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Abstract

Cellular transplantation is emerging as a potential mechanism with which to augment myocyte number in diseased hearts. To date a
number of cell types have been shown to successfully engraft into the myocardium, including fetal, neonatal, and embryonic stem
cell-derived cardiomyocytes, skeletal myoblasts, and stem cells with apparent cardiomyogenic potential. Here we provide a review of
studies wherein myocytes or stem cells with myogenic potential have been transplanted into the heart. In addition, issues pertaining to the
tracking and functional consequences of cell transplantation are discussed.
   2003 European Society of Cardiology. Published by Elsevier Science B.V. All rights reserved.
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1 . Introduction last transplantation literature will provide a useful database
against which to compare the efficacy of cardiomyogenic

Cell transplantation is emerging as a potential therapy stem cell transplantation. The remainder of the manuscript
with which to treat heart failure. Initial efforts in the field provides our view on issues which influence the interpreta-
focused on the transplantation of cardiomyocytes as well tion of cell transplantation studies, with specific discus-
as skeletal myoblasts. More recently, stem cells with sions on methodologies for tracking donor (or homing)
apparent cardiomyogenic potential have also been trans- cells, mechanisms by which cell transplantation can en-
planted. Positive results from animal studies have promp- hance cardiac function, and strategies which might be
ted several preliminary clinical trials to ascertain the safety useful for increasing the capacity of donor cells to inte-
of skeletal myoblast (reviewed in other articles in this grate into the host myocardium. Where appropriate, exam-
issue, see also Ref. [1]) and bone marrow stem cell [2] ples of studies from our laboratory are provided as
transplantation into heart failure patients. illustrations.

Although there has been considerable experimentation
with cardiomyocyte and skeletal myoblast transplantation,
there are comparably fewer studies wherein multipotent 2 . A review of the myocytye and myogenic stem cell
stem cells have been transplanted into the heart. Accord-transplantation literature
ingly, we have opted to start our review with a summary of
the literature describing cardiomyocyte and skeletal myob- Table 1 provides a summary of studies wherein fetal,
last transplantation into the heart. We then describe studies neonatal, or adult cardiomyocytes were transplanted into
that report transplantation of cardiomyogenic stem cells. It normal or injured hearts. Studies that describe the trans-
is hoped that the cited cardiomyocyte and skeletal myob- plantation of cardiomyocyte cell lines are also listed.

Studies for each of these categories are listed in
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Table 1
Cardiomyocyte transplantation

Donor Species: Tracking Heart Function Angiogenesis Intervention Refs.
cell donor / injury improvement /

host assay

F M/M T Normal ND ND N [3]
F D/D G Genetic ND ND N [4]
F, C H&P/P H Normal ND 1 N [5]
F H&R/R D Occlusion ND ND N [6]
F R/R Ca Cryoinjury 1 /L-B ND N [7]
F R/R D Cryoinjury ND ND N [8]
F M/M V Normal ND ND N [9]
F R/R D Cryoinjury ND ND N [10]
F R/R Li Occlusion ND ND N [11]
F M/M V Normal ND ND N [12]
F R/R CH Reperfusion 1 /E ND N [13]
F R/R V Cryoinjury ND 1 N [14]
F R/R H Cryoinjury 1 /L-B ND N [15]
F M/M T, CH Chemical 1 /E ND N [16]
F, N, C P/P H, I Occlusion ND 1 N [17]
F R/R H Cryoinjury 1 /L-B ND N [18]
F, N, A R/R M Cryoinjury ND ND N [19]
F R/R M Cryoinjury 1 /L 1 Y, Matrix [20]
F R/R D Occlusion 1 /E 1 Y, Matrix [21]
F R/R H, I Occlusion 1 /E ND N [22]
F R/M M Normal ND ND Y/CTLA [23]
F R/R M, V Occlusion 1 /E ND N [24]
F R/R M Cryoinjury ND ND N [25]
F R/R D Occlusion 1 /E, M-B ND N [26]
F R/R D Occlusion 1 /E, M-B ND N [27]
F R/R D Occlusion 1 /E, M-B 1 Y/bFGF [28]
F D/D G Genetic ND ND N [29]
F M/M T Cryoinjury 1 /E, F ND N [30]
F M/M T Normal 1 /L-F ND N [31]
N R/R H Occlusion ND ND N [32]
N R/R I Occlusion ND ND N [33]
N R/R M Cryoinjury ND ND Y/c-FLIP [34]
N R/R D Cryoinjury ND ND Y/Akt, HS [35]
N R/R I Occlusion 1 /E 1 /HGF Y [36]
N R/R G Occlusion 1 /M ND N [37]
N R/R G Normal ND ND Y/Casp Inh [38]
N R/R H, I Normal 1 /F 1 Y, Matrix [39]
N R/R H Normal 1 /F 1 Y, Matrix [40]
A R/R8 M Cryoinjury 1 /L-B ND N [41]
A HM/HM M Genetic 1 /L-B ND N [42]
A P/P8 M Occlusion 1 /SPECT, M ND N [43]
A R/R M Cryoinjury 1 /L-B, M 1 /VEGF N [44]
C C/M I Normal ND ND N [45]
C C/M I Normal ND ND N [46]

Donor cell: F, fetal cardiomyocyte; N, neonatal cardiomyocyte; A, adult cardiomyocyte; C, atrial tumor cell line.
Species, donor species /host species: M, mouse; R, rat; H, human; D, dog; P, pig; HM, hamster; C, cell line;8, autologous transplant.
Tracking: D, dye; H, histology; I, immunostain; T, transgenic; CH, Y chromosome; G, donor specific gene (mdx; or sry); V, viral transfection; Ca, calcium
phosphate transfection; E, electroporation; Li, liposome gene delivery; M, metabolic label.
Heart injury: Normal, Cryoinjury, Reperfusion injury, Coronary occlusion, Genetic (i.e., mdx), Chemical, Cardiotoxic agent.
Function improvement /assay: 1, improved; L-B, isolated perfused Langendorff with intraventricular balloon; L-F, Langendorff with fluorescence
microscopy; M, closed-chest intraventricular micromanometer; M-B, micromanometer with intraventricular balloon; M&S, micromanometer and

99msonomicrometer; E, echocardiography; F, in vitro force measurements; SPECT, [ Tc]MIBI single photon emission computed tomography; ND, not
determined.
Angiogenesis: 1, angiogenesis; ND, not determined.
Cell transplant survival intervention: Y, yes; N, no; Casp Inh, caspase inhibitor; Matrix, support matrix (i.e., scaffold).

the host animals included mice, rats, rabbits, pigs and coronary artery occlusion, reperfusion injury, chemical
dogs. A variety of techniques were used to track the fate of cardiotoxicity, or alternatively into hearts with genetic
the donor cells. In some studies, the cardiomyocytes were cardiomyopathies. There were no obvious differences in
transplanted into hearts subjected to cryoinjury, permanent the capacity of donor cardiomyocyte seeding in the differ-
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ent injury models. Several studies performed functional chronological order. Autologous, syngeneic, allogenic and
analyses on the hearts following cardiomyocyte trans- xenogenic transplants have been performed. Most of the
plantation, while others determined if cell transplantation studies performed transplantation into injured hearts; car-
resulted in enhanced angiogenesis. It is very striking that diac damage was induced via cryoinjury, permanent cor-
for each study in which both cardiac function and donor onary artery occlusion, reperfusion injury or chemical
cell-induced angiogenesis were scored, there was a posi- cardiotoxicity. The vast preponderance of studies con-
tive correlate. cluded that the transplanted skeletal myoblasts differen-

Table 2 provides a summary of studies wherein skeletal tiated into skeletal myotubes. In light of this it is extremely
myoblasts were transplanted into normal or injured hearts. interesting that functional improvement was observed in
Myoblasts from neonatal and adult animals, as well as many of the studies.
from established myoblast cell lines have been studied. Table 3 provides a summary of studies wherein stem
Once again the studies for each category are cited in cells with cardiomyogenic potential have been transplanted

Table 2
Myoblast transplantation

Donor Species: Tracking Heart Function Angiogenesis Survival Refs.
cell donor / injury improvement / intervention

host assay

C C/M I Normal ND ND N [47]
C C/M I Normal ND 1 /TGF-beta N [48]
C C/M V Normal ND ND N [49]
C, NM C, R/R I Normal, ND ND N [50]

Cryoinjury
C C/R V Occlusion 1 /L-B ND N [51]
C C/R V Normal ND ND Y/HS [52]
NM P/P H Normal ND 1 N [5]
NM R/R M Cryoinjury F N N [53]
NM R/R H, I Occlusion 1 /E ND N [22]
NM R/R H Cryoinjury ND ND N [54]
NM R/R I Reperfusion 1 /L-B ND N [55]
AM D/D 8 M Cryoinjury ND ND N [56]
AM D/D 8 M Cryoinjury ND ND N [57]
AM D/D 8 G Cryoinjury ND ND N [58]
AM D/D 8 G Cryoinjury ND ND N [59]
AM D/D M Cryoinjury ND ND N [60]
AM RB/RB8 V Normal ND ND N [61]
AM RB/RB8 I Cryoinjury 1 /M&S ND N [62]
AM R/R8 D Normal ND ND N [63]
AM RB/RB8 H Cryoinjury 1 /M&S ND N [64]
AM RB/RB8 H Cryoinjury 1 /M&S ND N [65]
AM RB/RB8 I Cryoinjury ND ND N [66]
AM H/H 8 ND Occlusion ND ND N [1]
AM RB/RB8 I Cryoinjury 1 /M&S ND N [67]
AM M/M V Normal ND 1 /VEGF N [68]
AM R/R I Occlusion 1 /L-B 1 /VEGF N [69]
AM R/R8 I Chemical 1 /E ND N [70]
AM R/R8 I Occlusion 1 /E ND N [71]
AM R/R8 D Normal ND ND N [72]
AM P/P8 H Occlusion 1 /E ND N [73]
AM R/R V Occlusion ND ND N [74]
F R/R8 V Chemical 1 ND N [75]
AM S/S8 I Occlusion 1 /E ND N [76]
AM R/R M Normal ND ND N [77]

Donor cell: C, myoblast cell line; NM, neonatal myoblast; AM, adult myoblast; F, single muscle fiber.
Species, donor species /host species: M, mouse; R, rat; H, human; D, dog; P, pig; RB, rabbit; HM, hamster; S, sheep; C, cell line;8, autologous transplant.
Tracking: D, dye; H, histology; I, immunostain; T, transgenic; CH, Y chromosome; G, donor specific gene (mdx, or sry); V, viral transfection; Ca, calcium
phosphate transfection; E, electroporation; Li, liposome gene delivery; M, metabolic label.
Heart injury: Normal; Cryoinjury, Reperfusion injury, Permanent coronary occlusion, Genetic (i.e., mdx), Chemical, Cardiotoxic agent.
Function improvement /assay: 1, improved; L-B, isolated perfused Langendorff with intraventricular balloon; M, closed-chest with intraventricular
micromanometer; M-B, micromanometer with balloon; M&S, micromanometer and sonomicrometer; E, echocardiography; F, in vitro force measurements;
Ex, exercise regimens; ND, not determined.
Angiogenesis: 1, angiogenesis; ND, not determined.
Cell transplant survival intervention: Y, yes; N, no; HS, heat shock.
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Table 3
Stem cell and stem cell-derived cardiomyocyte transplantation

Stem cell Species Cell status Delivery Tracking Heart injury Function Angiogenesis Refs.
type D/H at transplant improvement /

assay

ESC M/M CM CI E Genetic ND ND [78]
ESC M/R CM CI E Occlusion 1 /E 1 /BMP2, [79]

TGF-beta
ESC M/R CM CI Ca Occlusion 1 /E, M, F ND [80]
ESC M/M CM CI Ca Occlusion 1 /M, F 1 /VEGF [81]
BMSC R/R8 SC, CM CI M Cryoinjury 1 /L-B 1 [82]
BMSC R/R8 SC CI D Normal ND ND [83]
BMSC H/S SC IU I, PCR Normal ND ND [84]
BMSC M/M SC CI T Reperfusion ND 1 [85]

aBMSC M/M SC CI T, PCR Normal, ND ND [86]
Occlusion

BMSC R/R SC AI V Occlusion ND ND [87]
BMSC H/H8 SC AI ND Occlusion 1 /E, TSPECT, ND [88]

Ex
BMSC M/M SC CI T, CH Occlusion 1 /M 1 [89]
BMSC R/R8 S CI D Normal ND ND [72]
BMSC D/D8 SC CI I Occlusion 1 /E 1 [90]
BMSC M/M SC BI T Normal ND ND [91]
BMSC M/M SC IU T Genetic ND ND [92]
BMSC H/H8 SC AI ND Occlusion 1 /E, TSPECT, ND [2]

Ex, V
BMSC M/R SC IV V Occlusion ND 1 [93]
BMSC P/P8 C CI M Occlusion 1 /SPECT 1 [94]
BMSC H/M SC CI V Normal ND ND [95]
BMSC M/M SC BM T T Normal ND ND [96]
BMSC M/M SC BMT CH Genetic ND ND [97]
NSC M/M SC BI T Normal ND ND [98]
EnSC M/M SC CI V Cautery ND ND [99]
HpSC C/M SC CI V, CH Normal ND ND [100]
CSC M SC 2 T Normal ND ND [101]

aUNK H Mobile HHT CH Transplant ND 1 [102]
aUNK H Mobile HHT CH Transplant ND 1 [103]

UNK H Mobile HHT CH Transplant ND 1 [104]
UNK H Mobile HHT CH Transplant ND ND [105]
UNK H Mobile HHT CH Transplant ND 1 [106]
UNK M Mobile SC I Occlusion 1 /E 1 [107]

Cell type: ESC, embryonic stem cell; BMSC, bone marrow stem cell; NSC, neuronal stem cell; EnSC, endothelial stem cell; HpSC, hepatocyte stem cell;
CSC, cardiac stem cell; UNK, unknown cell type.
Species, donor species /host species: M, mouse; R, rat; H, human; D, dog; P, pig; HM, hamster; C, cell line;8, autologous transplant.
Cell status at transplant: SC, stem cell; CM, cardiomyocyte; Mobile, mobilized cell population.
Delivery: CI, cardiac injection; IU, intrauterine injection; IV, venous injection; AI, arterial injection; BMT, bone marrow transplant; SCI, subcutaneous
injection; BI, blastocyst injection; HHT, human heart transplant;2, not applicable.
Tracking: D, dye; H, histology; I, immunostain; T, transgenic; CH, Y chromosome; G, gene (mdx, or sry); V, viral transfection; Ca, calcium phosphate
transfection; E, electroporation; Li, liposome gene delivery; M, metabolic label; PCR, PCR.
Heart injury: Normal, Cryoinjury, Reperfusion injury, Permanent coronary occlusion, Genetic (i.e., mdx).
Function improvement /assay: 1, improved; L-B, isolated perfused Langendorff with intraventricular balloon; M, closed-chest intraventricular
micromanometer; M-B, micromanometer with intraventricular balloon; M&S, micromanometer and sonomicrometer; E, echocardiography; Ex, exercise

99mregimens; TSPECT, Thallium-201 single photon emission computed tomography; SPECT, [ Tc]MIBI SPECT; V, ventriculography; F, in vitro force
measurements; ND, not determined.
Angiogenesis: 1, angiogenesis; ND, not determined.

a No cardiomyogenesis observed.

into normal or injured hearts. A number of different stem planted. In other cases, undifferentiated stem cells were
cells have been examined, including embryonic stem cells transplanted either directly into the myocardium or alter-
(ESC), bone marrow stem cells (BMSC), neuronal stem natively intravenous route. In the latter case, it was
cells (NSC), endothelial stem cells (EnSC), hepatic stem assumed that the stem cells were able to ‘home’ or migrate
cells (HpSC), and cardiac stem cells (CSC). In some to the normal and/or injured myocardium prior to differen-
instances, differentiation was induced in vitro, and conse- tiation. Several other studies are listed wherein the stem
quently stem cell-derived cardiomyocytes were trans- cells were delivered into developing embryos (via blas-
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tocyst injection or in utero transplantation); these studies donor cells has also been employed to track their fate. This
are included as they document the cardiomyogenic po- typically entails culturing donor cells in the presence of
tential of several cell types. A series of studies examining modified nucleotides (as for example, tritiated thymidine or
female hearts that were transplanted into male recipients bromodeoxy uridine, see for example Refs. [19,57]), that
are listed; the presence of cardiomyocytes with Y-chromo- become incorporated into the cells during DNA replica-
somes was suggestive of mobilization of an unknown stem tion; the replicated DNA (and consequently the donor cell
cell population. Also cited are studies where analogous nuclei) can later be identified in histological sections. This
transplantation and mobilization experiments yielded nega- approach also suffers from potential signal dilution if there
tive or markedly different results (studies demarked by is significant donor cell proliferation post-transplantation.
**). Intrinsic genetic differences between donor and host

cells have also been employed to monitor cell fate follow-
ing transplantation. For example, anti-dystrophin immune

3 . Characterization of the fate of transplanted cells cytology was used to follow dystrophin-expressing fetal
cardiomyocytes or embryonic stem cell-derived car-

The ability to monitor the fate of cells following diomyocytes following transplantation into canine and
transplantation into normal or injured hearts is critical. mouse host animals suffering from Duchenne’s-like
This is particularly important in instances where myogenic muscular dystrophy (the host animals did not express
stem cells are transplanted, as the ability to both track the dystrophin, see Refs. [4,78]). Other studies have relied on
donor cells and determine the subsequent level of differen- monitoring for the presence of Y-chromosomes following
tiation is critical. Because we feel that cell tracking and the transplantation of male donor cardiomyocytes into
lineage identification is of paramount importance in inter- female recipients, using quantitative PCR amplification of
preting the consequence of myocyte and myogenic stem Y-chromosome specific genes to estimate donor cell
cell transplantation, a relatively large portion of the review survival. In situ analyses for the presence of nuclei that
is devoted to this topic. contain a Y-chromosome can also be used to track the fate

Many studies examining myocyte transfer have relied of donor cells. However, given the dramatic quantitative
simply on the presence of histological differences between differences that have been reported when using this
hearts receiving cell transplants as compared to on-trans- approach to monitor de novo cardiomyogenic events
plant controls. Although this type of analysis is useful as a following the transplantation of human female hearts into
first approximation of the effect of cellular transplantation, male recipients (Table 3), it would appear that the assay is
particularly in injured hearts, the preferred approach is to somewhat subjective.
utilize molecular analyses that are able to distinguish donor Gene transfer provides an alternative and potentially a
and host cells. This is readily accomplished using lineage- superior approach to monitor the fate of myocytes or
restricted immune histological analyses in studies wherein myogenic stem cells following transplantation. The strate-
non-cardiomyocytes are transplanted. For example, the fate gies reported to date include direct reporter gene delivery
of transplanted skeletal myoblasts was directly monitored into donor cells via traditional DNA cell transfection or
by immune histological analyses with antibodies that viral vectors, as well as the use of donor cells derived from
recognize markers expressed in skeletal but not cardiac transgenic animals carrying lineage restricted or ubiquit-
myocytes [47]. However, this type of analysis by itself is ously expressed reporter genes (Tables 1–3). In the
insufficient to monitor the fate of transplanted car- absence of the ability to clonally expand the transfected
diomyocytes or stem cells with cardiomyogenic potential, donor cells, traditional gene transfer is of limited value due
as the successfully integrated (and/or trans-differentiated) to the relatively low transfection efficiency as well as
cardiomyocytes would be indistinguishable from resident unstable long-term expression characteristics in transiently
host cardiomyocytes. transfected cells. However, stable transfection and clonal

A number of approaches have been employed to circum- expansion of myogenic stem cells is certainly a viable
vent this problem. For example, treating donor cells with approach, as demonstrated by the introduction of expres-
fluorescent cell-tracking dyes prior to transplantation has sion cassettes suitable for lineage isolation and/or re-
been used to monitor their survival in vivo. Because there stricted expression in ES cells as well as myogenic bone
is typically a high degree of donor cell death following marrow derived cells (Table 3). Although the use of viral
transplantation, caution must be exercised to ensure that vectors permits very high gene transfer efficiency, reporter
the observed signal arises from donor cells rather than gene silencing is problematic. This approach also suffers
from host cells which have acquired dye ‘liberated’ from from potential immunogenic responses against any virally
dead or dying donor cells. Such a scenario could greatly encoded proteins that are expressed in the donor cells.
over-estimate donor cell survival, or could mistakenly Genetically modified animals that carry either lineage
suggest trans-differentiation events. Conversely, prolifer- restricted or ubiquitously expressed reporter genes offer an
ation of the transplanted cells could result in an under- alternative strategy with which to monitor donor cell fate
estimate of donor cell survival. Metabolic labeling of following transplantation. This approach has the decided
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advantage that expression penetrance of the reporter gene reporter gene is shown in Fig. 1. Dispersed cells prepared
(i.e., percentage of cells expressing as well as the relative from adult transgenic mice indicate that the reporter gene
level of expression per cell) can be quantitatively assessed is expressed in cardiomyocytes, but not cardiac fibroblasts
in control animals. Moreover, the use of lineage-restricted (panels A and B). Following transplantation, these cells are
promoters permits an unambiguous marker for monitoring readily identified by virtue of theirb-gal activity in
de novo cardiomyogenic events. An example of the use of histological sections of the recipient heart (panels C and
fetal donor cardiomyocytes prepared from transgenic mice D). Reporter genes expressing Enhanced Green Fluores-
expressing a nuclear localizedb-galactosidase (b-gal) cence Protein (EGFP) have also been used to follow the

Fig. 1. Tracking of cardiomyocyte grafts in the host myocardium post-transplantation. Panels A and B show the same field of a dispersed cell preparation
from an adult mouse heart carrying the nuclear-localizedb-gal transgene driven by ana-cardiac MHC promoter (MHC-nLAC). Sample stained with X-gal
and Hoechst dye. (A) Brightfield image showing a rod shaped bi-nucleated cardiomyocyte and a cardiac fibroblast (Arrow); (B) fluorescent image of the
same field. Note that theb-gal staining is exclusive to cardiomyocyte nuclei and presence of X-gal reaction product quenches the Hoechst staining. Panels
C and D show adjacent sections stained with H&E (C) and X-gal (D) from a normal heart transplanted with embryonic day 15 fetal cardiomyocytes
carrying the MHC-nLAC transgene. Note the presence of stably grafted donor cells. (E) False-color 2D image of an intracardiac graft of fetal
cardiomyocytes expressing EGFP. Image was obtained 35 days post-engraftment during two-photon illumination at a wavelength of 810 nm. Emitted
fluorescence was measured in the 500–550-nm range and subsequently encoded in levels of green. Panels A–D are modified from Soonpaa et al. [3].
Magnification bar is 20mm in all panels.
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fate of transplanted myocytes and myogenic stem cells panel A), and is sensitive enough to detect the presence of
[30,31,89,108–110]. An example of a cluster of EGFP- a single surviving bi-nucleated cardiomyocyte (Fig. 2,
expressing fetal cardiomyocytes transplanted into a non- panel B).
transgenic adult mouse heart is shown in Fig. 1, panel E; Additional information pertaining to the mechanism of
the use of this EGFP reporter gene is particularly attractive cell loss (i.e., apoptosis, necrosis) can be obtained via
in that gross cell morphology is readily apparent. More- combinatorial histochemical and/or immune histological
over, EGFP fluorescence is compatible with a variety of analyses [34,35]. Donor cell proliferation can be monitored
imaging techniques, and as such might be useful to by a number of direct (i.e., thymidine or BrdU incorpora-
monitor donor cell function in intact hearts (see below). tion) or indirect (i.e., PCNA or Ki67 immune cytology)
However, care must be exercised with this reporter as dead analyses. The merits and demerits of these approaches
and dying cardiomyocytes have an auto-fluorescent spec- have recently been reviewed in the context of monitoring
trum that partially overlaps with that of EGFP, and adult cardiomyocyte DNA synthesis [111] and accordingly
consequently dead or dying host cardiomyocytes can are not discussed here. The level of cardiomyogenic
mistakenly be scored as donor cells (M. Rubart, un- differentiation can also be assessed by traditional histo-
published observation). chemical, immune histological and ultrastructural analyses.

Once a methodology is established to track the donor Once again,b-gal reporter genes are particularly useful as
cells, standard histochemical, immune cytological and theb-gal /X-GAL reaction product can be directly visual-
ultrastructural analyses can be performed to monitor their ized with standard transmission electron microscopy. Fig.
fate. In the case of myocyte transplantation, this simply 3 shows an example of transplanted fetal cardiomyocytes
entails determining if the donor cells survive, proliferate, expressing a nuclear-localizedb-gal reporter. Due to the
and/or acquire a highly differentiated phenotype. Donor extensive sample processing, the X-GAL reaction product
cell survival can be monitored by cell counts post-trans- leaches out of the nucleus, and appears as a peri-nuclear
plantation. Nuclear localizedb-gal reporters (as described electron dense deposit that is sometimes lodged between
above) are particularly well suited for this application as the adjacent myofibers. Donor cells can thus be identified
relatively thick heart sections (3001 mm) can be processed without the loss of resolution that can occur with immuno-
and the surviving cell number directly counted using a logical-based analyses. As always, the accuracy of the
dissecting microscope. Because of its relatively small size, analyses are directly dependent upon the fidelity of the
the entire mouse heart can be rapidly and quantitatively reagents and/or approaches used to document differentia-
surveyed with this assay. This approach is robust enough tion.
to permit quantitation of relatively large grafts (Fig. 2, Following the fate of myogenic stem cells requires

Fig. 2. Quantification of fetal cardiomyocyte graft seeding efficiency. (A) Low power view of a thick heart section (300mm) from a non-transgenic mouse
host transplanted with embryonic day 15 fetal MHC-nLAC cardiomyocytes. The transplanted heart was harvested, fixed, sectioned by vibratome, and
stained with X-gal. The grafted cells are identified by virtue of their blue nuclei. Individual cells can be readily visualized and counted under higher
magnification (see inset). (B) Photomicrograph illustrating the sensitivity of the MHC-nLAC assay system. A single bi-nucleated cardiomyocyte (arrow)
was tracked using this assay system following transplantation. Inset shows higher magnification of the transplanted cell. Magnification bar is 0.5 mmin all
panels.
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Fig. 3. Ultrastructural analysis of transplanted MHC-nLAC fetal cardiomyocytes. D, donor cell nucleus, identified by presence of perinuclear,
electron-dense, X-gal reaction product. H, host cell nucleus, identified by lack of X-gal reaction product. Arrowheads demark fascia adherens/desmosomes
between donor and host cells. Arrow demarks putative gap junctions between donor and host cells. Magnification bar is 1mm.

additional considerations. The use of ubiquitous reporter and extravascular smooth muscle [18,112,115–117] none-
genes provides a robust approach to monitor donor cell theless exhibited some functional improvement as com-
survival and/or homing to injured regions of the heart, but pared to hearts which did not receive cells. Furthermore,
is dependent upon secondary analyses (as described above) improved function was also observed in several car-
to monitor the degree, if any, of myogenic differentiation diomyocyte transplantation studies wherein the number of
[85,89,91,98,100]. While the use of lineage-restricted seeded cells as assessed by histochemical analysis was
reporter genes provides an unambiguous way to monitor insufficient to impart a direct functional effect [37].
stem cell differentiation into a specific lineage, in the It is relatively straightforward to understand how cel-
absence of myogenic differentiation additional analyses are lular transplantation can improve cardiac function if a
required to confirm the presence of the donor cell [86]. significant number of donor cells directly participate in a
Perhaps the ideal situation is combinatorial assays wherein functional syncytium with the host myocardium. However,
compatible ubiquitous and lineage-restricted reporters are it is also important to consider potential mechanisms via
both employed in the donor cell. which transplanted donor cells could benefit cardiac func-

tion without directly contributing to systolic contraction.
For example, an angiogenic response was observed in

4 . Mechanisms by which cellular transplantation can many studies following cell transplantation (Tables 1–3).
impact heart function An increase in vascular supply could result in the sparing

of the chronically ischemic, functionally overloaded
A number of the studies cited in Tables 1–3 indicate myocardial tissue bordering the infarcted region. This

that myocyte or myogenic stem cell transplantation into notion is directly supported by the observation that in-
injured hearts resulted in improved cardiac function as travenous injection of human angioblasts into rats with
compared to non-transplanted controls. In most instances it myocardial infarcts resulted in enhanced blood vessel
was not clear if the effect on cardiac function resulted as a formation with a concomitant salvage of the at risk
direct consequence of the transplanted cells participating in myocardial tissue [118]. Sparing of at risk myocardial
a functional syncytium with the host myocardium, or tissue, resulting in preserved left ventricular function, is
alternatively if the presence of exogenous cells imparted an also observed clinically following coronary artery bypass
indirect yet beneficial effect on the heart. This point is grafting/angioplasty [119]. Similarly, clinical interventions
underscored by the observation that in some cases injured to enhance vascular supply can promote the recovery of
hearts transplanted with cell types that a priori would not hibernating myocardium [120]. An analogous effect from
possess the potential to contribute to cardiac work cycles, donor cell-induced angiogenesis could contribute to the
as for example skeletal myocytes (Table 2), fibroblasts impact on cardiac function.
[18,67,112], constituents of the vascular system [113,114], In addition to enhanced angiogenesis, myocyte or
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myogenic stem cell transplantation may also alter the remote electrical stimulation (see Ref. [110] for detailed
normal sequela of post MI scar formation and, conse- characterization of the system). An example is shown in
quently, ventricular remodeling. Indeed, a consistent ob- Fig. 4. Panel A shows a two-dimensional image from a
servation following skeletal myoblast transplantation in a control heart which was perfused with the calcium sensi-
number of studies was a pronounced attenuation of post tive dye Rhod-2. The heart was also perfused with
MI ventricular dilation (Table 2). According to LaPlace’s cytochalasin D to facilitate excitation-contraction uncou-
Law, retention of a more ‘normal’ pump size and shape pling. The preparation was paced at a remote site, and the
should greatly aid cardiac function. Kloner and colleagues fluorescence signal from three cardiomyocytes at a depth
have also suggested that by simply thickening the left of approximately 100mm from the epicardial surface was
ventricular wall, cell transplantation can reduce the degree acquired in line scan mode. The position of the line scan is
of systolic dyskinesis, which over time could also impart a indicated by the horizontal white line in panel A, and
functional effect [37]. Given these collective experimental integrated traces generated from the line scan data are
and clinical precedents, it is quite reasonable to conclude shown in panel B. As can be seen, this assay can be used
that the improvement in cardiac function observed in some to record cytosolic calcium transients at the single cell
of the studies cited above are quite independent of donor level (as approximated by changes in Rhod-2 fluorescence)
cell contractile activity. within intact hearts.

A number of experimental read-outs have been em- The second system requirement was the ability to
ployed to quantitate the effect of myocyte or myogenic distinguish host cardiomyocytes from the transplanted
stem cell transplantation. As indicated above, traditional cells. In a proof of concept study, fetal donor car-
morphometric analyses have clearly documented a reduc- diomyocytes from EGFP-expressing transgenic mice were
tion in the severity of ventricular remodeling post-injury. transplanted into non-transgenic hosts, and subjected to
A number of direct functional analyses have also been Rhod-2 fluorescence imaging as described above. The
employed to monitor the effect of cell transplantation into optical paths of the imaging system were modified such
injured hearts (Tables 1–3). Many of the studies in rodents that Rhod-2 fluorescence (560–650 nm) and EGFP fluores-
comprised ex vivo pressure–volume studies of Langen- cence (500–550 nm) could be sampled simultaneously
dorff-perfused heart preparations with inflatable balloons [31,109]. Using this approach, calcium transients were
inserted into the left ventricle. In some cases, improved simultaneously recorded from donor cardiomyocytes (as
exercise tolerance was observed in animals that also identified by EGFP fluorescence) and juxtaposed host
showed functional improvement with subsequent ex vivo cardiomyocytes (which lacked EGFP fluorescence). The
analyses. Closed chest pressure–volumes studies using study demonstrated that donor and host cardiomyocytes are
intra-ventricular transducers have also been performed. electrically coupled to one another, strongly supporting the
Echocardiographic analyses have been used to monitor notion that transplanted cardiomyocytes can participate in
function in both rodents and larger animals following cell a functional syncytium with the host myocardium. This
transplantation. Additionally, ultrasonic crystals have been approach may be useful to monitor the capacity of
used to monitor regional wall motion across the infarcted myogenic (i.e., skeletal myoblasts) and cardiomyogenic
region of the heart of larger animals following cell stem cells to functionally integrate with the host myocar-
transplantation. Although these studies have documented dium following transplantation, provided that a transgene
that global improvement of cardiac function can occur suitable for imaging is utilized.
following cell transplantation, in most instances the assays
employed were unable to identify the underlying mecha-
nism (that is, distinguishing between direct contraction of 5 . Strategies to enhance cellular transplantation
the donor cells versus a beneficial effect imparted upon the
surviving host myocardium). Understanding the mechanis- Quantitative PCR studies revealed that the preponder-
tic basis for improved cardiac function is of critical ance of donor cardiomyocytes die following transplanta-
importance when attempting to effect modifications aimed tion into the heart, with typically less than 5% of the cells
at enhancing the intervention. successfully seeding the myocardium [38]. Comparable

Accordingly, an imaging-based assay was recently de- seeding efficiencies have been obtained by morphological
veloped with the goal of determining if myocytes or analysis of transplanted tissue [19], as well as by direct
myogenic stem cells can participate in a functional counts of donor cells carrying the nuclear-localizedb-gal
syncytium with the host myocardium following trans- reporter described above (Soonpaa, Pasumarthi, Rubart
plantation [31,109,110]. The system had two major re- and Field, unpublished results). Similarly, with two excep-
quirements. The first was the ability to image some aspect tions, transplantation and/or homing of myogenic adult
of cardiac function at the cellular level within an intact stem cells have resulted in at best only modest accumula-
heart. This was accomplished by using two-photon laser tion of de novo muscle cells (see Table 3). A high rate of
scanning microscopy to monitor the changes in fluores- myogenic differentiation was reported in one study when
cence intensity of calcium sensitive dyes in response to ‘lin2 /kit1’ hematopoietic stem cells were directly in-
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Fig. 4. Imaging of single myocyte calcium transients in the anterior left ventricle of a rhod-2 loaded mouse heart. (A) Full-frame false color image during
electrical stimulation at 2 Hz. Image was acquired during two-photon excitation at 810 nm and emission was measured in the 560–650-nm range. Intensity

21of Ca -bound rhod-2 was encoded off-line in shades of red. Electrical stimuli resulted in simultaneous and approximately uniform increases in rhod-2
fluorescence along the entire length of the image. The increase in fluorescence of the myocytes is due to stimulus-evoked increases in cytosolic calcium
concentration. Magnification bar (green) is 20mm. (B) Time course of normalized rhod-2 fluorescence changes in three juxtaposed myocytes during
stimulation at 1 and 2 Hz. Rhod-2 fluorescence was acquired in line scan mode. The position of the line scan is indicated by the white horizontal line in
panel A. Signal intensity,F, was averaged along the scan line for each myocyte, normalized to the diastolic fluorescence,F , and plotted as a function ofo

time.

jected into hearts with coronary artery ligations [89]. In by providing supplementary matrix). In a very clever
contrast, preliminary studies using an analogous system variation of this approach, Murry and colleagues subjected
failed to identify any cardiomyogenic events [86]. The donor cells to heat shock prior to transplantation in an
other exception, as discussed above, was the relatively effort to activate the endogenous protective HSP70 gene
high level of cardiomyocyte chimerization in female hearts [35]. Although this intervention resulted in a transient
transplanted into male recipients that was observed in one decrease in the level of donor cell apoptosis following
of five studies using similar analytical techniques. transplantation, it was not clear if this translated to a

Collectively these data suggest that interventions aimed permanent increase in donor cell seeding. Finally, several
at enhancing donor cell survival, homing, and/or post- studies have demonstrated that co-delivery of growth
transplantation proliferation may be required to achieve factors and ES cells resulted in enhanced cardiomyogenic
high levels of de novo cardiomyocyte seeding. As can be seeding (Table 3).
seen in Tables 1–3, some efforts to enhance myocyte and The availability of transgenic mouse models expressing
myogenic stem cell seeding have already been initiated. cardioprotective or cardioproliferative gene products pro-
These include relatively descriptive efforts wherein the vide a potentially useful experimental system to identify
effects of donor cell age as well as the timing of cell pathways with which to enhance myocyte and myogenic
transplantation post-injury were determined. Other studies stem cell transplantation. For example, expression of a
have attempted to directly enhance cell survival. These number of different transgenes has resulted in a marked
include efforts to inhibit apoptosis (by treating cells with reduction in reperfusion injury following transient cor-
apoptosis inhibitors prior to transplantation), to enhance onary artery occlusion [121]. If reperfusion injury is
angiogenesis (by the co-delivery of angiogenic factors with responsible for a major component of myocyte death
the donor cells), and to enhance retention of donor cells post-transplantation, the use of donor myocytes or
(by incorporating them into three dimensional scaffolds or myogenic stem cells from these transgenic mice should

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/article/58/2/336/341732 by guest on 21 August 2022



J.D. Dowell et al. / Cardiovascular Research 58 (2003) 336–350346

markedly enhance de novo cardiomyocyte seeding. Donora-myosin heavy chain promoter. The transgene also car-
cells from transgenic mice expressing pro-survival genes ried sequences encoding hygromycin resistance under the
should also be more efficient at engraftment [122]. A transcriptional regulation of the PGK promoter (MHC-

r rnumber of transgenic mouse models that exhibit enhanced neo /PGK-hygro transgene). Stably transfected, undif-
cardiomyocyte proliferation have also been described ferentiated ES cells were selected based on hygromycin
[123,124]; transplantation of myocytes or myogenic stem resistance. Differentiation was then induced, and car-
cells from these animals should result in enhanced prolifer- diomyocytes were selected based on G418 resistance. Low
ation of de novo cardiomyocytes with a concomitant rates of ES-derived cardiomyocyte proliferation were
increase in graft size. observed in these cultures, as evidenced by the relatively

In a variation of this theme, genetically modified ES small cardiomyocyte colony size and the absence of
cells were recently used to identify gene combinations that tritiated thymidine incorporation (Fig. 5, panels A and C,
permitted proliferative expansion of cardiomyocytes fol- respectively).
lowing myogenic differentiation [125]. The experiment In other cultures, transgenes encoding anti-apoptotic
utilized a selection scheme that resulted in the generation activity (specifically, dominant negative p53 and p193
of pure cardiomyocyte cultures [78]. Undifferentiated ES transgenes) as well as pro-proliferative activity (the E1a
cells were transfected with a transgene encoding resistance oncoprotein) were co-transfected with the neomycin/hy-
to neomycin under the regulation of the cardiac specific gromycin selection cassettes. Markedly enhanced car-

Fig. 5. An ES cell-derived cardiomyocyte colony growth assay. (A,B) Photomicrographs illustrating the yield of ES cell-derived cardiomyocytes in
r rcultures transfected with an MHC-neo /PGK-hygro transgene alone (A) or in combination with E1A, dominant negative p53 and p193 transgenes (B). ES

cell-derived cardiomyocyte colony growth was directly visualized via periodic acid-Schiff (PAS) staining. (C,D) Photomicrographs illustratingdispersed
r rcells from cultures transfected with MHC-neo /PGK-hygro transgene alone (C) or in combination with E1A, dominant negative p53 and p193 transgenes

(D). Dispersed cells were processed for PAS staining followed by tritiated thymidine autoradiography (indicative of cells undergoing DNA synthesis). Note
the marked increase in ES cell-derived cardiomyocyte yield when transfected with E1A, dominant negative p53 and p193 (B) as well as increased
tritiated-thymidine uptake (D) in comparison to controls (A,C).
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diomyocyte proliferation was observed in these cultures, as can be transplanted or mobilized at a density sufficient for
evidenced by the marked increase in cardiomyocyte colony global functional impact. Certainly, a similar set of con-
size and very high rates of tritiated thymidine incorpora- cerns and caveats are relevant for interventions aimed at
tion (Fig. 5, panels B and D, respectively). These studies inducing cell cycle activity in surviving cardiomyocytes
demonstrated that combinatorial blockade of p53 and p193 [123].
activity (via the expression of the corresponding dominant With respect to the ultimate clinical utility of myocyte
negative transgenes) was able to abrogate cell cycle-in- and myogenic stem cell transplantation, it is important to
duced apoptosis, thereby resulting in markedly enhanced recognize that we are still very early in the game. The field
proliferation of the ES-derived cardiomyocytes. More of cardiomyogenic stem cell mobilization is even newer.
importantly, the study demonstrated that cell cycle activity The fact that the potential utility of stem cell-based
can be readily modulated in in vitro generated car- therapies is becoming highly recognized is underscored by
diomyocytes. Although it remains to be seen if these the marked increase in the cell transplantation literature
manipulations will ultimately translate to enhanced seeding that has occurred over the last 2 years. With more
following transplantation of stem cell-derived car- individuals studying the problem, and more importantly
diomyocytes, preliminary results obtained with fetal car- with the increase in the intellectual critical mass that will
diomyocytes expressing the same transgenes bode ex- concomitantly be applied to the system, it is likely that
tremely well for this approach. new advances will rapidly be made. With luck, the utility

of these interventions for the treatment of heart failure will
be validated.

6 . Conclusions

It is clear from the studies reviewed here that myocytes A cknowledgements
and myogenic stem cells can be stably transplanted into the
normal or injured heart, and furthermore that this interven- We thank NHLBI for support. We also thank our many
tion can have a positive impact on cardiac function. colleagues working in the field. We apologize in advance
Although improved global cardiac function is the goal of for any relevant views/studies which where inadvertently
all cell transplantation therapies, it appears that in many not included.
cases cited above the mechanistic basis that gives rise to
functional improvement is unclear. In this regard the
positive correlation between increased angiogenesis and
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