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Abstract. This work examines two different types of myoelectric control schemes for the purpose of rehabilitation robot

applications. The first is a commonly used technique based on a Gaussian classifier. It is implemented in real time for healthy

subjects in addition to a subject with Central Cord Syndrome (CCS). The myoelectric control scheme is used to control three

degrees of freedom (DOF) on a robot manipulator which corresponded to the robot’s elbow joint, wrist joint, and gripper. The

classes of motion controlled include elbow flexion and extension, wrist pronation and supination, hand grasping and releasing,

and rest. Healthy subjects were able to achieve 90% accuracy. Single DOF controllers were first tested on the subject with

CCS and he achieved 100%, 96%, and 85% accuracy for the elbow, gripper, and wrist controllers respectively. Secondly, he

was able to control the three DOF controller at 68% accuracy. The potential applications for this scheme are rehabilitation and

teleoperation. To overcome limitations in the pattern recognition based scheme, a second myoelectric control scheme is also

presented which is trained using electromyographic (EMG) data derived from natural reaching motions in the sagittal plane.

This second scheme is based on a time delayed neural network (TDNN) which has the ability to control multiple DOF at once.

The controller tracked a subject’s elbow and shoulder joints in the sagittal plane. Results showed an average error of 19◦ for

the two joints. This myoelectric control scheme has the potential of being used in the development of exoskeleton and orthotic

rehabilitation applications.
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1. Introduction

The potential for robotics to play a vital role as an

assistive technology for humans is increasing. It is pre-

dicted that senior citizens in the United States will

double from forty million to eighty million by the year

2050 [2]. As a population ages, so does the amount

of age related diseases and disorders such as stroke

and Parkinson’s disease. Robotics has the ability to

help rehabilitate and improve the lives of these people.

Cerebral palsy, multiples sclerosis, spinal cord injuries,

and muscular dystrophy are other conditions in which

robotic applications can also be developed to provide

therapy and improve daily living [19]. In the field
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of rehabilitation robotics, robot and/or mechatronic

technology is used to provide physically disabled peo-

ple with the tools necessary to improve their quality

of life and enhance their ability to operate in their

environment [31]. A number of different applications

in the field of rehabilitation robotics have been well

established. Exoskeleton suits (which are wearable

robotic/orthotic devices) have been created to augment

human movement to help physically disabled people

perform certain motions that they would otherwise not

be able to perform [7, 25]. Other robotic devices have

been built to provide physical therapy exercises for

those suffering from stroke and other neuromuscular

conditions in an attempt to rehabilitate them. Another

category of applications include the teleoperation of a

robotic device in a master slave relationship.
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Exoskeleton systems are attached directly to the

body and typically assist and monitor limb data which

includes EMG activity, kinematics, and forces. Guizzo

and Goldstein [13] provide an overview of the lat-

est exoskeleton systems being built and researched

around the world. It includes the well known HAL

(Hybrid Assistive Limb) robot from Japan and robots

relating to the Defense Advanced Research Projects

Agency (DARPA) efforts to name a few. Dollar and

Herr [5] present a well written summary of autonomous

exoskeletons and orthoses for the lower extremities

that includes background terminology, history, present

devices, and future research areas. Perry [30] and

Gupta [14] have both presented well written develop-

ments of exoskeletons for the upper extremity and wrist

respectively.

One of the first to incorporate robots into physi-

cal therapy was Hogan and Krebs at MIT [17]. Their

robot, the MIT-Manus, has been used in the rehabil-

itation of stroke patients to improve joint mobility in

the elbow, wrists, hands, shoulders, and ankles [20,

21]. Their work has shown the benefits of using robots

in physical therapy over conventional methods. They

have also reported positive results when using MANUS

with those having cerebral palsy, multiple sclerosis,

spinal cord injuries, and Parkinson’s disease [19]. Song

et al. [35] also developed a routine for robot aided arm

training after stroke.

Essential to a rehabilitation robot application is

the mode of interfacing the subject with the robot.

Stiefelhagen et al. [36] explored many ways of inter-

facing with a robot. The interface of choice in this

work is the electromyographic (EMG) signal. The use

of the EMG signal as a source of control has been

studied extensively in the field of prosthetics and is

known as myoelectric control. Graupe et al. [10, 11]

was one of the first to investigate potential uses of

the EMG signal. A group at the University of New

Brunswick have been studying and developing EMG

prosthetic controllers for many years [6, 18]. One of the

most recent works in myoelectric control has been tar-

geted muscle reinnervation (TMR) which has shown

positive findings for those who have lost their upper

extremity [22]. Oskoei and Hu [28, 29] compiled a

well written survey on myoelectric control as well

as performed their own work in myoelectric pattern

classification.

Although relatively similar, a myoelectric control

scheme for a rehabilitation robot application is differ-

ent from a myoelectric control scheme for a prosthetic

application. In a prosthetic application when there is

a loss of a limb, one is forced to use EMG from mus-

cles that remain after amputation. In a rehabilitation

application, the goal is to utilize residual surface EMG

information from a limb that is fully intact but does

not have a fully functioning neuromuscular system.

Some researchers have begun to integrate the EMG sig-

nal into rehabilitation applications. Gordon and Ferris

[9] created an ankle exoskeleton which used the soleus

muscle to derive a control signal. Fukuda et al. [8]

developed a human assisting manipulator that was tele-

operated using EMG signals to form a master-slave

relationship. The physical therapy device mentioned

previously and built by Song et al. [35] for the reha-

bilitation of stroke patients was based on myoelectric

control, as well. Although there are some rehabilita-

tion robot applications which incorporate myoelectric

control, it is still unknown as to how much information

the EMG signal can provide for rehabilitation purposes

and in what form should that information be extracted.

The goal of this work is to provide a framework upon

which rehabilitation applications can be built using the

EMG signal as the source of control.

The research focus of the Biomechatronic Learning

Lab (BLL) at the Rochester Institute of Technology

(RIT) is to develop intelligent orthotic and wearable

robotic systems for those having neuromuscular dis-

eases and disabilities. This work investigates uses of

the surface EMG signal as a control input for a rehabil-

itation robotic application. It presents two methods of

extracting control information from the EMG signal.

The first method developed is based on a pattern recog-

nition scheme that allows for control in three degrees of

freedom (DOF), the elbow, wrist, and hand. This con-

trol scheme was developed in real time and is based on

previously performed offline studies. Testing involved

the use of healthy subjects and modifying the scheme

for a subject having Central Cord Syndrome (CCS).

This myoelectric control scheme incorporates muscles

in the upper arm as well as muscles in the forearm. It

also combines three degrees of freedom (elbow, wrist,

and hand) in one complete control scheme. The second

myoelectric control technique presented is based on

trajectory tracking of joint angles. A control scheme

based on actual joint and limb positions would offer

benefits over the typical approaches based on pattern

recognition and do not currently exist at this point in

time. The proposed technique uses a time delayed neu-

ral network which allows for the control of multiple

degrees of freedom instantaneously. The next section
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presents the theoretical background for both myoelec-

tric control scheme methods. It also presents a small

section on CCS. The third section presents the method-

ology and procedures followed for all of the tests with

the results of the tests in the fourth section. The final

two sections are the discussion and conclusion. The

discussion analyzes the results and possible rehabilita-

tion applications. The conclusion highlights the major

points of the work and considers future work to be

completed.

2. Background

2.1. Myoelectric control scheme based

on Gaussian classifier

As mentioned earlier, there has been an extensive

amount of research on EMG based control of pros-

thetic devices. The typical myoelectric control scheme

used is based on pattern recognition theory. Figure 1

Fig. 1. Typical myoelectric control scheme based on pattern

recognition.

displays a block diagram that illustrates its implemen-

tation for a robotic device. For a system based purely on

myoelectric control, all of the control inputs stem from

EMG signals that are recorded from electrodes on the

test subject’s muscles. For a thorough understanding of

EMG fundamentals, one is directed to [23]. The EMG

data acquisition is typically obtained with sampling

frequencies around 1 kHz and filtered with a band-pass

filter at 10–20 Hz to 400–450 Hz. The data acquisition

also includes any data segmenting or windowing tech-

niques used. The heart of pattern recognition lies in

the next two steps which are feature extraction and

classification. Feature extraction involves using sig-

nal processing techniques to extract information from

the EMG signals that discriminate between different

types of muscle contractions or classes of motion such

as elbow flexion or wrist pronation. Features can be

broken into three different categories which include

time domain, frequency domain, and time-frequency

domain. These features are then passed to a classifier

which makes a decision as to which class the features

most likely belongs to. This approach does not pre-

dict specific reference angles or positions of joints and

limbs, but rather it identifies a specific motion relative

to the current position. The classifier output is then

implemented on the robotic device being controlled.

Lastly, the source of feedback in this myoelectric con-

trol scheme is the subject’s visual feedback from seeing

the movement of the robotic device. For more informa-

tion about pattern recognition based myoelectric con-

trol schemes, one should consult Oskoei and Hu [28].

An initial offline analysis was performed to deter-

mine which windowing scheme and what features

should be used in the real time system. The adjacent

windowing technique is used in this work [18]. This

technique uses a predefined window length and breaks

the EMG signal into these lengths. In each of these

adjacent segments, features are extracted and a class

decision is made by the classifier which results in a

processing delay. Typical windows range from 30 ms

to 250 ms. The EMG segment or window length should

be large enough that the extracted features maintain

consistency and the variance among samples are min-

imized, but one must note that a larger window results

in a longer delay. Literature has established that the

delay for a myoelectric control scheme should be no

more than 300 ms, so the choice of window size should

account for this [28].

Five time domain features were tested in this work

as described by Hudgins et al. [18]. These five time
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domain features were analyzed individually and collec-

tively as a set (TD Set). They include the mean absolute

value (MAV), the mean absolute value slope (MAVS),

the zero crossings (ZC), the slope sign changes (SSC),

and the waveform length (WL).

Autoregressive (AR) features were also investigated

in this work. AR features are considered to be fre-

quency features. Autoregressive features are obtained

from an AR time-series model. As stated in the pre-

vious section, Graupe was one of the first to use

AR features [10, 11]. An important consideration

must be highlighted when considering the EMG sig-

nal as a time-series model. That is, that the EMG

signal is nonlinear and nonstationary. This fact vio-

lates the assumptions made for a time-series model.

Fortunately, the EMG signal can be modelled as a

piece-wise stationary signal in smaller windows often

used in myoelectric control. Graupe recommended

using a fourth order model for estimating EMG signals.

Hefftner et al. [16] also presented a lengthy analysis of

using an AR model for the EMG signal. The AR model

(with mth order) is shown below in Equation 1 where

the present EMG sample is xk and wk is white noise.

xk =

m
∑

i=1

aixk−i + wk, k = 0, 1, 2 . . . (1)

Two classifiers that are primarily used in the pattern

recognition of EMG signals are Gaussian based clas-

sifiers and neural networks [6, 15, 18, 29]. Both types

of classifiers were explored in preliminary studies, but

the Gaussian classifier consistently exhibited higher

classification rates. As a result, the Gaussian classifier,

which is sometimes termed a Bayesian classifier, was

chosen for this work. A Gaussian classifier assumes

that the features of each class belong to a Gaussian

or normal distribution. To define a probability den-

sity function (PDF) for a normal distribution, all one

needs are the mean vector and covariance matrix. In a

Gaussian classifier, each class has a defined PDF which

is found by extracting features from the training data of

that class and calculating the mean vector and covari-

ance matrix. Once the class PDFs are defined, features

from an unknown EMG sample can be extracted and

input into the PDF for each class. The unknown sam-

ple should be classified as belonging to the class that

outputs the highest probability from the PDFs [38].

The probability density function (PDF) for the Gaus-

sian classifier is defined in Equation 2 where p(x|ωi)

is the probability of class ωi given the feature vec-

tor x that has a mean vector, �i, and a covariance

matrix,
∑

i.

p(x|ωi)=
1

(2π)1/2
∣

∣

∑

∣

∣

1/2

i

exp

(

−
1

2
(x−µi)

T
−1
∑

i

(x−µi)

)

i=1, . . . , M (2)

2.2. Myoelectric control scheme based on a time

delayed neural network

There are two drawbacks to a myoelectric con-

trol scheme based on the typical pattern recognition

approach described above. The first drawback being

that most myoelectric control systems are dependent

on repeatable isometric contractions. A myoelectric

control system based on transient muscle contractions

derived from natural motions is highly desirable. The

second limitation is that these systems are only able to

control one DOF at a time. To overcome these limi-

tations, a myoelectric control scheme based on a time

delayed neural network (TDNN) is presented.

Several researchers have shown that it is possible

to predict joint angular positions from the EMG sig-

nal for tracking applications [3, 37]. The theory behind

the TDNN presented here is largely based on previous

work by Au and Kirsch [1], but their application was

for functional neuromuscular stimulation. They dis-

covered that the optimal parameters for implementing

a TDNN for predicting joint position included a total

delay of 875 ms along with a 125 ms interval of delay.

This delay is too large for a myoelectric control appli-

cation. This work assesses the TDNN as a potential

architecture for a myoelectric control scheme. In order

to verify the TDNN as an architecture for a myoelec-

tric control scheme, the total delay was decreased while

changing other TDNN variables. The accuracy of joint

position for the TDNN is the measure for determining

the optimal TDNN parameters.

A block diagram of the TDNN myoelectric control

scheme is shown in Fig. 2. Raw EMG signals obtained

from selected muscles are rectified and filtered prior to

being input to the TDNN. The filter used is a lowpass

butterworth filter located at 4 Hz. The filtering is

implemented because movements have no frequency

content above this frequency. The EMG is not contin-

uously fed into the TDNN. Rather, the EMG inputs

are obtained by using an interval of delay, �t, and a

total delay, n�t. That is, if the present time is t, then
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Fig. 2. Proposed joint tracking myoelectric control scheme using a TDNN.

the inputs of the TDNN would be the EMG values at

t, t − �t, t − 2�t, and so on until one goes back in

time to n�t. Before the TDNN can be used, it must be

trained. Training data consisting of the EMG data with

the coinciding joint positions must be used. During the

training process the TDNN learns the mapping of the

EMG inputs to the joint position outputs. Once

trained the TDNN uses EMG to predict joint positions

which can be used as commands for a controlled

device.

2.3. Central cord syndrome

In myoelectric control systems, it is important to

consider the end user of the control scheme. The major-

ity of the time the designed myoelectric control system

is not meant for a healthy person. And yet the majority

of work in this area is used with healthy subjects. Typ-

ically the end user of a myoelectric control scheme

is someone with a neuromuscular condition or an

amputee. One of the goals of this work was to develop
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a foundational myoelectric control scheme for healthy

subjects and then to extend that scheme to someone

with a disability. Included in this work is the devel-

opment of a myoelectric control scheme for someone

with CCS.

CCS is the most common form of incomplete spinal

cord injury. It is marked by disproportionately more

motor loss and impairment in the upper limbs relative

to the lower limbs. Other indicators of CCS include

bladder dysfunction and varying degrees of sensory

loss [39]. It is often seen in older patients with cervical

spondylosis, which is a condition caused by abnor-

mal wear on cartilage and the vertebrae. Older people

with cervical spondylosis can experience injury due to

hyperextension that results in pinching of the spinal

cord [27]. Although CCS occurs most often in older

persons, it can occur in those of any age brought on

by a variety of injuries to the spinal cord [32]. Another

condition sometimes associated with CCS is spastic-

ity. Spasticity is an involuntary contraction of muscles

which results from the nervous system sending signals

to the muscles to contract although the person is not

trying to contract [4, 34, 40]. It has been reported that

those with CCS can have positive neurologic and func-

tional recovery [12]. Although many people are able to

regain some form of recovery, it is typically not a full

recovery. Many CCS patients continue to suffer from

neurological deficits that interfere with daily activities

[41].

3. Methodology

3.1. Myoelectric control scheme based

on Gaussian classifier

In order to initially test the real time three DOF myo-

electric controller ten healthy subjects, five male and

five female, were used. EMG channels were placed

on the biceps, triceps, and four around the forearm.

The four EMG channels from the forearm were evenly

spread around the circumference of the forearm about

one third the length of the forearm below the elbow.

EMG data was collected at 960 Hz with the BioRa-

dio 150 from Cleveland Medical Devices which filters

the data from 0.5 Hz to 250 Hz [33]. An adjacent

windowing scheme of 250 ms using AR features was

implemented because the AR features outperformed

the time domain features discussed earlier. Subjects

were asked to produce isometric contractions that were

approximately fifty percent of their maximum vol-

untary contraction to collect training data for each

class (elbow flexion and extension, wrist pronation

and supination, and hand grasping and releasing). Five

seconds of EMG data were collected to train the clas-

sifier for each class. MATLAB Version 7.6 was used

to extract the features from the training data and to cal-

culate the mean vector and covariance matrix for each

class.

The control scheme was implemented using Lab-

view Version 8.5 and controlled the harmonically

driven rehabilitation robot from Neuronics in Fig. 3

[26]. Once the system was trained, subjects practiced

controlling the robot arm’s elbow, wrist, and gripper

joints. When the user felt confident in controlling each

joint representing a specific motion class, the real time

system was tested. If the subject could not adeptly con-

trol any of the motions, the system was retrained with

new data. The real time test consisted of three differ-

ent sets of randomized commands. Each set consisted

of twenty-one commands that corresponded to three

commands per motion class. The randomized sets of

commands that were given to each subject can be seen

in the results. Subjects were given a two minute rest

period in between each set. The subjects attempted to

execute the classes as they were commanded. If the

subjects were able to hold the commanded class for

three to four seconds, it was considered to be a cor-

rect classification. If subjects were unable to hold the

command for three to four seconds, the command was

considered to be misclassified. When a misclassifica-

tion occurred, the output of the classifier was recorded.

Classification accuracies were calculated as the num-

ber of successful classifications out of the total number

of commands.

Fig. 3. CCS subject controlling the robotic arm from Neuronics.
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The myoelectric control scheme developed for the

healthy subjects was applied to a subject with CCS.

Due to the uncertainty of the subject’s ability to con-

trol all three DOF at once, three different one DOF

controllers were developed to test individually before

testing the full controller. A controller for elbow flexion

and extension was created using only EMG input from

the biceps and triceps. Two separate controllers that

used the four EMG channels on the forearm were also

developed first for wrist pronation and supination, and,

secondly, for hand grasping and releasing. The con-

trollers were tested in a similar manner to the healthy

subjects with three sets of randomized commands.

Each set consisted of three commands per motion class

which resulted in nine total commands per set. Once

the CCS subject showed that he was able to proficiently

control each DOF, the subject was tested using the

full controller. Modifications were needed in order for

the CCS subject to use the myoelectric controllers and

will be explained in the discussion. The CCS subject

is shown controlling the robotic arm in Fig. 3.

3.2. Myoelectric control scheme based on a time

delayed neural network

All of the data presented in the work for the TDNN

based myoelectric control scheme was collected using

the Upper Extremity Motion Capture System shown

in Figs 4 through 6 [24]. The developed system cap-

tures EMG and joint angle data from the elbow and

shoulder. Data was obtained from 5 healthy subjects

(4 males and 1 female) ranging in ages from 23 to

24 years of age. The first part of the work involved

using the first subject’s data to determine the optimal

parameters for the TDNN. The rest of the subjects were

then tested using the optimal TDNNs that used those

parameters. EMG channels were placed on the biceps,

triceps, deltoid, and pectoralis. The sampling rate for

the data collection was 960 Hz.

In order to make the TDNNs robust, several types of

movement were collected. Single joint movements of

both the elbow and the shoulder were collected. Single

joint movement consisted of movement from rest over

the full range of motion for the specified joint and back

to rest. Rest was considered to be the arm located at

the subject’s side at full elbow extension. Full elbow

extension was considered to be 180◦ and full elbow

flexion ranged from 50◦ to 60◦ depending on the sub-

ject as shown in Fig. 4. In the shoulder, the rest position

was considered to be 0◦ and the shoulder was elevated

Fig. 4. Range of motion for single joint elbow motion.

to a position ranging between 90◦ and 120◦ depending

on the subject as shown in Fig. 5. Reaching motions

were also collected that resulted in the movement of

both DOF at once as shown in Fig. 6. The reaching

motions consisted of reaching toward different points

in space from rest and then returning to rest. Each

type of motion was recorded for slow and fast repe-

Fig. 5. Range of motion for single joint shoulder motion.
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Fig. 6. Example of reaching motion involving motion in two degrees of freedom.

titions. Slow movements lasted for 3–4 s per repetition

whereas fast movements lasted for 2–3 s. In order to

train the TDNNs for variability, the exact times were

not constrained. Twelve different trials of data were

collected with each trial lasting 30 s in length. Six tri-

als were reserved for training, and six trials were used

for testing the TDNN. The six trials consisted of elbow,

shoulder, and reaching motions for both fast and slow

movements.

The goal of the work with the TDNN was to inves-

tigate its possibility of using the TDNN output as a

myoelectric control input by decreasing the time delay

as stated as optimal in previous work. The time delays

tested were 300 ms, 600 ms, and 900 ms. Other vari-

ables were also tested. The different delay intervals

tested were 50 ms, 100 ms, and 150 ms. A single layer

was used and the number of neurons tested was 10,

20, 30, and 40 neurons. TDNNs were built for the

first subject, and these corresponded to every possible

combination of the parameters listed previously. The

parameters that yielded the best results for Subject 1

were the parameters used to test the rest of the data

for the other subjects. The use of the TDNN was a two

step process consisting of training and testing. As rec-

ommend by Au and Kirsch [1], the position data was

normalized between 0 and 1. All of the neural network

simulations were executed using MATLAB’s neural

network toolbox, Version 7.6. The neural network cre-

ated was a feed-forward, back propagation network.

The “tansig transfer function” was used for the hidden

layer and a “linear transfer function” was used for the

output layer. The training was limited to a maximum

of 250 iterations.

4. Results

4.1. Myoelectric control scheme based

on Gaussian classifier

A sample of an individual’s results is shown in

Table 1 for the first female subject. It shows the ran-

domized set of commands for the three sets and the

result of each command. Additionally, it shows the

commands that were correctly classified as well as

the output of the classifier during any misclassifica-

tions. The classification results of testing all 10 healthy

subjects are shown in Fig. 7. In order to gain an under-

standing of what classes were misclassified; one is

directed to Fig. 8. Figure 8 shows the percentage of

each class that was misclassified out of the total num-

ber of misclassifications for all subjects. The real time

test results for the three single DOF myoelectric con-

trollers and the full three DOF myoelectric controllers

developed for the subject with CCS are shown in Fig. 9.

Figure 10 shows the percentage of each class that was

misclassified out of the total number of misclassifica-

tions for the full controller for the CCS subject.

4.2. Myoelectric control scheme based on a time

delayed neural network

By varying all of the TDNN parameters, 36 differ-

ent neural networks were created for the first subject.

Each neural network was trained using the six desig-

nated training trials of movement. Once trained, the

neural networks were then tested with the six trials of

test data. The results showed that varying the number
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Table 1

Randomized commands given to all subjects for testing of the real time myoelectric control scheme and the results for the first female subject

Command Female Subject 1

Set 1 Set 2 Set 3

Class Classified Misclassified Class Classified Misclassified Class Classified Misclassified

1 Flexion X Grasping X Extension X

2 Pronation X Pronation X Flexion X

3 Grasping X Releasing X Rest Sup/Ext

4 Pronation X Extension Sup/Rel Grasping X

5 Rest X Releasing X Releasing X

6 Grasping X Pronation X Supination X

7 Extension Releasing Rest X Rest X

8 Flexion X Extension X Flexion X

9 Extension X Grasping X Supination X

10 Supination X Flexion X Pronation X

11 Grasping X Supination X Extension X

12 Releasing X Releasing X Flexion X

13 Flexion X Pronation X Releasing X

14 Grasping X Supination X Supination X

15 Rest Ex/Flex Rest X Rest X

16 Extension X Supination X Pronation X

17 Supination X Flexion X Grasping X

18 Releasing X Extension X Extension Gra/Pro

19 Pronation X Rest X Releasing X

20 Rest X Grasping X 0 Pronation X

21 Supination X Flexion X Grasping X

Classification accuracy 90.48% 95.24% 90.48%

Total accuracy 92.06%

Fig. 7. Real time test results for all of the healthy subjects shown as individual test sets and overall averages.

of neurons in the TDNN did not result in a change of

accuracy. Therefore, it has been chosen to only show

the results corresponding to the TDNNs with 10 neu-

rons in the hidden layer. Table 2 displays the combined

average error for the shoulder and elbow combined for

Subject 1 while varying the total delay and the delay

interval. Table 3 presents a more detailed breakdown of

the errors for each specific motion and each joint over

the different TDNNs for Subject 1. For simplicity in

presenting the results, only the detailed results for the

TDNNs having 100 ms as the delay interval are shown

in Table 3. This was chosen due to the fact that the

100 ms delay interval performed slightly better than

the 50 ms and 150 ms intervals as seen in Table 2.
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Fig. 8. Percentage of each individual class that was misclassified

out of the total number of misclassifications for all subjects.

Fig. 9. Real time test results of all four controllers for the CCS

subject shown as individual test sets and overall averages.

Displayed in Table 4 is the average error of each

DOF for each subject during all test trials. The results in

Table 4 are for TDNNs having a time delay of 300 ms, a

time delay interval of 100 ms, and 10 neurons, param-

eters determined by the results of Subject 1. Table 5

displays the average error of the shoulder and elbow

combined for all the subjects using a TDNN. All errors

are presented with a standard deviation. A key feature

of the suggested TDNN control approach is the abil-

ity to track more than 1 DOF at a time. Two test trials

Fig. 10. Percentage of each individual class that was misclassified

out of the total number of misclassifications for the CCS subject.

Table 2

The overall error for each TDNN neural network with 10 neurons

in the hidden layer while varying time delay and time interval for

Subject 1

Overall TDNN errors (degrees)

Time delay Time interval Average error

300 50 16.0 ± 23.2

300 100 15.7 ± 22.9

300 150 15.7 ± 22.8

600 50 17.1 ± 24.2

600 100 16.3 ± 23.8

600 150 16.5 ± 23.5

900 50 17.3 ± 23.5

900 100 16.9 ± 23.7

900 150 22.8 ± 30.5

of the TDNN having a delay of 300 ms and intervals

of 100 ms are displayed in Figs 11 and 12. Figure 11

shows the output of the TDNN for fast shoulder move-

ment by Subject 2. Figure 12 shows the output for a

slow reaching movement by Subject 1.

5. Discussion

5.1. Pattern recognition myoelectric control

scheme

The majority of myoelectric pattern classifica-

tion publications perform offline studies that have
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Table 3

The error of shoulder position and elbow position for Subject 1 for each type of movement. The TDNNs shown here had 10 neurons in the

hidden layer and a delay interval of 100 ms.

Time delay Time interval Slow elbow Fast elbow Slow shoulder Fast shoulder Slow reaching Fast reaching

Shoulder error for Subject 1 (degrees)

300 100 6.0 ± 6.3 7.5 ± 10.2 16.4 ± 19.7 13.2 ± 17.0 11.2 ± 15.1 14.5 ± 21.4

600 100 7.0 ± 7.6 9.0 ± 11.5 15.2 ± 19.0 15.3 ± 19.0 11.0 ± 15.8 14.2 ± 18.7

900 100 6.0 ± 8.3 9.8 ± 12.7 14.9 ± 18.6 13.2 ± 17.4 10.9 ± 15.8 16.8 ± 24.6

Elbow error for Subject 1 (degrees)

300 100 25.9 ± 33.5 21.7 ± 28.8 20.4 ± 19.6 18.2 ± 18.6 16.1 ± 20.6 17.7 ± 24.9

600 100 25.3 ± 32.1 22.0 ± 28.3 20.7 ± 20.3 18.6 ± 22.1 17.4 ± 25.7 20.4 ± 27.6

900 100 29.7 ± 36.9 24.3 ± 27.0 17.3 ± 12.2 18.6 ± 13.3 17.6 ± 20.9 23.9 ± 31.1

Table 4

The error of shoulder and elbow position over each movement for each subject. Each TDNN had 10 neurons in the hidden layer with a delay

interval of 100 ms.

Test subject Slow elbow Fast elbow Slow shoulder Fast shoulder Slow reaching Fast reaching

Shoulder error (degrees)

1 6.0 ± 6.3 7.5 ± 10.2 16.4 ± 19.7 13.2 ± 17.0 11.2 ± 15.1 14.5 ± 21.4

2 19.1 ± 24.1 21.2 ± 25.7 12.0 ± 10.8 21.6 ± 13.3 20.3 ± 27.4 20.1 ± 26.3

3 6.4 ± 8.2 11.0 ± 14.6 27.7 ± 27.0 27.6 ± 33.5 20.1 ± 24.6 19.7 ± 26.2

4 15.2 ± 24.9 19.2 ± 27.8 26.1 ± 36.9 29.8 ± 41.9 29.6 ± 39.6 35.6 ± 43.4

5 4.2 ± 5.1 6.9 ± 10.5 11.6 ± 12.6 12.1 ± 15.8 14.6 ± 17.6 15.9 ± 19.1

Elbow error (degrees)

1 25.9 ± 33.5 21.7 ± 28.8 20.4 ± 19.6 18.2 ± 18.6 16.1 ± 20.6 17.7 ± 24.9

2 6.5 ± 9.2 10.3 ± 15.3 13.7 ± 16.4 18.4 ± 23.2 18.8 ± 24.9 22.5 ± 25.5

3 34.3 ± 40.0 29.1 ± 33.6 26.8 ± 21.0 30.1 ± 22.8 23.3 ± 28.1 27.6 ± 32.7

4 28.4 ± 29.9 22.8 ± 30.6 10.4 ± 10.2 16.0 ± 14.5 11.5 ± 15.0 13.3 ± 17.6

5 21.2 ± 24.7 31.8 ± 36.3 17.8 ± 23.5 22.3 ± 23.6 29.6 ± 35.2 21.0 ± 26.8

Table 5

The average error of the shoulder and elbow posi-

tion combined for all movements for a TDNN

having 10 neurons in the hidden layer with a delay

interval of 100 ms.

Test subject Average error

1 15.7 ± 22.9

2 17.0 ± 23.2

3 23.6 ± 30.6

4 21.5 ± 31.4

5 17.4 ± 25.3

extremely tight constraints on their data collection.

Many researchers use a device that holds the arm

stationary which helps to ensure the EMG data is iso-

metric. These constraints allow for a higher rate of

classification, but they cannot be recreated in a real

time system for an actual rehabilitation application. It

is essential for work in pattern recognition of EMG sig-

nals to go beyond offline studies. Offline studies do not

incorporate any visual feedback for the user. Feedback

for control systems is essential. In noninvasive myo-

electric control systems the only feedback currently

available is visual feedback from the device being con-

trolled. Without feedback, an analysis of EMG pattern

classification is incomplete. The myoelectric control

scheme developed here was evaluated in real time for

both healthy subjects and an end user who could poten-

tially benefit from a myoelectric control scheme.

The real time myoelectric control scheme was first

tested on healthy subjects and the results are shown

in Fig. 7. After training the system, the subjects

were allowed to control the robotic arm incorporating

visual feedback to the control scheme. Some subjects

required a second set of training data to be collected

in order for the classifier to accurately identify all the

classes. Once the subjects felt comfortable controlling

the robotic arm, they were tested using the three sets

of randomized commands. The average classification

rate for all of the healthy subjects was 89.52%. Male

Subject 4 had the highest classification accuracy with

96.83% and this corresponded to two misclassifica-

tions out of the sixty-three total commands given to the

subject over testing. The worst classification occurred

for female Subject 2 who had a classification accu-

racy of 74.60%. This subject noted that she became

fatigued, which is seen in the drop of her classification
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Fig. 11. The output of the TDNN during fast shoulder movement for Subject 2.

accuracy after the first set. A look at her misclassifi-

cations for the last two sets showed that the majority

of misclassifications were occurring for the pronation,

supination, and releasing classes. The majority of the

outputs from the controller during these misclassifi-

cations were extension which meant that fatigue was

causing the triceps to contract. This resulted in exten-

sion being the output from the classifier. If one were

to exclude female Subject 2 from the results because

of her fatigue, the average accuracy for the tests would

be 91.18%.

In order to analyze the misclassifications that

occurred during the real time tests, Fig. 8 was cre-

ated. This shows which classes were misclassified most

often as well as the number of class misclassifications

relative to each other. Releasing and pronation made up

for 36% and 23% of misclassifications. Both of these

movements are derived from the forearm muscles and

the higher misclassification rates could be a result of

there being four classes of motion stemming from the

forearm EMG channels (pronation, supination, grasp-

ing, releasing) versus one class each from the biceps

(flexion) and triceps (extension). This could also be

the significance of why there were no misclassifica-

tions for flexion. The biceps is primarily involved in

one motion which is flexion while that is not the case

for the forearm where so many muscles are located in

close proximity.

Crucial to the evaluation of a myoelectric control

scheme is the inclusion of end users as test subjects.

The tests for the healthy subjects were intended to cre-

ate a foundational myoelectric control system which

could be adapted for a person with CCS. To the authors’

knowledge no attempts have been made to incorporate

a myoelectric control scheme for a subject with CCS.

The testing of the subject with CCS took place over

several visitations to the BLL at RIT on account of

necessary adaptations that needed to be made to the

control scheme. Because of the uncertainty of the CCS

subject’s ability to control all three DOF using the con-

trol scheme the healthy subjects used, three single DOF

controllers were developed that were less complex. It
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Fig. 12. The output of the TDNN during slow reaching movement for Subject 1.

was the goal of the authors to establish a series of

successful trials for the subject using the simpler con-

trollers in order to establish the subject’s confidence in

myoelectric control. Each single DOF controller was

tested separately. The first controller was for the elbow

joint which used the biceps and triceps EMG as inputs.

The subject was able to use this controller with 100%

accuracy as shown in Fig. 9. For the wrist controller,

the subject was unable to have success in controlling

the joint using the four forearm channels. After view-

ing the subject’s attempt at performing wrist pronation

and supination, it was noticed that he had a difficult

time and compensated by using his biceps. By chang-

ing the control scheme to incorporate a biceps EMG

channel, the subject was able to use the controller suc-

cessfully and achieved 85.19% overall accuracy. The

subject used the four forearm inputs to effectively con-

trol the hand controller for releasing and grasping. The

accuracy for the hand controller was 96.30%.

Use of the full three DOF controller was attempted

following success with the individual controllers. Sev-

eral attempts were made at training the three DOF

controller, but the subject was unable to achieve any

level of success. Again, it was noticed that the subject

overcompensated to perform the arm motions with his

shoulder muscles. It was then decided to use two fore-

arm channels on the extensors and flexors. The other

two forearm channels were moved to the shoulder as

shown in Fig. 13. The shoulder EMG channels were

placed on the deltoid and on the trapezius muscles.

Once these locations were used, the subject could be

tested using the three sets of randomized commands.

The subject had an overall classification accuracy of

68.25% for the three DOF controller which is lower

than the classification rates for the single DOF con-

trollers and the results for the healthy subjects. This

can be attributed to a number of factors. The first fac-

tor is that muscle spasticity set into his arm muscles

as talked about in the background section on CCS.

This caused involuntary muscle contractions and was

due to the higher number of commands in the tests

for the three DOF controller versus the single DOF
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Fig. 13. Displayed here is the EMG channel placement for the CCS

subject for the three DOF myoelectric control scheme which includes

wrist extensors and flexors, biceps, triceps, deltoid, and trapezius.

controllers. The second factor is due to the compen-

satory use of muscles. For instance the biceps was

used to compensate for a lack of wrist strength dur-

ing wrist pronation and supination. This is shown in

Fig. 10 which shows a large amount of misclassifica-

tion for flexion. This is due to the contraction of the

biceps being classified as pronation and supination.

The importance of incorporating end users into tests

of a myoelectric control scheme is shown in the dif-

ference of Fig. 10 for the CCS subject and Fig. 8 for

healthy subjects. Where flexion had a perfect classi-

fication rate for the healthy subjects, the CCS subject

had the greatest difficulty with flexion. An understand-

ing of a myoelectric control scheme is made complete

when those disabled individuals that would use the end

application are tested.

Important to consider are the actual rehabilitation

applications that could be developed from the myoelec-

tric control scheme presented. Much of this discussion

stems from a qualitative analysis of the experiences

occurred during testing of the CCS subject. It would

seem that it is possible to use this pattern recognition

scheme in single DOF applications for rehabilitation

exercises such as those used in physical therapy on

a joint by joint basis. The high classification results

that occurred using the single DOF controllers for

the CCS subject point to the feasibility of using an

end application that focuses on one DOF. One could

develop a rehabilitation device that could enhance the

mobility and range of the elbow, wrist or hand. For

instance, the CCS subject compensated wrist prona-

tion and supination by using his biceps. One could use

the scheme presented here to recognize the subject’s

intent for pronation and supination and use this infor-

mation to assist the subject in his motion. This would

increase his ability to perform pronation and supina-

tion without using compensatory muscles. The CCS

subject even noted that he did not attend physical ther-

apy sessions on the days of performing experiments

because of the exercise that the tests provided. Physi-

cal therapy applications could be developed with help

from an occupational therapist currently assisting the

BLL at RIT.

The current platform for testing myoelectric control

schemes in the BLL is teleoperation. The results of this

work show the feasibility of a teleoperation applica-

tion. The myoelectric control scheme presented earlier

was designed to incorporate EMG signals extracted

from isometric contractions for motions occurring

below the elbow using the lower arm. In order to

create an exoskeleton or a wearable robotic system,

one would have to incorporate a control scheme to

account for trajectory tracking of the upper arm, as

well, where motions requiring multiple degrees of free-

dom primarily at the elbow and shoulder joint occur

simultaneously. A potential platform for achieving this

is discussed in the next section which presents the

development of a myoelectric control scheme based

on a TDNN.

5.2. Myoelectric control scheme based on a time

delayed neural network

One of the main goals of this work was to study the

applicability of the TDNN as a possible myoelectric

control scheme for a rehabilitation robot application.

The feasibility of this was investigated by analyzing

the effect of decreasing the total delay of the TDNN

in conjunction with varying other TDNN parameters.

Au and Kirsch [1] had optimal values of 875 ms and

125 ms for their total delay and delay interval respec-

tively. That amount of delay is not possible for a real

time myoelectric control scheme. The first subject’s

data was used to determine the optimal parameters for

the TDNN and then those optimal parameters were

tested on the data from the four remaining subjects.

Based on the first subject’s results, it was determined

that the number of neurons in the hidden layer did not
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have an effect on the accuracy of the TDNN. So it was

decided that a hidden layer of ten should be chosen

as the optimal number of neurons. Larger number of

neurons that were tested would take up more resources

in the end application. In order to view the results in a

manner easier to analyze, Table 2 was created. Table 2

presents the results for Subject 1’s TDNNs which had

ten neurons in the hidden layer. This table shows that

the most accurate TDNNs occurred for a TDNN of

300 ms followed by 600 ms and 900 ms respectively.

The error of the TDNNs was only slightly different for

the total delays of 300 ms and 600 ms but was much

worse for the 900 ms total delay. This was a little sur-

prising because the optimal delay for previous work

by Au and Kirsch was 875 ms which is very close to

900 ms. Also seen in Table 2 is that the time delay

intervals using 100 ms provided for better results than

the 50 ms and 150 ms intervals. The best accuracy for

the TDNNs occurred when using a 300 ms delay with

a 100 ms delay interval which resulted in an average

error of 15.7◦. Therefore, the optimal TDNN parame-

ters were chosen to be a total delay of 300 ms, a time

delay interval of 100 ms, and a hidden layer of ten neu-

rons. The overall errors in degrees for each subject’s

TDNN were shown in Table 5. While subject one had

the least amount of error with 15.7◦, the other sub-

jects had similar results. Subject 2 and Subject 5 had

similar errors of 17.0◦ and 17.4◦ respectively. Sub-

ject 4 and Subject 3 were slightly worse with average

TDNN errors of 21.5◦ and 23.6◦ respectively. These

errors are similar to the errors reported by Au and

Kirsch which were around 20◦. The specific errors in

the shoulder and elbow for each test trial are shown in

Table 4.

It is difficult to gain a full understanding of the

TDNN’s ability to predict joint positions by only

viewing quantitative data. The TDNN output for each

subjects’ trials were graphed versus the actual joint

position in order to view the results qualitatively. Sev-

eral observations can be taken away from the graphed

results. The TDNN has the ability to predict joint

position for multiple DOF at once which is shown in

Fig. 12. This is the result during slow reaching for Sub-

ject 1. A myoelectric control scheme that could control

multiple DOF at once is highly desirable. This would

be a benefit that is not offered by the typical myo-

electric control scheme based on pattern recognition

that was presented in the previous section. Another

observation seen from some of the data is the poor

accuracy of the TDNN for an immobile DOF while

the other DOF is moving. This is shown in Fig. 11

which is the output for Subject 2 during fast shoul-

der movement. While the TDNN was able to track

the shoulder position with great accuracy, the abil-

ity of the TDNN to track the stationary elbow joint

was poor. Some trials seemed to show that the TDNN

had a great ability to predict joint positions from EMG

and yet other trials had bad performances. This proba-

bly resulted from a disparity between the training data

and the testing data. Another important observation to

make from the TDNNs is the fact that they map EMG

data from dynamic and complex reaching motions.

This is another advantage over the Gaussian classifier

based myoelectric control scheme approach presented

previously which uses isometric EMG data.

The quantitative results showed that decreasing the

total delay while maintaining the same level of joint

position accuracy was possible. One question that must

be answered now is what the actual myoelectric con-

trol scheme would look like in real time. Although

the suggested TDNN has a 300 ms delay associated

with it, the actual myoelectric control scheme would

have a slightly larger delay due to the processing time

needed to calculate the TDNN output when fed EMG

inputs. The average time needed for the TDNN in the

MATLAB environment was 14 ms. Because of this

processing delay, a continuous output from the TDNN

would not be possible. It would therefore be recom-

mended to give inputs to the TDNN every 15–20 ms

which would adjust for the amount of time needed

to process the output. Something else to consider is

filtering the output of the TDNN with a low pass fil-

ter. Looking at the qualitative results shows that the

TDNN output can jump erratically instead of main-

taining a smooth output which is desired. A low pass

filter would smooth the output and result in a more user

friendly control scheme. One must also consider the

precision that the TDNNs must have. Across all sub-

jects the average error was 19.0◦ which could cause

problems if there was a need to be very accurate. Ways

at decreasing the error by possibly including kinematic

or force data into the TDNN should be considered.

Once this scheme has been implemented in real time,

one would want to consider the possible rehabilita-

tion applications that could be developed using this

myoelectric control scheme. The goal of the BLL is to

develop exoskeleton or orthotic systems which assist

those with neuromuscular conditions and diseases. The

TDNN approach is advantageous to use because it

is based on natural motions of the arm and can con-
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trol multiple DOF at once. Future tests would need to

account for a load being used in the trials of training

data which would alter the EMG signals.

6. Conclusion

This work presented two different myoelectric con-

trol techniques for rehabilitation robot applications.

The first was a typical approach based on a Gaussian

classifier. This myoelectric control scheme combined

three DOF (elbow, wrist, and hand) into one con-

troller. It was then tested with ten healthy subjects and

achieved an average accuracy of 89.52%. The healthy

subjects created a baseline understanding of the myo-

electric control scheme which could be modified for

someone with a neuromuscular condition. This work

also developed a myoelectric control scheme for a

subject with CCS. To the authors’ knowledge, a myo-

electric control scheme has yet to be developed for a

subject with CCS. Single DOF controllers were built

for the CCS subject to initially gauge the ability of

the subject to use a myoelectric control scheme. He

achieved 100%, 96.30%, and 85.19% accuracy for the

elbow, hand, and wrist controllers respectively. Sev-

eral adaptations needed to be made to the locations of

the electrodes prior to testing the three DOF controller

due to the subject using compensatory muscles for cer-

tain classes of movement. Once these changes were

made, the subject achieved 68.25% accuracy. Poten-

tial rehabilitation applications include physical therapy

and teleoperation.

The second myoelectric control scheme was devel-

oped to overcome some of the limitations of the first

scheme based on pattern recognition. This controller

was based on a TDNN and incorporated transient EMG

signals that appear during natural reaching motions.

An exoskeleton or wearable robot utilizing a TDNN

based EMG controller would offer the user movement

in more than one DOF simultaneously, which does not

exist in current myoelectric control schemes. This work

showed that the TDNN accuracy could be maintained

as reported in previous work and that the total delay

could be decreased from 875 ms to 300 ms which is

necessary for myoelectric control schemes. The exper-

iments performed to test the TDNNs resulted in an

average error of 19◦. The next steps in this work would

be to implement the TDNN in a real time myoelec-

tric control scheme, as well as explore possibilities of

decreasing the error.
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