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Muscular Dystrophy by Therapeutic Genome Editing. Physiol Rev 98: 1205–1240,
2018. Published May 2, 2018; doi:10.1152/physrev.00046.2017.—Muscular dys-
trophies represent a large group of genetic disorders that significantly impair quality of
life and often progress to premature death. There is no effective treatment for these

debilitating diseases. Most therapies, developed to date, focus on alleviating the symptoms or
targeting the secondary effects, while the underlying gene mutation is still present in the human
genome. The discovery and application of programmable nucleases for site-specific DNA double-
stranded breaks provides a powerful tool for precise genome engineering. In particular, the
CRISPR/Cas system has revolutionized the genome editing field and is providing a new path for
disease treatment by targeting the disease-causing genetic mutations. In this review, we provide a
historical overview of genome-editing technologies, summarize the most recent advances, and
discuss potential strategies and challenges for permanently correcting genetic mutations that
cause muscular dystrophies.
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I. INTRODUCTION

A. Skeletal Muscle Structure

From intense body movement in Greco-Roman wrestling to
delicate vocal control in coloratura soprano, skeletal mus-
cle supports a remarkably wide range of human activities.
As one of the largest tissues, skeletal muscle accounts for
~40% of human body weight and is essential for physical
support, locomotion, energy expenditure, and metabolism.

Skeletal muscle is a highly organized tissue and is composed
of thousands of multinucleated myofibers, which are
formed by fusion of mononucleated myoblasts during de-
velopment and regeneration. Bundles of myofibers form a
muscle fascicle, and groups of fascicles contribute to the
structure of a skeletal muscle (FIGURE 1A). The functional
unit of a myofiber is the sarcomere, which comprises actin
thin filaments and myosin thick filaments. The sliding of the
thin and thick filaments past each other generates a muscle
contraction.

B. Skeletal Muscle Regeneration and
Satellite Cells

The adult musculature has a remarkable regenerative ca-
pacity, primarily due to the contribution of the skeletal
muscle resident stem cells, known as satellite cells (48, 63,
454). Satellite cells reside between the sarcolemma and
basal lamina of myofibers and are marked by expression of
a paired-box transcription factor, Pax7 (350) (FIGURE 1B).
Upon muscle injury, quiescent satellite cells become acti-
vated and undergo proliferation and differentiation, and
finally form multinucleated myofibers by fusion. Activated
satellite cells can also undergo asymmetric division, in
which one daughter cell maintains a satellite stem cell fate
and the other one acquires a myogenic commitment, be-
coming a satellite cell committed myogenic progenitor (76,
202, 358). Pax7 is the canonical biomarker for quiescent
and activated satellite cells and is downregulated during
myogenic differentiation. Genetic ablation experiments
demonstrated that Pax7� satellite cells are indispensable for
adult skeletal muscle regeneration (215, 258, 283, 340).

Skeletal muscle regeneration is evolutionarily conserved
among many bilaterians, requiring involvement of satellite
cells or satellite-like cells (20). However, in certain bilateral
species such as zebrafish and adult newt, myofiber dediffer-
entiation is also a unique mechanism for skeletal muscle
regeneration. For example, extraocular muscle regenera-
tion in adult zebrafish involves dedifferentiation of residual
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myocytes, which do not express Pax7 but express Mef2c
(334). Similarly, limb muscle regeneration in the adult newt
requires dedifferentiation of myocytes to Pax7-negative
mononuclear cells (344).

C. Muscular Dystrophies

Despite the remarkable regenerative capacity of skeletal
muscle, muscles are vulnerable to numerous disorders, in-
cluding congenital myopathies, muscular dystrophies, and
inflammatory myopathies. Muscular dystrophies are a large
group of genetic disorders characterized by progressive
weakness of multiple muscle groups. Owing to the advance-
ment of genome research, the genetic causes of many mus-
cular dystrophies have been identified, with many affecting
sarcolemma-associated proteins, extracellular matrix pro-
teins, glycosyltransferase enzymes, as well as nuclear pro-
teins (174, 264). Depending on the mutation type and dis-
ease onset, muscular dystrophies can significantly impair
the quality of life and cause premature death. There is no
cure for these debilitating diseases. Initial efforts in gene
therapy relied on gene replacement, but the source of the
mutation remains present in the genome. Advancements in
genome engineering technologies enable precise manipula-
tion of the genetic mutations that cause muscular dystro-
phies and offer the prospect of a genetic therapy for the
permanent correction of diverse genetic defects.

In this review, we provide a historical overview and con-
sider the most recent advances in genome editing technolo-
gies. We also detail strategies of genome editing for the
correction of genetic mutations that cause muscular dystro-
phies. Finally, we highlight current cell- and animal-based
studies of muscular dystrophy and discuss current chal-
lenges and future perspectives of translating genome editing
technologies to clinical applications.

II. GENOME AND EPIGENOME EDITING

A. History of Genome Editing:
Meganuclease, ZFN, TALEN, and the
CRISPR/Cas System

Three decades ago the laboratories of Mario Capecchi and
Oliver Smithies independently developed methods for ho-
mologous recombination (HR)-mediated mammalian gene
targeting technology by providing mammalian cells with
exogenous plasmid DNA containing sequence homology to
the endogenous genome (93, 250, 367, 393, 394). This
HR-mediated technology allows precise gene knockout or
correction of genetic mutations. HR-mediated embryonic
stem (ES) cell gene targeting, together with mouse chimeras
and germline transmission technologies developed by the
laboratory of Martin Evans (49), paved the way for the
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generation of “knockin” and “knockout” animal models,
which significantly expanded our knowledge of gene func-
tion and advanced many fields of biological research. How-
ever, because DNA double-strand breaks (DSBs) occur ran-
domly in the genome, the frequency of HR-mediated gene
targeting is low (between 10�6 and 10�4, depending on the
length of sequence homology of the targeting vector) (86).
Moreover, screening of correctly targeted clones requires
positive-negative selection and/or Southern blot analysis,
which is time consuming and labor intensive (57). There-
fore, routine application of the conventional HR-mediated
gene targeting technology for studying gene function was
not feasible at that time.

In the early 1990s, it was discovered that HR-mediated gene
targeting efficiency could be enhanced by more than 100-
fold, when the DNA DSBs were initiated at the target region
by providing mammalian cells with a rare-cutting meganu-
clease discovered in yeast (331). This discovery stimulated
the development of programmable nucleases for creating
site-specific DNA DSBs. Within the past two decades, four
major classes of nucleases have been engineered, which are
1) meganucleases (366), 2) zinc-finger nucleases (ZFNs)
(265, 406), 3) transcription activator-like effector nucleases
(TALENs) (38, 74, 266, 275), and 4) CRISPR/Cas endonu-
cleases (clustered regularly interspaced short palindromic
repeats and CRISPR-associated proteins) (77, 168, 248,
466).

Permanent correction of genetic mutations that contribute
to monogenic neuromuscular disorders offers the ultimate
treatment for these diseases. Early attempts at genome ed-
iting for treatment of muscular dystrophies were challenged
by low efficiency, cytotoxicity, and delivery issues (122,
217, 240, 303, 304, 316, 402, 443). The newly discovered
CRISPR/Cas system has been effectively used in genome
engineering and represents a new approach to therapeutic
genome editing.

1. Meganucleases

Meganucleases are engineered homing endonucleases,
which were initially discovered in archaea, bacteria, and
unicellular eukaryotic genomes (375, 376). Unlike conven-
tional type II restriction endonucleases that recognize short
4–8 base pairs (bp) of palindromic DNA sequences (315),
meganucleases require extended DNA recognition se-
quences (typically 16–18 bp) to generate site-specific DNA
DSBs (62). Meganucleases have been used to enhance HR-
mediated gene targeting efficiency by introducing site-spe-
cific DNA DSBs in cultured mammalian cells and plants
(72, 73, 94, 321, 331), but they have not been widely ad-
opted for genome engineering because the DNA-recogni-
tion domain and the nuclease domain overlap (361, 366).
This overlap may adversely affect the catalytic activity of
the nuclease domain (14), making it very challenging to

engineer the DNA recognition domain for specificity in
new-sequence binding.

To address this issue, researchers began to focus on the type
IIS restriction enzyme FokI, which has two separate do-
mains for DNA recognition and cleavage (188, 218–220).
They engineered novel chimeric FokI endonucleases with
new DNA sequence specificities by swapping DNA-binding
domains from other transcription factors, such as the Dro-
sophila Ubx homeodomain (187), yeast Gal4 domain
(189), zinc-finger protein (186), and TAL effector (74). The
latter two chimeric FokI endonucleases paved the way for
the development of ZFNs and TALENs, respectively.

2. ZFNs

ZFNs are chimeric endonucleases containing multiple Cys2-
His2 zinc-finger domains at the amino terminus (NH2 ter-
minus) for DNA-binding and a FokI nuclease domain at the
carboxyl terminus (COOH terminus) for DNA cleavage
(FIGURE 2A) (186). Each individual zinc-finger domain con-
tains ~30 amino acids folded in a ��� arrangement and
contacts 3 bp of DNA sequence (310). Each ZFN monomer
consists of 3–6 individual zinc-finger domains, and thus can
bind to 9–18 bp of DNA sequence. Two approaches have
been applied to improve genome targeting specificity and
expand the targeting range of ZFNs. The first one is to
engineer the wild-type (WT) FokI nuclease to reduce the
formation of cleavage-competent homodimers (265, 382).
The engineered ZFNs require heterodimerization to form a
functional nuclease, in which two monomers are separated
by 5–7 bp of spacer (35). The second approach is to engi-
neer zinc-finger domains for unique triplet DNA binding
specificity by combinatorial library selection and/or oli-
gomerized pool engineering (OPEN) (32, 95, 96, 128, 183,
237, 351).

These two approaches paved the way for modular assembly
of customized ZFNs, which have been used for genome
targeting in cultured cells, animals, and plants (116, 314,
352, 407). However, because of the context-dependent ef-
fects between adjacent zinc-finger domains, large-scale as-
sembly of functional ZFNs remains challenging, and cyto-
toxicity caused by off-target effects is also a critical issue
(115, 309, 343). Moreover, the genome targeting density of
ZFNs is also limited because the engineered zinc-finger do-
mains cannot target all 64 possible triplet DNA sequences,
especially 5=-TNN-3= sequences (N represents any nucleo-
tide) (33). These obstacles prevent wide application of
ZFNs for genome engineering.

3. TALENs

TALENs are chimeric endonucleases that contain multiple
DNA-binding domains, known as transcription activator-
like effectors (TALEs), at the NH2 terminus, and a FokI
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nuclease domain at the COOH terminus for DNA cleavage
(FIGURE 2B) (74). Unlike the zinc-finger domain in ZFNs,
which binds to a triplet DNA sequence, the TALE domain,
consisting of 33–35 amino acids in tandem arrays, recog-
nizes a single base pair (87, 242). The sequence specificity of
each TALE repeat is determined by the 12th and 13th
amino acids at the TALE domain, known as repeat variable
diresidues (RVDs) (38, 275). Similar to ZFNs, functional
TALENs require dimerization of the FokI nuclease domain
with each TALE arm targeting 15–20 bp of DNA sequence
separated by 12–21 bp of spacer. TALENs have been widely
used to target genomes of various species including cultured
cells, animals, and plants (116, 170, 352, 380). Although
many cloning methods have been developed for the con-
struction of functional TALENs, such as type II restriction
enzyme-based Golden Gate assembly (58), solid-phase as-
sembly (50, 327), and ligation-independent cloning (347),
modular assembly of customized TALENs is still challeng-
ing and time consuming because each TALEN arm consists
of up to 20 highly repetitive TALE arrays.

Despite the difficulty of assembling TALE arrays, TALENs
still offer many advantages over other programmable nu-
cleases. First, TALENs have the highest genome-targeting
density compared with ZFNs and CRISPR/Cas because
each TALE array recognizes DNA sequence at single nucle-
otide resolution (38, 275). Second, TALENs have minimal
off-target effects because a functional TALEN requires
dimerization of two TALEN pairs, which can bind 30–40
bp of DNA sequence (87, 182, 242). Therefore, TALENs
offer benefits for genome engineering.

4. CRISPR/Cas system

The discovery of CRISPR can be dated back to 1987, when
a Japanese research group identified a series of directed
repeats interspaced with short spacer sequences in the ge-
nome of Escherichia coli, although the function of these
repeats was unknown at that time (161). It was not until the
mid 2000s that researchers discovered that these directed
repeats are widely present in over 40% of sequenced bacte-
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ria and 90% of archaea genomes (270) and found that the
short spacer sequences between the directed repeats are of
plasmid and viral origin (41, 269, 319). After realizing that
the CRISPR locus is actively transcribed and the protein
product has potential nuclease and helicase activities, scien-
tists proposed that the CRISPR/Cas system functions as an
adaptive immune system in bacteria and archaea to defend
against viral infection (23, 41, 52, 139, 163, 244, 253, 319).
The CRISPR/Cas system can be grouped into two classes
and six subtypes: the class 1 system encodes multiple effec-
tor proteins forming a Cascade complex (CRISPR-associ-
ated complex for antiviral defense) with their correspond-
ing signature proteins, such as Cas3, Cas10, and Csf1 from
type I, III, and IV CRISPR systems, respectively (243, 245,
246, 359). The class 2 system encodes a single Cas protein
with multiple functions, including Cas9, Cpf1, and Cas13a/
C2c2 from type II, V, and VI CRISPR systems (5, 102, 359,
466).

The mechanism of CRISPR immunity in bacteria and ar-
chaea varies between different CRISPR types, but generally
can be divided into three stages, which are protospacer
acquisition, precursor CRISPR RNA (pre-crRNA) process-
ing, and crRNA-guided cleavage of exogenous nucleic acids
(252, 440). Most CRISPR immunity requires a protospacer
adjacent motif (PAM) located next to the crRNA target
region in the exogenous invading genome (151, 440).

Owing to the simplicity of the class 2 CRISPR system in
which only one RNA-guided endonuclease is required for
nucleic acid cleavage, scientists engineered Cas9 endonu-
clease in conjunction with a hybrid crRNA-tracrRNA du-
plex, known as single guide RNA (sgRNA), for efficient
site-specific genome cleavage in eukaryotic cells (FIGURE

2C) (77, 168, 248). Currently, the most widely used Cas9
endonuclease is from Streptococcus pyogenes with 5=-
NGG-3= or 5=-NAG-3= PAM preference. Other Cas9 or-
thologs are also available for genome targeting, including
Cas9 endonucleases from Staphylococcus aureus (322),
Neisseria meningitides (150), and Streptococcus thermo-
philus (238, 279), although these Cas9 orthologs recognize
longer and more complicated PAM sequences. Besides the
type II CRISPR/Cas9 system, the most recently discovered
type V and VI CRISPR effectors including Cpf1 (466) and
Cas13a/C2c2 (5, 102) further expand the range of genome
editing and nucleic acid detection. We will further discuss
these two CRISPR effectors in section IID.

B. CRISPR/Cas-Mediated Genome Editing:
C-NHEJ, HDR, and MMEJ

On average, each human cell undergoes ~50 spontaneous
DNA DSBs during each cell cycle (416). DNA DSBs occur
randomly, so the efficiency of HR-mediated gene targeting
in the absence of programmable nucleases is extremely low
(86). The RNA-guided CRISPR/Cas system significantly en-

hances and simplifies genome editing, in which the Cas9-
sgRNA ribonucleoprotein complex binds to DNA by base-
pairing with sgRNA, generating a site-specific DNA DSB
adjacent to the PAM sequence. Depending on the cell cycle
stage and repair machinery, the DNA DSBs can be repaired
by error-prone nonhomologous end joining (NHEJ) or by
accurate homology-directed repair (HDR). Additionally,
there is a third DNA DSB repair pathway known as micro-
homology-mediated end joining (MMEJ), which is a sub-
type of alternative NHEJ (alt-NHEJ).

1. Classical NHEJ

Classical NHEJ (C-NHEJ) DNA repair machinery is trig-
gered when a CRISPR/Cas-induced DNA DSB occurs in the
absence of a repair template (FIGURE 3A). Although
C-NHEJ is active in all stages of the cell cycle, it occurs
preferentially during the G1 phase when the DNA-end re-
section activity is low (160). The end of a DNA DSB is
recognized by Ku70/Ku80 heterodimers, which recruit and
activate the catalytic subunit of DNA-dependent protein
kinase (DNA-PKcs). Depending on the nature of the break,
the ends of DNA DSBs can be directly ligated by the DNA
ligase IV-XRCC4 complex, or requires additional process-
ing steps, such as end resection by Artmis, WRN, or APLF
nucleases and nucleotide synthesis by DNA polymerases �

and � (75, 83).

DNA DSBs repaired by C-NHEJ usually generate insertions
or deletions (INDELs). Depending on the location of the
site-specific cleavage, C-NHEJ has been used for different
purposes of genome editing. The most widely used applica-
tion of C-NHEJ is gene disruption, because INDELs often
cause a frameshift of an exon and subsequently disrupt gene
function, resulting in a gene knockout. However, C-NHEJ
can also cause exon skipping if the INDELs disrupt the
splice acceptor site (217), or an exonic splice enhancer/
silencer sequence (277), although the outcome of the latter
scenario is less predictable. Depending on the reading frame
of the skipped exon and adjacent exons, exon skipping can
cause gene knockout when the newly spliced adjacent exons
are out of frame. Conversely, exon skipping can also pro-
duce a truncated protein if the newly spliced adjacent exons
are perfectly in frame with each other.

C-NHEJ was generally considered as an error-prone DSB
repair pathway. However, some recent studies also demon-
strated the precision of C-NHEJ (18, 251) and used this
repair pathway for homology-independent targeted inte-
gration (HITI) of DNA fragments into postmitotic cells and
animals, further expanding the application of CRISPR/Cas-
mediated C-NHEJ in genome editing (381).

2. HDR

DNA DSBs can also be repaired by HDR during S and G2

phases of the cell cycle, when sister chromatids can be used
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as a template for HR (FIGURE 3B) (456). During HDR, the
end of the DNA DSB is recognized by the MRE11-RAD50-
NBS1 (MRN) complex, which undergoes initial DNA end
resection induced by MRE11 (434), followed by extensive
end resection induced by the EXO1-BLM complex (40),
producing single-stranded DNA (ssDNA). The exposed ss-
DNA is coated by RPA until RAD51 detects the homology
sequence, leading to strand invasion and Holliday junction
formation (431). HDR is completed when the Holliday
junction is either dissolved by the BLM/TOPOIII complex
or resolved by GEN1 or SLX1/SLX4 nucleases (442).

Currently, the most widely used repair templates for HDR
are double-stranded DNA (circular or linearized plasmid)
and single-stranded oligodeoxynucleotides (ssODNs). Be-
fore programmable nucleases were employed in HR-medi-
ated gene targeting, the length of sequence homology on the
targeting vector for HDR could be up to 14 kb for efficient

gene targeting (86). The development of programmable nu-
cleases, especially the CRISPR/Cas system, significantly en-
hanced site-specific DNA DSBs and further reduced the
length of sequence homology on the targeting vector to
several hundred base pairs (255, 468).

A ssODN can also serve as a repair template for HDR,
especially for introducing small DNA modifications (231,
329, 441, 469). Interestingly, asymmetrical ssODN com-
plementary to the nontarget strand (the DNA strand that
does not base pair with the CRISPR sgRNA) can drive the
efficiency of HDR up to 60%, because the Cas9 endonu-
clease first releases the PAM-distal nontarget DNA strand,
which is more available for ssODN binding (329). Due to
the accuracy of HDR, it is possible that the Cas9 endonu-
clease will continuously generate DSBs at the target site as
long as the PAM and the sgRNA target sequence remain
intact, even when HDR is completed. Because of codon
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FIGURE 3. DNA repair pathways involved in CRISPR/Cas-induced DNA double-strand break repair. A:

classical nonhomologous end joining (c-NHEJ) is a Ku-dependent DNA repair pathway that is active throughout

the cell cycle. In the absence of a donor template, c-NHEJ generates insertions or deletions (INDELs; shown

in red) in the genome. B: when a DNA double-strand break (DSB) is induced in the S or G2 phase of the cell
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generates INDELs in the genome (red).
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degeneracy, introducing a silent mutation at the third nu-
cleotide of the triplet codon for the disruption of the PAM
and/or sgRNA target sequence can effectively overcome the
recleavage event (231, 469).

3. MMEJ

MMEJ is a Ku-independent alt-NHEJ repair pathway for
DNA DSBs, which displays maximal activity in S phase
(FIGURE 3C) (398). Similar to HDR, MMEJ undergoes ini-
tial DNA end resection induced by MRE11 but does not
require extensive end resection induced by the EXO1-BLM
complex (324, 398, 444). If microhomology is present, the
exposed ssDNA ends generated by initial DNA end resec-
tion will anneal with each other and the gap between the
newly annealed ssDNA will be filled by DNA polymerases �

(61, 460) and finally ligated by the LIG3-XRCC1 complex
(17, 362, 421).

In the absence of template DNA, MMEJ is an error-prone
DNA repair pathway because of INDEL formation (356,
398). However, several studies have adopted MMEJ for
precise integration of exogenous reporter genes into the
genome after TALEN or CRISPR/Cas9-mediated DNA
DSBs (146, 285, 335). This method, known as Precise Inte-
gration into Target Chromosome (PITCh), requires three

DNA DSBs, with one DSB located at the target locus in the
genome, and the other two DSBs located at the 5=- and
3=-ends of a reporter cassette (e.g., GFP). The reporter cas-
sette is cloned into a plasmid with 5–25 bp of sequence
homology to the target locus, serving as the MMEJ repair
template. Therefore, MMEJ provides an alternative method
for precise genome editing similar to HDR.

C. Engineered Cas9 With Mutant Nuclease
Domains

CRISPR/Cas9-mediated DNA DSBs are induced by two
separate nuclease domains, in which the HNH nuclease
domain cuts the target strand that hybridizes with the
sgRNA and the RuvC nuclease domain cuts the nontarget
strand (295). A single amino acid mutation at the RuvC-I
domain (D10A) generates a Cas9 nickase that is only active
for target strand cleavage (FIGURE 4A) (323). Double muta-
tions at both RuvC-I and HNH nuclease domains (D10A,
H840A) abolish the Cas9 nuclease activity, generating a
deactivated Cas9 (dCas9) (FIGURE 4B) (168). A pair of Cas9
nickases can be used to induce DNA DSBs with high spec-
ificity, since only two adjacent DNA single-strand breaks
can generate a DSB (323). Although dCas9 lacks its nu-
clease activity, it still has RNA-guided DNA binding activ-
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ity and can be fused with different effectors, including cyt-
idine deaminase, transcriptional activators/repressors, and
epigenetic modifiers for different purposes, such as nucleo-
tide conversion as well as genome and epigenome regula-
tion (66, 126, 142, 179, 194, 196, 228, 274, 294). Unlike
CRISPR/Cas9-mediated permanent genome alternation,
CRISPR/dCas9-mediated genome and epigenome regula-
tion does not modify the genome. Therefore, the CRISPR/
dCas9 system provides a powerful tool for inducible and
reversible control of gene expression and changing the epi-
genetic landscape without modifying endogenous genomic
sequence.

1. Base editing: Cas9 nickase fused to cytidine
deaminase

Base editing is a CRISPR/Cas-mediated genome editing
technology in which the dCas9 or Cas9 nickase is fused to a
cytidine deaminase for site-specific C-G to T-A conversion
(194, 294) or fused to an engineered adenine deaminase for
site-specific A-T to G-C conversion (123). Classically,
CRISPR/Cas-mediated gene disruption introduces INDELs
into the genome, which is imprecise and unpredictable, po-
tentially leading to cytotoxicity by unintended alterations in
the genome due to off-target effects. In contrast, gene
knockout by Cas9 nickase-mediated base editing does not
generate DNA DSBs. Several studies have applied this tech-
nology for precise gene knockout through site-specific in-
troduction of premature stop codons (34, 203).

Based on the NCBI ClinVar database, more than 900 hu-
man genetic diseases are caused by T-to-C or A-to-G muta-
tions, and these can be corrected by base editing (194, 206).
Therefore, CRISPR/Cas9 nickase-mediated base editing
represents a promising technology for therapeutic genome
editing because its efficiency is higher than HDR, while
INDEL formation is minimized since a DNA DSB is not
required.

2. Transcriptional regulation: dCas9 fused to
transcriptional activator/repressor

CRISPR/Cas9-mediated genome editing was developed to
alter DNA sequences. In contrast, CRISPR/dCas9-based
technology was developed to regulate gene expression at the
transcriptional level without altering genome integrity. The
general mechanism of CRISPR/dCas9-mediated transcrip-
tional regulation is achieved by direct fusion or recruitment
of transcriptional activators or repressors to the dCas9-
sgRNA complex, forming a CRISPR activation or interfer-
ence complex (CRISPRa or CRISPRi). In the presence of
sequence-specific sgRNA, CRISPRa or CRISPRi is targeted
to the transcription start site of a gene, thereby inducing or
repressing gene expression, respectively (193, 391, 420).

Gene repression in eukaryotes requires that dCas9 be fused
with a transcriptional repression domain, such as KRAB

(Krüppel-associated box), MXI1 (MAX-interacting protein
1), or SID4X (four copies of mSin3 interaction domain)
(FIGURE 4C) (126, 195, 392). Conversely, CRISPR/dCas9-
mediated gene activation is achieved by fusion of transcrip-
tional activation domain(s), such as VP64 (four copies of
the Herpes Simplex Virus VP16 transcriptional activation
domain), p65 (NF-Kb activation domain), and Rta (Ep-
stein-Barr Virus-derived R transactivator) to the NH2 ter-
minus and/or COOH terminus of dCas9, leading to gene
activation in a variety of cell types (59, 66, 70, 236, 247,
313).

Several strategies have been exploited to further improve
the potency of the CRISPRa system. One strategy is to use
antibody/epitope-based recruitment of transcriptional acti-
vators, known as the SunTag system (387). Another strat-
egy is to engineer the sgRNA scaffold for recruitment of the
RNA binding protein fused with multiple transcriptional
activators (196, 465). CRISPR/dCas9-based transcriptional
activation can also be used for cell lineage reprogramming.
As an example, dCas9 fused with two copies of the VP64
transcriptional activation domain can be directed to the
Myod1 promoter, leading to reprogramming of fibroblasts
to the myogenic lineage (59).

One of the applications of dCas9-based transcriptional reg-
ulation for the treatment of muscular dystrophies is to up-
regulate compensatory or paralogous proteins. Utrophin is
an autosomal paralogue of dystrophin, and upregulation of
utrophin can partially alleviate the dystrophic phenotype
seen in the mouse model of Duchenne muscular dystrophy
(DMD) (145, 396). Therefore, it would be interesting to
evaluate the efficacy and efficiency of dCas9-based tran-
scriptional upregulation of the endogenous utrophin gene
for the treatment of DMD.

3. Epigenetic regulation: dCas9 fused to epigenetic
modifiers

The CRISPR/dCas9 system can also be used for site-specific
epigenome editing when fused with epigenetic modifiers,
leading to histone code modification or changes in DNA
methylation (FIGURE 4C). In an example of histone modifi-
cation, dCas9 engineered from Neisseria meningitides was
fused to histone demethylase LSD1 and used to target the
enhancer regions of the Oct4, Sox2, and Tbx3 genes (179).
This decreased the levels of H3K4me2 and H3K27ac and
suppressed gene expression. Conversely, fusing dCas9 with
the catalytic core of the histone acetyltransferase p300 in-
duced robust transcriptional activation of the targeted
genes (142). In addition to histone code modification, the
DNA methylation pattern can also be altered. Fusing dCas9
with either Tet1 (Ten-eleven translocation methylcytosine
dioxygenase 1) or Dnmt3a (DNA methyltransferase 3A)
produced dCas9-Tet1 or dCas9-Dnmt3a, which can be
used to target methylated or unmethylated promoter re-
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gions, leading to promoter activation or silencing (228,
274).

D. Novel CRISPR/Cas Systems: CRISPR/
Cpf1 and CRISPR/Cas13a/C2c2

Currently, the most widely used forms of Cas9 and its or-
thologs are from the class 2 type II CRISPR/Cas system.
Recent studies in class 2 type V and VI CRISPR/Cas systems
revealed several new RNA-guided CRISPR effectors capa-
ble of nucleic acid cleavage and detection, such as Cpf1
(CRISPR from Prevotella and Francisella 1) and Cas13a
(formerly C2c2). These new CRISPR/Cas systems further
expand the genome editing range of the CRISPR system (5,
103, 111, 466).

1. CRISPR/Cpf1: more than an alternative to Cas9

CRISPR/Cpf1, from the class 2 type V CRISPR system, is a
RNA-guided endonuclease capable of DNA cleavage (FIG-

URE 5A) (111, 466). Two Cpf1 orthologs, LbCpf1 (from
Lachnospiraceae bacterium ND2006) and AsCpf1 (from
Acidaminococcus sp. BV3L6), have been engineered for
genome editing in a variety of systems, including mamma-
lian cells, animals, and plants (106, 156, 166, 184, 185,
235, 281, 317, 397, 405, 464, 469). The CRISPR/Cpf1
system has many unique features compared with CRISPR/
Cas9: 1) Cas9-mediated genome cleavage requires two
RNA components consisting of a crRNA and a tracrRNA
(which can be engineered as a single sgRNA hybrid),
whereas Cpf1-mediated genome cleavage is tracrRNA-in-
dependent so it only requires a short crRNA. 2) The PAM

A

B

Protospacer

Non-target strand

Target strand

LbCpf1 crRNA

LbCpf1
1 292 515 584 678 809 858 890 1011 1138 1228
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FIGURE 5. Novel CRISPR/Cas systems. Two novel class 2 CRISPR/Cas systems have been engineered for

nucleic acid recognition and cleavage, such as Cpf1 (CRISPR from Prevotella and Francisella 1) and Cas13a

(formerly C2c2). A: domain organization of the LbCpf1 protein discovered in Lachnospiraceae bacterium

ND2006. All Cpf1 orthologs have two nuclease domains: 1) the RuvC domain which cleaves the nontarget DNA

strand and 2) the Nuc domain which cleaves the target DNA strand. The LbCpf1 crRNA is shown hybridizing

with its DNA target. The PAM is highlighted in red. Red arrowheads indicate cleavage site. B: domain

organization of the LshCas13a protein discovered in Leptotrichia shahii. Cas13a has dual RNase activities, one

specific for pre-crRNA processing and maturation, which is catalyzed by the helical-I domain, and the other one

for RNA-guided single-stranded RNA (ssRNA) degradation, which is catalyzed by the HEPN1 and HEPN2

domains. The LshCas13a crRNA is shown hybridizing with its RNA target. CRISPR/Cas13a-mediated ssRNA

cleavage is independent of a PAM; instead, it requires a 3=-protospacer flanking site (PFS; shown in red). C:

domain organization of the SpCas9 protein discovered in Streptococcus pyogenes. The RuvC nuclease domain

cuts the nontarget strand. The HNH nuclease domain cuts the target strand that hybridizes with the sgRNA.

CTD, COOH-terminal domain.
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sequence of Cpf1 is 5=-TTTN-3=, located at the 5= end of a
protospacer; in contrast, the 5=-NGG-3= or 5=-NAG-3=

PAM for SpCas9 is located at the 3= end of a protospacer. 3)
Cas9-mediated DNA DSB is blunt-ended and proximal to
the PAM site, whereas Cpf1-mediated DNA DSBs are
cleaved as a staggered cut distal to the PAM site. 4) The
pre-crRNA processing in the CRISPR/Cas9 system is cata-
lyzed by an additional RNase III, whereas Cpf1 has intrinsic
RNase activity and can directly process pre-crRNA by itself
(111, 466).

Because of its T-rich PAM preference, Cpf1 represents an
alternative to Cas9 for genome editing at AT-rich loci. In
addition to the canonical 5=-TTTN-3= PAM sequence, Cpf1
also recognizes 5=-CTTV-3=, 5=-TCTV-3=, 5=-TTCV-3= (V
represents A, G, or C) as noncanonical PAMs, because the
PAM-binding channel of Cpf1 has conformational flexibil-
ity (449) that further expands the targeting range of the
CRISPR/Cpf1 system. Another advantage of Cpf1 com-
pared with Cas9 is the convenience of multiplex genome
editing. CRISPR/Cas9-mediated multiplex genome editing
requires multiple sgRNAs transcribed from separate pro-
moters or additional RNA sequences for recognition and
cleavage by other nucleases if multiple sgRNAs are tran-
scribed from a single promoter (171, 336, 400, 445). How-
ever, CRISPR/Cpf1-mediated multiplex genome editing
only requires a single promoter for the transcription of mul-
tiple crRNAs, because Cpf1 can process polycistronic
crRNAs into individual ones using its own RNase activity,
which significantly simplifies multiplex genome editing
(467). Therefore, Cpf1 is more than an alternative to Cas9
in terms of genome and epigenome editing because it offers
a broader range of editing options.

2. CRISPR/Cas13a/C2c2: programmable RNA-
guided RNA-targeting CRISPR effector

Most CRISPR effectors discovered so far are RNA-guided
deoxyribonucleases. To date, RNA-guided RNA-targeting
activity has been shown in only three types of CRISPR
systems: the type III-A, III-B systems and type VI CRISPR/
Cas13a system (formerly C2c2) (5, 103, 140, 165, 178,
339, 372, 373, 386). Type III-A, III-B systems belong to the
class 1 CRISPR family and require a multicomponent effec-
tor complex for RNA degradation, and so have limited
application in RNA biology. In contrast, the type VI
CRISPR/Cas13a system belongs to the class II CRISPR fam-
ily and is a single-effector system for crRNA processing and
RNA targeting (5, 102) (FIGURE 5B). These engineered Cas
proteins further extend the CRISPR/Cas system from DNA
editing to RNA editing (FIGURE 5).

Several Cas13 orthologs have been engineered for RNA
recognition and cleavage both in vitro and in vivo (4, 80,
102, 129). For example, the Cas13a ortholog from Lepto-
trichia wadei (LwaCas13a) has been engineered for patho-
genic virus and bacteria detection, mutation genotyping,

and identification, which further expands the clinical appli-
cation of the CRISPR/Cas13a system (129). In addition,
LwaCas13a can be used in mammalian cells and plants for
targeted RNA knockdown with high specificity, and its cat-
alytically inactive form can also be applied for tracking
RNA transcripts in vivo (4). Most recently, the Cas13b
ortholog from Prevotella sp. P5–125 (PspCas13b) has been
engineered for mammalian RNA targeting, and its catalyt-
ically inactive form fused with ADAR2 deaminase domain
can also be applied for RNA base editing (80). Therefore,
the recently characterized CRISPR/Cas13 system is becom-
ing a powerful tool for studying RNA biology.

III. MYOEDITNG: PREVENTION OF
MUSCULAR DYSTROPHIES

A. DMD: Dystrophin Gene Structure and
Mutations

DMD is an X-linked recessive monogenic disease caused by
mutations in the DMD gene, which encodes dystrophin
(149). DMD is the most common type of monogenic mus-
cular dystrophy, affecting ~1 in every 5,000 boys (135).
DMD patients seem normal at birth, but within a few years
they begin having trouble walking and lose ambulation be-
tween 7 and 12 yr of age. Cardiac and respiratory failure
causes premature death, often by the early 30s.

Dystrophin is a key component of the dystrophin glycopro-
tein complex, which is a large multicomponent protein
complex essential for sarcolemma integrity and stability
(FIGURE 6) (120, 135). The structure of the full-length dys-
trophin protein can be organized into four major domains:
1) the NH2-terminal region containing an actin-binding do-
main; 2) the central region containing a stretch of 24 spec-
trin-like repeats, forming the rod domain, which is inter-
rupted by 4 hinge regions; 3) the cysteine-rich domain
which contains several subdomains, including a WW do-
main, two EF-hand-like domains, and a ZZ domain, which
are important for interacting with �-dystroglycan, calmod-
ulin, and ankyrin-B; and 4) the COOH-terminal domain
which interacts with dystrobrevin and syntrophins (6, 120,
299). The DMD gene, comprised of 79 exons (FIGURE 7)

(184, 264), gives rise to different isoforms of the dystrophin
protein which are expressed in various tissues by tissue-
specific promoters and/or alternative splicing (280). The
large 427-kDa cytoskeletal protein that is primarily ex-
pressed in skeletal muscle and heart is transcribed from the
Dp427m promoter.

More than 7,000 mutations have been identified in the
DMD gene (36). These mutations can be categorized as
deletion (68%), duplication (11%) of single or multiple
exons, or small point mutations (20%), such as missense
and nonsense substitutions (3, 36, 271). Mutations in the
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DMD gene are not uniformly distributed but cluster into
hot spots, which are clustered within exons 2–20 and exons
45–55 (36). Approximately 15% of all exon deletion events
and 50% of all exon duplication events are observed within
exons 2–20, whereas 70% of all exon deletion events and
15% of all exon duplication events are observed within
exons 45–55 (36, 451). In-frame deletion or duplication of
exon(s) within the central region of the DMD gene retains
the protein reading frame and generates either a truncated
or extended dystrophin protein. These mutant dystrophin
proteins retain their NH2 and COOH termini, which are
essential for actin cytoskeleton and dystrophin glycoprotein
complex interaction, leading to a milder form of muscular
dystrophy, known as Becker muscular dystrophy (BMD) (2,
135). In contrast, out-of-frame deletion or duplication of
exon(s) either disrupts the protein reading frame or gener-
ates a premature termination codon (PTC) and leads to
DMD.

B. Animal Models of DMD

The most commonly used animal model for DMD is the
mdx mouse, in which a C-to-T transition in exon 23 creates

a nonsense mutation, leading to loss of full-length dystro-
phin expression (54, 360). The mdx mice do not develop
severe DMD phenotypes, such as muscle wasting, scoliosis,
and cardiomyopathy until reaching 15 mo of age. In con-
trast to DMD patients whose lifespan is significantly re-
duced, the lifespan of mdx mice is reduced by only 25%
(60). Four chemically induced mdx strains have also been
developed, known as mdx2cv, mdx3cv, mdx4cv, and mdx5cv,
with a point mutation in intron 42, intron 65, exon 53, or
exon 10, respectively (65). In addition to the mdx strains
with point mutations, four additional DMD mouse models
have been established with either exon 2 duplication, exon
45 deletion, exon 50 deletion, or exon 52 deletion (12, 417,
458).

Dystrophin-deficient mouse models generally do not de-
velop severe pathological phenotypes as seen in DMD pa-
tients. Several double knockout (dKO) mouse models were
generated, in which the Dmd gene was knocked out, along
with additional genes required for sarcolemma integrity,
stem cell maintenance, and muscle homeostasis (85, 130,
259, 278, 332). Genome editing technology also played a
role in expanding the rodent models of DMD. For example,
two DMD rat models were created by TALEN- or CRISPR/
Cas-mediated targeting of the Dmd exon 23 or exons 3–6,
leading to an exon 23 frame shifting or exon 3–6 deletion
(208, 286). Most recently, CRISPR/Cas9 was used to create
a mouse model lacks exon 50, representing the most com-
mon mutational “hot spot” in humans (7).

In addition to small rodent models, large animal models of
DMD have been developed, including dogs (16, 197, 346,
365, 409, 418, 435), pigs (192, 353, 461), and non-human
primates (69). Monkey models of DMD are still at F0 with
mosaicism, which requires additional breeding to generate
a pure background (69). Disease progression in some por-
cine models of DMD is so severe that the majority of the
affected pigs die within the first week of life, which limits its
application in therapeutic translation (353). In contrast,
canine DMD models share more similar clinical phenotypes
as seen in human patients, including limb muscle fibrosis,
joint contracture, hypersalivation, and an early cardiac de-
fect (259). Moreover, canine DMD models have fewer re-
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generated myofibers than mdx mice as indicated by central
nucleation, which is histologically similar to human pa-
tients (81, 365). In addition, canine DMD models develop
limb muscle weakness at 2–3 mo of age and have ~75%
reduction of lifespan, showing similar disease progression
as human patients (410). Therefore, the canine model of
DMD seems superior to the other large animal models in
regard to current availability, genetic background, and
speed of disease progression.

C. Introduction of Myoediting

To date, more than 800 monogenic neuromuscular disor-
ders with mutations in over 400 different genes have been
recorded (177). The discovery and application of program-
mable nucleases for genome editing paves the way for per-
manent correction of these genetic diseases (79, 318, 320).
Meganucleases, ZFNs, and TALENs have been reported to
correct mutations responsible for certain muscular dystro-
phies including DMD, limb-girdle muscular dystrophy
(LGMD), and myotonic dystrophy (DM) (122, 217, 240,
303, 304, 316, 402, 443). However, these early versions of
programmable nucleases were not widely adopted for cor-
recting mutations in various muscular dystrophies because
of the low genome targeting density, difficulty of assembly
of the functional nuclease domains, and cytotoxicity caused
by off-target effects. The CRISPR/Cas system revolution-
ized the genome editing field and significantly simplified the
process of permanent correction of monogenic neuromus-
cular disorders.

CRISPR/Cas-mediated genome editing in skeletal muscle
and heart, which we termed myoediting (230, 231), can
permanently correct various DMD mutations and restore
dystrophin function. Initially, myoediting was performed in
the germline of mdx mice, a mouse model of DMD with a
nonsense mutation in exon 23. By injecting Cas9 mRNA, a
sgRNA targeting the mutated exon 23, and a ssODN repair
template into the zygotes of mdx mice, it was demonstrated
that CRISPR/Cas9-mediated myoediting can successfully
correct the Dmd mutation by HDR or NHEJ and restore
dystrophin expression (231). However, germline editing in
humans is currently not feasible, necessitating alternative
strategies for therapeutic genome editing. Therefore, we
and other groups used recombinant adeno-associated virus
(rAAV) to deliver the CRISPR/Cas9 genome editing com-
ponents to postnatal mdx mice for skipping or deleting the
mutated exon in vivo (29, 104, 230, 289, 383). The rAAV-
delivered CRISPR/Cas9-mediated postnatal genome editing
successfully restored dystrophin expression and improved
muscle function in mdx mice. These studies underscore the
therapeutic potential of the CRISPR/Cas9 system for treat-
ing devastating muscle diseases.

The CRISPR/Cpf1 system was also used to correct DMD
mutations in human induced pluripotent stem cells (iPSCs)

and in mdx mice either by exon skipping or HDR (469),
which further expands the range of CRISPR/Cas-mediated
genome editing in AT-rich loci. Due to postmitotic and
multinucleation features, skeletal muscle is ideal for thera-
peutic CRISPR/Cas9 genome editing because genomic cor-
rection of a subpopulation of nuclei leads to steady im-
provement of muscle function (29, 104, 230, 231, 289, 383,
469). Therefore, CRISPR/Cas-mediated myoediting repre-
sents a novel method for DMD treatment. In the following
sections, different strategies of applying the CRISPR/Cas
system for correcting DMD mutations will be discussed in
detail. In addition, the potential of applying CRISPR/Cas-
mediated genome editing for the correction of other mus-
cular dystrophies will also be explored.

D. Strategies of CRISPR/Cas-Mediated
DMD Correction

Initial efforts to apply programmable nucleases such as me-
ganuclease, ZFN, and TALEN for precise genome editing
provided many insights into the permanent correction of
DMD mutations (217, 240, 303, 304, 316). The CRISPR/
Cas system significantly simplified the genome editing pro-
cess. To date, four strategies have been developed for
CRISPR/Cas-mediated correction of DMD mutations,
which are exon deletion, exon skipping, exon reframing,
and exon knock-in.

1. Exon deletion

Approximately 80% of mutations found in the DMD gene
are out-of-frame exon deletions or duplications, leading to
reading frame incompatibility between adjacent exons (FIG-

URE 8A) (3, 36). The most traditional strategy to perma-
nently restore the DMD open reading frame (ORF) is in-
frame exon deletion, in which a pair of sgRNAs is used to
generate two simultaneous DNA DSBs within the intron
regions flanking the out-of-frame exon, leading to complete
removal of a single exon or multiple exons to generate a
compatible reading frame outcome with the adjacent exon
(FIGURE 8B). CRISPR/Cas-mediated exon deletion is best
suited for correcting DMD mutations caused by exon du-
plication and has been reported with high efficiency in hu-
man DMD myoblasts with exon 2 or exon 18–30 duplica-
tions (209, 437). Removal of the duplicated exons restores
the DMD ORF and produces full-length dystrophin protein
that is indistinguishable from wild-type or normal dystro-
phin, although small INDELs can be observed at the
genomic level.

DMD mutations caused by an out-of-frame exon deletion
can be corrected by an in-frame exon deletion, producing a
truncated dystrophin protein with internal deletions. For
example, cultured myoblasts from DMD patients with an
out-of-frame deletion of exons 48–50 have an incompatible
reading frame when exon 47 is spliced with exon 51. A pair
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of sgRNAs targeting intron 50 and 51 was used to delete
exon 51, restoring the reading frame between exon 47 and
52 (302). Similarly, the dystrophin reading frame incom-
patibility caused by an out-of-frame deletion of exons
45–52 has been corrected by exon 53 deletion, leading to
splicing of exon 44 to exon 54 and subsequently restoring
the dystrophin reading frame (239, 240). Multiple exons
can also be deleted to restore the dystrophin reading frame.
By using a pair of sgRNAs targeting intron 44 and 55, a
large deletion extending from exon 45 to 55 was generated,
leading to reading frame restoration of exon 44 to exon 56
(302, 457). Similarly, a large deletion extending from exons
44 to 54 was generated, by using a pair of sgRNAs targeting
intron 43 and 54, leading to reading frame restoration be-
tween exon 43 and 55 (239, 240). Several in vivo studies in

postnatal mdx or mdx4cv mice used exon deletion strategies
to remove a single or multiple exons with a point mutation
and thereby restored dystrophin expression and muscle
function (29, 104, 230, 289, 383, 446).

Exon deletion is a promising strategy to correct mutations
clustered in the second hot spot region (exons 45–55) be-
cause the spectrin-like repeats within the central rod do-
main are tolerant of large in-frame deletions (120, 135).
However, special consideration should be given to muta-
tions at the NH2 and COOH termini of dystrophin because
these regions encode many essential domains known to
interact with the actin cytoskeleton and dystrophin glyco-
protein complex. For example, three different exon deletion
strategies were applied to correct the DMD mutation
caused by an out-of-frame deletion of exons 8–9, and dif-
ferent outcomes were observed in regard to dystrophin pro-
tein stability and function (205). Specifically, an in-frame
deletion of exons 7–11 retained all three actin binding sites,
but this truncated dystrophin was structurally unstable and
showed minimal recovery of cardiomyocyte function in
vitro. In contrast, in-frame deletion of exons 3–9 only re-
tained actin binding site 1 but was the most effective strat-
egy to restore functionality of human iPSC-derived cardio-
myocytes. Reading frame restoration does not guarantee
functional recovery, and hence, additional empirical analy-
sis should be performed to further evaluate different correc-
tion strategies.

2. Exon skipping

Exon skipping has been achieved using anti-sense oligonu-
cleotide (AON)-based therapy (1). However, AON-based
exon skipping corrects at the mRNA level, while retaining
the mutant DMD in the genome. Thus this approach re-
quires life-long treatment. In contrast, CRISPR/Cas-based
exon skipping is achieved by NHEJ-mediated disruption of
the splice acceptor or donor sequence at the genomic level,
leading to permanent exon skipping and completely elimi-
nating the source of the mutation. For example, human
iPSCs derived from DMD patients with exon 44 deletion
have an incompatible reading frame between exon 43 and
45 (FIGURE 8A). A single sgRNA was designed to specifically
target the intron 44 and exon 45 boundary, thereby induc-
ing a DNA DSB at the splice acceptor site of exon 45 (FIG-

URE 8C). The INDELs generated by NHEJ-based DSB re-
pair disrupted the splice acceptor sequence of exon 45, lead-
ing to exon 45 skipping during mRNA splicing (217).
Similarly, DMD mutations caused by an out-of-frame dele-
tion of exons 48–50 or exons 45–52 have been corrected by
skipping exon 51 or exon 53, respectively (239, 240, 469).
Recently, exon skipping has also been used to correct Dmd
in a mouse model representing the most commonly deleted
hot spot mutation in humans (7). This mouse model has an
out-of-frame deletion of exon 50, which generates a prema-
ture stop codon in exon 51. A single sgRNA was designed to
target the exon 51 splice acceptor site, leading to exon 51
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skipping. Therefore, using a single sgRNA-mediated exon
skipping strategy, which abolishes either the splice acceptor
site or splice donor site or allows for reframing, overcomes
the necessity of double sgRNA-based exon deletion.

Usually, the single sgRNA-mediated exon skipping strategy
generates a relatively small INDEL at the intron/exon
boundary, destroying the exon splice acceptor or donor site
but retaining the residual part of the exon sequence in the
genome. If “AG” nucleotides are present in the residual part
of the exon, they can serve as a pseudo-splice acceptor se-
quence, rendering the single sgRNA-mediated exon skip-
ping ineffective. Therefore, additional experimental studies,
such as reverse transcription polymerase chain reaction
(RT-PCR) or Western blot analysis, should be performed to
confirm exon skipping at the RNA and protein level.

3. Exon reframing

A NHEJ-based reframing strategy can also be applied to
restore the dystrophin ORF, in which a single or a pair of
sgRNAs are used to generate DNA DSBs within the exon
region, leading to a targeted frameshift, since in theory,
one-third of INDELs created by NHEJ should be in-frame
(FIGURE 8D). Several studies have applied this strategy to
restore the dystrophin reading frame by inducing targeted
frameshifts in exons with an incompatible reading frame in
regard to the adjacent exon, including exons 23, 45, 50, 51,
53, and 54 (29, 162, 217, 231, 239, 240, 302, 469). Unlike
the exon deletion strategy, which excises a single or multiple
exons, exon reframing only creates small INDELs, and
hence, minimizes the length of the genomic deletion.

Both exon skipping and exon reframing strategies require
using one sgRNA-mediated single cut in the genome. These
two strategies are considered more efficient than using two
sgRNA-mediated double cuts in the genome. This is be-
cause exon deletion by excision using two sgRNAs requires
two cooperative DNA DSBs. However, two DNA DSBs do
not always occur simultaneously since there is a possibility
that a single DNA DSB can be rapidly rejoined by NHEJ-
mediated DNA repair, leaving the second intronic DSB in-
effective. In this situation, exon deletion cannot be achieved
because of the latency between the two DNA DSBs. In con-
trast, one sgRNA-mediated single cut near the splice accep-
tor site can be sufficient to restore the DMD ORF. For
example, if the INDEL disrupts the splice acceptor se-
quence, this could lead to exon skipping. Alternatively, if
the INDEL does not disrupt the splice acceptor sequence,
there is still a possibility that one-third of the INDELs
within the exon could be in-frame, leading to exon refram-
ing.

4. Exon knock-in

In general, DMD mutations corrected by exon deletion,
skipping, or reframing strategies will generate truncated

dystrophin proteins with internal deletions. In principle,
DMD mutations can also be corrected by exon knock-in,
leading to expression of full-length dystrophin protein (FIG-

URE 8E). Exon knock-in requires a DNA donor template
and active cell cycle to induce HDR-mediated precise edit-
ing in the S and G2 phases. This repair strategy has been
used in DMD patient-derived iPSCs to correct a mutation
caused by an out-of-frame deletion of exon 45 (217). In
addition, point mutations in mouse Dmd exon 23 and 53
have also been corrected by HDR-mediated precise editing
(29, 231, 469, 471).

Mutations at specific regions in the NH2 and COOH ter-
mini of dystrophin generally are not feasible for exon dele-
tion or skipping-based correction because essential do-
mains known to interact with cytoskeletal actin or the
sarcoglycan complex are encoded within these regions.
Therefore, exon knock-in is required to correct these types
of mutations. However, due to the postmitotic nature of
mature skeletal muscle and cardiomyocytes, HDR effi-
ciency remains low in CRISPR/Cas-mediated postnatal ge-
nome editing (29). Recently, precise genome editing in post-
mitotic cells and animals with high efficiency was reported
(381). This technology, which was termed homology-inde-
pendent targeted integration (HITI), only relies on the
NHEJ pathway and can be used to precisely integrate DNA
fragments into the mammalian genome, regardless of the
cell cycle state, which may provide opportunities to correct
certain DMD mutations by exon knock-in.

E. Facioscapulohumeral Muscular Dystrophy

1. Facioscapulohumeral muscular dystrophy type 1
and type 2

Facioscapulohumeral muscular dystrophy (FSHD) is an au-
tosomal dominant neuromuscular disease with an esti-
mated prevalence ranging from 1:14,000 to 1:20,000 (109,
276, 298, 305, 390). Clinically, FSHD shows asymmetric
regional muscle weakness in the face, shoulders, and upper
arms. Symptoms progress to the trunk and leg muscles
while the extraocular, pharyngeal, and cardiac muscles re-
main unaffected (389). In contrast to other muscular dys-
trophies that show a phenotype of severe myofiber degen-
eration, FSHD shows a minimal myopathic phenotype at
the histopathological level, with evidence of endomysial
inflammation specific to the perivascular region (10, 390).
The mechanism of FSHD can be either genetic or epigenetic,
leading to the classification of type 1 FSHD (FSHD1) and
type 2 FSHD (FSHD2) (211, 333, 390).

FSHD1 represents 95% of the FSHD cases and is caused by
contraction of D4Z4 macrosatellite repeats located in the
subtelomeric region of chromosome 4, leading to DUX4-
induced cytotoxicity in skeletal muscles (213, 390, 413,
433). Normal individuals carry 11–100 D4Z4 repeats on
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chromosome 4q35, while FSHD patients are limited to
1–10 copies of D4Z4 repeats (413). The reduced number of
D4Z4 repeats alters the heterochromatic DNA structure at
chromosome 4q35 and induces the expression of the DUX4
gene within the last D4Z4 repeat when a polyadenylation
signal is present on the FSHD permissive 4qA haplotype.
The FSHD nonpermissive 4qB haplotype lacks the exon
distal to the D4Z4 repeat and its DUX4 transcript is desta-
bilized (92, 213, 368). DUX4 encodes a double-homeobox
transcription factor, which is normally only expressed in
the testis (369, 459). When DUX4 is ectopically expressed
in skeletal muscle, it activates various genes that are nor-
mally expressed only in the germline, stem cells, and the
immune system, leading to oxidative stress, apoptosis, and
inhibition of muscle regeneration (44, 124, 390). Unlike
FSHD1 with D4Z4 repeats contraction, FSHD2 patients
generally retain normal-sized D4Z4 repeat arrays but show
strong reduction of D4Z4 methylation because of a muta-
tion of the SMCHD1 gene (212). SMCHD1 is essential for
hypermethylation of CpG islands, and its mutated form
fails to methylate D4Z4 repeats, thereby causing DUX4
expression (212). Similar to FSHD1, DUX4 expression in
FSHD2 requires the acquisition of a polyadenylation signal
present on the FSHD permissive 4qA haplotype.

2. Animal models of FSHD

FSHD1 is caused by contraction of subtelomeric D4Z4
macrosatellite repeats, leading to DUX4-induced cytotox-
icity in skeletal muscles (213, 390, 413, 433). Currently
four DUX4 transgenic mouse models have been developed,
which are D4Z4–2.5, D4Z4–12.5, iDUX4–2.7, and
iDUX4-pA mice (43, 82, 201). Both D4Z4–2.5 and D4Z4–
12.5 mouse models display abundant expression of DUX4
transcripts in the testis, consistent with germline DUX4
expression in humans. In addition to germline expression,
DUX4 transcripts can also be detected in multiple tissues in
D4Z4–2.5 mouse model, indicating that contraction of
D4Z4 repeats leads to inefficient DUX4 repression in so-
matic tissues.

In contrast to D4Z4–2.5 and D4Z4–12.5 mouse models
which uses an endogenous DUX4 promoter, two inducible
DUX4 transgenic mouse models (iDUX4–2.7 and iDUX4-
pA) were also generated in which the DUX4 expression is
induced by doxycycline (43, 82). Low-level DUX4 expres-
sion in the iDUX4-pA mouse model without doxycycline
induction results in progressive degenerative myopathy and
other muscle phenotypes, such as inflammatory infiltration
and fibrosis. In contrast, muscle-specific DUX4 induction in
the iDUX4-pA mouse model leads to dystrophic pheno-
types and impaired muscle regeneration after injury.

The FSHD pathogenic gene DUX4 is specific to primates,
and retrotransposon-mediated expansion of its binding
sites in the primate genome is not conserved in the murine
system (124, 210, 459). Therefore, studies using both

FSHD mouse models and human cell models, such as FSHD
primary myoblasts and iPSCs, may provide more thorough
information about disease progression and translational
application.

3. CRISPR/Cas-mediated correction of FSHD1 and
FSHD2

A CRISPR/dCas9-based gene editing strategy has been re-
ported to reduce DUX4 expression in primary FSHD myo-
cytes, in which dCas9 was fused to a KRAB transcriptional
repressor and targeted to the DUX4 promoter or the first
exon region, leading to transcriptional repression of DUX4
(144). However, CRISPR/dCas9-based transcriptional re-
pression is transient while the 4q35 chromatin landscape
and D4Z4 repeat number remain pathogenic, so any ther-
apeutic benefit would be only temporary.

Two potential genome editing strategies might provide lon-
ger term benefit. The first strategy is CRISPR/dCas9-based
DNA methylation. It has been reported that fusing dCas9
with a DNA methyltransferase (Dnmt3a) or with a hybrid
form of two DNA methyltransferases (Dnmt3a-Dnmt3L)
can create site-specific DNA methylation (228, 274, 374). It
might be effective to use the dCas9-DNA methyltransferase
system to revert the hypomethylated 4q35 chromatin land-
scape, leading to DUX4 silencing, since both FSHD1 and
FSHD2 have reduced DNA methylation levels at the D4Z4
repeat arrays. The second strategy entails CRISPR/Cas9-
based genome editing of the FSHD permissive 4qA haplo-
type (FIGURE 9A). The Cas9 nuclease can be directed to the
4qA haplotype by specific sgRNA(s) that target the polyad-
enylation signal region and induce DNA DSBs to either
disrupt the polyadenylation sequence or excise the polyad-
enylation signal, thereby converting the permissive 4qA
haplotype to the nonpermissive 4qB haplotype.

F. LGMD

LGMD is a general term for a highly heterogeneous group
of autosomal neuromuscular diseases with variable disease
phenotypes, ranging from progressive muscle weakness in
proximal limbs with a normal life span to rapid disease
progression in early childhood. LGMD can also affect distal
limbs and the heart and cause life-threatening symptoms
such as respiratory compromise and cardiac abnormalities
(282, 292). To date, mutations in more than 30 loci have
been reported to cause LGMD, including eight autosomal
dominant forms (LGMD1A-1H) and 25 autosomal reces-
sive forms (LGMD2A-2Y) (177). Owing to the scope of this
review, only two subtypes of LGMD2 will be covered,
which are dysferlinopathy and sarcoglycanopathies. The
potential of applying CRISPR/Cas-mediated genome edit-
ing for the correction of LGMD2 subtypes will also be
discussed.
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1. Dysferlinopathy: LGMD2B and Miyoshi myopathy

Dysferlinopathy is caused by autosomal recessive mutation
of the DYSE gene on chromosome 2p13 (25, 26, 226).
Clinically, dysferlinopathy can be classified into LGMD2B
and Miyoshi myopathy, depending on the muscle groups
being affected. LGMD2B causes proximal muscle weakness
in the pelvic and shoulder girdle muscle regions but spares
other muscle groups (282, 293). In contrast, Miyoshi my-
opathy shows distal muscle weakness specifically affects the
gastrocnemius and soleus muscles, without affecting other
muscle groups (9).

The DYSE gene encodes a 230-kDa single-pass transmem-
brane protein, known as dysferlin, which is ubiquitously
expressed in many tissues but enriched in striated muscles
(25). Dysferlin binds to phospholipids in the presence of
Ca2� and is important for repairing membranes of skeletal
muscle (22, 214). In addition, dysferlin also interacts with
the dihydropyridine receptor (DHPR), caveolin-3, annexin
A1, and desmoyokin (AHNAK) in t-tubule membranes, in-
dicating its role in t-tubule maintenance (8, 153, 214, 256).
Mutations in the DYSE gene are diverse, including missense
and nonsense mutations, splice site and 3=-UTR mutations,
and small insertions or deletions, leading to nonsense-me-

diated mRNA decay, protein misfolding, or mislocalization
(158, 200, 430).

Dysferlin-deficient mice maintain an intact dystrophin gly-
coprotein complex but are defective in Ca2�-dependent
membrane repair and display progressive dystrophic phe-
notypes, including sarcolemma lesions, muscle necrosis, in-
flammatory infiltration, and fatty tissue deposition (22,
147). AAV-based gene replacement therapy has been ap-
plied to treat dysferlinopathy. However, the size of the dys-
ferlin cDNA (6.5 kb) exceeds the packaging limit of AAV.
To address this issue, dysferlin cDNA was split into two
cDNA fragments cloned into a dual-AAV system. After ad-
ministration of the dual recombinant AAV vectors, full-
length dysferlin transcripts were shown to be produced by
either trans-splicing or homologous recombination (133,
232, 370). Although the AAV-based dysferlin replacement
can restore muscle function, the endogenous DYSE muta-
tions are still present in the genome. A recent study using
TALENs and CRISPR/Cas9-genome editing successfully
corrected the endogenous DYSE mutations in iPSCs derived
from LGMD2B patients (402). After differentiation of cor-
rected iPSCs into skeletal muscles, dysferlin expression was
restored and correct protein localization was observed. This
proof-of-concept study demonstrates the efficiency and ac-
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curacy of the CRISPR/Cas-genome editing system in perma-
nent correction of monogenic neuromuscular disorders and
represents an alternative method for the treatment of dys-
ferlinopathy.

2. Sarcoglycanopathies: LGMD2C, 2D, 2E, and 2F

Sarcoglycanopathies can be classified as LGMD2C, 2D, 2E,
or 2F, which are caused by loss-of-function mutations of the
SGCG, SGCA, SGCB, or SGCD genes, respectively (293,
311). These genes encode �-, �-, �-, and �-sarcoglycans,
which are single pass transmembrane proteins and together
with 	- and 
-sarcoglycans can form the sarcoglycan com-
plex that resides in the sarcolemma (107, 260, 432). The
sarcoglycan complex is a key component of the dystrophin
glycoprotein complex, and its stability requires lateral asso-
ciation with the dystroglycan complex linked with dystro-
phin. Therefore, mutations in dystrophin can cause loss of
the sarcolemma distribution of the sarcoglycan subunits,
and patients affected with sarcoglycanopathies have similar
phenotypes seen in DMD and BMD, displaying both mus-
cular dystrophy and cardiomyopathy (24, 207, 261). Inter-
estingly, mutations in any single sarcoglycan gene can lead
to a significant reduction in or complete absence of the
entire sarcoglycan complex (408). Many mouse models of
sarcoglycanopathies have been developed (11, 78, 100,
101, 138, 428). These mouse models recapitulate many of
the pathophysiological phenotypes seen in human patients,
and hence serve as a reliable animal model of LGMD.

CRISPR/Cas9-mediated genome editing has successfully
corrected SGCG and SGCA mutations in iPSCs derived
from LGMD2C and LGMD2D patients (181, 402). How-
ever, these CRISPR/Cas9-mediated LGMD corrections rely
on HDR, which is less efficient in postmitotic mature skel-
etal muscles. Interestingly, a truncated �-sarcoglycan was
engineered with in-frame deletion of exons 4–7 and shown
to reduce pathophysiological phenotypes associated with
LGMD2C with improvement in both skeletal muscle and
heart function (121). Moreover, AON-mediated exon skip-
ping was used to correct SGCG mutations in human cells.
This proof-of-concept study challenges the conventional
knowledge that exon skipping is restricted to correct DMD
mutations and paves the way for the application of the
CRISPR/Cas system to permanently correct SGCG muta-
tions in LGMD2C by NHEJ-mediated exon skipping (FIG-

URE 9B).

G. Myotonic Dystrophy

1. Myotonic dystrophy type 1 and type 2

Myotonic dystrophy (DM) is an autosomal dominant neu-
romuscular disorder affecting ~1 in every 8,000 individuals
(263, 404). Clinically, patients with DM suffer muscle de-
generation leading to weakness and myotonia with other

symptoms including cardiac conduction defects, cataracts,
brain abnormalities, as well as gastrointestinal and endo-
crine disorders (132, 229, 268, 330, 436).

DM is classified into myotonic dystrophy type 1 (DM1) and
type 2 (DM2). DM1, also known as Steinert’s disease, is
caused by trinucleotide CTG repeat expansion in the 3=

untranslated region (3=-UTR) of the DMPK gene located on
chromosome 19 (51, 114, 241). Healthy individuals carry
5–37 CTG repeats while repeat numbers greater than 37 are
unstable and may further expand in length during cell divi-
sion (15, 403, 404). DMPK mRNA transcripts with in-
creased CUG expansion can form stable secondary struc-
tures, leading to increased steady-state expression of
CELF1 (CUGBP Elav-like family member 1) by hyperphos-
phorylation, downregulation of DMPK itself, and aberrant
splicing of other genes by sequestering splicing factors such
as MBNL1 in the ribonuclear foci (97, 154, 167, 172, 204,
337). Dysregulation of CELF1 and MBNL1 splicing factors
causes not only RNA toxicity and aberrant splicing, but
also transcriptional dysregulation, mRNA instability, and
microRNA dysregulation (45, 312, 325, 328, 415).

In contrast to DM1 with trinucleotide CTG repeat expan-
sion in the 3=-UTR of the DMPK gene, DM2 is caused by a
tetranucleotide CCTG repeat expansion in intron 1 of the
CNBP gene in chromosome 3 (84, 225). Similar to DM1,
the expansion of the CCUG repeats in CNBP mRNA tran-
scripts also causes MBNL1 sequestration, leading to CNBP
downregulation, RNA toxicity, and abnormal splicing of
other genes (404). Because CNPB is required for cap-inde-
pendent translation, other pathogenic effects such as abnor-
mal protein translation or turnover may also contribute to
DM2 (155, 341).

2. Animal models of DM

Approximately 20 mouse models of DM1 and DM2 have
been established and are categorized into two groups: 1)
mouse models that recapitulate the toxic RNA gain-of-
function and 2) mouse models with abnormal splicing reg-
ulators (127). One of the most informative DM1 models is
the HSALR transgenic line, in which 250 copies of the CTG
repeats are placed in the 3=-UTR of the HSA gene that
encodes the human �-skeletal actin. This mouse model de-
velops severe myotonia, nuclear sequestration MBNL1,
and aberrant splicing of multiple target transcripts (249).

Another transgenic mouse model, known as DM300–328,
carries a large fragment of the human DMPK locus with
expanded CTG repeats. This mouse model displays ribonu-
clear foci accumulation in multiple tissues, progressive mus-
cle weakness, myotonia, tau protein distribution abnormal-
ities, as well as defects in splicing and glucose metabolism,
recapitulating many pathophysiological phenotypes seen in
DM1 patients (136, 354, 355, 414). An inducible mouse
model was also developed in which a floxed concatemer of
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three polyadenylation signals is inserted upstream of 960
copies of CTG repeats in exon 15 of the DMPK gene. This
allows tissue-specific expression of the transgene by the
Cre-lox system (300, 419).

In addition to mouse models that recapitulate toxic RNA
gain-of-function, mouse models with abnormal splicing
regulators were also developed, including Mbnl1 and
Mbnl2 knockout mice and CELF1 overexpression mice
(141, 148, 173, 198, 223, 233, 257, 395, 429). As with
HSALR, the mouse model of DM1, a CCTG transgenic
mouse model was developed to model DM2, in which the
expanded (CCTG)121 repeats are introduced in intron 1 of
the ZNF9 gene, displaying CELF1 upregulation, altered
protein translation and degradation, and recapitulating
muscle pathology, as seen in DM2 (338). DM mouse mod-
els with repeat expansion are more suitable for therapeutic
application especially for CRISPR/Cas-mediated genome
editing because the microsatellite repeats present in both
DM1 and DM2 can conceivably be excised by NHEJ-me-
diated DNA repair.

3. TALENs and CRISPR/Cas-mediated correction of
DM1 and DM2

In several studies, researchers have employed programma-
ble nucleases for genome editing of DM1 and DM2. A
TALEN-based system was used to generate site-specific
DNA DSBs in the 3=-UTR of the DMPK gene and intro-
duced multiple polyadenylation signals upstream of the tri-
nucleotide CTG repeats by HDR, leading to early transcrip-
tional termination and subsequently preventing the produc-
tion of the toxic DMPK transcripts (122, 443). However,
HDR-mediated knockin of polyadenylation signals requires
a repair template and an active cell cycle, which may not be
efficient for genome editing in postmitotic tissues such as
skeletal muscle.

The CRISPR/Cas system and its derivatives have also been
used to treat both DM1 and DM2 as well. For example, an
engineered dCas9 fused to a PIN RNA endonuclease do-
main was shown to be active for RNA cleavage and could
specifically eliminate microsatellite repeat expansions in
DMPK and CNBP mRNAs, reducing pathophysiological
phenotypes seen in DM1 and DM2 (27). Although bypass-
ing the potential off-target genetic lesions caused by con-
ventional CRISPR/Cas9-mediated DNA cleavage, this
CRISPR/dCas9-based RNA-targeting system cannot per-
manently reduce the microsatellite repeats in DMPK and
CNBP loci. Another study used CRISPR/Cas9-mediated
DNA DSBs at the DMPK trinucleotide repeat region and
successfully excised the entire expanded CTG/CAG repeats
in human and mouse myoblasts. This approach successfully
reverted the pathogenic hallmarks of DM1, including the
cis epigenetic effects and the trans effects on the transcrip-
tome and proteome (FIGURE 9C) (411). Therefore, CRISPR/
Cas-mediated excision of expanded microsatellite repeats

represents a promising strategy for permanent correction of
DM1 and DM2 mutations (FIGURE 9, C AND D) because it
requires only NHEJ-mediated DNA repair, which is active
throughout the cell cycle and hence can be used in many cell
types.

IV. MYOEDITING IN “DISEASE-IN-A-DISH”
AND ANIMAL MODELS

A. Human Induced Pluripotent Stem Cell
Models of Muscular Dystrophies

The development of iPSCs has opened up new opportunities
for disease modeling (307, 384, 385, 462). In principle,
human iPSCs can self-renew indefinitely and can be differ-
entiated into a variety of cell types, which become an inex-
haustible and scalable source for stem cell research. More-
over, human iPSCs offer a similar genetic background to
model human genetic diseases. For example, spinal muscu-
lar atrophy (SMA), caused by a mutation of the survival
motor neuron 1 (SMN1) gene (53), cannot easily be mod-
eled in mice. This is because humans have multiple copies of
the paralogous SMN2 gene while mice do not carry the
SMN2 gene (28). Therefore, additional knockout and
transgenic strategies are required in animal models to model
human SMA, which is time-consuming and expensive. In
contrast, iPSCs derived from human SMA patients can be
directly used for disease modeling and large-scale screening
for drug discovery. Therefore, human iPSCs represent a
complementary cellular source to the widely used animal
models. Many human iPS cell lines have been established to
model muscular dystrophies, including DMD, FSHD,
LGMD, and DM. CRISPR/Cas has been utilized to correct
a variety of DMD mutations found in human myoblasts
and patient-derived iPS cell lines by different correction
strategies (TABLE 1).

Because of different genetic backgrounds and reprogram-
ming methods, different human iPS cell lines can be variable
in terms of their differentiation properties and phenotypic
output (39, 46). To address this issue, isogenic control cell
lines can be generated by introducing mutations in WT
iPSCs, mimicking mutational genotypes found in patients.
Conversely, mutations in patient-derived iPSCs can be cor-
rected by programmable nucleases. The direct comparison
between genome-edited iPSCs with unedited isogenic con-
trol cell lines, in principle, can reduce genetic background
variation and improve genotype-phenotype correlation.
Moreover, long-term in vitro iPSC culturing may cause
genomic abnormalities, and hence routine karyotyping is
recommended to monitor genome stability (254).

B. In Vivo Genome Editing of Animal Models

The ultimate goal of therapeutic application of genome ed-
iting is to permanently correct mutations that contribute to
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human monogenic diseases. Programmable nucleases such
as the CRISPR/Cas system have been demonstrated to be
effective in precise correction of pathogenic mutations
found in the human embryo (176, 221, 234, 388). Several
proof-of-concept studies have shown the efficacy and effi-
ciency of the CRISPR/Cas system in correcting Dmd muta-
tions in different mouse models by germline editing and
postnatal editing (TABLE 2). However, ethical issues, as well

as public policies, restrict therapeutic application of human
germline editing, leaving postnatal genome editing as the
means to achieve the same goal.

Therapeutic genome editing requires delivering program-
mable nucleases and other genome editing components to
target cells, which can be achieved ex vivo or in vivo. Ex
vivo editing requires in vitro editing of the cellular genome,

Table 1. CRISPR/Cas-mediated correction of DMD mutations in human cells

Strategy Cell Type CRISPR/Cas Type DMD Mutations sgRNA Targeting Site
Genome Editing

Outcome Reference Nos.

Exon deletion Myoblast SpCas9 � Ex45–52 i52, i53 � Ex53 239, 240

Myoblast SpCas9 � Ex45–52 i43, i54 � Ex44–54 239, 240

Myoblast SpCas9 � Ex48–50 i43, i54 � Ex44–54 239, 240

Myoblast SpCas9 � Ex48–50 i50, i51 � Ex51 302

Myoblast SpCas9 � Ex48–50 i44, i55 � Ex45–55 302

Myoblast SpCas9 Dup. Ex2 i2 � Dup. Ex2 209

Myoblast SpCas9 Dup. Ex18–30 i27 � Ex28–30, � Dup. Ex18–27 437

iPSC SpCas9 � Ex46–47 i44, i55 � Ex45–55 457

iPSC SpCas9 � Ex46–51 i44, i55 � Ex45–55 457

iPSC SpCas9 � Ex8–9 i2, i7 � Ex3–7 205

iPSC SpCas9 � Ex8–9 i5, i7 � Ex6–7 205

iPSC SpCas9 � Ex8–9 i6, i11 � Ex7–11 205

Exon skipping Myoblast SpCas9 � Ex48–50 e51 Skp. Ex51 239, 240

Myoblast SpCas9 � Ex45–52 e53 Skp. Ex53 239, 240

iPSC SpCas9 � Ex44 e45 SA Skp. Ex45 217

iPSC LbCpf1 � Ex48–50 i50, e51 Skp. Ex51 469

Exon reframing Myoblast SpCas9 � Ex45–52 e53 Ex53 reframing 239, 240

Myoblast SpCas9 � Ex48–50 e51 Ex51 reframing 239, 240, 302

Myoblast SpCas9 � Ex51–53 e50, e54 Ex50, Ex54 reframing 162

iPSC SpCas9 � Ex44 e45 SA Ex45 reframing 217

iPSC LbCpf1 � Ex48–50 e51 Ex51 reframing 469

Exon knock-in iPSC SpCas9 � Ex44 e45 SA Ex44 knock-in 217

i, intron; e, exon; �, deletion; Dup., duplication; SA, splice acceptor; Skp., skipping.

Table 2. CRISPR/Cas-mediated correction of Dmd mutations in mice

Strategy Mouse Model CRISPR/Cas Type DMD Mutations sgRNA Targeting Site
Genome Editing

Outcome Reference Nos.

Exon deletion mdx SpCas9 and SaCas9 Ex23 point mutation i22, i23 � Ex23 230, 289, 383

mdx/Utr�/– SpCas9 and SaCas9 Ex23 point mutation i20, i23 � Ex21–23 104

mdx SpCas9 Ex23 point mutation i20, i23 � Ex21–23 446

mdx4cv SpCas9 and SaCas9 Ex53 point mutation i51, i53 � Ex52–53 29

Exon skipping � Ex50 SpCas9 � Ex50 e51 SA Skp. Ex51 7

Exon reframing mdx SpCas9 Ex23 point mutation e23 Ex23 reframing 231

� Ex50 SpCas9 � Ex50 e51 SA Ex51 reframing 7

mdx4cv SpCas9 Ex53 point mutation e53 Ex53 reframing 29

Exon HDR mdx SpCas9 Ex23 point mutation e23 Ex23 HDR 231

mdx LbCpf1 Ex23 point mutation e23 Ex23 HDR 469

mdx4cv SpCas9 Ex53 point mutation e53 Ex53 HDR 29

i, intron; e, exon; �, deletion; SA, splice acceptor; Skp., skipping.
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followed by transplantation of the targeted cell population
to the original host. CRISPR/Cas-mediated ex vivo editing
has been shown to be effective in the hematopoietic system
(88, 125, 137, 345, 423). In theory, ex vivo genome editing
can be applied to the skeletal muscle system because satellite
cells serve as adult stem cells of skeletal muscle and are
capable of surviving manipulation in vitro. However, skel-
etal muscle is the largest tissue in the human body, compris-
ing ~40% of body weight. Transplantation of edited satel-
lite cells or progenitor cells may improve local muscle func-
tion, but systemic functional recovery remains questionable
(471). In addition to skeletal muscle, the heart is also af-
fected in a variety of muscular dystrophies, but it is still
under debate whether the heart contains stem cells or stem
cell-like cell populations capable of transplantation and re-
generation (21, 105, 284, 301, 378, 412). Taken together,
ex vivo transplantation-based approaches are generally not
feasible to treat muscular dystrophies, especially for those
affecting both skeletal muscle and the heart. Therefore, in
vivo postnatal genome editing turns out to be a more prac-
tical approach to permanently correct genetic mutations
causing muscular dystrophies.

1. Delivery of genome editing components by nonviral
vectors

Achieving in vivo postnatal genome editing requires an ef-
ficient and effective delivery system. Genome editing com-
ponents can be physically or chemically delivered to target
cells by nonviral vectors (FIGURE 10). For example, micro-
injection and electroporation have been demonstrated as
effective methods to deliver CRISPR/Cas genome editing
components to target cells (68, 190, 262, 296, 450). How-
ever, these physical approaches are widely used for germline
editing or embryo manipulation but are not feasible for
systemic delivery in the postnatal host. In contrast, hydro-
dynamic intravenous injection can achieve systemic deliv-
ery in multiple tissues, including liver, kidney, lung, skeletal
muscle, and heart (42, 377). Some studies have applied this
technology to deliver CRISPR/Cas genome editing compo-
nents to postnatal mice for mutating cancer genes in the
mouse liver, correcting a tyrosinemia mutation and disrupt-
ing hepatitis B virus (222, 447, 455, 470). However, hydro-
dynamic injection requires a large injection volume and
high pressure, which may damage tissues or organs.

In addition to physical vectors, chemical vectors, such as
polymeric carriers and lipid-based carriers, are also widely
used for in vivo delivery. Polymeric carriers are cationic
polymers that can condense negatively charged DNA or
RNA, whereas lipid-based carriers can spontaneously as-
semble into liposomes consisting of nucleic acids and cat-
ionic or neutral lipids (453). The CRISPR/Cas system and
other genome editing components can be chemically deliv-
ered into animals in the form of plasmid DNA, mRNA, or
ribonucleoprotein complexes. Chemical vectors can protect
nucleic acids or ribonucleoproteins from degradation by

endonucleases or proteases in physiological fluids and ex-
tracellular space, improving stability and half-life. For ex-
ample, chemically modified CRISPR/Cpf1 mRNA and
crRNA have been reported to enhance genome editing effi-
ciency (216). However, many challenges still remain, in-
cluding efficient delivery to the tissue of interest, cellular
internalization, and protection from the lysosomal degra-
dation pathway (422, 453).

It has been reported that plasmid DNA can be retained in
skeletal muscle for over a year after intramuscular injection,
suggesting the likelihood of long-term gene expression and
retention in postmitotic tissue (439). In contrast, localized
nonviral delivery such as intramuscular injection cannot
generate a systemic effect, which is not ideal for treating
muscular dystrophies since skeletal muscle is one of the
largest tissues in the human body and multiple muscle
groups can be affected. Systemic nonviral delivery, such as
intravenous or intraperitoneal injection, have extended the
targeting range but may cause gene expression in nontar-
geted tissues. Therefore, delivery of genome editing compo-
nents to animals by nonviral vectors still requires improve-
ment and optimization before clinical translation.
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2. Delivery of genome editing components by viral
vectors

Many viral vectors have been used for gene therapy, includ-
ing lentivirus, retrovirus, herpes simplex virus, poxvirus,
adenovirus, adeno-associated virus, baculovirus, and Ep-
stein-Barr virus (288, 426). Among these, adeno-associated
virus (AAV) is the most promising viral vector for the de-
livery of genome editing components to specific tissues,
such as muscle and heart. AAV is a nonenveloped DNA
virus with an ~5 kb linear ssDNA genome (371). The ge-
nome of wild-type AAV has two major ORFs flanked by
two inverted terminal repeats (ITRs), while in the recombi-
nant AAV (rAAV), the viral ORFs encoding the replication
and capsid proteins are replaced by the customized gene
expression cassette (110). Both wild-type and rAAVs are
nonpathogenic in humans or animals, and their propaga-
tion requires a helper virus, making them a safe delivery
system for therapeutic genome editing (199, 342, 379).

The rAAVs have many appealing features, including broad
spectrum tissue tropism with minimal integration risk and
long-term transgene expression from the episomal genome
after viral transduction (98, 297, 348). Currently, 13 AAV
serotypes are widely available for gene delivery, and each of
them shows different tissue tropism. AAV serotypes 1, 6, 8,
and 9 have high tropism in skeletal muscle and heart (37,
64, 119, 131, 159, 306, 427, 463, 472). In addition, tissue
tropism and transduction efficiency can also be improved
by pseudo-typing. For example, AAV2 genomes pseudo-
packaged into AAV5 capsids can enhance gene delivery to
skeletal muscle, whereas improved cardiomyocyte trans-
duction has been observed by pseudo-packaging AAV2 ge-
nomes into AAV6 capsids (99, 363). rAAV has been suc-
cessfully used to as a delivery system to administer CRISPR/
Cas9 and other genome editing components to postnatal
mdx or mdx4cv mice and correct Dmd mutations by exon
deletion or reframing strategies (29, 104, 230, 289, 383)
(FIGURE 10). In addition, several other studies reported
rAAV-delivered CRISPR/Cas9-mediated in vivo genome
editing in mouse models of human Huntington disease and
congenital muscular dystrophy (180, 273, 452). These stud-
ies demonstrated that the combination of a rAAV-based
delivery system with CRISPR/Cas9-mediated postnatal ge-
nome editing is a compelling strategy to permanently cor-
rect mutations responsible for monogenic neuromuscular
disorders. However, long-term benefits and effects in ani-
mal models still need to be examined to prepare for future
clinical trials.

C. Challenges of Therapeutic Genome
Editing

Despite many appealing features, the rAAV-based delivery
system entails major challenges. rAAV has a limited pack-
aging capacity which limits the packaging size of gene ther-

apy components. Currently, in the CRISPR/Cas-based sys-
tem, the size limitation has been addressed by various
groups, whereby SpCas9 and SaCas9 have been efficiently
packaged into different rAAV serotypes for correcting Dmd
mutations in mice (29, 104, 230, 289, 383). To effectively
deliver the rAAV-based genome editing components, tissue
and cell type specificity is another parameter to be consid-
ered. Selection of the appropriate rAAV serotype is neces-
sary for tissue tropism. Additionally, implementation of
tissue-specific promoters can be used to regulate expression
of the editing components. Recent administration of rAAV
serotypes with muscle tropism and gene expression regu-
lated under a muscle-specific promoter successfully deliv-
ered genome editing components to skeletal muscle and
heart (7, 29, 143).

1. Immunogenicity

One of the greatest challenges of using rAAV as a delivery
system is the immune response to the vector. Potential im-
munogenicity elicited by rAAV-based delivery of the
CRISPR/Cas system can be evoked by 1) the restored pro-
tein product, 2) the CRISPR/Cas system, and 3) capsid pro-
teins on the surface of rAAV virus.

Mutated genes in monogenic disorders encode abnormal
proteins or cause a complete loss of protein. After CRISPR/
Cas-mediated correction, epitopes derived from the newly
restored protein may elicit immunogenicity. However, in
the case of DMD, due to somatic mutation or alternative
splicing, more than 50% of DMD patients display low level
of dystrophin-positive revertant fibers (0.2–4%), which
may mitigate a potential immune response (55, 290, 291).
Indeed, in a gene transfer study, expression of murine full-
length or mini-dystrophin in mdx mice did not evoke hu-
moral or cytotoxic immune responses (108). Therefore, im-
munogenicity elicited by the rescued protein may not be a
significant concern, at least in the case of DMD.

In regard to immunogenicity elicited by the CRISPR/Cas
system, it was demonstrated that Cas9 endonucleases deliv-
ered by rAAV did evoke a humoral immune response in
mice (71). However, they did not observe significant muscle
cell damage or a repair response at 2 wk after rAAV admin-
istration. Another concern is if the rAAV needs to be read-
ministered since once the SpCas9-mediated humoral immu-
nity is established in the host, further application of SpCas9
for therapeutic genome editing may no longer be effective.
Several potential strategies could be applied to address this
issue, including 1) large-scale functional variant profiling of
SpCas9 for epitope mutation; 2) replacing SpCas9 with
other Cas endonucleases such as SaCas9, LbCpf1, and As-
Cpf1 after initial SpCas9 administration; and 3) performing
plasmapheresis or transient immunosuppression to reduce
the circulating antibody titer.
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In addition to the immunogenicity response elicited by the
CRISPR/Cas system, the humoral immune response evoked
by rAAV is another challenge for in vivo therapeutic ge-
nome editing. Several studies in non-human primates have
shown that high incidence of neutralizing antibodies
(NAbs) after initial exposure to AAV can block AAV trans-
duction, rendering gene delivery ineffective (164, 425).
Moreover, the prevalence of AAV NAbs in human popula-
tions is also relatively high, ranging from 30 to 60% in
AAV2, to 15–30% in AAV7, AAV8, and AAV9 serotypes
(47, 56). Several strategies have been developed to over-
come AAV-induced humoral immune responses, including
1) AAV capsid mutagenesis to alter NAb binding epitopes
(287), 2) plasmapheresis to reduce AAV NAb titer (157,
272, 424), and 3) transient immunosuppression (267).

2. Off-target effects

Another concern around using programmable nucleases for
therapeutic genome editing is the potential for mutagenesis
caused by off-target effects. Initial programmable nuclease-
like TALENs generally show minimal off-target effects be-
cause TALEN-mediated DNA DSBs require dimerization of
two TALEN monomers and the dimerized TALEN pairs
can recognize 30–40 bp of DNA sequence (182). In con-
trast, DNA DSBs induced by SpCas9, currently the most
prevalently used Cas endonuclease, only requires a 20-nt
sgRNA forming DNA-RNA duplex with the target DNA
strand, which may increase mismatching frequency. Indeed,
several early studies about SpCas9 specificity have shown
that high-frequency mutagenesis caused by off-target effects
is possible at mismatched sites (112, 152, 224). For exam-
ple, INDELs caused by SpCas9 off-target cleavage can be
detected at certain sites with up to five mismatches relative
to the on-target site (112, 152, 308). Several approaches can
be used to evaluate potential CRISPR/Cas-induced off-tar-
get effects. Computational prediction of off-target sites fol-
lowed by DNA mismatch cleavage assay serves as a rapid
and convenient method to evaluate sgRNA specificity.
More recently, computational prediction of off-target sites
followed by deep sequencing or unbiased whole-genome
sequencing represents a more reliable method for system-
atic evaluation of CRISPR/Cas specificity (399).

Many strategies have been developed to reduce off-target
effects caused by CRISPR/Cas9 nonspecific cleavage. Using
truncated sgRNA with 2–3 nt deletion at the 5=-end can
reduce the off-target-induced mutagenesis by 5,000-fold or
more, and reduce the genome-wide off-target sites by 2- to
5-fold (113, 401). Another strategy is to use a pair of Cas9
nickases to generate two DNA nicks in close proximity, and
this strategy has been shown to reduce off-target mutations
by 50- to 1,500-fold (247, 323, 357). Other strategies such
as titration of dosage for Cas9/sgRNA (152), fusion dCas9
to FokI nuclease (134, 400) have also been developed to
reduce off-target effects.

Resolving the crystal structure of SpCas9 in complex with
sgRNA and target DNA provided many insights into the
potential improvement of Cas9 specificity through logistic
engineering (295). The high-fidelity SpCas9 (SpCas9-HF1)
was generated by alanine substitution to disrupt nonspecific
interaction with the target DNA strand (191). Recent struc-
tural analysis demonstrated that binding SpCas9-HF1 to a
substrate with even a single base pair mismatch at the PAM
distal end completely abolishes stable docking of the HNH
nuclease domain (67). In addition, enhanced SpCas9 (eSp-
Cas9 1.1) was developed by neutralizing positively charged
residues to weaken interactions with the non-target DNA
strand (364). Additionally, a hyper-accurate Cas9 variant
(HypaCas9) was developed in which the HNH nuclease
activation is allosterically regulated by REC3, leading to
high specificity of on-target cleavage (67). All of these engi-
neered SpCas9 variants have been shown to significantly
reduce off-target mutagenesis and have the potential to
push therapeutic genome editing toward high specificity.

3. Long-term effects and benefits of postnatal
genome editing

Postnatal genome editing can correct the genetic mutation
in muscular dystrophies and, in the short term, leads to
improved muscle function. At this time, little is known
about the longevity of restored dystrophin protein in vivo. It
is uncertain, for example, whether genome-edited, dystro-
phin-positive myofibers will be diluted out by dystrophin-
negative myofibers generated from satellite cells carrying
the DMD mutation. In contrast, cardiomyocytes in the
adult human heart have a very low turnover rate (1% at the
age of 25 to 0.45% at the age of 75) (30, 31). Therefore,
therapeutic genome editing in the human heart should pro-
vide long-term clinical benefit. Indeed, several studies have
demonstrated that CRISPR/Cas-mediated genome editing
can restore cardiac function in dystrophic mice (104, 230).

V. CONCLUSIONS AND FUTURE
PERSPECTIVES

In addition to mutations in the nuclear genome, mutations
in the mitochondrial genome also cause primary mitochon-
drial DNA (mtDNA)-related diseases. Mutations in mito-
chondrial tRNAs or protein-coding genes can lead to
MELAS (mitochondrial myopathy, encephalopathy, lactic
acidosis and stroke-like episodes) or MERRF (myoclonus
epilepsy and ragged red fibers) (89–91, 349). These genetic
disorders not only affect muscle function but also result in
pathogenesis in other systems, including brain, blood ves-
sels, and the endocrine system. Currently, mitochondrial
replacement therapy (MRT) is used to treat genetic disor-
ders caused by mtDNA mutations, in which the meiotic
spindle apparatus with chromosomes from an unfertilized
maternal oocyte is transferred into a donor oocyte cyto-
plasm containing healthy mtDNA (438). However, healthy

ZHANG ET AL.

1226 Physiol Rev • VOL 98 • JULY 2018 • www.prv.org

Downloaded from journals.physiology.org/journal/physrev (106.051.226.007) on August 5, 2022.



mtDNA replacement is not absolute, and �1% carryover of
mutant mtDNA can be present after MRT. This carryover
may lead to a gradual loss of healthy donor mtDNA and
reversal to the maternal haplotype by genetic drift (175,
448). This brings up an interesting question of whether
programmable nucleases can be used to eliminate mutant
mtDNA. Indeed, ZFNs and TALENs have been applied to
selectively degrade pathogenic mitochondrial genomes (19,
118, 326). Currently, efficient mitochondrial genome edit-
ing by the CRISPR/Cas system remains controversial (117,
169). Perhaps, efficient delivery of sgRNA into the mito-
chondrial matrix is an impediment for this application. We
anticipate that in the near future, CRISPR/Cas-mediated
genome editing can be further expanded to the mitochon-
drial genome.

To date, there are 840 neuromuscular diseases known to be
caused by mutations in 465 different genes, with 72 mapped
loci awaiting gene identification (177). These debilitating
diseases cause early death or significantly impair the quality
of life. Currently, there is no effective treatment for these
diseases since most therapies developed to date focus on
alleviating the symptoms or targeting the secondary effects,
while the source of mutations is still present in the human
genome. The discovery and application of programmable
nucleases for site-specific DNA DSBs provide a powerful
tool for precise genome engineering. In particular, the
CRISPR/Cas system has revolutionized the genome editing
field and provides a new path for disease treatment by re-
moving the genetic mutations that cause disease rather than
simply treating the symptoms.
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