Granulocyte colony-stimulating factor and the risk of secondary myeloid malignancy after etoposide treatment. Blood 2003;101:3862–3867.
- **117.** Smith RE, Bryant J, DeCillis A, et al. Acute myeloid leukemia and myelodysplastic syndrome after doxorubicin-cyclophosphamide adjuvant therapy for operable breast cancer: the National Surgical Adjuvant Breast and Bowel Project Experience. J Clin Oncol 2003;21:1195–1204.
- 118. Hershman D, Neugut AI, Jacobson JS, et al. Acute myeloid leukemia or myelodysplastic syndrome following use of granulocyte colony-stimulating factors during breast cancer adjuvant chemotherapy. J Natl Cancer Inst 2007;99:196–205.

- **119.** Cosler LE, Eldar-Lissai A, Culakova E, et al. Therapeutic use of granulocyte colony-stimulating factors for established febrile neutropenia: effect on costs from a hospital perspective. Pharmacoeconomics 2007;25:343–351.
- **120.** Doorduijn JK, Buijt I, van der Holt B, et al. Economic evaluation of prophylactic granulocyte colony stimulating factor during chemotherapy in elderly patients with aggressive non-Hodgkin's lymphoma. Haematologica 2004;89:1109–1117.
- 121. Eldar-Lissai A, Cosler LE, Culakova E, Lyman GH. Economic analysis of prophylactic pegfilgrastim in adult cancer patients receiving chemotherapy. Value Health 2008;11:172–179.
- **122.** Numnum TM, Kimball KJ, Rocconi RP, et al. Pegfilgrastim for the prevention of febrile neutropenia in patients with epithelial ovarian carcinoma--a cost-effectiveness analysis. Int J Gynecol Cancer 2007;17:1019–1024.
- 123. Timmer-Bonte JN, Adang EM, Termeer E, et al. Modeling the cost effectiveness of secondary febrile neutropenia prophylaxis during standarddose chemotherapy. J Clin Oncol 2008;26:290–296.

Panel Member	Clinical Research Support/ Data Safety Monitoring Board	Scientific Advisory Boards, Consultant, or Expert Witness	Promotional Advisory Boards, Consultant, or Speakers Bureau	Date Completed
James O. Armitage, MD	Conatus; and Samus Therapeutics	Samus Therapeutics; and Tersaro Bio, Inc.	Samus Therapeutics; and Tesaro Bio, Inc.	11/13/17
Pamela Sue Becker, MD, PhD	Abbott Laboratories; Amgen Inc.; Bristol-Myers Squibb Company; Glycomimetics; and JW Pharmaceuticals	Caremark LLC; and Pfizer Inc.	None	11/8/17
Douglas W. Blayney, MDª	Amgen Inc.; BeyondSpring Pharmaceuticals; and Creare Engineering	Apobiologix; Heron Pharmaceuticals; Madorra; Mylan; Oncology Learning Center; and TerSera Therapeutics	None	11/1/17
Julio Chavez, MD	None	Incyte Corporation	Abbvie, Inc.; and Janssen Pharmaceutica Products, LP	4/11/17
Jeffrey Crawford, MD	Amgen Inc.; AstraZeneca Pharmaceuticals LP; Bayer HealthCare; BeyondSpring Pharmaceuticals; Celgene Corporation; G1 Therapeutics; Genentech, Inc.; GTx Inc.; Janssen Pharmaceutica Products, LP; Merrimack; Mylan; and Roche Laboratories, Inc.	AstraZeneca Pharmaceuticals LP; Merck & Co., Inc.; and Pfizer Inc.	None	8/31/17
Peter Curtin, MD	Celgene	None	None	12/28/16
Shira Dinner, MD	Astellas US LLC; FLX Bio, Inc.; FORMA Therapeutics; Juno; and MedImmune Inc.	None	None	8/30/17
Thomas Fynan, MD	None	None	None	7/31/17
Ivana Gojo, MD	Amgen Inc.; Merck & Co., Inc.; and Novartis Pharmaceuticals Corporation	None	None	7/20/17
Elizabeth A. Griffiths, MD	Alexion Pharmaceuticals, Inc.; Astex Pharmaceuticals, Inc.; Celgene Corporation; Celldex Therapeutics; Genentech, Inc.; GlaxoSmithKline; Onconova Therapeutics, Inc.; and Seattle Genetics, Inc.	Astex Pharmaceuticals, Inc.; Celgene Corporation; Otsuka, Inc.; and Pfizer Inc.	Alexion Pharmaceuticals, Inc.; and Celgene Corporation	10/9/17
Shannon Hough, PharmD, BCOP	None	None	None	7/24/17
Dwight D. Kloth, PharmD, BCOP ^a	None	Amgen Inc.; Eli Lilly and Company; Heron Therapeutics; Seattle Genetics; and Tesaro Pharmaceuticals	Helsinn	9/26/17
David J. Kuter, MD, DPhil	None	Caremark, LLC	Amgen Inc.	10/2/17
Gary H. Lyman, MD, MPH, FRCP	Amgen Inc.	None	None	7/12/17
Mary Mably, RPh, BCOP	None	Spectrum Pharmaceuticals	None	10/11/17
Sudipto Mukherjee, MD, PhD, MPH	Novartis Pharmaceuticals Corporation	Novartis Pharmaceuticals Corporation	Pfizer Inc.	12/8/16
Shiven Patel, MD	ARIAD Pharmaceuticals, Inc.; and Merck & Co., Inc.	None	None	7/25/17
Lia E. Perez, MD	Novartis Pharmaceuticals Corporation	None	None	7/10/17
Adam Poust, PharmD	None	None	None	9/11/17
Raajit Rampal, MD, PhD	None	None	Gilead Sciences, Inc.; and Incyte Corportation	5/28/17
Vivek Roy, MD	None	None	None	7/24/17
Hope S. Rugo, MD	Eisai Inc.; Eli Lilly and Company; Merck & Co., Inc.; Novartis Pharmaceuticals Corporation; OBI Pharma, Inc.; Macrogenics, Inc.; Plexxikon Inc.; Biotheranostics; Pfizer Inc.; and Roche Laboratories, Inc.	None	None	9/21/17
Ayman A. Saad, MD ^ь	Actinium Pharmaceuticals, Inc.; Astellas; Fate Therapeutics, Inc.; Insysus Therapeutics, Inc.; and Spectrum Pharmaceuticals, Inc.	IMS Consulting Group	None	7/24/17
Lee S. Schwartzberg, MD ^a	Bayer HealthCare; and Spectrum Pharmaceuticals, Inc.	Bristol-Myers Squibb Company; and Caris Life Sciences	Biocept; Helsinn; Merck & Co., Inc.; and Nanostring Technologies	9/21/17
Sepideh Shayani, PharmD, BCOP	None	None	Amgen Inc.	9/5/17
Mahsa Talbott, PharmD	None	None	None	9/14/16
Saroj Vadhan-Raj, MD	Amgen Inc.	Amgen Inc.	Janssen Pharmaceutica Products, LP	11/30/16
Sumithira Vasu, MBBS	Boehringer Ingelheim GmbH; and Pfizer Inc.	None	None	10/16/17
Martha Wadleigh, MD	None	None	None	11/6/17
Peter Westervelt, MD, PhD	Amphivena Therapeutics, Inc.; Cantex Pharmaceuticals; and Incyte Corporation	None	None	5/23/17

The NCCN Guidelines Staff have no conflicts to disclose.

The NCCN Guidelines Staff have no conflicts to disclose.
 ^aThe following individuals have disclosed that they have an Employment/ Governing Board, Patent, Equity, or Royalty: Douglas Blayney, MD: Altero Biosciences; Amgen Inc.; Express Scrips; Johnson & Johnson; Mallinkridt; and United HealthCare Dwight Kloth, PharmD, BCOP, FCCP: Cumberland Lee Schwartzberg, MD, FACP: Caris Life Sciences, and GTx, Inc.
 ^bThe following individuals have disclosed that they have a spouse/domestic partner/dependent potential conflict: Ayman Saad, MD: Incysus Biomedical