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Naive CD4 T cells differentiate into several effector lineages, which

generate a stronger and more rapid response to previously

encountered immunological challenges. Although effector func-

tion is a key feature of adaptive immunity, the molecular basis of

this process is poorly understood. Here, we investigated the spa-

tiotemporal regulation of cytokine gene expression in resting and

restimulated effector T helper 1 (Th1) cells. We found that the

Lymphotoxin (LT)/TNF alleles, which encode TNF-α, were closely

juxtaposed shortly after T-cell receptor (TCR) engagement, when

transcription factors are limiting. Allelic pairing required a nuclear

myosin, myosin VI, which is rapidly recruited to the LT/TNF locus

upon restimulation. Furthermore, transcription was paused at the

TNF locus and other related genes in resting Th1 cells and released

in a myosin VI-dependent manner following activation. We pro-

pose that homologous pairing and myosin VI-mediated transcrip-

tional pause release account for the rapid and efficient expression

of genes induced by an external stimulus.

homolog pairing | myosin VI | polymerase pausing | GRO-seq

Naive CD4+ T cells have the potential to differentiate into
several effector lineages (1), which play distinct roles in

adaptive immune responses (2, 3). The polarization process is
driven by many well-characterized transcription factors and epi-
genetic modifications. For instance, following T-cell receptor
(TCR) and cytokine-mediated activation, naive CD4+ T cells
transcribe low levels of the alternatively expressed genes IFN-γ
and IL-4, IL-5, and IL-13, irrespective of their ultimate effector
lineage fate (4). During differentiation, however, contrasting ac-
tivation patterns are established: T helper 1 (Th1) cells exclu-
sively express the signature cytokine interferon-gamma (IFN-γ) in
a T-bet–dependent manner, whereas Th2 cells exclusively express
IL-4, IL-5, and IL-13 in a Gata3-dependent manner. These
changes in transcriptional activity have been demonstrated by the
appearance of DNase I hypersensitive sites, as well as by changes
in histone acetylation and DNA methylation patterns (5–8). Fur-
thermore, recent work has demonstrated that interchromosomal
associations between cytokine genes play an important role in the
differentiation process (9, 10). Overall, a vast array of transcription
factors, epigenetic modifications, and long-range interactions are
needed to establish the identity of effector Th cells. An important
aspect of effector T-cell function is the rapid and efficient in-
duction of cytokine gene expression upon antigen encounter.
However, the precise spatial and temporal aspects of effector
T-cell transcriptional activation are still largely unknown.
A fundamental feature of genome regulation is the spatial

organization of genes into chromosomal territories. Although
chromosomes occupy distinct territories in the nucleus, their
location is cell type-specific and may change upon cellular acti-
vation. Notably, cell activation has been shown to promote ex-
tensive intermingling among chromosomal territories (11, 12). In
addition, the position of individual genes can change with in-
duction (13–15). For example, two coordinately regulated genes
separated by 20 megabases (Mb) of linear genomic DNA, HBB1

and ERAF, have been shown to associate at high frequency
at shared sites of RNA polymerase II (RNAPII) transcription
during erythroid differentiation (13). The spatial juxtaposition of
these genes correlated well with their transcriptional potential.
Notably, both actively transcribed and poised alleles of HBB1
and ERAF were shown to localize to RNAPII transcription foci
(13). From these findings, the spatial organization of the nucleus
has emerged as a critical aspect of genome regulation. To date,
few factors are known to regulate the nuclear localization of
genes and their transcription status, but actin was demonstrated
to be an important component of both processes (14, 16, 17).
With regard to the temporal aspects of gene regulation, it was

traditionally thought that the formation of the preinitiation com-
plex (PIC) was the rate-limiting step in transcription (18, 19).
However, many recent studies have shown that regulation also
occurs after the recruitment of the PIC to the promoter, and that
regulatory processes control the transition of RNAPII from a
paused state to an actively elongating state (20–23). Some of the
factors involved in these processes have been identified, including
the 5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB)
sensitivity-inducing factor (DSIF), the negative elongation factor
(NELF), and the positive transcription elongation factor (P-TEFb)
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(18). The DSIF–NELF complex keeps RNAPII stalled at the
promoter, whereas P-TEFb releases and phosphorylates the
polymerase C-terminal domain, allowing productive elongation
(24). Although RNAPII pausing is now widely recognized as a
crucial step in transcription, the molecular details remain elusive.
In the present study, we took advantage of the fact that naive

CD4+ T cells can differentiate in vitro into effector Th1 cells (25),
which then rapidly express TNF-α and IFN-γ upon TCR restim-
ulation. We first investigated the role of nuclear positioning in the
transcriptional regulation of these two cytokine genes in resting
and restimulated Th1 cells using DNA FISH. Interestingly, we
observed that unlike IFN-γ, the TNF alleles undergo homologous
pairing. This event correlated with biallelic TNF-α transcription
early upon TCR restimulation. Allelic pairing and RNAPII
binding to the TNF promoter were significantly diminished both
in the absence of myosin VI and upon deletion of the 5′ UTR of
the TNF locus on both alleles. Using global run-on sequencing
(GRO-seq), we found that transcription of TNF-α was paused at
the promoter in resting Th1 cells but that upon restimulation,
RNAPII pausing was released in a myosin VI-dependent manner.
Finally, we identified several other genes, including TBET and
TNFAIP8, which also showed myosin VI-dependent release of
RNAPII pausing and homologous pairing. Taken together, our
data suggest that RNAPII pausing and allelic pairing are general
features of several inducible genes, facilitating a rapid and co-
ordinated transcriptional response.

Results

Lymphotoxin/TNF Alleles Undergo Homologous Pairing in Th1 Cells

Following TCR Restimulation. Searching for factors that establish
cell type-specific gene expression programs, we used 3D-DNA
FISH to map the positions of the Lymphotoxin (LT)/TNF and
IFN-γ loci over a time course of T-cell activation. TNF-α and
IFN-γ mRNA expression were low in the naive CD4+ precursors
and remained low during differentiation into Th1 cells, but both
cytokines were rapidly induced in Th1 cells upon TCR re-
engagement (Fig. 1A and Fig. S1A). Interestingly, the LT/TNF
alleles, which were typically well-separated in resting Th1 cells,
underwent substantial allelic pairing after 1 h of TCR stimula-
tion. At later time points, the frequency of pairing decreased
(Fig. 1 B and C). By contrast, the IFN-γ alleles did not undergo
homologous pairing in the same cells in response to transcription
activation (Fig. S1B). We defined paired alleles as loci separated
by a distance of 1.5 μm or less based on Fisher’s exact test per-
formed in sliding windows (Fig. S1C).
To explore the functional significance of LT/TNF pairing, we

asked whether this process correlates with transcription. Inhi-
bition of transcription elongation with the reversible inhibitor
DRB abrogated allelic pairing (Fig. S2 A and B), and removal of
DRB after pretreatment restored it (Fig. S2C). We then assessed
the allelic transcription status directly by RNA-DNA FISH (Fig.
1D). In the absence of TCR stimulation, the LT/TNF alleles were
separate and transcriptionally silent in 72% of cells. Basal TNF-α
expression, present in 14% of the cells, was primarily monoallelic
and occurred from separate alleles (Fig. 1 E and F). By 1 h of
stimulation, the frequency of both monoallelically and biallelically
expressing cells had increased. Monoallelic TNF-α expression
occurred from separate alleles (in 26% of cells), whereas biallelic
expression occurred primarily from paired alleles (in 21% of
cells). In addition, 36% of the cells with separate alleles and 14%
of the cells with paired alleles were not transcribed at 1 h of
stimulation. At 3 h after T-cell stimulation, the frequency of
monoallelic expression remained the same, whereas the fre-
quency of biallelic expression increased further. Both monoallelic
(25%) and biallelic (48%) expression occurred primarily from
separate alleles at this time point (Fig. 1 E and F). We conclude
that allelic pairing is transient and correlates with biallelic TNF-α
transcription at the earliest time point of restimulation.

Homologous Pairing of the TNF Alleles Depends on Nuclear Myosin VI.

We next sought to understand the molecular basis of the tran-
scription-associated LT/TNF pairing. Nuclear myosin VI, the
only myosin that moves toward the minus end of actin filaments
(26), has been previously shown to colocalize with RNAPII on
the promoters of target genes and to enhance their transcription
(27). Based on this finding, we reasoned that myosin VI might
play a role in the homologous pairing of the LT/TNF alleles. We
examined the position of this gene in resting and stimulated cells
in the presence or absence of either the myosin VI inhibitor
2,4,6-triiodophenol (TIP) (28) or the actin inhibitor cytochalasin
B. Both inhibitors effectively prevented TCR-induced pairing of
the LT/TNF alleles (Fig. 2A). Inhibitors of other myosin family
members had no effect (Fig. S3). Furthermore, we carried out
DNA FISH combined with chromosome painting using chro-
mosome 17 and TNF locus probes in myosin VI+/− and myosin
VI−/− Th1 cells (29). T-cell development in myosin VI-deficient
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Fig. 1. Homologous pairing of the LT/TNF alleles correlates with biallelic

TNF-α expression in 1-h restimulated Th1 cells. (A) Quantitative PCR of TNF-α

mRNA expression in differentiating and restimulated Th1 cells. HPRT, hy-

poxanthine phosphoribosyltransferase. (B) Three-dimensional DNA FISH for

the LT/TNF locus. The cumulative frequency plots display interallelic dis-

tances for the LT/TNF locus over a time course of 0–6 h of anti-CD3 treatment

(n = 80 cells per time point, representative of three independent experi-

ments). The Kolmogorov–Smirnov (KS) test was performed, and a P value

<0.01 for hour (HR) 0 vs. HR 1 was obtained. (C) Percentage of Th1 effector

cells showing an interallelic LT/TNF distance equal to or below 1.5 μm. The

Student t test for HR 0 vs. HR 1 was performed (P < 0.01). (D) RNA-DNA FISH

to map the position and the transcription status of the TNF-α alleles in single

cells. The TNF-α RNA is shown in red, and the DNA locus is shown in green.

Paired alleles exhibited an interallelic LT/TNF distance equal to or below

1.5 μm. (Magnification: 100×.) (E) Intranuclear separation of silent, mono-

allelically, and biallelically TNF-α–expressing cells (n = 100). (F) Percentage of

silent, monoallelically, and biallelically TNF-α–expressing cells. Cells with an

interallelic LT/TNF distance equal to or below 1.5 μm were scored as associ-

ated. Data are representative of at least three independent experiments.
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mice showed no obvious defects and was comparable to T-cell
development in myosin VI-sufficient mice (Fig. S4 A and B). In
resting cells of either genotype, the LT/TNF alleles were located
predominantly at the periphery (63%) or, to a lesser extent, in
the interior (25%) of the chromosomal territory (Fig. 2B). Upon
activation, however, the alleles assumed an external position in
a much greater proportion of myosin VI-sufficient (51%) than
myosin VI-deficient (10%) cells. Consistent with the effect of
myosin VI inhibition by TIP, loss of myosin VI activity disrupted
LT/TNF pairing (Fig. 2 C–E). The accumulation of mature TNF-α
and IFN-γ mRNA seemed, however, to be similar in myosin
VI-sufficient and myosin VI-deficient T cells during the several-
day process of differentiation of naive T cells into effector Th1
cells (Fig. S4C). This result raises the possibility that the effect of
myosin VI on mature cytokine mRNA accumulation may be
redundant with the effect of other myosin family members. We
hypothesized that if myosin VI plays a role in gene expression, it
acts transiently and regulates an early step in transcription acti-
vation following restimulation.

Myosin VI Mediates the Transition of RNAPII from Pausing to Pro-

ductive Elongation. Specifically, we asked whether myosin VI
regulates transcription initiation, pausing, or elongation of cy-
tokine genes in restimulated Th1 cells. Several studies have
shown that RNAPII pausing is prevalent at genes involved in
signaling pathways (18, 22, 30–33). We used GRO-seq to mea-
sure nascent transcription genome-wide in the presence or ab-
sence of nuclear myosin VI. Interestingly, TCR engagement

induced a decrease in RNAPII pausing across the genome in
myosin VI-sufficient cells but not in myosin VI-deficient cells,
suggesting a global role for myosin VI in mediating RNAPII
pause release (Fig. 3A). In addition, we performed metagene
analyses of genes that were significantly activated by TCR
re-engagement (P < 1E-16). Our data showed that the change in
reads per kilobase of gene per million mapped sequence reads
(RPKM) between t = 0 and t = 1 was clearly different for myosin
VI-sufficient and myosin VI-deficient Th1 cells (Fig. 3B). Spe-
cifically, in myosin VI-sufficient cells, the promoter RPKM de-
creased and the gene body RPKM increased dramatically with
stimulation compared with the resting state. By contrast, in
myosin VI-deficient cells, both the promoter RPKM and the
gene body RPKM increased only slightly with stimulation com-
pared with the resting state. The accumulation of RPKM in the
promoter proximal region in stimulated myosin VI-deficient cells
suggests a transcription elongation defect.
Furthermore, the GRO-seq tag density in the promoter-

proximal region of the TNF locus and the TBX21 locus, encoding
the transcription factor T-bet, was high in resting Th1 cells,
whereas the tag density in the gene body was low. This obser-
vation suggests that these genes are paused. Transcription
elongation proceeded rapidly after TCR activation in both my-
osin VI-sufficient and myosin VI-deficient cells; however, the tag
density was lower along the TNF and TBX21 gene body in my-
osin VI-deficient cells (Fig. 3C). Consistent with the results for
the TNF locus, the TBX21 alleles showed a similar activation-
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Fig. 2. Pairing and repositioning of the LT/TNF locus are dependent on nu-

clear myosin VI. (A) Separation of the homologous LT/TNF alleles was mea-

sured in resting or 1-h restimulated Th1 cells in the presence or absence of

either TIP or cytochalasin B (CytoB) (n = 100). inh, inhibitor; Myo VI, myosin VI.

The KS test was performed, and a P value <0.01 for HR 0 vs. HR 1 for the DMSO

control was obtained. (B) Localization of the LT/TNF alleles relative to the

chromosomal territory was determined by chromosome painting (red) com-

bined with DNA FISH (green) in resting (HR 0) and 1-h restimulated (HR 1) Myo

VI+/− and Myo VI−/− Th1 cells. Data are representative of three independent

experiments. (C) Separation of the homologous LT/TNF alleles was measured in

resting (HR 0) or 1-h restimulated (HR 1) Myo VI-sufficient or Myo VI-deficient

Th1 cells by DNA FISH. The LT/TNF locus is shown in green. (D) Cumulative

frequency plots of distances between the homologous LT/TNF alleles. The KS

test was performed, and a P value <0.01 for HR 0 vs. HR 1 Myo VI+/− Th1 cells

was obtained. (E) Percentage of resting and 1-h restimulated Myo VI+/− and

Myo VI−/− Th1 cells showing an interallelic LT/TNF separation equal to or below

1.5 μm. Data represent three independent experiments. The Student t test for

HR 0 vs. HR 1 Myo VI+/− cells was performed, and a P value <0.01 was obtained.

(Magnification: B, 60×; C, 100×.)
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Fig. 3. Nuclear Myo VI regulates RNAPII pausing. (A) Cumulative fraction

plot of PI values for all transcribed genes in resting (dark gray: HR 0) and

restimulated (light gray: HR 1) Myo VI-sufficient (Left) and Myo VI-deficient

(Right) Th1 cells. (B) Metagene profiles of resting (light blue: HR 0) and

restimulated (dark blue: HR 1) myosin VI-sufficient (Left) and myosin VI-

deficient (Right) Th1 cells. The y axis shows the mean RPKM of GRO-seq tag

densities between 2,000 bp upstream and 2,000 bp downstream of the

transcription start site (TSS). The x axis represents base pairs from the TSS.

(C) GRO-seq profiles of the TNF-α, TBX21, and IFN-γ loci in resting and 1-h

restimulated myosin VI+/− and myosin VI−/− Th1 cells. Norm., normalized. (D) PI

of RNAPII for the TNF-α, TBX21, and IFN-γ loci.
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dependent association (Fig. S5A). In contrast, at the IFN-γ locus
(whose alleles did not associate), we did not find substantial
differences in the tag density profiles (Fig. 3C). To assess the
degree of RNAPII pausing and release, we calculated the
pausing index (PI), defined as the read density within 300 bp of
the transcription start site divided by the read density in the gene
body (34, 35). A high PI value indicates pausing. In myosin VI-
sufficient cells, the PI for the TNF and TBX21 loci was reduced
after TCR activation, indicating release of paused RNAPII (Fig.
3D). In myosin VI-deficient cells, however, this PI decrease was
less pronounced than in myosin VI-sufficient cells. In contrast, at
the IFN-γ locus, the PI decreased with TCR activation in both
myosin VI-sufficient and myosin VI-deficient cells, indicating
that RNAPII elongation in the IFN-γ gene is not regulated by
myosin VI (Fig. 3D). We therefore infer that myosin VI affects
the rate at which RNAPII transitions into productive elongation
at target loci. Moreover, we used the GRO-seq data to look for
other up-regulated genes with a resting PI similar to TNF. One of
these genes, TNFAIP8, showed a myosin VI-dependent decrease
in the PI and homologous pairing upon TCR activation, whereas
the other two, NCL and TAPT1, were myosin VI-independent
and did not show pairing (Fig. S5 B–D).
To confirm the GRO-seq results, we examined the expression

of nascent TNF-α transcripts at different points along the gene by
quantitative PCR (qPCR) analysis after the removal of mature
poly(A)+ RNA (Fig. S6). Interestingly, the level of TNF-α na-
scent RNA was similar in restimulated myosin VI-sufficient and
myosin VI-deficient cells when quantified with the 5′ UTR/exon 1
primer set, but it was significantly lower in myosin VI-deficient
compared with myosin VI-sufficient cells in all other downstream
regions (Fig. S6A). This result corroborates the GRO-seq data
and suggests that myosin VI-deficient cells have a transcription
elongation defect. We observed a similar pattern for the TBX21
gene (Fig. S6B); in this case, we found an elongation defect at the
exon 2/intron 2 junction. Notably, the first intron of the TBX21
gene is very long, whereas the first intron of the TNF gene is not
(Fig. 3C). We think this distinct feature is one of the possible
explanations for the difference in the site of pausing found at the
TNF vs. TBX21 locus. Further studies will be needed to explore
this observation.

Myosin VI Is Recruited to Target Genes in Response to TCR Restimulation.

To investigate the role of myosin VI further in the switch from
transcriptional pausing to productive elongation, we examined
the binding profiles of the two isoforms of RNAPII that have
been associated with these states (36, 37). In resting myosin
VI-sufficient cells, initiation RNAPII-Ser5P was predominantly
bound to the TNF promoter. TCR engagement resulted in a
decrease in this isoform and a concomitant increase in the
elongation RNAPII-Ser2P levels (Fig. 4A). Notably, in TCR-
stimulated myosin VI-deficient cells, the increase in RNAPII-
Ser2P levels was significantly lower than in myosin VI-sufficient
cells (Fig. 4A). In addition, examination of the 3′ end of the TNF
gene revealed that higher levels of RNAPII-Ser2P were present
in stimulated compared with resting myosin VI-sufficient cells.
This increase was attenuated in myosin VI-deficient cells, sup-
porting a role for myosin VI in transcription elongation. Finally,
we examined the binding profile of Spt5, a factor known to in-
duce promoter-proximal pausing (30, 38), in Th1 cells. High
levels of Spt5 were bound to the TNF promoter in resting cells,
which decreased significantly following TCR activation (Fig. 4B).
Taken together, these results are consistent with the GRO-seq
data and suggest that myosin VI regulates the transition of
RNAPII from pausing to productive elongation.
To determine whether myosin VI regulates its target genes di-

rectly, we examined its binding profile over a time course of TCR
activation by ChIP. In resting Th1 cells, low levels of myosin VI
were bound to the TNF and IFN-γ loci (Fig. 4C). TCR activation,

however, led to the recruitment of myosin VI to the TNF locus,
but not to the IFN-γ locus, within 30 min (IFN-γ showed neither
allelic pairing nor myosin VI-dependent pausing). Moreover, us-
ing immuno-RNA FISH, we found that the active TNF alleles
colocalized with punctate myosin VI foci in restimulated Th1 cells
(Fig. S7). By 2 h, the levels of myosin VI bound to the TNF locus
decreased. Thus, the transient binding of myosin VI to target loci
correlates well with the reduction in TNF pairing observed at late
time points of stimulation (Figs. 4C and 1C, respectively).

Disruption of Homologous Allelic Pairing Alters TNF-α Expression in

Th1 Cells. Finally, we asked whether disruption of allelic pairing
affects TNF-α mRNA expression. We examined T cells harboring
a deletion spanning from the 5′ UTR through the first intron of the
TNF locus (Fig. 5A). This small deletion was designed to leave the
promoter intact and allow RNAPII binding. However, we cannot
exclude the possibility that the deletion also affects the distance
between the promoter and regulatory elements, which may have
consequences on transcription. We found that TNF+/+ and TNF+/5′Δ
cells exhibited similar TCR-induced TNF allelic pairing pro-
files. In contrast, TNF 5′Δ/5′Δ cells showed no homologous TNF
pairing. The association of the TBX21 alleles was not affected by
deletion of the TNF locus on either one or both alleles (Fig. 5B).
Interestingly, the TNF-α nascent RNA levels beyond the deleted
region (at the exon 2/intron 2 junction) were reduced in TNF
5′Δ/5′Δ cells compared with TNF+/+ cells (Fig. 5C). We also ob-
served loss of homologous pairing and decreased TNF-α transcript
levels in T cells harboring a larger deletion (Fig. S8 A–D). Addi-
tionally, in TNF 5′Δ/5′Δ Th1 cells in which the promoter was in-
tact, we observed that significantly less RNAPII-Ser5P, RNAPII-
Ser2P, and myosin VI were bound to the TNF promoter and gene
body under both resting and restimulated conditions compared
with TNF+/+ cells (Fig. 5 D and E). The observed decrease in
TNF-α nascent RNA levels in TNF 5′Δ/5′Δ cells was not the
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Fig. 4. Nuclear Myo VI regulates the switch between poised and elongating

RNAPII following TCR restimulation. (A) ChIP-qPCR binding profiles of RNAPII-

Ser2P and RNAPII-Ser5P on the TNF promoter and at the 3′ end of the gene in

resting (HR 0) and 1-h restimulated (HR 1) Myo VI+/− and Myo VI−/− Th1 cells.

Data are averages of three independent experiments. The Student t test was

performed (*P < 0.05). (B) ChIP-qPCR binding profile of Spt5 on the TNF pro-

moter in resting (HR 0) and 1-h restimulated (HR 1) WT Th1 cells. Data are

averages of three independent experiments. The Student t test was performed

(*P < 0.05). (C) ChIP-qPCR binding profiles ofMyo VI along cytokine genes over

a time course (0, 0.5, 1, and 2 h) of anti-CD3 restimulation in WT Th1 cells. The

results are representative of three independent experiments.
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result of reduced production of TNF-α, for example, acting ex-
ogenously on the cells, because TNF-α mRNA levels were com-
parable in TNFR WT and TNFR double-KO cells (which cannot
respond to TNF-α) over the time course of differentiation and
activation examined (Fig. S8E). Further, the addition of neutralizing
TNF-α antibodies to the culture medium did not affect TNF allelic
pairing (Fig. S8F). From these results, we conclude that homolo-
gous allelic pairing enhances TNF gene activation.

Discussion

Several reports have shown that the intranuclear position of a gene
is linked to gene expression and that active loci colocalize to specific
regions of the nucleus (13, 39). Our findings suggest that myosin VI
participates in the reorganization of the genome in response to
external stimuli. In particular, our observation that myosin VI-depen-
dent homologous allelic pairing correlates with biallelic gene ex-
pression early upon TCR stimulation suggests that pairing modulates
both the timing and the extent of gene expression. Furthermore, we
found that myosin VI regulates transcription through release of
RNAPII pausing. This finding is consistent with previous reports that

have demonstrated a role for myosin I and actin in transcription and
chromatin remodeling, respectively (40, 41).
We propose the following model for pairing-enhanced tran-

scription. Early upon TCR activation, the TNF alleles associate
by looping out of the chromosomal territory and colocalize at
a shared nuclear body, which may be a favorable environment for
transcription. Our finding that myosin VI has a punctate distri-
bution in the nucleus may indeed indicate such a body. We
speculate that these myosin VI foci contain additional factors
(e.g., transcription factors, chromatin remodeling factors), which
may be limiting in the initial phase of TCR signaling. Homolo-
gous alleles found in proximity to one another may share these
factors more effectively. Furthermore, interallelic associations
may increase the availability of the DNA target. As TCR sig-
naling continues and more transcription factors become avail-
able, biallelic transcription can initiate on separate alleles or the
previously associated alleles can drift apart while continuing
to be transcribed. The possibility that the alleles pair, activate
transcription, and then drift apart but continue to express TNF-α
remains to be tested when live-cell imaging becomes available.
Additionally, we found that in the absence of myosin VI, the

switch from poised to elongating RNAPII was defective. We
present three lines of evidence: (i) by ChIP, we showed that less
RNAPII-Ser2P was bound to the TNF promoter and gene body
upon restimulation in myosin VI-deficient compared with myosin
VI-sufficient cells (Fig. 4A); (ii) by nascent transcript qPCR, we
showed that the nascent TNFα levels were significantly reduced in
myosin VI-deficient compared with myosin VI-sufficient cells (Fig.
S6A); and (iii) by GRO-seq, we found that myosin VI-deficient
cells showed defects in the dynamics of TNF transcription elon-
gation upon activation. The molecular mechanism whereby myo-
sin VI regulates transcription during TCR activation remains to be
elucidated, but we speculate that myosin VI acts either directly or
indirectly to reduce the residence time of RNAPII at pause sites.
To date, only a few molecules have been shown to enhance the
elongation rate of RNAPII, including human Spt5 homologs and
eleven–nineteen lysine-rich leukaemia (ELL) (42–44). Myosin VI
may be part of a larger protein complex, working in conjunction
with other factors to stimulate productive elongation.
Although we cannot directly link RNAPII pausing and gene

paring, we successfully used the GRO-seq dataset to identify
additional genes that exhibit myosin-dependent pausing and, by
subsequent microscopic analysis, allelic pairing. For example,
like TNF, the TBX21 and TNFAIP8 genes showed myosin
VI-dependent RNAPII pause release by GRO-seq and myosin
VI-dependent pairing by DNA FISH. In contrast, the expression of
the NCL, TAPT1, and IFN-γ genes was myosin VI-independent,
and these genes did not show homologous pairing. We currently do
not know what features distinguish myosin VI-dependent genes
from independent genes. Recent work has demonstrated that in
human K652 cells, genes with short (250–500 bp) first exons have
higher levels of H3K4me3 and H3K9ac in the promoter region
and are more highly transcribed than genes with long first exons
(45). Another possibility, besides gene structure and chromatin
modifications, includes primary DNA sequence elements (23, 46).
Future work will focus on elucidating these differences.
In summary, we found that nuclear myosin VI plays a dual role

during the early time window of gene activation by participating
in the reorganization of the genome and by modulating the
transition of RNAPII from pausing to productive elongation.
Both nuclear localization and RNAPII pausing may ensure a
rapid and synchronous transcriptional response (18). Precisely
how these two processes are interconnected remains to be elu-
cidated until a live-cell imaging approach becomes available.
Nevertheless, subnuclear localization and RNAPII pausing are
emerging as critical regulatory events (18, 35, 47–49), which play
a role in regulating a multitude of cellular responses.

A

B

C

D

E

Fig. 5. Loss of homologous pairing disrupts TNF-α transcription. (A) Genomic

organization of the TNF locus. The TNF 5′ deletion spans from the 5′ UTR through

the first intron of the gene. (B) Cumulative frequency plots display the separation

of the homologous TNF (Left) and TBX21 (Right) alleles in resting (HR 0) or 1-h

restimulated (HR 1) TNF+/+, TNF+/5′Δ, and TNF 5′Δ/5′Δ Th1 cells (n = 100 cells,

representative of three independent experiments). (C) qPCR analysis of nascent

TNF-α mRNA expression in resting or 1-h restimulated TNF+/+, TNF+/5′Δ, and TNF

5′Δ/5′Δ Th1 cells. The primers for qPCR were located within the 5′ UTR (TNFUTR),

at the first exon/intron boundary (TNF E/I 1) or further along the gene body (TNF

E/I 2). The results are averages of three independent experiments. The Student

t test was performed (*P < 0.05; NS, not significant). ChIP-qPCR binding profiles of

RNAPII-Ser5P (S5P) and RNAPII-Ser2P (S2P) (D) and Myo VI (E) on the TNF pro-

moter and at the 3′ end of the gene in resting (HR 0) and 1-h restimulated (HR 1)

TNF+/+ and TNF 5′Δ/5′Δ Th1 cells. Data are averages of three independent

experiments. The Student t test was performed (*P < 0.05; **P < 0.01).
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Materials and Methods
Mice. C57BL/6 mice were obtained from the National Cancer Institute. LT-β/

TNF-α/LT-α triple-KO mice (referred to as Δ3 KO mice), TNF 5′Δ KO mice, and

myosin VI KO mice were obtained from the Jackson Laboratory and expanded

into a colony at the Yale University Animal Resource Center. Animal care

was in accordance with Yale’s Institutional Animal Care and Use Committee

regulations.

Reagents. The transcriptional inhibitor DRB and the myosin V inhibitor

myovin-1 (475984) were purchased from Calbiochem. The myosin VI inhibitor

TIP and the actin inhibitor cytochalasin B were purchased from Sigma. The

myosin II inhibitor blebbistatin (BML-EI315-0005) was purchased from Enzo Life

Sciences. All myosin inhibitors were used at a concentration equal to twice the

IC50 (10 μM blebbistatin, 12 μM myovin-1, and 4 μM TIP) (50). The cells were

pretreated with the inhibitors for 30 min and restimulated with αCD3 for

1 h. The TNF-α neutralizing antibody was purchased from Cell Signaling

(11969). Chromosome 17-Texas Red paints (D-1417-050-TR) were purchased

from MetaSystems.

T-Helper Cell Culture and Stimulation. CD4+ T cells were isolated from the

spleens, axillary, and inguinal lymph nodes of 6- to 8-wk-old C57BL/6 myosin

VI+/− and myosin VI−/− mice or only from the spleens of Δ3 WT, heterozy-

gous, and KO littermate mice. Total CD4+ T-cell isolation was done by pos-

itive selection with MACS CD4 (L3T4) beads (Miltenyi Biotec, Inc.). Naive

CD62LhighCD44lowCD4+Nk.1.1−CD25− T cells were purified by flow cytometric

cell sorting (using flow-activated cell sorting). For in vitro differentiation

toward the Th1 lineage, 1.5 × 106 naive CD4 T cells were stimulated with

plate-bound αCD3 (10 mg/mL; clone 145-2C11, American Type Culture Col-

lection) and αCD28 (2 mg/mL; Pharmingen) mouse antibodies in complete

Click’s medium (Irvine Scientific) in the presence of 50 U/mL rhIL-2 (Pepro-

tech), 3.5 ng/mL murine rIL-12 (a generous gift from the Genetics Institute),

and 10 mg/mL 11B11 (anti–IL-4). After 4–5 d of in vitro differentiation, the

cells were harvested, separated in a Ficoll gradient, and stimulated with plate-

bound αCD3 (10 mg/mL) over a time course.

Probe Synthesis for FISH. The templates for nick translation were the BACs

RP24-352N22 (IFN-γ) and RP24-273L24 (LT/TNF) from the Children’s Hospital

Oakland Research Institute for DNA FISH and a 1-kb intron/exon spanning

segment of the TNF-α gene cloned in pCR4 TOPO (Invitrogen) for RNA FISH.

The DNA FISH probes were labeled by nick translation (32-801300; Vysis)

with Spectrum Green dUTP or Spectrum Orange dUTP (Enzo Life Sciences)

according to the manufacturer’s instructions. The RNA FISH template was

labeled by nick translation using a Biotin Nick Translation Kit (11745824910;

Roche). Stellaris RNA FISH probes from Biosearch Technologies were used for

immuno-RNA FISH.

FISH. For DNA FISH, the cells were harvested, resuspended in 1× PBS, attached

onto poly-L-lysine–coated coverslips (354085; BD Bioscience), fixed with

4% (vol/vol) paraformaldehyde (pH 7.2) for 10 min, washed three times with

1× PBS, and permeabilized in 0.5% Triton X-100 in PBS for 10 min at room

temperature. Following three washes with 1× PBS, the cells were incubated

with 20% (vol/vol) glycerol in PBS for 30 min at room temperature before

being flash-frozen in liquid nitrogen three times. Subsequently, the cells

were washed with 1× PBS, and the DNA was depurinated with 0.1 N of HCl

for 5 min. The cells were washed with 1× PBS and stored in 70% (vol/vol)

ethanol. Before hybridization, the cells were dehydrated, air-dried, and

denatured in 70% (vol/vol) formamide/2× SSC for 10 min at 75 °C. The cells

were rinsed with ice-cold 1× PBS on ice and hybridized with the probe mix

(preannealed with murine Cot-1 DNA) on slides overnight at 37 °C. Three

posthybridization washes were carried out at room temperature in 2× SSC for

5 min each, and the samples were mounted with ProLong Gold antifade re-

agent with DAPI (P36935; Invitrogen). Images were acquired using a Leica TCS

SP5 or a PerkinElmer Spinning Disk confocal microscope. For RNA-DNA FISH, the

cells were permeabilized before fixation. The RNA FISH probe was detected

using mouse antibiotin and goat anti-mouse IgG conjugated to Alexa Fluor 594.

For immuno-RNA FISH, single-molecule RNA FISH was done as previously de-

scribed (51), followed by immunostaining for myosin VI. Myosin VI antibodies

were a kind gift from Mark Mooseker, Yale University, New Haven, CT.

Distance Measurements. Distances between DNA FISH signals were measured

in three dimensions using Volocity (Improvision). Two to three independent

cell preparations were analyzed, and 80–100 nuclei were scored per time

point for each experiment.

Quantitative RT-PCR. RNAwas isolated from sorted naive CD4+ T cells and from

resting and restimulated Th1 cells using TRIzol reagent (Invitrogen). cDNA

was synthesized with oligo dT primers or with random hexamers using

SuperScript II (Invitrogen) from three independent samples. For the nascent

RNA qPCR analysis, mature poly(A)+ RNA was removed using oligo (dT)

25-cellulose beads (New England Biolabs). The PCR assay was performed in

duplicate on a 7500 ABI Real-Time PCR System (Applied Biosystems) using

TaqMan probes (Applied Biosystems) or SYBR Green. The ΔCT (delta threshold

cycle) method was used for quantification, and cytokine transcripts were

normalized to β-actin.

ChIP. ChIP was performed as described previously (52). Antibodies were

purchased from Abcam for the RNAPII C-terminal domain (phospho S2,

ab5095; phospho S5, ab5131), from Santa Cruz for Spt5 (sc-28678x), and

from Sigma for myosin VI (M0691). The precipitated chromatin fragments

were quantitated with the KAPA SYBR Fast qPCR kit (KK4600) in a 7500 ABI

Real-Time PCR System (Applied Biosystems).

GRO-seq. GRO-seq and data analysis were performed as described previously

(34). A total of 8–10 million T cells isolated and sorted from three to five

myosin VI-sufficient or myosin VI-deficient mice were pooled per sample.

The data shown represent one round of sequencing. The GRO-seq read

depth was 10 million reads. The RPKM normalization method was used (53).

Accession Number. GRO-seq data are deposited in the ArrayExpress archive.

The accession number is E-MTAB-2381.

Statistical Analysis. The Student t test was performed for all studies using

GraphPad Prism 6.0. Allelic distance distributions were compared by the

Kolmogorov–Smirnov test, and a P value was obtained using Prism 6.0 or

Minitab 16 (Minitab). Homologous alleles separated by a distance of 1.5 μm

or less were considered to be associated by Fisher’s exact test performed

using R. A P value <0.05 was considered statistically significant.
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Fig. S1. Expression and nuclear localization of cytokine loci in T cells. (A) qPCR analysis of IFN-γ mRNA expression. Naive T cells from WT C57BL/6 mice were

differentiated toward the Th1 lineage for 5 d and restimulated with plate-bound anti-CD3, and RNA was harvested at the indicated time points. HPRT, hy-

poxanthine phosphoribosyltransferase. (B) Three-dimensional DNA FISH for the IFN-γ locus in resting (HR 0) and restimulated (HR 1–6) Th1 cells. The cumulative

frequency plots display interallelic distances for the IFN-γ locus over a time course of 1–6 h of anti-CD3 treatment (n = 80 cells per time point, representative of

two independent experiments). The Kolmogorov–Smirnov (KS) test was performed, and statistical significance was not obtained for HR 0 vs. HR 1. (C) Selection

of the cutoff value for allelic associations based on Fisher’s exact test. Cumulative frequency plots showing changes in LT/TNF interallelic distances at 1 h

(Upper), 3 h (Middle), and 6 h (Bottom) after TCR activation, compared with the resting (0 h) control. The shaded area around each cumulative frequency curve

corresponds to a 95% confidence band, computed using the Dvoretzky–Kiefer–Wolfowitz inequality. Leftward shifts in the curves indicate closer association.

We searched for a distance threshold that distinguished activated from resting conditions. Each of the 480 points was considered as a candidate threshold, and

a series of Fisher’s exact tests were performed to compare the proportion of interallelic distances above/below each threshold in the activated and resting

conditions. Multiple comparison-corrected P values (Bonferroni correction; n = 480) for each test are overlaid on the cumulative frequency plots in black.

Interalleic distance thresholds of 1.08–1.80 μm showed a significant difference (P < 0.05) between the 0-h and 1-h condition. No significant differences were

found in the 0-h vs. 3-h or 0-h vs. 6-h condition at any distance threshold (P >> 0.05). We therefore selected an interallelic distance threshold of 1.5 μm,

indicated by the arrow (Upper), because it falls in the center of that range. HR, hour.

Zorca et al. www.pnas.org/cgi/content/short/1502461112 1 of 7

www.pnas.org/cgi/content/short/1502461112


Fig. S2. Homologous pairing of the LT/TNF alleles is dependent on transcription. (A) Cumulative frequency plots display the separation of the homologous

LT/TNF alleles in resting or 1-h restimulated Th1 cells in the presence or absence of DRB (n = 80 cells, representative of three independent experiments). The KS

test was performed, and a P value <0.05 for HR 0 vs. HR 1 DRB (−) untreated Th1 cells was obtained. (B) Percentage of Th1 effector cells showing an interallelic

LT/TNF distance equal to or below 1.5 μm. Data are averages of three independent experiments. The Student t test for HR 0 vs. HR 1 was performed. A P value

<0.01 was obtained for DRB (−) untreated Th1 cells. Statistical significance was not obtained for DRB (+) treated cells. (C) DRB removal restored homologous

LT/TNF allelic pairing. Th1 cells were treated with (+) or without (−) DRB before anti-CD3 restimulation either in the presence (+) or absence (−) of DRB. The

cumulative frequency plots display LT/TNF interallelic distances. The KS test was performed, and a P value <0.01 for HR 0 vs. HR 1 for the DMSO control was

obtained.

Fig. S3. Homologous pairing of the LT/TNF alleles is dependent on myosin VI (Myo VI) but not on Myo II or Myo V. The separation of the homologous LT/TNF

alleles was measured in resting or 1-h restimulated Th1 cells in the presence or absence of the myosin inhibitors TIP, myovin-1, or blebbistatin (n = 100 cells).

The KS test was performed, and a P value <0.01 for HR 0 vs. HR 1 for the DMSO control was obtained.
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Fig. S4. Phenotypic characterization of myosin VI-sufficient and myosin VI-deficient T cells. (A) Nuclear myosin VI-deficient mice have normal frequencies of

CD4+ and CD8+ T cells. Representative flow-activated cell sorting (FACS) plots display frequencies of CD4+ and CD8+ T-cell populations in the thymus and in the

secondary lymphoid organs of myosin VI-sufficient and myosin VI-deficient mice (n = 4 mice, representative of three independent experiments). APC, allo-

phycocyanin; DN, double negative; DP, double positive; PE, phycoerythrin; SP, single positive. (B) Representative FACS plots display frequencies of naive CD4+

T-cell, effector memory, and central memory populations in secondary lymphoid organs of myosin VI-sufficient and myosin VI-deficient mice. (C) qPCR analysis

of mature TNF-α and IFN-γ mRNA expression in myosin VI-sufficient and myosin VI-deficient cells over a time course of differentiation and activation.
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Fig. S5. Analysis of homologous pairing of myosin VI-dependent and independent genes. Four genes with similar PI values as TNF in resting (HR 0), Myo VI+/−,

and Myo VI−/− Th1 cells were analyzed by FISH for the ability to pair in response to TCR activation with anti-CD3 for 1 h (HR 1). The genes examined were TBX21

with a PI of 7 (A; Fig. 3B), TNFAIP8 with a PI of 10 (B), NCL with a PI of 6 (C), and TAPT1 with a PI of 10 (D). For A, the myosin VI dependence of TBX21 allelic

pairing was examined by treatment with TIP or CytoB. Ctrl, control. For B–D, the PI value of the gene (Left) and the cumulative frequency plot of interallelic

distances in resting (HR 0) and restimulated (HR 1) myosin VI-sufficient and myosin VI-deficient cells (Right) are shown (n = 100 cells per experiment).
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Fig. S6. Loss of myosin VI leads to decreased nascent TNF-α and Tbx21 mRNA expression upon TCR activation of Th1 cells. A qPCR analysis of nascent TNF-α

(A) and Tbx21 (B) mRNA expression in resting or restimulated Myo VI+/− and Myo VI−/− Th1 cells was performed. The primers for qPCR were located within the

5′ UTR (TNF UTR), at the first exon/intron boundary (TNF E/I 1) or further along the gene body (TNF E/I 2 or 3). The results were averaged for three independent

experiments. The Student t test was performed (*P < 0.05; **P < 0.01). NS, not significant.
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Fig. S7. Biallelically expressed TNF alleles colocalize with nuclear myosin VI foci. Immunofluorescence staining for myosin VI (green) was combined with single-

molecule RNA FISH for TNF-α (red) to examine the localization of the active alleles in 1-h restimulated Th1 cells; two independent experiments; n = 60 cells.

Nuclei were counterstained with DAPI (blue).
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Fig. S8. Loss of homologous pairing perturbs TNF-α mRNA expression. (A) Genomic organization of the LT/TNF locus. The Δ3 deletion encompasses the entire

TNF gene. (B) Cumulative frequency plots display the separation of the homologous LT/TNF alleles in resting or 1-h +/+, TNF Δ3/+, and Δ3/Δ3 restimulated Th1

cells (n = 80 cells, representative of three independent experiments). The KS test was performed, and a P value <0.05 for HR 0 vs. HR 1 for +/+ Th1 cells was

obtained. (C) Percentage of Th1 effector cells showing an interallelic LT/TNF distance equal to or less than 1.5 μm. Data are averaged for three independent

experiments. The Student t test for HR 0 vs. HR 1 was performed. A P value <0.01 was obtained for +/+ Th1 cells. No statistical significance was obtained for the

Δ3/+ or Δ3/Δ3 HR 0 vs. HR 1 comparisons. (D) qPCR analysis of mature TNF-α and IFN-γmRNA expression in resting or restimulated +/+, Δ3/+, and Δ3/Δ3 Th1 cells.

The results were averaged for three independent experiments. (E) qPCR analysis of TNF-α mRNA expression in differentiating (3D), resting (HR 0) or re-

stimulated (HR 1) WT and TNFR double-KO (DKO) Th1 cells. The results were averaged for three independent experiments. (F) Cumulative frequency plots

display the separation of the homologous LT/TNF alleles in resting or 1-h restimulated Th1 cells in the presence or absence of anti–TNF-α.
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