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Abstract—User acceptance of myoelectric forearm prostheses is 

currently low. Awkward control, lack of feedback, and difficult 

training are cited as primary reasons. Recently, researchers have 

focused on exploiting the new possibilities offered by advance-

ments in prosthetic technology. Alternatively, researchers could 

focus on prosthesis acceptance by developing functional require-

ments based on activities users are likely to perform. In this arti-

cle, we describe the process of determining such requirements 

and then the application of these requirements to evaluating the 

state of the art in myoelectric forearm prosthesis research. As part 

of a needs assessment, a workshop was organized involving clini-

cians (representing end users), academics, and engineers. The 

resulting needs included an increased number of functions, lower 

reaction and execution times, and intuitiveness of both control 

and feedback systems. Reviewing the state of the art of research 

in the main prosthetic subsystems (electromyographic [EMG] 

sensing, control, and feedback) showed that modern research 

prototypes only partly fulfill the requirements. We found that 

focus should be on validating EMG-sensing results with patients, 

improving simultaneous control of wrist movements and grasps, 

deriving optimal parameters for force and position feedback, and 

taking into account the psychophysical aspects of feedback, such 

as intensity perception and spatial acuity.

Key words: amputee, control, EMG , feedback, forearm, hand, 

myoelectric, prosthetic, rehabilitation, sensing, user acceptance.

INTRODUCTION

The loss of a hand from amputation or congenital 

defects causes disability. Prostheses have been developed 

throughout history to restore some of the hand’s original 

functionality and appearance. Though a variety of forearm 

prostheses are presently available, such as purely cos-

metic hands and body-powered prostheses, modern pros-

thesis research is mainly focused on myoelectric (ME) 

prostheses [1]. A major problem for the development of 

new ME prostheses is that despite significant technologi-

cal advancements, a large number of amputees choose not 

to use them [1]. The issues associated with acceptance of 

ME forearm prostheses have been investigated in the litera-

ture [1–3]. In these investigations, three main problems 

were mentioned as reasons that amputees stop using their 

ME prostheses: nonintuitive control, lack of sufficient 
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feedback, and insufficient functionality. However, these 

studies only considered prostheses that were commer-

cially available at the time, and their information was 

mostly collected through questionnaires, which offer no 

opportunity for discussion or patient feedback.

Recent research projects have implemented new 

technologies in an attempt to overcome the shortcomings 

outlined by Atkins et al. and others [1–3]. However, the 

effect of these new technologies on user acceptance is 

currently unknown, because most of these systems are 

still in the prototype stage. Though several commercial 

ME forearm prostheses have recently been developed [4–

6] that have greater functionality than those evaluated by 

Atkins et al. and others [1–3], their control systems do 

not yet take advantage of the recent improvements in 

sensing, control, and feedback research.

Klopsteg and Wilson recommend a user-centered 

approach for improving prosthesis performance and accep-

tance [7]. Therefore, we investigated the state of the art in 

ME forearm prosthesis research by determining a set of 

requirements for user acceptance and using these require-

ments to evaluate recent technological developments.

The structure of the prosthesis should result in intu-

itive control to improve user acceptance. This can be 

accomplished by making the signal flow between the 

prosthesis and the user resemble that of the nondisabled 

body. The signal flow can be divided into three parts: 

user intent, motion control, and sensory feedback. A 

prosthesis should contain subsystems that account for 

each of these parts; such a desired system is shown in 

Figure 1. The subsystems are described as follows: elec-

tromyographic (EMG) sensing, which determines user 

intent by detecting the activity of residual muscles 

through electrodes on the skin; control system, which 

actuates the prosthesis according to control signals 

received from EMG sensing; and feedback system, which 

provides the user with artificial sensory information. The 

combination of these three subsystems gives the user a 

noninvasive way to control an electronic prosthesis with 

the residual limb.

In the “Needs Assessment Method” section, we

describe the process of assessing the needs for ME forearm 

prostheses. A workshop with participants from various 

relevant fields was arranged to establish these needs. We 

discuss the workshop results and formulate functional 

requirements for user acceptance in the section “Needs 

Assessment Results.” In the “Literature Survey” section, 

we investigate the state of the art in ME prosthesis research

with a literature review covering the aforementioned 

requirements. In the “Discussion,” we discuss the applica-

bility of the needs assessment method. We then combine 

the results of the preceding two sections, evaluating the 

research state of the art using the functional requirements 

for user acceptance. Finally, we make recommendations 

for future research.

NEEDS ASSESSMENT METHOD

In this section, we describe the method used to deter-

mine user-centered needs. A workshop was organized in 

which the functional and nonfunctional needs of the ideal 

forearm prosthesis with regard to the EMG sensing, con-

trol, and feedback subsystems were discussed. Combin-

ing information from the literature [1–3] and the results 

of the workshop, we derived the functional requirements 

for ME forearm prostheses. The complete structure of the 

needs assessment used in this research is presented in a 

flow chart (Figure 2).

Participants

To develop a user-accepted ME forearm prosthesis, 

both users and technicians should be involved in the 

design process [7]. However, directly involving users in 

the design process may be difficult, because of differences 

Figure 1.

Comparison of signal flow in sound human forearm and desired signal 

flow and main subsystems of modern myoelectric forearm prosthesis. 

EMG = electromyographic.
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in terminology and methodology [8]. In this case, repre-

sentative users (i.e., clinicians with first-hand experience) 

can provide a useful alternative. As someone who has regu-

lar contact with many forearm prosthesis users, a repre-

sentative user is highly familiar with the opinions and 

wishes of their patients. Therefore, the workshop partici-

pants comprised a multidisciplinary group (9 men and 10 

women) of representative users and engineers from multi-

ple centers throughout the Netherlands. All participants had 

interests and expertise in the area of upper-limb amputation 

and prostheses. The representative users were two occupa-

tional therapists, three rehabilitation medicine physicians, 

two physiotherapists, a certified prosthetist/orthotist, 

and a movement scientist. Six researchers and four engi-

neers constituted the academic contributors.

Orientation and Preparation

Concrete representations of ME prosthesis use are nec-

essary to facilitate good user-designer communication [9]. 

Therefore, activities of daily living that are relevant for 

forearm prosthesis users formed the starting point of the 

needs assessment. In preparation for the workshop, the 

participants were shown an educational video about differ-

ent prosthetic options and user opinions. Important aspects 

of the daily use of forearm prostheses were investigated, in 

light of the first-hand knowledge of occupational therapists 

and physiotherapists (representing end users).

Professional Involvement Workshop

A plenary discussion led to a selection of five activi-

ties in which the important aspects of upper-limb pros-

thesis use are well represented. A refined version of the 

list of instrumental activities of daily living of Bookman 

et al., which was formed using these aspects as criteria, 

was used as a starting point [10]. Three different aspects 

of these activities were examined, focusing on the three 

prosthesis subsystems. Each activity was analyzed using 

a structured worksheet specially designed for this work-

shop (Figure 3). The worksheet contained a set of six 

predefined wrist movements and seven grasps.

Figure 2.

Overview of needs assessment approach, including internal structure 

of workshop.

Figure 3.

Example of workshop activity sheet filled in by multidisciplinary 

group. Needs for using coat zippers are evaluated. Each column of 

blocks represents part of activity and is referred to as subtask.



722

JRRD, Volume 48, Number 6, 2011

Multidisciplinary groups were each asked to divide 

one activity into subtasks. For every aspect, the worksheet 

contained several questions to be answered for each sub-

task of the activity (Figure 3). After the analyses in small 

groups, the needs for all aspects were validated and refined 

in a plenary discussion and consensus was reached.

NEEDS ASSESSMENT RESULTS

By combining the results of the workshop with the 

information obtained through the literature, we con-

structed a list of requirements for each of the prosthesis’ 

subsystems. In this section, the needs as well as the 

resulting requirements derived from the workshop are 

described.

Workshop Results

In the workshop, the participants determined the spe-

cific needs associated with several activities of daily living. 

These activities, as mentioned in the “Needs Assessment 

Methods” section, were selected from a list of relevant 

activities to represent various aspects of prosthesis func-

tionality, such as fine and gross motor control, speed, force, 

and coordination. The following activities were analyzed: 

using zippers, making a bed, grabbing a cup, catching a 

ball, and using a fork and knife.

Grasps and Wrist Movements

In general, the workshop participants considered grasps 

to be more important than wrist movements in executing 

the tasks. The main grasp types selected in the plenary 

discussion were the lateral, cylindrical, and tripod grasps 

(Figure 4). Additionally, the index finger point was men-

tioned as an important gesture for various other activities 

(e.g., typing). Of the wrist movements, rotation and flexion/

extension were considered equally useful when used to per-

form a natural grasping maneuver in combination with a 

grasp. These wrist movements would also avoid awkward 

elbow and shoulder motions.

Control

The main focus of the discussion on prosthesis control 

was on selecting the functions that the prosthesis should 

automatically control. Generally, the initiation of actions 

was considered to be best controlled by the user, whereas 

the actual execution of those actions can be performed 

automatically. Grasp selection, wrist movement control, 

and initiation of grasp execution were mentioned as deci-

sions that the user should control.

The participants felt the prosthesis should automati-

cally continue holding an object once grasped. This 

allows the user to focus on moving the object with arm 

and wrist movements. During such an action, slipping of 

the object should be prevented.

It was considered desirable to have wrist movements 

under direct user control. Performing two wrist movements 

simultaneously was also considered desirable, but it could 

require a more automated execution of these movements. 

Direct user control of the speed of grasping or the force 

applied to a grasped object were found useful in several 

Figure 4.

Three main grasp types selected during workshop: (a) lateral, (b) cylindrical, and (c) tripod.
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activities and could be implemented as an optional alterna-

tive to automatic grasping and holding.

Feedback

For each activity, both the type of information to be 

fed-back and the method of feedback were considered. 

Workshop participants stated that force was the most 

important type of information for feedback, because it is 

impossible to determine through visual inspection. Apply-

ing the right amount of force is essential when handling 

fragile objects or interacting with humans and animals. 

Feedback on the position of the fingers was considered 

important to reduce the attention required and allow for 

more intuitive grasping. A combination of both force and 

position information could provide the user with a meas-

ure of object stiffness. Feedback was also mentioned as 

being useful for indicating control system status, such as 

when grasp closure has been completed.

The discussion on feedback methods revolved mostly 

around the choice between continuous and discrete feed-

back. Although continuous feedback can improve the 

user’s ability to handle the prosthesis intuitively, the 

user’s perception of a nonphysiological signal may fade 

over time. In contrast, discrete feedback should not be so 

abrupt that it disturbs the user. This type of feedback 

could be useful for indicating control system status but 

was considered less important than continuous feedback.

Feedback was only considered of added value when 

intuitive and simple. Other mentioned requirements for 

feedback were for it to be unobtrusive to others and com-

fortable to the user. The ability to adjust feedback for 

individual patients was also considered essential.

Requirements

In this section, a list of functional requirements based 

on the workshop results and the literature [1–3,11] is pre-

sented. During the plenary discussion at the end of the 

workshop, the functional requirements were determined 

based on the results of analyzing the activities, as shown 

in Figure 2. In Table 1, these requirements are listed for 

each subsystem in no particular order.

LITERATURE SURVEY

In this section, the state of the art of recent ME fore-

arm prosthesis research is described with regard to each 

of the requirements in Table 1, separated by subsystem.

EMG Sensing

The sensing part of ME prostheses is based on EMG 

signals. These signals are the electrical expression of the 

neuromuscular activation generated by skeletal muscles 

[12–14] and contain rich information regarding the 

Table 1.

Functional requirements for user acceptance of myoelectric forearm prostheses, sorted by subsystem. These requirements were obtained through 

combination of needs assessment workshop and literature review.

Subsystem Number Requirement

EMG Sensing 1 Multiple wrist movements and grasp types should be easily selectable.

2 Time delay should be short enough to not disturb user.

3 User should be able to indicate desired speed of wrist movements and force of grasps.

4 Wrist movement and grasp type should be simultaneously distinguishable.

Control 1 Available grasp types: cylindrical grasp, tripod grasp, lateral grasp.

2 Available wrist movements: flexion/extension and rotation.

3 Prosthesis should automatically continue holding an object once grasped.

4 Prosthesis should automatically prevent slipping of any held objects.

5 Grasp execution time should not disturb user.

6 User should be able to directly control speed of wrist movements and force of grasps.

Feedback 1 Continuous and proportional feedback on grasping force should be provided.

2 Position feedback should be provided to user.

3 Interpretation of stimulation used for feedback should be easy and intuitive.

4 Feedback should be unobtrusive to user and others.

5 Feedback should be adjustable.

EMG = electromyographic.
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motion intended by the user. In modern prosthesis 

research, EMG is used for pattern-recognition–based ME 

control systems. The sensing principle for every system 

is basically the same (Figure 5) [15–18].

Of the functional requirements list that resulted from 

the workshop (Table 1), four requirements fall into the 

sensing category. In this section, the current state of the art 

of EMG sensing is evaluated with respect to how these 

requirements are addressed and what results are achieved. 

Table 2 provides an overview of sensing systems for ME 

forearm prostheses; it will be used to represent the current 

state of the art of EMG sensing systems research.

Sensing Requirement 1: Multiple Selectable Wrist 

Movements and Grasps

Over the last 20 years, the focus of the literature has 

been on increasing the number of prosthesis functions that 

can be controlled, since this is the biggest drawback of 

commercially available forearm prostheses [1–2,17,19]. In 

principle, the number of controllable functions can be 

increased by using pattern recognition. Among many other 

features, amplitude features (mean absolute value and 

root-mean-square value) are often used to distinguish dif-

ferent contraction patterns (ranging from 4 to 8) and high 

accuracies (between 92% and 99%) can be achieved with 

them [20–24]. Examples of frequently used classifiers in 

the literature are linear discriminant analysis [22,25–28] 

and artificial neural networks [29–31]. The highest

achieved accuracies for both classifiers were around 

98 percent. Most classification results in Table 2 were 

achieved with nondisabled subjects. A limited number of 

results can be found for transradial amputee patients 

[17,32–34].

Concerning the type of classes that are included in the 

studies, most research only investigates forearm and wrist 

movement contractions. For a higher than 4-class prob-

lem, opening and closing of the hand is often included. 

Studies by Tenore et al. [35] and Sebelius et al. [21,29] 

incorporated flexion and extension of the separate fingers 

and thumb in classification. In recent studies, more focus 

is found on functional grasps, such as the cylindrical, tri-

pod, and lateral grasps [28,36–38].

To enable easily selectable prosthesis functions, 

Ajiboye and Weir state that a balance must be found 

between choosing sites at which the user can easily con-

tract his/her muscles and choosing sites that are most natu-

rally mapped to the appropriate function of the prosthesis 

(direct mapping) [20]. Both Shenoy et al. [24] and Tenore 

et al. [35] emphasized that with direct mapping, a more 

natural and intuitive control strategy can be achieved.

Sensing Requirement 2: Nondisturbing Time Delay

Short observation windows are required to ensure that 

the user’s perceived delay is not considered disturbing. 

Here, this perceived time delay is defined as the time from 

user input to initiation of the intended motion and consists of 

the calculation times of all elements depicted in Figure 5. 

Yet, a trade-off exists in response time and accuracy, since 

an analysis window should be long enough to reliably esti-

mate features [19]. In 1993, Hudgins et al. stated that the 

window for analysis plus the processing time should be 

equal to or less than 300 ms, otherwise the perceived time 

delay will become unacceptable for the user [17]. Although 

this limit has been generally accepted and implemented in 

studies of the last 20 years, relatively little work has been 

performed on the objective examination of the effect of con-

troller delays on prosthesis performance [39].

Recently, Farrell and Weir readdressed the subject of 

optimal time delay [39]. By testing prostheses with non-

disabled subjects, they found the optimal delay lies within 

the 100 to 125 ms range. This research raised discussions 

as to whether it would be desirable to use shorter windows 

to create a more usable prosthesis, even though this would 

cause lower control accuracy. Hargrove et al. state that 

users would prefer more controllable functions and a 

slower system over less functions and a faster system 

[40]. Nevertheless, researchers try to incorporate the new 

Figure 5.

Electromyographic sensing subsystems describing signal flow from 

detection of muscle contraction to feature extraction and classification. 

Adapted from Asghari Oskoei M, Hu H. Myoelectric control systems—

A survey. Biomed Signal Process Control. 2007;2(4):275–94.
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Table 2. 

Electromyographic sensing systems.

Author Year

Method Results

Classifier Features Subjects
Window 

(ms)
Classes Electr

Accuracy 

(%)

Finley & Wirta [1] 1967 LDA — — — 6 6 85

Graupe & Cline [2] 1975 NNC ARMA — — 4 1 95

Almström et al. [3] 1981 LDA — TR (5) — 6 6 90

Saridis & Gootee [4] 1982 Bayes ZC, VAR TH (1) 170 6 2 85

Doerschuk et al. [5] 1983 NNC ARMA4 — 500 4 4* 95

Ito et al. [6] 1991 ANN — Nondisabled (2), TR (1) 200 6 4 >90

Kelly et al. [7] 1991 ANN Mean frequency Nondisabled (5) 64 4 1 85

Hudgins et al. [8] 1993 ANN TD set (5) TR (4), TH (2) 200 4 1 86

Kuruganti et al. [9] 1995 ANN MAV, MAVS, ZC, WL Nondisabled (9) 240 4 2 90

Itakura et al. [10] 1996 ANN Amplitude Nondisabled (3) 200 5 4 94

Eriksson et al. [11] 1998 ANN — TR (1) 5 8

Karlik [12] 1999 MLP AR4 Nondisabled (1) 80 6† 2 96

Englehart et al. [13] 2001 LDA WPT Nondisabled (11) 256 6 4 97

Lamounier et al. [14] 2002 MLP NN AR — 200 4 5

Light et al. [15] 2002 MLP TD set (4) Patients 240 4 2 >90

Englehart & Hudgins [16] 2003 LDA TD set (4) Nondisabled (12) 256 4 4 95

Englehart et al. [17] 2003 MLP TD set (4) Nondisabled (11) 6 4 93

LDA WPT 89

Karlik et al. [18] 2003 FCNN AR4 Nondisabled (1) 80 6† 2 98

Koçyigit & Korürek [19] 2003 FKNN WT — 256 4 2 96

Soares et al. [20] 2003 MLP AR4 Nondisabled (1) 200 4 5

Davidge et al. [21] 2005 LDA — — — 10 16 94

— — — — — 8 93

— — — — — 4 87

Ajiboye & Weir [22] 2005 FLS RMS Nondisabled (3), TH (2) 45.7 4 4 97

Chan & Englehart [23] 2005 HMM AR6 Nondisabled (11) 256 6 4 95

Farrell & Weir [24] 2005 LDA RMS, AR3 Nondisabled (4) 50 6 6 90

Huang et al. [25] 2005 GMM RMS, AR6, TD set (4) Nondisabled (12) 256 6 4 97

Sebelius et al. [26] 2005 ANN — TR (6) — 10 8

Sebelius et al. [27] 2005 LLA (NNC) Amplitude Nondisabled (6) 50 10 8 93–100

Al-Assaf [28] 2006 PC AR5 Nondisabled (5) 256 5† 2 95

Chu et al. [29] 2006 MLP WPT Nondisabled (10) 250 9 4 97

León et al. [30] 2006 ANN DFT Nondisabled (2) 250 7† 2 85

Arvetti et al. [31] 2007 ANN TD set (5), AC, STFT, WT Nondisabled (2) 200 5 2* 97

Hargrove et al. [32] 2007 LDA/MLP RMS, AR6, TD set (4) Nondisabled (6) 256 10† 15 95–99

Hargrove et al. [33] 2007 LDA TD set (4) Nondisabled (6) 125 7† 8 93–99

Khezri & Jahed [34] 2007 ANFIS MAV, SSC, AR, WT Nondisabled (4) 200 6 2 97

Khushaba & Al-Jumaily [35] 2007 MLP PSO features Nondisabled (6) — 10† 3 97

Asghari Oskoei & Hu [36] 2008 SVM MAV Nondisabled (11) 200 6† 4 95

— TD set (4) — — — — 96

— RMS, AR6, TD set (4) — — — — 96

Liu & Luo [37] 2008 LVQ NN WPT entropy Nondisabled (1) — 4 2* 98

Shenoy et al. [38] 2008 SVM RMS Nondisabled (3) 63 8 7* 92–98

Tenore et al. [39] 2008 LDA TD set (4) Nondisabled (1) 150 9† 8 91

Karlik et al. [40] 2009 FCNN WT Nondisabled (1) 150 4 2 98

Sensinger et al. [41] 2009 LDA TD set (4) Nondisabled (7) 11† 12

Tenore et al. [42] 2009 MLP MAV, VAR, WL, WA Nondisabled (5), TR (1) 200 12 19 >90

Kuruganti et al. [43] 2010 LDA — Nondisabled (8) — 12 64 80

— — TR (4) — — — 66

Zhou et al. [44] 2010 LDA AR6, RMS, ZC, MAV, WA TR (5) — 11 12 81
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*Denotes monopolar.
†Denotes rest included.
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recommendation of Farrell and Weir, as can be found in 

Hargrove et al. and others [40–43].

Sensing Requirement 3: Proportional Control of Force 

and Speed

A natural and intuitive control strategy would reflect 

the original neuromuscular system, which is capable of 

proportionally and simultaneously controlling multiple 

functions. The amplitude of the EMG signal caused by iso-

metric steady-state contraction of an individual muscle is 

proportional to the force produced by the muscle [24,44–

45]. However, few studies include so-called proportional 

control in pattern-recognition systems; this could be due to 

the larger challenge of deriving the contraction speed or 
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force per class in a multiclass problem [40]. Hargrove et al. 

computed a linear combination of root-mean-square values 

over all channels and normalized them by a “motion 

specific factor” derived from training data [46]. Jiang et al. 

and others recently included proportional control in the 

experimental setup [47–49]. By using a standard time 

domain feature set, they were able to capture more than 

80 percent of the measured force variability of three simul-

taneously activated wrist movements.

Sensing Requirement 4: Simultaneous Control of Wrist 

Movements and Grasps

As opposed to the previous requirements, simulta-

neous control of wrist movements and grasps is rarely 

addressed in the EMG literature. While this was men-

tioned as being performed during testing of the SVEN 

Hand [50], no qualitative results were found. As men-

tioned previously, simultaneous control of two or three 

contraction patterns at once has been explored by Jiang et 

al. and others [47–49]. However, their focus was on pro-

portional control, and therefore, no explicit results on 

simultaneous control were reported.

Control

Control systems for ME prostheses combine the out-

put signals of the EMG sensing system with data from 

internal and external sensors to generate the motions 

intended by the user. These systems can be broken down 

into two parts: first, the high-level control system that 

interprets the classified EMG signals to produce desired 

angles for each joint; second, the low-level control sys-

tem that takes the high-level system’s set points and 

controls the individual joints to the proper angles. The 

low-level control systems [51] are less important in

establishing user control of the prosthesis’ functions and 

as such are not covered in detail in this article.

The various prosthesis control systems that have 

been evaluated are listed in Table 3. Though not intended 

to be comprehensive, this list of systems has been chosen 

to represent the state of the art in prosthesis control 

research and to cover various different approaches.

Control Requirement 1: Available Grasp Types

The reviewed systems feature two main methods of 

grasp control: either a selection of discrete grasp types or 

direct user finger control (Table 3). With the first approach, 

used by the MANUS hand [52], Fluidhand [53], and 

Southampton hybrid [54] systems, the user chooses from a 

set list of grasps. This approach can allow the specific grasp 

types available to be customized to the user’s preference 

during training [52].

The second approach is used in the AR III Hand sys-

tem [55] and one of the Cyberhand control systems [56]. 

Although direct finger control can be considered more 

natural than the grasp selection approach, it could be 

more difficult for the user to get the fingers in the right 

position for the task given the limited amount of control 

inputs available.

The second Cyberhand control system [57] was used 

to test both a selection of two or three discretely select-

able grasps and direct control of the thumb opposition 

angle. Users had difficulty taking advantage of direct 

thumb control and often disregarded it entirely.

Control Requirement 2: Wrist Movement

Currently, only a few prosthesis prototypes feature 

user-controlled wrist movement, so few of the control 

systems support it. One example of both rotation and 

flexion/extension has been found in the SVEN Hand 

[50]. The MANUS hand [58] and Southampton [54] con-

trol systems enable control of wrist rotation only. With 

the latter two systems, wrist movement control is imple-

mented in the same way as grasp selection, which makes 

simultaneous grasping and wrist movement impossible.

Control Requirements 3 and 4: Automatic Holding and 

Slip Prevention

The MANUS hand [52] and Fluidhand [53] systems 

will both continue to hold a grasped object unless given 

another signal. The Southampton system [54] automati-

cally holds objects as well, but also prevents slipping of 

objects, which is detected by way of acoustic sensors. 

While the Cyberhand contains the force sensors needed 

for slip prevention, it currently does not have a response 

time short enough to use it [59].

Control Requirement 5: Grasp Execution Time

For the control system’s reaction time, the most 

important factor is the number of control signals a user 

needs to provide to activate a certain action. This number 

varies from hand to hand. For example, the MANUS 

hand system [52] always requires a three-symbol code to 

execute any command. In contrast, the Southampton 

hand system [54] requires a single close signal to perform 

a simple grasp; however, an additional control signal is 
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required to increase the applied force, which causes some 

delay in its execution.

Once grasp execution has started, the grasping speed 

depends mainly on the type of actuators used. All hands 

in Table 3 except the Fluidhand [53] use direct current 

(DC) motor actuators, which require a transmission with 

high gear ratio to produce the required torque. This 

reduces the motor’s speed significantly.

Control Requirement 6: User-Controlled Force and Speed

Two main methods of force control implementation 

are commonly used. The first gives the user direct control 

over the force with which the grasp is closed and with 

which objects are held and is used by the Cyberhand and 

MANUS hand [52,57]. The second method automatically 

applies sufficient force but gives the user the option of 

switching to direct force control during grasping; the 

Southampton control system [54] features this option.

Speed control is relatively rare among the reviewed 

control systems, only being supported by the Fluidhand 

[53]. This is because of the low priority of speed versus 

force control, which is performed through a similar channel. 

It should be noted that various modern prosthesis prototypes 

have grasp closing times on the order of 1 s (Table 3), which 

would diminish the effect of speed control.

Feedback

For the majority of forearm prosthesis research, force 

and position information is only directed to the prosthesis 

itself (e.g., in automated slip control) [54–55], but some 

efforts have been made to provide feedback to the user. A 

natural way to close the prosthesis control loop that also 

incorporates feedback is the use of extended physiologi-

cal proprioception (EPP) as proposed by Simpson [60]. 

However, the focus of this article is on ME prostheses, 

and therefore, feedback applications of the EPP principle 

are not considered here.

Examples of artificial feedback through nerve stimu-

lation or haptic feedback can be found, but the focus in 

research is on vibrotactile and electrotactile stimulation 

because of their unobtrusive nature, easy applicability in 

prostheses, and comfort for the user. In this section, the 

Table 3.

EMG-based prosthetic hand systems. M1–3 designate three different control systems evaluated by Cipriani et al. [1].

Authors Year Prototype Name
Grasp Control

Wrist Control
Force/Speed

Available Types Selection Method Execution Time* User Control

Pons et al. [2] 2005 MANUS Hand Customizable EMG code Automatic 1.0 Rotation Force

Yang et al. [3] 2009 AR III Hand N/A Finger control† By user 0.5 None Neither

Schulz et al. [4] 2005 Fluidhand Lateral, cylindrical, 

tripod, spherical

EMG classification By user 0.1 None Speed

Herberts et al. [5] 1973 SVEN Hand N/A EMG classification By user 2.0 Rotation, F/E None

Light et al. [6] 2002 Southampton Hand Customizable EMG classification By user 2.5 Rotation Force

Matrone et al. [7] 2009 Cyberhand N/A Finger control† By user 1.0 None Neither

Cipriani et al. [1] 2008 Cyberhand (M1) Lateral, cylindrical EMG code Automatic 1.0 None Neither

Cyberhand (M2) Lateral, cylindrical EMG code Automatic 1.0 None Force

Cyberhand (M3) N/A Finger control† By user 1.0 None Force

*Approximate time needed to close grasp (in seconds).
†Direct finger control replaces separate grasp selection method.

1. Cipriani C, Zaccone F, Micera S, Carrozza MC. On the shared control of an EMG-controlled prosthetic hand: Analysis of user-prosthesis interaction. IEEE Trans 

Robotics. 2008;24(1):170–84. DOI:10.1109/TRO.2007.910708

2. Pons JL, Ceres R, Rocon E, Levin S, Markovitz I, Saro B, Reynaerts D, Van Moorleghem W, Bueno L. Virtual reality training and EMG control of the MANUS 

hand prosthesis. Robotica. 2005;23(3):311–17. DOI:10.1017/S026357470400133X

3. Yang DP, Zhao JD, Gu YK, Wang XQ, Li N, Jiang L, Liu H, Huang H, Zhao DW. An anthropomorphic robot hand developed based on underactuated mechanism 

and controlled by EMG signals. J Bionic Eng. 2009;6(3):255–63. DOI:10.1016/S1672-6529(08)60119-5

4. Schulz S, Pylatiuk C, Reischl M, Martin J, Mikut R, Bretthauer G. A hydraulically driven multifunctional prosthetic hand. Robotica. 2005;23(3):293–99.
DOI:10.1017/S0263574704001316

5. Herberts P, Almström C, Kadefors R, Lawrence PD. Hand prosthesis control via myoelectric patterns. Acta Orthop Scand. 1973;44(4):389–409. [PMID: 4771275]

6. Light CM, Chappell PH, Hudgins B, Engelhart K. Intelligent multifunction myoelectric control of hand prosthesis. J Med Eng Technol. 2002;26(4):139–46. 

[PMID: 12396328]
DOI:10.1080/03091900210142459

7. Matrone G, Cipriani C, Secco EL, Carrozza MC, Magenes G. Bio-inspired controller for a dexterous prosthetic hand based on principal components analysis. 

Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5022–25. [PMID: 19964659]

EMG = electromyographic, F/E = flexion/extension, N/A = not applicable.
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state of the art research on feedback is evaluated accord-

ing to the requirements found in Table 1.

Feedback Requirement 1: Force Feedback

The most natural way to directly close the loop 

between sensing and feedback would be the direct stimu-

lation of the afferent nerves, which is being investigated 

in several studies [61–63]. To avoid the invasive charac-

ter of this solution, but still provide feedback by the same 

modality, many researchers use extended physiological 

taction (EPT), in which force measured by force sensors 

is transmitted to the user via force applied to the skin 

with the same amplitude and modality [64–66].

Early applications of force feedback have mainly 

used electrotactile stimulation. Force levels were modu-

lated either by amplitude—following a linear [67] or 

nonlinear relation [68]—or by pulse rate [69–72]. Effects 

of feedback were mainly subjectively evaluated and 

showed positive results [67,69–71]. The rare quantitative 

analyses showed increased performance in grasping tasks 

[68,72]. However, electrotactile stimulation has several 

potential disadvantages, the most significant of which is 

the likelihood of painful stimulations. Since there have 

been several advancements in vibrotactile stimulation 

(e.g., the miniaturization of the stimulators), most recent 

research projects have abandoned electrotactile stimula-

tion in favor of vibrotactile stimulation.

Force feedback systems using vibrotactile stimula-

tion have been incorporated in the hands of three projects 

mentioned previously: the MANUS hand [52], Cyber-

hand [57], and Fluidhand [73]. Subjective evaluation 

through questionnaires showed positive experiences in 

comfort and utility [57], but feedback became disturbing 

when applied continuously [74]. Evaluation of grasping 

performances showed a 15 to 77 percent decrease in 

applied grasping forces [74], but no significant differ-

ences in performance were noted when compared with 

the nonfeedback situation [57].

Feedback Requirement 2: Position Feedback

In comparison to the application of force feedback, 

feedback of position is even more rarely described; only 

two applications of tactile position feedback in arm pros-

thesis prototypes were found. The first approach, for the 

Utah arm [75–76], is a combination of feedback of grasp 

force (via varying electrotactile pulse width) and level of 

hand opening (by pulse rate modulation) by a single elec-

trode. Evaluation showed that it was not possible to pro-

vide force and position feedback using the same electrode, 

but performance in distinguishing object sizes does 

increase with feedback. The second approach uses the 

phantom sensation phenomenon [77], in which sensations 

are felt in between two simultaneously activated stimula-

tors with different intensities. Feedback of the level of 

flexion and extension of the elbow was provided by this 

method. The performance of the subjects in matching and 

reaching tasks was considerably improved and comparable 

to performance with a body-powered prosthesis.

Feedback Requirement 3: Interpretability and Intuitiveness

Although the interpretability and intuitiveness of 

feedback are not described for prosthesis applications, 

they are influenced by both the perception of stimulus 

intensity and the perceived sensation and have been 

described in psychophysical studies.

The perceived stimulus intensity is strongly related to 

the applied stimulus intensity and best described by an 

(adjusted) power function [78–79], of which the exponent 

can vary greatly. For electrotactile stimulation, this is 

mainly due to the relationship between stimulus duration 

and stimulus intensity [80–81], and for vibrotactile stimu-

lation, this depends on the position of stimulation [82]. The 

perceived stimulus intensity is influenced by the intensity, 

the duration and number of bursts of stimulation, the hous-

ing of the stimulator, the characteristics of the preceding 

stimulus, and the number of simultaneous stimuli [83].

The perceived sensations with vibrotactile stimulation 

are influenced by intensity, frequency and waveform of 

stimulation, actuator size, and location of stimulation. 

Therefore, they vary largely over the literature [82,84], 

from buzzing to sharp pain. Variations in perceived sensa-

tions with electrotactile stimuli are related to stimulus 

intensity, electrode characteristics, preparation of the skin, 

and the use of cathodic or anodic stimulation [81,85–86]. It 

was shown that sensations perceived by amputees do not 

differ from the sensations of nondisabled subjects for per-

cutaneous stimulation [87].

Feedback Requirement 4: User Comfort

In the workshop, comfort was defined as a prosthesis 

not being obtrusive and not causing pain or skin problems. 

Therefore, auditory or optical feedback options were con-

sidered to be unsuitable for feedback in forearm prosthe-

ses. As mentioned previously, a major problem with 

feedback through electrical stimulation is the risk of gener-

ating painful sensations. This risk is influenced by the skin 
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contacts, skin condition, type of stimulation (cathodic/

anodic), and the size of the electrode [85]. Alles showed 

that after 4 weeks of use, no adverse effects of vibrotactile 

stimulation on the skin occurred [88]. However, the effects 

of long-term vibrotactile or electrotactile stimulation are 

not addressed in the literature.

Feedback Requirement 5: Adjustability of Location and 

Stimulus Intensity

The ability to adjust the location or intensity of stimu-

lation is influenced by the effects of the position of stimu-

lation on the sensitivity, the subjective perception of 

position (localization), and the smallest detectable distance 

between stimulators (spatial acuity). The effects of the 

position of vibrotactile or electrotactile stimulation on all 

three aspects have been investigated in the literature, but 

their implications for prosthesis applications are not given.

At the glabrous skin, the sensitivity for vibrotactile 

stimulation is highest with its maximum for stimulations 

at 250 Hz (with a detection threshold of only several 

microns), but at the hairy skin, the sensitivity is lower 

and the maximum shifts to 200 to 220 Hz [82–83,89].

Localization performance is not only related to the 

position of stimulation, effects were also found for the 

space between the stimulators and the neighborhood of 

(bony) landmarks [90].

The spatial acuity highly depends on the stimulus 

position and can therefore vary greatly, from 2 mm to 

several centimeters [79]. For electrotactile stimulation, 

variations can also be caused by changes in frequency, 

pulse width, and pulse time delays [91]. Furthermore, 

temperature and stimulus type affect the spatial acuity for 

both types of stimulation [83,92].

An aspect that plays an important role in the adjust-

ability of the stimulus intensity is adaptation, because if it 

occurs, the stimulus intensity should be adjusted to pre-

vent fading. Adaptation can be reduced by changing the 

frequency of the subsequent stimulus or by applying the 

stimuli intermittently [83,93]. For electrotactile stimula-

tion, adaptation is lowest for high current stimulation 

(just below the pain threshold) and can also be reduced 

by intermittent stimulation [94].

DISCUSSION

Functional requirements for user acceptance were 

determined in the “Needs Assessment Results” section, 

and the state of the art in ME forearm prosthesis research 

was reviewed according to these requirements in the “Lit-

erature Survey” section. Based on these studies, we can 

show to what degree recent research has been able to fulfill 

the acceptance requirements. In this section, the method 

used to perform the needs assessment is evaluated and the 

results of the literature review are discussed. For those 

requirements that are presently not completely fulfilled, 

recommendations for future research are made.

Needs Assessment Evaluation

The needs assessment devised for this article was set 

up in such a way that it would be generally applicable in 

future development of forearm prostheses. The workshop 

approach was well-structured, starting with selecting a 

number of relevant activities of daily living for forearm 

prosthesis users. The step-by-step worksheet (Figure 3) 

focused on the individual subtasks involved in each 

activity; this method was effective in pinpointing the spe-

cific needs associated with each activity. The workshop 

also encouraged communication between clinicians and 

engineers by having each activity investigated by small 

mixed subgroups. The therapists involved had firsthand 

experience with many different users, which gave them a 

broad perspective on the users’ needs. However, for addi-

tional verification of the resulting requirements, we rec-

ommend reviewing them through questionnaires aimed at 

both users and professionals.

Literature Discussion and Recommendations

The discussions of the state of the art and recommen-

dations for future research follow the structure of the 

requirements table (Table 1) and the literature survey.

EMG Sensing

The focus of recent research on ME prostheses has 

been on overcoming the major shortcoming of limited 

selectivity in control by increasing the number of controlla-

ble functions, which would ultimately lead to more efficient 

usage. As can be concluded from the overview of sensing 

systems in the literature (Table 2), classifiers that can distin-

guish multiple wrist movements with good accuracy are 

widely available. However, these results may be skewed 

because many studies are performed using nondisabled sub-

jects and a number of restraints in the contractions. More-

over, these classifier systems are not used in commercially 

available prostheses. With regard to grasps, far fewer results 

are found. A requirement resulting from the workshop was 
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not only to include more functions in forearm prostheses 

but also to accommodate more practical functions, such as 

grasps to manipulate and maneuver different types of

objects. The functions of the prosthesis should match the 

contraction patterns the user has to make as much as possi-

ble (direct mapping) to enable natural and intuitive control. 

Therefore, to completely fulfill the first EMG sensing 

requirement, the following is required: a thorough valida-

tion with amputee patients and a real-time experimental 

setup of a pattern-recognition system that is also able to dis-

tinguish grasp patterns.

Concerning the nondisturbing time delay requirement, 

most studies keep within the 300 ms boundary of per-

ceived user delay, as can be seen in Table 2. The possibil-

ity of achieving acceptable accuracies with analysis 

windows under 125 ms needs to be investigated. It should 

be noted that the clinical relevance of higher accuracies is 

hard to determine, as it is unknown what degree of accu-

racy is satisfactory for actual use. Among other things, 

performance depends on the activity performed and the 

objects involved, and these influences need to be further 

investigated.

To reiterate, the prosthesis control should resemble 

the original neuromuscular control as much as possible to 

make it natural and intuitive. Therefore, an ideal sensing 

system should enable user control of force, speed, or 

both, as well as simultaneous control of multiple move-

ments. However, the requirements on proportional and 

simultaneous control are rarely covered in the literature; 

future research in this area is therefore recommended.

Control

In order to ensure user acceptance of a new ME pros-

thesis, both the control system and the mechanical design 

would need to accommodate several new features and an 

elegant way of controlling these features.

The prosthesis prototypes featuring discrete grasp types 

are capable of performing most, if not all, of the required 

grasps. However, the relative absence of wrist movements 

beyond occasional rotation needs to be addressed. If wrist 

rotation or flexion/extension is made available, we recom-

mend including simultaneous control of wrist movement 

and grasp selection. The degree of automation in the 

reviewed systems is also important; it can reduce the control 

required from the user but may also be considered unintui-

tive. A good example of a feature that greatly benefits from 

automation is the holding of a grasped object, which is 

implemented in several of the reviewed systems 

[52,54,59,73]. Since it allows the user to focus their attention 

on using the object they are holding, we recommended this 

feature be included in any user-friendly system. An exten-

sion of this concept is active force control by the prosthesis, 

which is application of just enough pressure to prevent slip-

ping. This function, though less common [54], can allow a 

much wider range of objects to be easily handled; however, 

fragile or flexible objects could prove difficult to manage.

The average grasp execution time among the reviewed 

prototypes is still quite high (Table 3). Decreasing this 

time is recommended in order to increase the prosthesis’ 

responsiveness and dynamic appearance as well as making 

direct speed control more useful. Improving the prosthesis’ 

speed can be accomplished by using faster actuators, such 

as the hydraulic actuators of the Fluidhand [73], or the

various types of pneumatic actuators available [95].

User force control should be available for when auto-

matic holding and slip prevention are unwanted or imprac-

tical. However, because of the inevitable delays and 

inaccuracies in the feedback loop between the prosthesis 

and the user, maintaining precise control over the applied 

force can be difficult. Instead, an approach such as used on 

the Southampton hand [54], providing optional force con-

trol when an object is being held, would be preferable.

Feedback

Feedback of force and position is only marginally 

addressed in research applications. The use of direct nerve 

stimulation and EPT seem to have a high potential to cir-

cumvent differences in modalities between sensing and 

stimulation. However, pressure systems as used in EPT are 

highly sensitive to adaptation and the application of direct 

nerve stimulation is still in a very experimental stage. 

More applications were found for electrotactile stimula-

tion, but the sensations evoked by it can be painful and 

unfamiliar to the user, likely because of the various kinds 

of mechanoreceptors that are activated simultaneously 

[96]. For this reason, the recent focus is mainly on vibro-

tactile stimulation, which has great potential because it is 

relatively unobtrusive to the user and the environment and, 

therefore, fulfills the comfort requirement. However, the 

developed methods should be investigated on a larger scale 

as well as on amputee patients.

No distinction is made between continuous and dis-

crete feedback in the literature. In almost every case, pro-

portional feedback is presented by amplitude or frequency 

modulation in a linear or nonlinear way. Future focus 

should be on the determination of the optimal modulation 

techniques for feedback applications.
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Research on interpretability, intuitiveness, and adjust-

ability is mainly focused on psychophysical experiments 

and described extensively. However, the right way to 

implement the findings from these studies in a successful 

forearm prosthesis still has to be investigated. Furthermore, 

the applicability for amputee patients and any comfort 

issues are hardly described and should be investigated in 

future research.

CONCLUSIONS

Recent developments in ME forearm prosthesis 

research are mainly technology driven, doing little to 

increase the low user acceptance rates. In this study, a 

user-centered approach is used to derive the requirements 

for a natural and intuitive prosthesis.

One of the main requirements is the application of 

force and position feedback, which is rarely implemented 

in recent prototype prostheses. The focus of future 

research should therefore be on the implementation of 

these kinds of feedback, whereby the extensively investi-

gated psychophysical aspects should be taken into account.

Recent research in grasp selection and control is prom-

ising, fulfilling most of the associated requirements. How-

ever, simultaneous control of grasps and wrist movements 

should be implemented to increase the natural motion and 

intuitiveness of grasping maneuvers.

The automation of object holding and slip prevention 

can reduce the required attention during bimanual tasks. 

The implementation of this feature in future prostheses 

was recommended in the needs assessment.

The long reaction time of many modern prostheses 

was noted, which decreases the intuitiveness of their con-

trol. In EMG sensing, reducing the time window for clas-

sification while maintaining sufficient accuracy is being 

investigated. Similarly, the grasp execution time is still 

significantly impaired, mainly because of the use of DC 

motors. Research into alternative actuation is therefore 

highly recommended.

Although many of the required components for a nat-

ural and intuitive prosthesis system are currently avail-

able or being developed, more attention needs to be paid 

toward their integration and validation by a large group 

of users. Hopefully, these user-centered requirements and 

recommendations will increase acceptance of the next 

generation of ME forearm prostheses.
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