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ABSTRACT The myoelectric interfaces are being used in rehabilitation technology, assistance and as an

input device. This review focuses on an insightful analysis of the data acquisition system of EMG signals

from these interfaces. According to applications reported in research articles of the last five years, the prop-

erties of the sensors, the number of channels, the pre-processing of the EMG signal, as well as the software

and hardware used were identified. This analysis was performed for the following applications: monitoring

of muscular activation for rehabilitation, muscle activation plans, and identification of possible pathologies,

exoskeletons, electric of wheelchairs, prosthetics control, myoelectric bracelets, handwriting recognition and

silent speech recognition. The results presented in this review become a guide of recommendations for the

myoelectric signal processing according to the application of the interface. The main developments, degrees

of research and open challenges are also presented in this direction.

INDEX TERMS Emg acquisition system, emg processing, electromyography sensors, myoelectric control,

myoelectric signals.

I. INTRODUCTION

Electromyography (EMG) is a technique used to measure the

muscle’s response to electrical stimulus of the nerves [1]. The

EMG signal acquired from the skin surface around muscle

and joint areas is the summation of the electrical activity of

all the muscle-fibred motor unit action potentials (MUAPs)

caused as a result of motion activity [2].

EMG signals have been relevant in several health fields.

The periodical monitoring of EMG signals can be utilized

to detect diseases like Huntington’s disease, Myopathies,

or Muscular dystrophies, and to timely address problems

such as heart attacks or stroke occur [3], [4]. Furthermore,

EMG signals could be useful to detect neuromuscular dis-

orders that could affect motor units (Mus) and to identify

the origin of such disorders [5]. Recently, in the Human-

Computer Interaction (HCI) field, the use of bio signals has

opened the way for the development of muscle-computer

interfaces. Particularly, EMG signals collected by sensors
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attached to superior limbs, have been used for controlling

devices by means of the electric impulses generated through

the muscles [6].

Given all the possibilities for exploiting EMG signals,

it is critical to ensure that the data collected is reliable and

that it is a precise representation of the electrical activ-

ity of the muscles. Therefore, an important research area,

is the analysis of the specific application design require-

ments of the acquisition system considered for obtaining the

myoelectric signals. Once these requirements are identified,

it will be possible to provide widespread recommendations

for the design of efficient and reliable EMG signal acquisition

systems.

An EMG signal acquisition system consists of four main

stages: (i) signal collection (ii) signal amplification, (iii) sig-

nal filtering and (iv) analog-to-digital converting. Each stage

demands specific requirements according to its operational

characteristics. These requirements can be specified in terms

of the design parameters necessary for the implementation of

EMG signal acquisition systems and will be further discussed

in the rest of this document.
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The method for collecting the EMG signal is by using elec-

trodes. An electrode is a transductor that represents the level

of muscle activity by recording the electrical activity in it.

Invasive approaches, also known as needle electromyography

(nEMG), record electrical activity through needle electrodes.

Whereas, non-invasive approaches, also known as surface

electromyography (sEMG), record muscle activity from the

skin surface through wet or dry surface electrodes [1], [7].

The suitability of each approach depends on the feasibility

of using an invasive or non-invasive approach to collect the

EMG signal. Although nEMG provides more features of

the muscular activity, its main disadvantage emerges from

the dynamics of muscular activities. Given the inherent inva-

siveness of the approach, it is difficult to repeatedly reposi-

tion the needle electrode if multiple locations of the muscle

need to be analyzed. Thus, only a limited number of active

engine units can be measured [8]. sEMG is preferable for

obtaining information regarding the duration or intensity of

superficial muscle activation [9]. Themajority of applications

consider the non-invasive sEMG approach, as it is free of

discomfort and observes extremely low risk of infection to

amputees [10].

Two critical design parameters for the signal collection

stage are the selection (type) and location (placement) of

the electrodes. Given that the signal-to-noise ratio (SNR)

depends on the place where the signal is collected, an optimal

selection of the electrode placement is mandatory to achieve

an adequate SNR level [11]–[13]. On the other side, the open-

loop gain (output-to-input ratio) as well as the input and

output impedances, are key parameters in the amplification

stage [14].

Given the proximity of many other bio signals in the sur-

roundings of the muscle and power line interference, it is

expected that the collected EMG signals will contain unde-

sired features that may obscure important information regard-

ing the electrical activity of the muscle. Hence, the optimal

design of the filtering stage is critical to exclude all the

unwanted frequency components. Several variables must be

considered in order to efficiently design the filtering stage: the

selected muscles, the type of contraction, the configuration

of the sensor and the source of the specific noise [15]. The

characteristics of the amplifiers and filters will determine the

quality of EMG signal.

After the EMG signal is amplified and filtered, it is fed

into an analogue-to-digital converter (ADC) circuit [16]. For

each specific application, EMG signals must be processed

by means of advanced signal processing algorithms, which

are commonly implemented in computer systems. Therefore,

the analogue-to-digital conversion stage needs to be carefully

designed. Three main variables must be considered during

the design of the ADC stage: the open-loop gain considered

during the amplification stage, the maximum output voltage

at the back-end of the EMG signal acquisition system, and

the additive noise. Moreover, in order to reconstruct digitized

signals with minimal errors, it is necessary to determine the

optimal sampling frequency, which makes it another impor-

tant design parameter for the ADC stage [14].

Insightful recommendations regarding non-invasive eval-

uation of muscles were provided by the European project

SENIAM [17], published in 2000. Sensor type selection and

sensor placement were remarkable topics addressed in the

recommendations. More than a decade later, the considera-

tions draw from SENIAM for sensor placement were updated

[18]. Moreover, key features as signal amplification, filtering

and sampling rate were added to the previous recommenda-

tions. Recently, works have been developed to perform anal-

ysis related to filtering, thinking about obtaining minimum

sampling frequency parameters to determine more favorable

conditions for processing time and its implementation in

portable acquisition systems [19], [20]. These contributions

have been very valuable for the pre-processing of EMG

signals, however, none of these previous works study the

relationship among the configuration of the data acquisition

system and the specific application of the EMG signal.

Therefore, this paper focuses on providing an insightful

analysis of the data acquisition system requirements, from a

measurement and data pre-processing point of view, as related

to the myoelectric interface for a specific application of the

EMG signal.

II. METHODOLOGY

A. SEARCH STRATEGY

In order to collect significant information regarding the

parameters of EMG signal acquisition systems, a system-

atic search was conducted. The references were indexed

by the following keywords: emg acquisition system, emg

sensors, electromyography sensors, myoelectric control and

myoelectric signals. The search was conducted in the fol-

lowing databases: IEEE Xplore R©, SCOPUS, Springer and

ScienceDirect search engine to determine the state of the art

of the topic.

B. REVIEW PROCESS

Articles found after the previously described search were

evaluated by analyzing the title and the abstract. The fol-

lowing criteria was considered for final selection of articles:

(i) Articles written in English; (ii) articles published from

2014 to 2018; (iii) comprehensive initial search results that

included journal articles only.

The study was conducted using the systematic review

method proposed by Preferred Reporting Items for Sys-

tematic Reviews and Meta-Analysis (PRISMA), as shown

in Fig. 1.

C. INCLUSION CRITERIA

Articles found after the previously described search were

evaluated by analyzing the title and the abstract. The fol-

lowing criteria was considered for final selection of articles:

(i) Articles written in English; (ii) articles published from
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FIGURE 1. Flowchart of searching and screening strategy.

2014 to 2018; (iii) comprehensive initial search results that

included journal articles only.

III. RESULTS

A. STUDY SELECTION

From the 12,427 results found in the databases, only 3,886

did not duplicate. From these, 3,345 were discarded after

title screening. 541 works were selected to perform abstract

review, resulting in the selection of 243 papers for full-paper

review. After the full-paper review process, 30 papers were

selected according to the fulfillment of the specifications

shown in Table 1. It is important to note that although there is

a significant amount of publications in the field, only a small

number of publications address the specifications regarding

the design of EMG signal acquisition systems.

All the applications found during the screening process are

listed below:

• Monitoring of muscular activation for rehabilitation,

muscle activation plans, and identification of possible

pathologies [4], [5], [21]–[24].

• Support mechanisms based on the estimation of muscu-

lar strength, known as exoskeletons [25], [26].

• Electric control of wheelchairs [27], [28].

• Prosthetics control [29]–[36].

• Command control by means of myoelectric bracelets

[37]–[40].

• Handwriting recognition from EMG signals for control-

ling computer peripherals and identification of patholo-

gies as Parkinson’s disease and dysgraphia [41]–[45].

• Surface EMG-based sketching recognition for the devel-

opment of electronic sketching systems and computer-

aided sketching systems [46], [47].

• Silent speech recognition by means of myoelectric sen-

sors interface [48]–[50].

TABLE 1. Parameters considered during the reference scan process.

The aforementioned applications are classified by

Hakonen [18] into three categories: (1) Rehabilitative tech-

nology, that includes activation of exoskeletons and moni-

toring of muscle activation which is useful for the detection

and prevention of health problems, as well as for activation

and strengthening of muscular structures; (2) assistive tech-

nology, involving the control of prosthetics and motorized

wheelchairs by means of EMG signals; and (3) technology

as an input device, which includes the use of myoelectric

bracelets for the identification of gestures or sign language,

myoelectric interfaces for writing interpretation and sketch-

ing, and myoelectric sensors for silent speech recognition.

After the comprehensive review of the 30 selected papers,

it was found that the requirements of the EMG signal acqui-

sition system vary from one application to another. In this

sense, the objective of the present review is to analyze these

requirements to provide an adequate property classification

and to define the recommended operational characteristics of

the EMG signal acquisition systems for each of the previously

listed applications.

B. STAGE ANALYSIS OF THE EMG SIGNAL

ACQUISITION SYSTEM

EMG systems are characterized for acquiring, analyzing and

processing complex bio signals. These bio signals are small

in amplitude but very rich in information, and given that they

are controlled by the nervous system, they depend on the

anatomy and physiological properties of the muscles [51].

The electrical characteristics of EMG signals reported in the

reviewed works are listed in Table 2. In the table, it can
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TABLE 2. Electrical characteristics of the EMG signal.

TABLE 3. Harmful interferers that affect the recording of the EMG signal.

be identified that the amplitude in voltage of a muscular

contraction can vary from 0 to 10mV and the energy is within

the first 500 Hz in the frequency spectrum.

On the other hand, Table 3 presents a collection of harm-

ful interferers that may affect the performance of the EMG

system. Among the main interferences, the following were

identified: moving artifacts affecting low frequencies, trans-

mission line that can affect the frequency of 50 or 6OHz

depending on the energy sub-ministered of each country, sat-

uration of amplifier, physiological interference, specifically,

the electrocardiogram and noise bio signal.

Due to the characteristics described above, EMG signals

require specific treatment to take the full advantage of the

information provided by them. Therefore, the design of the

EMG signal acquisition system stages must be carried out in

such a way that this specific treatment is effectively achieved.

In general terms, an EMG signal acquisition process requires

two main activities: signal sensing and signal pre-processing.

Several authors agree in dividing pre-processing of EMG sig-

nals into three stages: amplification, filtering, and analog-to-

digital conversion [51], [21], [57], [59], [60]. Hence, we will

consider that EMG signal acquisition systems are comprised

by four stages: (1) sensing, (2) amplifying, (3) filtering, and

(4) analog-to-digital conversion.

As stated before, the main goal of this review is to clas-

sify the application-specific properties of each stage of the

EMG signal acquisition system and to draw recommenda-

tions regarding the design requirements for the stages. In this

sense, Table 4 abstracts the main properties identified for the

sensing stage. The information in Table 4 was completed by

identifying in each research article what type of technique

was used, superficial or intramuscular, if only the EMG sig-

nal was analyzed or in conjunction with another bio signal,

how many channels were used, and the characteristics of the

sensors used.

While Table 5 summarizes the properties related to the

amplifying, filtering, and analog-to-digital conversion stages

as well as the software and hardware used, both tables

were constructed from the information extracted from the

30 reviewed articles.

1) SENSING STAGE

a: PROPERTIES OF THE EMG SENSOR

In a myoelectric interface, electrodes are used to detect the

biological potential that is generated due to muscle contrac-

tion [3]. EMG signals can be analyzed independently or along

with other bio signals that are useful to the better understand-

ing of the muscle’s movement. The number of implemented

sensors is related to the type of movement that is analyzed,

and the amount of information provided by each channel

needs to be considered for further processing. Properties such

as construction material, configuration and size are variables

that need to be considered when designing and implementing

the signal acquisition system for each specific application.

In this sense, the properties of the sensors considered in the

30 papers selected for this systematic review, were thoroughly

analyzed. It is worth mentioning that the selected works cover

most of the applications of EMG signals discussed in the

previous section. It can be observed in Table 4, that 9 out of

the 30 research works correspond to applications falling into

the rehabilitation technology category, 10 out of the 30 works

fall into the assistive technology category, and finally, 11 out

of the 30 works belong to the technology as an input device

category.

b: SENSING TECHNIQUE (SUPERFICIAL OR

INTRAMUSCULAR)

Bioelectrical activity inside the muscle of a human body is

detected by means of EMG electrodes. There are two main

types of EMG electrodes: superficial (skin surface electrodes)

and intramuscular (needles and thin wires) [61].

From 30 works shown in table 4, 28 resorted to the superfi-

cial technique for gathering the EMG data, one work consid-

ered the intramuscular technique (sEMG), and one employed

a fusion of both techniques (hybrid approach). Of the works

that did not report using surface technique, one of the two

researches used the intramuscular technique which is focused

on EMG signal classification methods for identifying health

problems [5]. Signal classification method proposed in [5]

allows discriminating among normal, myopathy and Amy-

otrophic Lateral Sclerosis (ALS) patients. On the other hand,

the work that considered the hybrid approach addresses

the problem of prosthetics control by means of signal

classification [32].

c: TYPE OF ANALYZED SIGNAL

As stated before, it is possible that the sensors collect other

bio signals along with the EMG signal. These bio signals may

differ according to the application considered. The analysis

of the signals used in the studies proposed in each of the

30 reviewed works, highlights that 21 works consider only

EMG signals, while the remaining 9 publications consider
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TABLE 4. Properties of the sensors according to the application type (N=30).

other signals as: strength, signals acquired by IMU sensors,

electrocardiogram (ECG) signals, pressure, acceleration,

space orientation, electrodermal activity (EDA), adaptive

cruise control (ACC), illuminance (LUX), elbow movement,

photo plethysmography (PPG), bioelectrical impedance anal-

ysis (BIA) and position tracking.

In Table 4 it is remarked that the papers that involve the

measurement of other bio signals in addition to the EMG

signals are, in general, those that study signal classification

methods for prosthetic control. This is mainly since these

applications require knowledge regarding additional informa-

tion as position, speed, rotation and force to improve the effi-

ciency of parameters interpretation. The use of other sensors

for monitoring different bio signals has also been reported,

although they are not necessarily analyzed all together with

the EMG signals.

d: NUMBER OF EMG CHANNELS

The number of channels used in an EMG signal acquisition

system is related to the muscles intended to be analyzed.
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TABLE 5. Pre-processing features according to the application (N=30).
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TABLE 5. (Continued) Pre-processing features according to the application (N=30).

FIGURE 2. Number of channels used for each application. 1 channel [5],
[24], [21], [4]; 3 channels [48]; 4 channels Exoskeletons [25], Electric
powered wheelchair control [27], [28], Myoelectric bracelets [37],
Handwriting recognition [44], Silent speech recognition [49];
6 channels [42] and [43]; 8 channels Exoskeletons [24] and [60],
Myoelectric bracelets [63], Handwriting recognition [39], [40]
and [45], Prosthetics control [29], [33] and [34] and 10, 12, 16 y
24 channels [27], [28] and [30]–[32].

This design parameter will directly affect the amount of infor-

mation that needs to be processed during the classification

and data interpretation stage of the myoelectric system.

From the analysis shown in the Table 4 is found out that

the number of channels is directly related to the specific

application of the EMG signal. Fig. 2 depicts the relation-

ship between the numbers of channels used per application

addressed in the thirty reviewed papers. Articles reported

having used between 1, 3, 4, 6, 8, 10, 12, 16 and 24 channels.

At the bottom of the figure the reference is shown according

to the channel number and its application.

According to the information provided by the reviewed

papers and Fig. 2, one single channel could be enough for

transmitting the muscular activity data necessary for muscu-

lar activation monitoring systems. However, if pattern recog-

nitionmethods are going to be applied for identifying specific

limb pathologies, then considering up to ten channels might

be necessary [23].

For silent speech recognition applications, studies report

that a considerable amount of words and phrases could

be interpreted by using four channels [49]. On the other

hand, periodic expressions as chewing, talking, gargling, and

temporary expressions as sadness, surprise, happiness, pout-

ing and anger, could be recognized by employing a minimum

of three channels [48].

The number of channels documented in applications

for the interpretation of command gestures is four [27],

[28]. These applications are typically used in electrical

powered wheelchairs to control functionalities as: mov-

ing, stopping, moving forward and reversing. Also, four

channels are used in applications for simple hand gesture

recognition through myoelectric bracelets [39], [64], [65].

Common uses for these applications are virtual reality gam-

ing, computer or mobile phones control, or sign language

interpretation.

Works that address applications as writing recognition and

exoskeleton activation have documented the use of, at least,

six and eight channels. The number of electrodes used in

the prosthesis can vary from 1 to 32 electrodes. The impor-

tance of this configuration lies in its electro-accuracy control,

production cost, computational load, the type and number of

tasks to be achieved and degrees of freedom (DoFs) [66].

e: SENSOR FEATURES (CONFIGURATION, CONSTRUCTION

MATERIAL AND SIZE)

According to the investigation reported in [17], there are

three different sensor configurations: monopolar, bipolar and

array/line electrodes. By analyzing the sensor configuration

considered in each of the 30 reviewed works, it was observed

that the bipolar configuration is the most used. Only 3 out of

the 30 works consider the monopolar configuration, and none

of them consider the array/line sensor configuration.

On the other hand, a desirable feature for data recording

electrodes is their capability for avoiding overpotentials due

to polarization. A silver chloride (Ag/AgCl) electrode com-

plies with this feature [67]. In this regard, 13 out of the 27

works that consider bipolar sensors, reported that the sen-

sors were constructed using Ag/AgCl, while the remaining

14, do not specify the construction material of the sensors

employed.
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FIGURE 3. Percentage of the works per gain type.

Regarding the size of the sensor, only 10 out of 30 papers

provided a detailed description of the sensor size and shapes.

The information is summarized below:
• Rectangular: 41mmx 44mmx 9.4mm, 19.8mmx 35mm,

5cm x 3.5cm, 10mm x 20mm x 3mm

• Circular: 8mm, 10mm, 12mm y 5.7cm

• Needle electrode: 0.07mm

2) AMPLIFYING STAGE

As mentioned before, EMG signals are very weak. This

characteristic is exacerbated in some specific muscles. There-

fore, it is expected that the amplifier gain design must be

tailored according to the application in relation to the mus-

cles involved. 14 out of the 30 reviewed works reported the

amplifier gain considered for their systems, the results are

shown in Fig. 3, considering that 100% corresponds to the

14 papers that report the gain type and value used for their

systems, it was identified that over the majority of the works,

36%, documented earnings between 500 and 1000 over the

original signal.

The information provided in Figure 3 can be further

described to classify the gain value used per specific appli-

cation:
• Myoelectric bracelet: Gain of 1000 [37].

• Prosthetic control: Programmable gain amplifiers [30],

[32], [36].

• Exoskeleton: Programmable gain from 2000 to

5000 [26].

• Handwriting: Gain of 1000 [41], [46] and of 2000 [43].

• Muscular activation monitoring: Gain of 600 [23],

of 1000 [22], of 4000 [5], low noise and variable gain

amplifier [24].

• Electric powered wheelchair control: Gain of 455 [28].

From the works that do not specify the amplifier gain,

5 of them are related to prosthetic control applications, 1 to

muscular activation monitoring, 2 to exoskeleton activation,

3 to writing recognition, 1 to myoelectric bracelet, 1 to

electric powered wheelchair control, and 1 to silent speech

recognition.

It can be assumed that the lack of information on thismatter

is mainly due to the unavailability of the specific parame-

ters of design in commercial devices. For example, in [38]

the hand control application is based on the myoelectric

bracelet, which is manufactured byMYO fromThalmic Labs.

Thalmic Labs does not provide further information regarding

the amplifier stage of the acquisition system of the bracelet.

3) FILTERING STAGE

As discussed previously, EMG signals can be affected by

other intended or non-intended signals, for example other

bio signals (ECG, EEG, etc.) or radiofrequency emissions

(cellphones, Wi-Fi, Bluetooth, etc.). Furthermore, tempera-

ture fluctuations, compensations in amplification stage, char-

acteristics of the sensor, etc., can also affect the waveform

of the EMG signal. All these undesired signals and random

variations can be modelled as noise whose frequency charac-

teristics may vary depending of the actual noise sources [61].

In this sense, the filtering stage in a signal acquisition system

is of paramount importance to reduce the detriment of the

EMG signal caused by noise.

According to its frequency response, the filters reported in

the reviewed works on Table 5 can be classified into three

categories:

(1) Band-pass filters:
• 500 Hz, 3rd order [22]

• 5-500 Hz, 2nd order [41]

• 10-200 Hz [44]

• 10-400 Hz [4], 3rd order [33], [4]

• 10-500 Hz [30], [46], [47]

• 20-250 Hz 2nd order [42]

• 20-450 Hz [49]

• 20-500 Hz [48], 2nd order [23] and 4th order [31], [32]

• 30-300 Hz 4th order [29]

• 2-750 Hz [37]

• 13 works do not specify the characteristics of the filter-

ing stage

(2) Notch filters: 50 Hz and 60 Hz (depending on the

frequency of the electrical network in each country).

(3) Low-pass filters:
• 2 and 10 Hz [5]

• 20 Hz [35]

• 7 Hz [25]

• 16 Hz [43]

4) ANALOG-TO-DIGITAL CONVERSION

Applications as pattern recognition or device control through

EMG signals take place after the EMG signal is converted

to a digital format. Hence, the sampling frequency and quan-

tization levels of the analog-to-digital converter (ADC) are

important design parameters that must be thoroughly ana-

lyzed for each specific application.

Regarding the sampling frequency, 24 out of the 30 works

from Table 5 presented a detailed report of the sampling

frequency considered in their applications, summarized as

follows: 21 papers reported sampling frequency values rang-

ing from 1000 to 1500 samples per second; for the remain-

ing 3 papers, the sampling frequency ranges from 2000 to

23434 samples per second. The latter are related to appli-

cations that resort to classification methods for pathology
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FIGURE 4. ADC resolution reported in some EMG signals applications.
8 bits [22]; 10 bits [28]; 12 bits Pathology detection muscular activation
[23], [21], Exoskeletons [26], Prosthetic control [30]; 14 and 16 bits
Handwriting recognition [46], Prosthesis control [32] and 24 bits
Prosthetic control [29], [33].

detection through muscular activation, prosthetic control and

writing interpretation.

On the other side, the resolution of the ADC is reported

in 12 out of the 30 works from Table 5. The classification of

the resolution considered in these research works is presented

in Fig. 4, where it is shown that the ADC can vary between 8,

10, 12, 14, 16 and 24 bits, with ADC converters of 12, 14

and 16 bits being more used. At the bottom of the figure, the

reference is shown according to the number of bits and their

application.

According to the classification provided in Figure 4, it is

possible to infer that applications that require simpler ges-

tures interpretation would require lower resolution, as com-

pared to that requiring more complex gestures interpretation,

as in, for example, writing recognition or prosthetic control

with higher degrees of freedom, where higher resolution,

ADC is necessary.

5) SOFTWARE AND HARDWARE

According to Table 5 it can be seen that there is a diverse

range of commercial systems developed for the monitoring

of EMG signals, these may vary according to the num-

ber of synchronized channels and the use of these sig-

nals. Each of these systems develop the processing and

visualization in closed-source hardware/software systems.

However, the commercial software of these owners often

have the opportunity to provide ways to export files for

use on other platforms such as Matlab, Excel, Labview

among other. They can be exported by ‘‘Selected signal(s)’’

or ‘‘Raw data set’’. The export of these can be done

in different types of files: Bynary, CSV o Matlab files.

Some suppliers offer the opportunity to access the differ-

ent sensors with some adaptation to be read by Simulink,

for example.

On the other hand, the works report the development of

owned systems for research purposes, these systems are usu-

ally just as reliable as the commercial ones and have a degree

of flexibility adequate for analysis and research purposes.

The general architecture is represented in the type of sen-

sors, the type of amplifiers, the converter card A/D, and the

microcontroller that controls the process. C++, LabVIEW

(National Instruments Corp., Austin, TX, EE. UU.) and

MATLAB (The Mathworks Inc., Natick, EE. UU.) They are

mainly used as programming languages.

Currently, there are also systems called ‘‘open -source

hardware’’, based on platforms like Arduino, Raspberry Pi,

Atmel, Pololu, among other whose hardware, software and

mechanical design files are available online offering a solu-

tion to the high costs and slow pace of innovation of medical

devices.

IV. DISCUSSION

The use of the myoelectric signals has extended in the last

decades for diverse applications: in its commercial use, it is

more remarkable in the medical and rehabilitation area; how-

ever, it has gained ground in mechanisms of support to the

upper extremities such as the prosthetics and exoskeletons.

Challenges remain and there are various applications that

continue to be worked in the laboratory with the challenge

of becoming new and ergonomic input peripherals on the

HMI, as are the myoelectric bracelets, the handwriting and

silent speech recognition. In order to add to this branch of

knowledge, in this review and according to the application,

the technical aspects of the main signal acquisition system

were identified along with important differences in the con-

figuration of these. The main findings found at each stage are

shown below.

A. SENSING STAGE

Although there are different techniques to acquire the myo-

electric signals, there are enough results in the analyzed

works to consider that the superficial type technique (sEMG)

is the most appropriate when you want to develop more

ergonomic devices and equipment for commercial use. The

most used sensors on investigations were those of biopo-

tential configuration with silver chloride material (Ag/AgCl)

since it has been shown to have the appropriate standards for

the myoelectric interfaces due to its impedance characteris-

tics.

The type of shape and measurements of the sensor have

their variations, however, the most common are the round

of 8mm and 10mm diameter. This information is consistent

with the recommendations given in the European project

SENIAM [17] published in 2000.

Regarding the relationship in the number of channels per

application, it was identified that according to the number of

muscles needed for a more efficient analysis, will be the num-

ber of channels to utilize. This trend, however, in research,

is to decrease the number of channels. For this, the techniques

of electrode location as sensors placement procedures for

the sensors sEMG [68] and Crosswalk studies [69], [70], are

important aspects to consider for the reduction or the correct

selection of muscles and channels.

According to the analyzed investigations, works with only

3 channels, were able to recognize periodic expressions such

as: chewing, speaking, gargling and transient expressions

such as: sadness, surprise, happiness, pout and anger. For the

gesture’s recognition defined through myoelectric bracelets,
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electric control of wheelchairs and of silent speech recogni-

tion, 4 channels are commonly used. 8 channels for applica-

tions of prosthetics control more than 1 DoF, exoskeletons

and handwriting recognition; 10, 16 and 24 are the most

utilized channels for complex systems of prosthetics control

for an important variety of movements.

The design of the surface electrodes can be classified as:

1) Muscle-oriented design, precise location of the muscle

is necessary when using and adhering pairs of electrodes,

2) Arrangement of the low-density surface electrode (LD),

it is necessary to have electrodes in certain patterns and

distribute them uniformly in the skin forming ring structures

or belts, what is also known as uniform electrode positioning.

The number of channels can vary from 2 to 16, 3) Arrange-

ment of high density surface electrodes (HD), which collects

the EMG signals from the closely spaced electrodes, allows

exploiting spatial information through the muscles, therefore,

this strategy can be useful for the study of complex dynamic

tasks in the free space with a greater number of DoFs. How-

ever, it remains a challenge to deal with many EMG channels

to interact with a practical prosthetic hand.

B. AMPLIFICATION STAGE

From the analyzed documents, it was identified that there is

not much of attention in documenting precise characteristics

of amplification and filtering. This is more recurrent on the

applications with a greater number of channels, as in myo-

electric control; however, they documented having worked

with programmable amplifiers. This makes sense because

the efficiency of the classifiers focuses on patter recognition

and classification algorithms about muscular regions not on

a single muscle.

TheWorks that documented the gain value for applications

such as monitoring of muscular activation, the gesture inter-

pretation like electric control of wheelchairs, the handwriting

recognition and the silent speech recognition, converge on the

need to amplify the signal with a gain of 500 – 1000 unlike

work [28] which proposes an amplification of 400.

Without a doubt, the gain and noise characteristics that

these signals have, become complex and although the largest

amplitude is desired, you have the risks of saturation in the

amplifier. In [24], the need for low noise amplifier (LNA)

and considering the risk of saturation on the amplifiers is

mentioned. The consideration to incorporate a preamplifier

is to have a high common mode rejection ratio (CMRR) and

high input impedance.

C. FILTERING STAGE

The signal sEMG is inevitably contaminated, therefore, it is

necessary to consider the different factors to determine the

specifications of the filtering which include: the selected

muscles, the type of contraction, the configuration of the

sensor and the source of the specific noise and [15] adds that

it’s important to consider the corner frequency, the roll-off

rate and the circuit topology chosen. The determination of the

band-pass is important to reduce noise and the contamination

by the artifacts and to preserve the desired signal, this way,

the majority of the systems utilizes filters between 10 and

500 Hz. However, [71] indicates that utilizing the high-pass

angle frequency of 20 Hz offers the best compromise to opti-

mize the informational content desired of the SEMG signal,

since at low frequencies of the spectrum frequency, noise

sources are involved which overlap with the SEMG signal,

for this reason, the determination of filtered characteristics in

this region, has been a focus of attention.

The order of the reported filters can vary from first to

fourth order, however, comparisons have been made between

the second and fourth order Butterworth high pass, confirm-

ing that a second order can replace the high-pass filter of the

fourth order [15].

Although the modern technology is substantially immune

to some noises, it is not so for the reference noise, such

is the case of the noise generated by the power lines. The

works reported using the notch filter for frequencies of 50 or

60 according to the standards in each country.

D. ANALOG-TO-DIGITAL CONVERSION

The similarities on the works continue per the frequency

sampling, most of the scanned works, documented to have

used sampling frequency of 1000 Hz, as stablished by the

sampling theory of Nyquist, which must be equal or less than

half the speed of sampling of the signal, which it is known as

the greater power (approximately 95%) of the signals, sEMG

is explained by harmonics of up to 400 – 500 Hz. However,

some differences were noted: [5] worked with a sampling

frequency of 23428 Hz, [30] with 2048 Hz and [32] increased

up to 10,000 Hz.

It is observed that those works that used a greater number

of channels also increased the frequency. Although the use of

a higher sampling frequency can acquire more myoelectric

information that can increase the precision of the motion

classification, this adds more computational complexity and

analysis, as well as memory requirements. Some works such

as [72] have shown that it is possible to decrease the sampling

frequency up to 500 Hz were you can save approximately

50% storing memory and reduce 50% data processing time

with a slight accuracy sacrifice (around 2%).

The ADC conversion was achieved with resolutions of 8,

10, 12, 14, 16 and 24 bits. In monitoring applications, a reso-

lution sufficiency of 8 bits is shown, unlike electric control of

wheelchairs and control by means of myoelectric bracelets,

which are more efficient to use in a 10-bit resolution. The

application that used 12, 14 and 16 bits are those that desire

to interpret more complex pathologies or gestures such as

prosthetics control, exoskeletons, handwriting recognition.

The works that document the use of 24 bits are those that

interpret complex gestures determined by the movement of

upper extremities.

Although the ADC conversion varies for each application,

[73] states that a 16 bit converter may be preferable for

any acquisition system, since the aggregate resolution may

eliminate the need for manual gain of each EMG amplifier.
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E. SOFTWARE AND HARDWARE STAGE

According to the results of the documents analyzed,

3 types of systems were identified; each of them used

for specific purposes due to its hardware and software

characteristics.

High-end data acquisition platforms. These systems are

used for medical and prosthetics applications whose main

characteristics are: off-line processing, they do not focus

on optimization for resource constrained platforms such as

wearables, can obtain high gesture classification accuracy,

the used algorithms are not documented and design of real

time efficient systems is still a challenge.

Embedded data acquisition platforms: Systems used for

research purposes, these systems are usually: open source

platform, meet real-time requirements, are low power sys-

tem. For the development of a wearable and low-power sys-

tem, targeting high accuracy, the most promising approach

seems to be the synergy between a low power Analog

front-End (AFE) and a microcontroller, merging the sys-

tem flexibility with a good signal quality and maintaining a

good trade-off between power consumption and computing

capabilities [36], [74].

Low cost wearable device. Used for interactive appli-

cations. Currently, the most interesting solution for wear-

able EMG gesture recognition is the MYO armband, from

Thalmic Labs. This is a wearable and low-cost device

equipped with EMG and inertial sensors. It connects to a

PC or tablet via Bluetooth Low Energy (BLE) and allows

both raw data streaming and the use of a proprietary library

for gesture recognition. The signal processing is performed

on the host platform and the used algorithms are not doc-

umented [36]. Nevertheless, the device presents low flex-

ibility in terms of possible applications because it lacks

embedded computing capabilities and cannot be used as a

stand-alone system.

V. CONCLUSION

Although there are recommendations made by [17] regard-

ing the non-invasive evaluation of muscles and those made

by [18]–[20],which make references to key features such

as amplifier, filter and sampling frequency. The approach

proposed in this review allowed us to study the relationship

between the configuration of the data acquisition system and

the specific application of the signal.

The aforementioned applications can be classified into

three categories: (1) Rehabilitative technology, that includes

activation of exoskeletons and monitoring of muscle activa-

tion, useful for the detection and prevention of health prob-

lems, as well as for activation and strengthening of muscular

structures; (2) assistive technology, involving the control of

prosthetics and motorized wheelchairs by means of EMG

signals; and (3) technology as an input device, which includes

the use of myoelectric bracelets for the identification of

gestures or sign language, myoelectric interfaces for writ-

ing interpretation and sketching, and myoelectric sensors for

silent speech recognition.

The stages of the EMG data acquisition system include

census, amplification, filtering and digital analog conver-

sion. When reviewing a variety of papers documented by

the researchers, it is concluded that the surface technique

is preferable in its biopotential configuration for the EMG

signal census, the amount of sensors used may vary accord-

ing to the application of the interface, for example, inter-

pretation applications of simple gestures such as motorized

wheelchairs control or signal monitoring, use fewer sensors

than the control of prosthetics or the use of exoskeletons; the

majority of the works documented gains between 500 and

1000 on the original signal, the considerations to incorpo-

rate amplifiers is to have a high CMRR and a high input

impedance; the most common filtering has to do with the

elimination of interference from power lines, the movement

of artifacts and other bio signals detected. Butterworth filters

of the second or fourth order were the most reported; the most

documented sampling frequency was 1000 Hz, as established

by the Nyquist theorem, however, wireless systems usually

use frequencies lower than 250 Hz and higher frequencies

in medical platforms, the resolution of the analog-digital

converter varies according to the application although, 16-bit

converters are preferable.

According to the results of the documents analyzed, three

types of systems were identified that allow the acquisition of

High-end data acquisition platforms, Embedded data acqui-

sition platforms and Low-cost wearable device, each using

hardware and software features according to their purpose.

The results presented in this review can already be recom-

mendation guides for the design of emg signal acquisition and

processing systems according to their application, however

the recommendations are based on the common practices of

the researchers, in order to obtain reliable and optimal crite-

ria, it is pending to carry out a study with the same approach,

paying attention to the processing times, computation cost

and the classification results for those interfaces that involve

the interpretation of gestures.
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