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Abstract—The quantitative assessment of cardiac motion is a
fundamental concept to evaluate ventricular malfunction. We
present a new optical-flow-based method for estimating heart
motion from two-dimensional echocardiographic sequences. To
account for typical heart motions, such as contraction/expansion
and shear, we analyze the images locally by using a local-affine
model for the velocity in space and a linear model in time. The
regional motion parameters are estimated in the least-squares
sense inside a sliding spatiotemporal B-spline window. Robustness
and spatial adaptability is achieved by estimating the model
parameters at multiple scales within a coarse-to-fine multiresolu-
tion framework. We use a wavelet-like algorithm for computing
B-spline-weighted inner products and moments at dyadic scales
to increase computational efficiency. In order to characterize my-
ocardial contractility and to simplify the detection of myocardial
dysfunction, the radial component of the velocity with respect to a
reference point is color coded and visualized inside a time-varying
region of interest. The algorithm was first validated on synthetic
data sets that simulate a beating heart with a speckle-like ap-
pearance of echocardiograms. The ability to estimate motion
from real ultrasound sequences was demonstrated by a rotating
phantom experiment. The method was also applied to a set of in

vivo echocardiograms from an animal study. Motion estimation
results were in good agreement with the expert echocardiographic
reading.

Index Terms—Echocardiography, motion estimation, time-
varying deformable model.

I. INTRODUCTION

E
CHOCARDIOGRAPHY is an effective imaging modality
that enables clinicians to study the shape, size, and dy-

namics of the heart. It is noninvasive, relatively inexpensive,
and fairly simple to use. The analysis of ventricular motion,
in particular, provides an efficient means to evaluate the de-
gree of ischemia and infarction [1]–[3]. In clinical practice, the
analysis mainly relies on visual inspection or manual measure-
ments by experienced cardiologists. Manual methods are te-
dious and time consuming, and visual assessment leads to qual-
itative and subjective diagnoses that suffer from a considerable
inter- and intra-observer variability. Therefore, an automated,
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computer-based analysis is highly desirable to obtain more ob-
jective and quantitative diagnoses.

Several approaches have been proposed to quantify heart
motion from two-dimensional (2-D) echocardiograms. One
approach consists of segmenting and tracking myocardial
borders using active contours [4]–[6] or active appearance
models [7]. However, motion information is only obtained for
myocardial borders which are often poorly defined, especially
in the case of the epicardial border. A different approach is
to estimate motion for the entire image content; optical flow
methods, in particular, have led to promising results: Mailloux
et al. [8] extended the optical flow algorithm of Horn–Schunk
[9] by adding a linearity constraint to the motion field. Zini
et al. [10] added an additional incompressibility constraint. A
popular optical flow algorithm is the Lucas–Kanade method
[11], which estimates the motion locally, assuming that the
velocity field is constant within a window. This method was
applied to ultrasound by Chunke et al. [12]. An evaluation of
different optical flow methods applied to echocardiograms can
be found in [13].

In this paper, we propose a novel optical-flow-based algo-
rithm that is tuned for the analysis of ventricular wall motion
from dynamic B-mode echocardiograms. Inspired by the
Lucas–Kanade method [11], we use a local motion model
inside a sliding spatiotemporal window. We use a local-affine
model for the velocity in space that allows to describe typical
heart motions such as rotation, contraction/expansion and
shear. The motion parameters are estimated in the weighted
least-squares sense inside the sliding spatiotemporal window.
Instead of working at a fixed scale, we consider estimation win-
dows of increasing sizes and develop a multiresolution strategy
to improve the estimation of large motions and to reduce the
sensitivity to noise. We introduce a B-spline weighting scheme
that has important computational advantages for multiscale pro-
cessing. In particular, we develop a wavelet-like multiresolution
implementation. We also add a temporal linear component to
our motion model. This leads to a more robust motion estima-
tion which combines the information from multiple frames.
It also yields an additional acceleration parameter—a useful
indicator of heart dynamics.

Since the estimated velocity data itself is not of direct use
for the clinician, it has to be processed and visualized properly
to facilitate the diagnosis. In order to focus on the relevant re-
gions of the heart, the motion information is only displayed in-
side a user-defined region of interest (ROI) that typically cor-
responds to the myocardium. In order to follow the movement
of the myocardium, the ROI contour is automatically tracked
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in time by using the estimated velocity field. Robustness of the

tracking process is achieved by using a spline representation of

the ROI contours that is fitted in the least-squares sense to the

estimated motion field. To extract myocardial contractility in-

formation from the overall motion field, we compute the radial

component of the estimated velocity field with respect to the

ROI centroid (center of gravity). This radial velocity compo-

nent is then color coded and superimposed on the original image

sequence in a semitransparent fashion that is similar to tissue

Doppler imaging. The color display allows a more intuitive and

simplified identification of regions with abnormal motion pat-

terns. As additional information, the motion trajectory of the

ROI centroid, the principal axes of inertia and the area size of

the ROI can also be displayed.

The paper is organized as follows. We describe the motion

estimation algorithm in Section II. The ROI tracking and radial

motion visualization is presented in Section III. The algorithm

is validated in Section IV. First, we apply it to synthetic data

that simulates the characteristics of a beating heart and compare

it with alternative motion estimation approaches. In particular,

we test its robustness by simulating the ultrasonic image forma-

tion to generate characteristic speckle noise. Second, we demon-

strate the ability of the proposed method to analyze motion from

real echocardiograms by performing an experiment with a tissue

mimicking phantom that is described in Section IV-B. Finally,

in Section IV-C, we validate the algorithm on a set of clinical

echocardiograms obtained from an animal study. Data sets that

were acquired before and after an artificially induced infarction

were analyzed and compared.

II. LOCAL-AFFINE, MULTISCALE MOTION ESTIMATION

Several methods have been proposed to quantify heart motion

from 2-D echocardiograms. Special attention has been paid to

optical flow methods which have led to promising results [13].

Gradient-based optical flow estimation relies on the assumption

that the intensity of a particular point in a moving pattern does

not change with time. Let denote the intensity of pixels

at location and time in an image sequence. The

constant intensity assumption can be expressed as [9]

(1)

where , , and denote the spatial and temporal derivatives

of the image intensity. To obtain accurate numerical derivative

estimates, we use cubic spline interpolation [14] in space and

time. The velocities and are, respectively, the and com-

ponents of the optical flow that we wish to estimate. Since (1) is

a single equation in two unknowns and , it cannot be solved

uniquely without introducing additional constraints.

A. Local-Affine Velocity in Space Time

A popular optical flow algorithm is the Lucas–Kanade

method [11], which was applied to ultrasound in at least two

studies [13], [12]. The method estimates the motion locally as-

suming it to be constant within a spatial window. Since typical

heart motions are given by rotation, expansion, contraction,

and shear, we use a local-affine model for the motion in space.

Additionally, we introduce a linear model for the velocity along

the time direction. This allows us to capture local accelerations

in time better than by a locally constant model. Another ad-

vantage is that we can base our estimation on multiple frames

around a given time point which is more robust than using only

two frames as many classical optical flow methods do. Let

denote the center of a small spatiotemporal image

region . Then the spatiotemporal-affine model is defined as

(2)

The parameters and correspond to the velocity at the

center point ; , , , , , and are the first

order spatial and temporal derivatives of and , respectively.

The derivatives are assumed to be constant within the local

neighborhood.

The submatrix of spatial derivatives

describes the local variation of the velocity field in space. It can

be decomposed into two terms such that , where

and

The antisymmetric matrix corresponds to a rigid, rotational

velocity field that leaves the local tissue area unchanged. The

angular velocity is given by , which is equal

to one half of the curl of the velocity field. The second, sym-

metric term accounts for the deformation of the heart tissue,

both contraction/expansion and shear. The components on the

principal diagonal describe a dilation along the coordinate axes,

whereas the off-diagonal components correspond to a shearing.

We estimate the motion components at by mini-

mizing the weighted least-squares criterion

(3)

The symmetric window function gives more weight to

constraints at the center of the local spatiotemporal region than

to those at the periphery. A well-suited window function is

, where is the symmetrical

B-spline of degree [14]. B-splines rapidly converge to

Gaussians when their degree increases, which ensures isotropy

of the window in multiple dimensions. Varying the B-spline

degree also allows to change the size of the window function.

Additionally, the B-splines satisfy a two-scale equation which

leads to an efficient computation of B-spline-weighted inner

products at dyadic scales by using a wavelet-like algorithm (cf.

Section II-B).

By differentiating (3) with respect to each of the eight un-

known parameters, we obtain a symmetric linear system

in terms of local moments of the spatial and temporal deriva-

tives of , as defined in (9). The coefficients of this system of
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equations at a given position are of the form shown

in (4) at the bottom of the page, where and

represents the functions , , , , or .

B. Multiresolution Moments Computation

It is obviously difficult to estimate large motions at fine scales.

Small window functions may lead to aliasing artifacts if the mo-

tion is large. To reduce this problem, we apply a coarse-to-fine

strategy in space. At each spatial scale , we use dilated and

shifted versions of the window function

(5)

The window functions at scale are dilated by the factor .

They are spaced at a distance of pixels which corresponds

to a subsampling of the inner products (4) by in the spa-

tial dimensions. Computing inner products with large windows

is computationally expensive; however, inspired by the frame-

work of wavelets [15], [16], we have developed a multichannel,

Mallat-like algorithm to compute the local moments (4) recur-

sively within a multiresolution framework [17]. Since B-splines

satisfy a two-scale equation [14], the relevant moments at suc-

cessive scales can be computed iteratively as

(6)

The one-dimensional two-scale filters

(7)

are scaled versions of basic filters and are applied sepa-

rately in the - and directions. The corresponding two-scale

filters for the cubic B-spline up to order

are given in Table I. Practically, this means that the moments

are first computed at the finest scale (initialization) and that the

counterparts at successive coarser scales are obtained by mul-

tichannel filtering and summation as in (6). For further details,

we refer to [17].

C. Coarse-to-Fine Multiscale Strategy

Our coarse-to-fine multiresolution strategy is sketched in

Fig. 1 and works as follows. First, the local linear system (9) is

set up and solved at each spatiotemporal position of the sliding

window at the coarsest spatial scale. The motion vectors are

TABLE I
TWO-SCALE FILTERS h UP TO ORDER p = 2 FOR �

Fig. 1. Coarse-to-fine multiscale strategy in space.

then transferred to the next finer resolution level as initial esti-

mates by using linear interpolation to obtain parameter values

on intermediate grid locations. The transferred parameters are

then re-estimated if the coarser-scale motion does not already

exceed a scale-dependent size. A coarser-scale estimate is

replaced only if the following conditions are met.

1) The local linear system has to be well conditioned, i.e.,

the condition number is below a predefined limit. Its size

corresponds to the level above which a linear system is

considered to be singular. In the experiments, the value is

2000.

2) The normalized residual error

(8)

is smaller than the corresponding one at the next coarser

scale.

3) The length of the estimated central motion vector does

not exceed a scale-dependent limit [see (9) at the bottom

of the next page].

A motion estimate is set to zero if the local average of the time

derivative is smaller than a predefined noise level.

As a final step, we fit a spatiotemporal B-spline model to the

discrete output at the finest scale to obtain a global, continuous

representation of the velocity field.

(4)
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III. ROI TRACKING AND MOTION VISUALIZATION

Since the motion is estimated for the complete sequence, the

information of interest needs to be extracted and displayed in

a proper way to facilitate the identification of wall motion ab-

normalities. Therefore, we compute radial velocity information

from the estimated velocity field and visualize it inside a time-

varying ROI. For each frame, the ROI is defined by a set of

closed spline curves (typically, the inside and outside of the my-

ocardium). For a given time , each spline curve is parameter-

ized as in terms of the variable . In par-

ticular, we represent as a linear combination of B-spline

basis functions [14]

(10)

The integer denotes the degree of the B-spline and

denotes a sequence of vector spline coefficients given by

. The basis functions are dilated and

shifted by some integer meaning that spline knots on the

curve are located at distance . Since the curves are closed,

the sequence of spline coefficients is periodic with some

period length . To track a curve in time, we compute a

series of sample points , , at integer

distance on the curve. For these sample points, we compute

the displacement from the continuous spline representation of

the velocity field. By adding the displacements to the current

position of the sample points, we obtain their position

(11)

in the next frame , as shown in Fig. 2. To obtain a robust

tracking, we approximate the displaced sample points by

the spline model (10) that has degrees of freedom, i.e., the

spline coefficients , . These spline co-

efficients are determined by minimizing the least-squares ap-

proximation error

(12)

The choice of the parameter determines the tradeoff between

closeness to the sample points and smoothness of the spline

Fig. 2. ROI tracking by least-squares B-spline fitting to the estimated motion
field.

curve. An efficient filter-based approach to compute the spline

coefficients is described in [18], [19]. The set of obtained spline

curves then defines the ROI at time . To initialize the

tracking process, the observer outlines the ROI by placing land-

marks on the first frame of the image sequence. The user-defined

landmarks are then used to obtain the initial spline curve. The

corresponding spline coefficients in (10) are determined

such that the curve exactly interpolates the landmarks .

Having computed the ROI for each frame, we compute the

centroids (centers of gravity), the areas, and the principal axes of

inertia of the ROIs. These parameters can be computed exactly

from the spline representation of the contours [20]. The velocity

field of each frame is then projected onto the radial direction de-

fined with respect to the centroid of the ROI of a particular frame

(end diastolic or end systolic). Optionally, the velocity can also

be projected onto the floating centroid of the ROI. In this case,

the global translational motion of the ventricle is compensated

by subtracting the velocity of the floating centroid from the esti-

mated overall velocity. The choice of the optimal centroid (fixed

versus floating) depends on the conditions under which the heart

is imaged. Under conditions where excessive translation of the

heart occurs, such as might be the case after cardiac surgery, a

floating centroid approach would be more appropriate.

Inside the time-varying ROI, we color code the radial velocity

using a similar color map as in tissue Doppler imaging (TDI).

The color-coded velocity is then superimposed on the under-

lying image sequence in a semitransparent fashion. The color

(9)
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display corresponds directly to myocardial contractility and al-

lows to identify regions of abnormal motion more easily. The

motion trajectory of the centroids, the principal axes of inertia

and area-size of the ROIs can also be displayed. The movement

of the ROI centroid allows to identify and quantify an under-

lying rigid translation of the myocardium. The motion of the

principal axes of inertia allows to identify a global ventricular

rotation (heart twisting).

To improve thecontour tracking accuracy further, theproposed

method may be combined with active contour techniques.

However, most of these techniques are based on the detection

of strong edges or ridges which do not necessarily correspond

to the expert-defined ROI. Furthermore, the transition between

the epicardial border and the surrounding tissue is usually

very smooth and requires a more adapted definition of cardiac

borders. The combination with trainable shape models may

also improve the performance, but requires a large set of

normalized training examples that also includes a variety of

cases with abnormal motion. We did not consider these options

here.

IV. NUMERICAL RESULTS

For validation purposes, the algorithm was tested in three dif-

ferent ways. First, it was applied to synthetic data and com-

pared to other motion estimation methods. Second, we analyzed

echocardiograms of a rotating phantom. Third, the algorithm

was applied to a set of clinical echocardiograms.

A. Application to Synthetic Data

A quantitative analysis of the performance of the algorithm

is done on synthetic sequences for which the exact motion field

is known.

1) Modeling of Echographic Texture: In order to simulate

the appearance of clinical echo images, we use the linear image

formation model of [21] and [22]. The model assumes that the

echographic radio-frequency signal can be described

by a spatial convolution between the system point spread

function (PSF), , and the impulse response of the tissue

(13)

The tissue is modeled as a collection of point scatterers

with 2-D normally distributed random echogenicity. The speed

of sound throughout the tissue is assumed to be constant. The

PSF is assumed to be space invariant with zero attenuation in

the case of an adequately adjusted gain control. In particular,

we use the Gabor function

(14)

where and correspond to the axial and lateral dimension

of the PSF, respectively. The parameter denotes the acoustic

spatial frequency in axial direction. In order to simulate the ra-

dial propagation of the ultrasound beam, we divide the image

plane into radial segments along the directions ,

Fig. 3. (a) Frame of synthetic ultrasound sequence and (b) corresponding
estimated velocity field.

. The oriented filter in each segment

is obtained from the basic filter via the coordinate transforma-

tion

(15)

(16)

The resulting B-mode images are given by the modulus (enve-

lope) of the complex echographic radio-frequency signal. The

B-mode image gray level histogram has a Rayleigh distribu-

tion which is also known as “fully formed” speckle. In this ex-

periment, we have used the parameter set ,

, , and .

2) Modeling of Heart Motion: In this study, we simulate an

apical short-axis view of a heart. For simplicity, we consider

a circular heart model and simulated a periodic displacement

field that maintains the area of the myocardium constant. This

is achieved by applying a radial displacement field with a

magnitude decreasing with the distance from the center. This

displacement field is cosine modulated in time to simulate

the expansion and contraction. This kind of motion reflects

the wall thinning and thickening of a beating heart during

diastole and systole. Additional to the myocardial excursion,
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Fig. 4. Average angular and amplitude errors of different methods for different SNRs of the point-scatterer images. (a) Average angular error. (b) Average
amplitude error.

the heart model is translated toward the upper-right direction

to simulate an underlying rigid motion. The known motion

field is applied to the initial point scatterer image to obtain a

sequence of warped images. The dynamic model was set such

that the maximum velocity per frame is 2.0 pixels. In order

to simulate additional changes of the scatterer echogenicity

that are not caused by motion, we added normally distributed

zero-mean white noise to each frame of the warped image

sequence. This models, for example, echogenicity changes that

are caused by blood flow. This is a simplified, not entirely

realistic noise model, but allows us to test the robustness of the

algorithms. The final echo sequence is computed by applying

the image formation process described above to each frame

of the perturbed point scatterer images. As an example, one

frame of a 32-frame test sequence is shown in Fig. 3(a). In

this case, the signal-to-noise ratio (SNR) of the point-scatterer

images is 13.98 dB.

3) Motion Estimation Results: The applied motion field was

estimated by the algorithm from the simulated B-mode images.

As an example, the corresponding estimated velocity field of

Fig. 3(a) is shown in Fig. 3(b). The performance of the algo-

rithm was tested on sequences that were obtained from point

scatterer images of different SNRs. The method was compared

with the Lucas–Kanade [11] and the Horn–Schunk [9] optical

flow methods. For the Lucas–Kanade method, we have used the

same parameter set as proposed in [23]. For the Horn–Schunk

method, we performed, at most, 250 steps of the iterative al-

gorithm and used a range of regularization parameters

. All sequences were prefiltered in space with a Bi-

nomial filter of variance . The experiments were per-

formed on a 400-MHz Macintosh G4 computer. The computa-

tion time of the proposed algorithm applied to the test sequences

[32 (256 256)-frames] was 44 s. To assess the performance of

these algorithms, we used two error measures. The first is the

angular error between the estimated velocity and the exact

velocity which is given by

(17)

TABLE II
ERROR MEASURES OF DIFFERENT OPTICAL FLOW METHODS

This error measure does not depend on the magnitude of the

motion vectors but describes the directional error of the motion

vectors. The second is the relative error of the velocity magni-

tude which is calculated as

(18)

The mean errors and and their corresponding standard devi-

ations were computed by averaging over all pixels in the image

sequence.

To test the accuracy of the different methods, they were first

applied to echo sequences that were obtained from point scat-

terer images without additional noise. The resulting errors are

summarized in Table II. The worst method is the Lucas–Kanade

method. This is due to the fact that the diverging character of

the motion field is not compatible with the local constancy as-

sumption and that it works only at a single scale. The method

of Horn–Schunk performs better with respect to the angular

error measure. Table II shows the lowest possible angular error

for the Horn–Schunk method that was obtained for the regu-

larization parameter . However, the regularization pa-

rameter depends on the image sequence and the best choice is

not known a priori. Moreover, an increase of the regulariza-

tion parameter leads to biased velocity estimates toward lower

values which is reflected by the relatively high-amplitude error

for . Low values for reduce the
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bias but lead to an increased directional error. The spatiotem-

poral-affine method performs best since it is well adapted to the

underlying motion pattern.

The robustness of the algorithms in the presence of addi-

tional scatterer noise is illustrated in Fig. 4. The algorithms were

applied to echo sequences that were obtained from point scat-

terer images of SNRs varying from 26.02 to 13.98 dB. Fig. 4(a)

shows the average angular errors of the three methods. For each

noise level, we have chosen the regularization parameter of the

Horn–Schunk method such that the error was minimal. The cor-

responding amplitude errors are illustrated in Fig. 4(b). The

Lucas–Kanade method is the most sensitive one, whereas the

Horn–Schunk method performs reasonably well if the regular-

ization parameter is chosen properly. The spatiotemporal-affine

algorithm performs best with respect to both error measures

because the multiresolution strategy and the use of a temporal

window provide increased robustness against noise. However, it

can be shown in general that the least-squares method, as used

in (9), yields estimates that are biased toward smaller values if

the data matrix contains noise [24]. This can also be observed

from the experiments by computing the relative bias

(19)

The mean bias , averaged over the whole image sequence,

was calculated for each noise level. The underestimation grows

with increasing noise level and ranged from 1.7% to 11.4%. To

demonstrate the influence of the bias to the amplitude error (18),

we recalculated it after correcting the velocity estimates by the

average bias such that

(20)

The resulting amplitude error is also plotted in Fig. 4(b); it is

smaller than in the noncorrected case, confirming our obser-

vation. A more systematic way to correct for the bias is given

by the total least-squares (TLS) technique [24], [25]. However,

this technique requires the knowledge of the noise covariance

of a system matrix that is composed by the original data ma-

trix and the right hand side vector. Its estimation is challenging

if the sample sizes are small and if an accurate noise model is

not known. Our experiments with the TLS method (not reported

here) were not satisfactory. Of all the techniques we tried, the

proposed least-squares fit of the spatiotemporal-affine motion

model in combination with the bias correction (20) performed

best.

The experiments demonstrate the robustness of the proposed

algorithm in the case of a simple ultrasound imaging model.

More realistic simulations should, perhaps, consider a nonlinear

model for the image formation and a tissue model that reflects

the heart anatomy, such as fiber directions and the nonunifor-

mity of the speed of sound, more closely. However, these prop-

erties are difficult to simulate which calls for alternative valida-

tion methods, such as phantom experiments.

4) Radial Motion Visualization: For radial motion visual-

ization, the estimated velocity was projected onto the direction

Fig. 5. Synthetic ultrasound sequence and superimposed color-coded radial
velocity. (a) Radial velocity during systole. (b) Radial velocity during diastole.

to the floating centroid of the ROI to compensate for the under-

lying translational motion. The color-coded radial velocities for

the example sequence are shown in Fig. 5(a) and (b) for systole

and diastole, respectively. The uniform contraction during sys-

tole is clearly expressed by the red/yellow colors. On the other

hand, the expansion during diastole is correctly displayed by

the blue/green colors. The color display is more intuitive than

the velocity field representation and is not distorted by the un-

derlying global translation. The ROI also clearly tracks the my-

ocardium and the circular form of the ROI contours is main-

tained due to the least-squares fitting to the estimated noisy mo-

tion field.
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Fig. 6. (a) One frame of the rotating phantom sequence and (b) its
corresponding estimated velocity field

B. Phantom Study

The algorithm’s ability to estimate motion from real

echocardiograms was tested in a phantom experiment. A

cylinder-shaped, tissue-mimicking phantom was placed inside

a tube of water and rotated with constant angular velocity

around its longitudinal axis. The gelatine phantom had a diam-

eter of 7.5 cm and was made out of a 2% agar-agar solution

containing randomly dispersed scatterers ranging from 50 to

250 m. Echocardiograms of a 2-D cross section orthogonal

to the axis of rotation were acquired and analyzed by the

algorithm. Fig. 6(a) shows one frame of a rotating phantom

echocardiogram and Fig. 6(b) shows its corresponding es-

timated velocity field. Since the applied motion is purely

rotational, the velocity magnitude increases linearly with the

radius. To test this relationship for the estimated velocity field,

we computed local means and standard deviations of the ve-

locity field along annuli of different radii. We then fitted a linear

regression line to these mean velocities as shown in Fig. 7. The

coefficient of determination is 0.993 which confirms the linear

relationship. The slope of the regression line corresponds to the

estimated angular velocity. The estimated value was 0.0727 rps,

whereas the true angular velocity applied to the phantom was

Fig. 7. Means and standard deviations of the estimated velocity field for fixed
radii are plotted together with its linear regression line.

Fig. 8. Standard definition of left ventricular segments for 2-D
echocardiography. Regions of blood supply by the different coronary arteries
are marked accordingly.

0.0796 rps. This corresponds to an underestimation of 8.7%.

This experiment can also serve as a calibration tool to determine

the factor for the bias correction of the motion estimates as

proposed in (20).

C. Application to Clinical Data

For a first in vivo validation, we applied the method to a set

of clinical echocardiograms that were obtained from an animal

study. We analyzed ultrasound sequences of six dogs with in-

farctions that were artificially induced by the occlusion of the

left anterior descending artery (LAD). Fig. 8 shows a standard-

ized division of the left ventricle into 16 segments according

to the American Heart Association [26]. Regions that depend

on the left anterior descending artery blood supply are also in-

dicated. Echocardiograms were acquired in an open-chest state

before and after the infarction. Since the infarction was caused

manually, the exact localization and extend is known and a di-

rect comparison between normal and pathological cases is pos-

sible. For one case, two frames of a long-axis view (LAX) be-

fore the infarction are shown in Fig. 9(a) and (c) for systole and
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Fig. 9. Echocardiograms with superimposed motion information before infarction. The velocity fields and colors reflect the normal contraction and expansion
during systole and diastole. (a) Estimated velocity field during systole. (b) Color-coded radial velocity during systole. (c) Velocity field during diastole. (d)
Color-coded radial velocity during diastole. The principal axes of inertia of the ROI are indicated by dotted lines.

diastole, respectively. The corresponding motion estimation re-

sults are superimposed in the form of a needle diagram. The typ-

ical ventricular contraction and expansion of a normal beating

heart during systole and diastole is clearly captured by the esti-

mated motion fields. Fig. 10 shows the status after the infarction.

Fig. 10(a) and (c) correspond to a frame during systole and di-

astole, respectively. In both figures, the dyskinesia (paradoxical

motion) in the apical to mid anteroseptal segments (upper-right

region) is correctly captured by the motion field; during sys-

tole, the affected segments move outwards due to the inner blood

pressure, whereas they move inwards during diastole.

The color-coded display of the radial velocity confirms the

observations obtained from the motion fields, but can be inter-

preted in a more straightforward way. The color-coded radial

velocity of the example case before the infarction is shown in

Fig. 9. Fig. 9(b) and (d) show the corresponding frames during

systole and diastole, respectively. In all cases, the velocity was

projected onto a fixed reference point that is given by the ROI

centroid at end diastole. The regular contraction of the whole

myocardium during systole is indicated by the red/yellow

colors, whereas the blue/green colors reflect the normal ex-

pansion during diastole. The color-coded radial velocity after

the infarction is shown in Fig. 10. In Fig. 10(b), the outward

motion of the apical to mid anteroseptal segments (upper-right

region) during systole is correctly visualized by the blue/green

colors. The infarction also causes an outward movement of

the basal posterior (lower left) segment. Fig. 10(d) shows

the pathological motion during diastole. Here, the red/yellow

colors indicate that the apical to mid anteroseptal segments

(upper-right region) move inwards instead of outwards as in

the normal case. Accordingly, the basal posterior (lower left)

segment also moves inwards.

1) Segmental Wall Motion Analysis: For all six cases, we

compared peak radial velocities of myocardial segments during

systole before and after the infarction. In particular, we ana-

lyzed segments that were classified as dyskinetic by the expert.

Since, during systole, the ventricle is contracting (negative ra-

dial velocity), a normal beating heart does not exhibit significant

positive radial velocities. However, dyskinetic segments expand

during systole and show significant positive values. In this ex-

periment, eight segments out of a total of 36 were classified as

dyskinetic by the expert. The average of the measured positive

peak radial velocities in these dyskinetic segments is

cm/s. In contrast, the average peak velocity in these seg-

ments before the infarction was cm/s. A paired

t-test shows a significant difference between the two states

. Although differences are clearly significant for the dysk-

inetic case, the distinction between normal, akinetic (no mo-

tion), and hypokinetic (very little motion) cases is not so well

defined. Statistical evidence in these cases could not be estab-

lished since the experiment only included six hearts that also

show a variation in velocities before the infarction. To perform
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Fig. 10. Echocardiograms with superimposed motion information after infarction. (a) Estimated velocity field during systole. (b) Color-coded radial velocity
during systole. (c) Velocity field during diastole. (d) Color-coded radial velocity during diastole. Regions with abnormal wall motion (dyskinesia) are highlighted
by red arrows. The principal axes of inertia of the ROI are indicated by dotted lines.

a meaningful statistical study with a higher number of infarct

categories, a larger number of cases needs to be analyzed.

2) ROI Tracking Validation: The motion estimation algo-

rithm in combination with the automatic contour tracking was

also validated by comparing it to the manual contour tracking by

an expert. Since the epicardial border is, in general, not clearly

defined and is only partially imaged in our test sequences, the

validation is performed by tracking the endocardial border of

the left ventricle. In all 12 test sequences, an expert, who was

blind to the computer analysis, outlined the contours of the en-

docardial border at the end-diastolic and end-systolic frames, re-

spectively. Each contour was defined by a set of landmarks that

were interpolated by a cubic B-spline curve. In this experiment,

the curves were not closed, but the two landmarks at the mitral

valve attachment were connected by a straight line to define an

endocardial area. The manually defined B-spline contour at end

diastole was then tracked by the algorithm to end systole. We

calibrated the system and used a constant bias correction factor

in all experiments. Fig. 11(a) and (c) show one example of the

manually determined contours (green line) at end diastole and

end systole, respectively. The automatically tracked contour is

shown in Fig. 11(b) and (c) for mid systole and end systole, re-

spectively (white line). The areas that are enclosed by the man-

ually determined contours at end diastole and end systole are

denoted by the characteristic functions and , respec-

tively. The area defined by the automatically tracked contour at

end systole is denoted as . By calculating the area size of a

characteristic function as

(21)

we define the manually determined area ejection fraction as

. Accordingly, we

denote the computer-based area ejection fraction by

. The area ejection fraction

can be interpreted as the 2-D analog of the volumetric ejec-

tion fraction [27] and relates the endocardial area before and

after the contraction phase (systole). To compare the automat-

ically tracked contours with the expert standard, we compute

two error measures. The first is the relative ejection fraction

error . Let de-

note the area size of the characteristic function that describes

the region where the end-systolic manual and computer-based

masks do not coincide. Then, the second error measure

corresponds to the relative size of

the area, where the manual and computer-defined masks do not

overlap. In this experiment, the average area error was deter-

mined as and the area-ejection frac-

tion error was . To determine the vari-

ability of the expert contour tracking, the contours at end systole

were outlined a second time by the observer. The same error
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Fig. 11. Comparison between manual and automatic contour tracking. The initial manually defined contour at end diastole is automatically tracked to end systole
and compared with the manual result. (a) Manually defined contour at end diastole. (b) Automatically tracked contour at mid systole. (c) Manually defined contour
(defined by landmarks) and automatically tracked contour at end systole. (d) Endocardial area at end systole for which the manual and computer-based masks do
not coincide.

measures as in the manual/computer comparison were calcu-

lated. The intra-observer error for the end-systolic area was de-

termined as and the intra-observer area

ejection fraction error was . These re-

sults show that the motion estimation algorithm yields realistic

results and that the contours are sufficiently well tracked to pro-

vide a time-varying ROI for further post processing and motion

visualization.

V. CONCLUSION

We proposed a new method to estimate heart motion from

echocardiograms that uses a local motion model that is particu-

larly well adapted to typical heart dynamics. The method is fast

and robust due to a wavelet-like multiresolution implementa-

tion. For visualization purposes, we developed a robust method

to track a ROI in time. Inside the time-varying ROI, we superim-

pose a color-coded radial velocity component onto the echocar-

diogram that allows to directly identify and quantify myocar-

dial contractility. The algorithm outperforms other methods on

simulated data; its applicability to real echocardiograms was

demonstrated by a phantom experiment. A first validation of

the proposed method on clinical echocardiograms yielded real-

istic motion fields. We also verified that the estimated regional

wall motion was in good agreement with the expert echocardio-

graphic reading.

REFERENCES

[1] P. R. Hunziker, M. H. Picard, N. Jander, M. Scherrer-Crosbie, M.
Pfisterer, and P. T. Buser, “Regional wall motion assessment in
stress echocardiography by tissue Doppler bull’s-eyes,” J. Amer. Soc.

Echocardiograph., vol. 12, no. 3, pp. 196–202, Mar. 1999.
[2] A. E. Weyman, Principles and Practice of Echocardiography, 2nd

ed. Philadelphia, PA: Lea & Febiger , 1994.
[3] M. Sonka and J. Fitzpatrick, Eds., Handbook of Medical

Imaging. Bellingham, WA: SPIE, 2000, vol. 2, Cardiac Image
Analysis: Motion and Deformation, ch. 12.

[4] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour
models,” Int. J. Comput. Vis., vol. 1, pp. 321–332, Jan. 1988.

[5] V. Chalana, D. Linker, D. Haynor, and Y. Kim, “A multiple active
contour model for cardiac boundary detection on echocardiographic
sequences,” IEEE Trans. Med. Imag., vol. 15, no. 6, pp. 290–298, Jun.
1996.

[6] G. Jacob, J. Noble, C. Behrenbruch, A. Kelion, and A. Banning, “A
shape-space-based approach to tracking myocardial borders and quan-
tifying regional left-ventricular function applied in echocardiography,”
IEEE Trans. Med. Imag., vol. 21, no. 3, pp. 226–238, Mar. 2002.

[7] J. Bosch, S. Mitchell, B. Lelieveldt, F. Nijland, O. Kamp, M. Sonka, and
J. Reiber, “Automatic segmentation of echocardiographic sequences by
active appearance motion models,” IEEE Trans. Med. Imag., vol. 21, no.
11, pp. 1374–1383, Nov. 2002.

[8] G. E. Mailloux, F. Langlois, P. Y. Simard, and M. Bertrand, “Restora-
tion of the velocity field of the heart from two-dimensional echocardio-
grams,” IEEE Trans. Med. Imag., vol. MI-8, no. 6, pp. 143–153, Jun.
1989.



536 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 4, APRIL 2005

[9] B. Horn and B. Schunk, “Determining optical flow,” Artif. Intell., vol.
17, pp. 185–203, 1981.

[10] G. Zini, A. Sarti, and C. Lamberti, “Application of continuum theory
and multi-grid methods to motion evaluation from 3D echocardiog-
raphy,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 44, no. 3,
pp. 297–308, Mar. 1997.

[11] B. Lucas and T. Kanade, “An iterative image restoration technique with
an application to stereo vision,” in Proc. DARPA IU Workshop, 1981, pp.
121–130.

[12] Y. Chunke, K. Terada, and S. Oe, “Motion analysis of echocardiograph
using optical flow method,” in Proc. IEEE Int. Conf. Systems, Man, and

Cybernetics, vol. 1, Oct. 1996, pp. 672–677.
[13] P. Baraldi, A. Sarti, C. Lamberti, A. Prandini, and F. Sgallari, “Evalua-

tion of differential optical flow techniques on synthesized echo images,”
IEEE Trans. Biomed. Eng., vol. 43, no. 3, pp. 259–272, Mar. 1996.

[14] M. Unser, “Splines: A perfect fit for signal and image processing,” IEEE

Signal Process. Mag., vol. 16, no. 6, pp. 22–38, Nov. 1999.
[15] X. Zong, A. Laine, and E. Geiser, “Speckle reduction and contrast en-

hancement of echocardiograms via multiscale nonlinear processing,”
IEEE Trans. Med. Imag., vol. 17, no. 8, pp. 532–540, Aug. 1998.

[16] S. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
11, no. 7, pp. 674–693, Jul. 1989.

[17] M. Sühling, M. Arigovindan, P. Hunziker, and M. Unser, “Multires-
olution moment filters: Theory and applications,” IEEE Trans. Image

Process., vol. 13, no. 4, pp. 484–495, Apr. 2004.
[18] M. Unser, A. Aldroubi, and M. Eden, “B-Spline signal processing: Part

I — Theory,” IEEE Trans. Signal Process., vol. 41, no. 2, pp. 821–833,
Feb. 1993.

[19] , “B-Spline signal processing: Part II — Efficient design and appli-
cations,” IEEE Trans. Signal Process., vol. 41, no. 2, pp. 834–848, Feb.
1993.

[20] M. Jacob, T. Blu, and M. Unser, “An exact method for computing the
area moments of wavelet and spline curves,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 23, no. 6, pp. 633–642, Jun. 2001.
[21] J. C. Bamber and R. J. Dickinson, “Ultrasonic b-scanning: A computer

simulation,” Phys. Med. Biol., vol. 25, pp. 463–479, 1980.
[22] M. Bertrand and J. Meunier, “Ultrasonic texture motion analysis: Theory

and simulation,” IEEE Trans. Med. Imag., vol. 14, no. 6, pp. 293–300,
Jun. 1995.

[23] J. Barron, D. Fleet, S. Beauchemin, and T. Burkitt, “Performance of op-
tical flow techniques,” Intl. J. Comput. Vis., vol. 12, pp. 43–77, 1994.

[24] S. Van Huffel and J. Vandewalle, The Total Least Squares Problem:

Computational Aspects and Analysis. Philadelphia, PA: SIAM, 1991,
vol. 9, Frontiers in Applied Mathematics.

[25] G. Golub and C. Van Loan, “An analysis of the total least squares
problem,” SIAM J. Numer. Anal., vol. 17, no. 6, pp. 883–893, Dec.
1980.

[26] M. Cerqueira, N. Weissman, V. Dilsizian, A. Jacobs, S. Kaul, W. Laskey,
D. Pennell, J. Rumberger, T. Ryan, and M. Verani, “Standardized my-
ocardial segmentation and nomenclature for tomographic imaging of the
heart,” Circulation, vol. 105, pp. 539–542, 2002.

[27] M. Sonka and J. Fitzpatrick, Eds., Handbook of Medical

Imaging. Bellingham, WA: SPIE, 2000, vol. 2, Echocardiography,
ch. 11.

Michael Sühling (S’03) was born in Bocholt, Ger-
many, in 1974. He received the diploma degree from
the University of Kaiserslautern, Kaiserslautern, Ger-
many, in 2000.

Currently, he is a Research Assistant with the
Biomedical Imaging Group, Swiss Federal Institute
of Technology Lausanne, Lausanne, Switzerland.
His research interests include multiresolution image
processing, wavelets, and motion analysis.

Muthuvel Arigovindan was born in Pondicherry,
India, in 1974. He received the B.Tech. degree in
electronics and communication engineering from
Pondicherry Engineering College in 1995 and the
M.Sc. degree from the Indian Institute of Science
in 1999, where he worked on multirate signal
processing. He is currently pursuing the Ph.D.
degree in the Biomedical Imaging Group, Swiss
Federal Institute of Technology Lausanne, Lausanne,
Switzerland, where he is working on variational
methods for the reconstruction of multidimensional

signals from nonuniform samples.
His areas of interest include multirate signal processing, biomedical image

processing, inverse problems, and numerical algorithms.

Christian Jansen was born in Orsoy, Germany, in
1970. He received the medical doctor degree from the
Aachen University of Technology, Aachen, Germany,
in 1999.

He currently specializes in internal medicine and
cardiology. At present, he is a Research Assistant
with the Physics in Medicine Group, University
Hospital of Basel, Basel, Switzerland. His research
interests include multimodal data processing, es-
pecially the classification of higher dimensional
echocardiographic ultrasound data.

Patrick Hunziker was born in Zurich, Switzerland,
on May 22, 1963. He received the M.D. degree
in 1988 and subsequently specialized in internal
medicine, cardiology, and intensive care medicine.

He is currently a Lecturer at the University of
Basel, Basel, Switzerland, where he is a Clinician
in the cardiac care unit and leads a research group
focusing on the application of mathematics and
physics in medicine. His research interests include
medical data processing, especially of higher di-
mensional image data, as well as the application of

nanotechnology in clinical medicine.

Michael Unser (M’89–SM’94–F’99) received the
M.S. (summa cum laude) and Ph.D. degrees in
electrical engineering from the Swiss Federal In-
stitute of Technology Lausanne (EPFL), Lausanne,
Switzerland, in 1981 and 1984, respectively.

From 1985 to 1997, he was with the Biomedical
Engineering and Instrumentation Program, National
Institutes of Health, Bethesda, MD, where he headed
the Image Processing Group. He is now Professor and
Director of the Biomedical Imaging Group, EPFL.
His research area is biomedical image processing. He

has a strong interest in sampling theories, multiresolution algorithms, wavelets,
and the use of splines for image processing, and he is the author of over 100
published journal papers in these areas.

Dr. Unser is the Associate Editor-in-Chief of the IEEE TRANSACTIONS ON

MEDICAL IMAGING. He has acted as Associate Editor or member of the editorial
boards for the IEEE Signal Processing Magazine, the IEEE TRANSACTIONS ON

IMAGE PROCESSING (1992 to 1995), and the IEEE SIGNAL PROCESSING LETTERS

(1994 to 1998). He was general Co-Chair for the first IEEE International Sym-
posium on Biomedical Imaging (ISBI’2002), Washington, DC, July 7–10, 2002.
He received the 1995 and 2003 Best Paper Awards and the 2000 Magazine
Award from the IEEE Signal Processing Society.


	toc
	Myocardial Motion Analysis From B-Mode Echocardiograms
	Michael Sühling, Student Member, IEEE, Muthuvel Arigovindan, Chr
	I. I NTRODUCTION
	II. L OCAL -A FFINE, M ULTIscale M OTION E STIMATION
	A. Local-Affine Velocity in Space Time
	B. Multiresolution Moments Computation
	C. Coarse-to-Fine Multiscale Strategy


	TABLE I T WO -S CALE F ILTERS $h_{p,k}$ UP TO O RDER $p=2$ FOR $
	Fig.€1. Coarse-to-fine multiscale strategy in space.
	III. ROI T RACKING AND M OTION V ISUALIZATION

	Fig.€2. ROI tracking by least-squares B-spline fitting to the es
	IV. N UMERICAL R ESULTS
	A. Application to Synthetic Data
	1) Modeling of Echographic Texture: In order to simulate the app



	Fig.€3. (a) Frame of synthetic ultrasound sequence and (b) corre
	2) Modeling of Heart Motion: In this study, we simulate an apica

	Fig.€4. Average angular and amplitude errors of different method
	3) Motion Estimation Results: The applied motion field was estim

	TABLE II E RROR M EASURES OF D IFFERENT O PTICAL F LOW M ETHODS 
	4) Radial Motion Visualization: For radial motion visualization,

	Fig.€5. Synthetic ultrasound sequence and superimposed color-cod
	Fig.€6. (a) One frame of the rotating phantom sequence and (b) i
	B. Phantom Study

	Fig.€7. Means and standard deviations of the estimated velocity 
	Fig.€8. Standard definition of left ventricular segments for 2-D
	C. Application to Clinical Data

	Fig.€9. Echocardiograms with superimposed motion information bef
	1) Segmental Wall Motion Analysis: For all six cases, we compare

	Fig.€10. Echocardiograms with superimposed motion information af
	2) ROI Tracking Validation: The motion estimation algorithm in c

	Fig.€11. Comparison between manual and automatic contour trackin
	V. C ONCLUSION
	P. R. Hunziker, M. H. Picard, N. Jander, M. Scherrer-Crosbie, M.
	A. E. Weyman, Principles and Practice of Echocardiography, 2nd e

	M. Sonka and J. Fitzpatrick, Eds., Handbook of Medical Imaging .
	M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour m
	V. Chalana, D. Linker, D. Haynor, and Y. Kim, A multiple active 
	G. Jacob, J. Noble, C. Behrenbruch, A. Kelion, and A. Banning, A
	J. Bosch, S. Mitchell, B. Lelieveldt, F. Nijland, O. Kamp, M. So
	G. E. Mailloux, F. Langlois, P. Y. Simard, and M. Bertrand, Rest
	B. Horn and B. Schunk, Determining optical flow, Artif. Intell.,
	G. Zini, A. Sarti, and C. Lamberti, Application of continuum the
	B. Lucas and T. Kanade, An iterative image restoration technique
	Y. Chunke, K. Terada, and S. Oe, Motion analysis of echocardiogr
	P. Baraldi, A. Sarti, C. Lamberti, A. Prandini, and F. Sgallari,
	M. Unser, Splines: A perfect fit for signal and image processing
	X. Zong, A. Laine, and E. Geiser, Speckle reduction and contrast
	S. Mallat, A theory for multiresolution signal decomposition: Th
	M. Sühling, M. Arigovindan, P. Hunziker, and M. Unser, Multireso
	M. Unser, A. Aldroubi, and M. Eden, B-Spline signal processing: 
	M. Jacob, T. Blu, and M. Unser, An exact method for computing th
	J. C. Bamber and R. J. Dickinson, Ultrasonic b-scanning: A compu
	M. Bertrand and J. Meunier, Ultrasonic texture motion analysis: 
	J. Barron, D. Fleet, S. Beauchemin, and T. Burkitt, Performance 
	S. Van Huffel and J. Vandewalle, The Total Least Squares Problem
	G. Golub and C. Van Loan, An analysis of the total least squares
	M. Cerqueira, N. Weissman, V. Dilsizian, A. Jacobs, S. Kaul, W. 

	M. Sonka and J. Fitzpatrick, Eds., Handbook of Medical Imaging .


