
MyRocks: LSM-Tree Database Storage Engine Serving
Facebook's Social Graph

Yoshinori Matsunobu
Facebook

yoshinori@fb.com

Siying Dong
Facebook

 siying.d@fb.com

Herman Lee
Facebook

herman@fb.com

ABSTRACT
Facebook uses MySQL to manage tens of petabytes of data in its
main database named the User Database (UDB). UDB serves social
activities such as likes, comments, and shares. In the past, Facebook
used InnoDB, a B+Tree based storage engine as the backend. The
challenge was to find an index structure using less space and write
amplification [1]. LSM-tree [2] has the potential to greatly improve
these two bottlenecks. RocksDB, an LSM tree-based key/value
store was already widely used in variety of applications but had a
very low-level key-value interface. To overcome these limitations,
MyRocks, a new MySQL storage engine, was built on top of
RocksDB by adding relational capabilities. With MyRocks, using
the RocksDB API, significant efficiency gains were achieved while
still benefiting from all the MySQL features and tools. The
transition was mostly transparent to client applications.

Facebook completed the UDB migration from InnoDB to MyRocks
in 2017. Since then, ongoing improvements in production
operations, and additional enhancements to MySQL, MyRocks,
and RocksDB, provided even greater efficiency wins. MyRocks
also reduced the instance size by 62.3% for UDB data sets and
performed fewer I/O operations than InnoDB. Finally, MyRocks
consumed less CPU time for serving the same production traffic
workload. These gains enabled us to reduce the number of database
servers in UDB to less than half, saving significant resources. In
this paper, we describe our journey to build and run an OLTP LSM-
tree SQL database at scale. We also discuss the features we
implemented to keep pace with UDB workloads, what made
migrations easier, and what operational and software development
challenges we faced during the two years of running MyRocks in
production.

Among the new features we introduced in RocksDB were
transactional support, bulk loading, and prefix bloom filters, all are
available for the benefit of all RocksDB users.

PVLDB Reference Format:
Yoshinori Matsunobu, Siying Dong, Herman Lee. MyRocks:
LSM-Tree Database Storage Engine Serving Facebook's Social
Graph. PVLDB, 13(12): 3217 - 3230, 2020.
DOI: https://doi.org/10.14778/3415478.3415546

1. INTRODUCTION
The Facebook UDB serves the most important social graph
workloads [3]. The initial Facebook deployments used the InnoDB
storage engine using MySQL as the backend. InnoDB was a robust,
widely used database and it performed well. Meanwhile, hardware
trends shifted from slow but affordable magnetic drives to fast but
more expensive flash storage. Transitioning to flash storage in UDB
shifted the bottleneck from Input/Output Operations Per Second
(IOPS) to storage capacity. From a space perspective, InnoDB had
three big challenges that were hard to overcome, index
fragmentation, compression inefficiencies, and space overhead per
row (13 bytes) for handling transactions. To further optimize space,
as well as serving reads and writes with appropriate low latency, we
believed an LSM-tree database optimized for flash storage was
better in UDB. However, there were many different types of client
applications accessing UDB. Rewriting client applications for a
new database was going to take a long time, possibly multiple
years, and we wanted to avoid that as well.

We decided to integrate RocksDB, a modern open source LSM-tree
based key/value store library optimized for flash, into MySQL. As
seen in Figure 1, by using the MySQL pluggable storage engine
architecture, it was possible to replace the storage layer without
changing the upper layers such as client protocols, SQL and
Replication.

Figure 1: MySQL and MyRocks Storage Engine

We called this engine MyRocks. When we started the project, our
goal was to reduce the number of UDB servers by 50%. That
required the MyRocks space usage to be no more than 50% of the
compressed InnoDB format, while maintaining comparable CPU
and I/O utilization. We expected that achieving similar CPU
utilization vs InnoDB was the hardest challenge, since flash I/O had
sufficient read IOPS capacity and the LSM-tree database had less
write amplification. Since InnoDB was a fast, reliable database
with many features on which our Engineering team relied, there
were many challenges ensuring there was no gap between InnoDB
and MyRocks.

Among the significant challenges were: (1) Increased CPU,
memory, and I/O pressure. MyRocks compresses the database size

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any
use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 12
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3415478.3415546

3217

by half which requires more CPU, memory, and I/O to handle the
2x number of instances on the host. (2) A larger gap between
forward and backward range scans. The LSM-tree allows data
blocks to be encoded in a more compacted form. As a result,
forward scans are faster than backward scans. (3) Key comparisons.
LSM-tree key comparisons are invoked more frequently than B-
tree. (4) Query performance. MyRocks was slower than InnoDB in
range query performance. (5) LSM-tree performance needs
memory-based caching bloom filters for optimal performance.
Caching bloom filters in memory is important to LSM-tree
performance, but this consumes a non-trivial amount of DRAM and
increases memory pressure. (6) Tombstone Management. With
LSM-trees, deletes are processed by adding markers, which can
sometimes cause performance problem with frequently
updated/deleted rows. (7) Compactions, especially when triggered
by burst writes, may cause stalls.

Section 3 provides the details for how those challenges were
addressed. In short, the highlighted innovations implemented are
the (1) prefix bloom filter so that range scans with equal predicates
are faster (Section 3.2.2.1), the (2) mem comparable keys in
MyRocks allowing more efficient character comparisons (Section
3.2.1.1), a (3) new tombstone/deletion type to more efficiently
handle secondary index maintenance (Section 3.2.2.2), (4) bulk
loading to skip compactions on data loading, (Section 3.2.3.4), (5)
rate limited compaction file generations and deletions to prevent
stalls (Section 3.2.3.2), and (6) hybrid compressions – using a faster
compression algorithm for upper RocksDB levels, and a stronger
algorithm for the bottommost level, so that MemTable flush and
compaction can keep up with write ingestion rates with minimal
space overhead (Section 3.3.4).

MyRocks also has native performance benefits over InnoDB such
as not needing random reads for maintaining non-unique secondary
indexes. More writes can be consolidated, with fewer total bytes
written to flash. The read performance improvements and write
performance benefits were evident when the UDB was migrated
from InnoDB to MyRocks with no degradation of CPU utilization.

Comprehensive correctness, performance and reliability
validations were needed prior to migration. We built two
infrastructure services to help the migration. One was MyShadow,
which captured production queries and replayed them to test
instances. The other was a data correctness tool which compared
full index data and query results between InnoDB and MyRocks
instances. We ran these two tools to verify that MySQL instances
running MyRocks did not return wrong results, did not return
unexpected errors, did not regress CPU utilizations, and did not
cause outstanding stalls. After completing the validations, the
InnoDB to MyRocks migration itself was relatively easy. Since
MySQL replication was independent of storage engine, adding
MyRocks instances and removing InnoDB instances were simple.
The bulk data loading feature in MyRocks greatly reduced data
migration time as it could load indexes directly into the LSM-tree
and bypass all MemTable writes and compactions.

The InnoDB to MyRocks UDB migrations were completed in
August 2017. For the same data sets, MyRocks and modern LSM-
tree structures and compression techniques reduced the instance
size by 62.3% compared to compressed InnoDB. Lower secondary
index maintenance overhead and overall read performance
improvements resulted in slightly reduced CPU time. Bytes written
to flush storage went down by 75%, which helped not to hit IOPS
bottlenecks, and opened possibilities to use more affordable flash

storage devices that had lower write cycles. These enabled us to
reduce the number of database servers in UDB to less than half with
MyRocks. Since 2017, regressions have been continuously tracked
via MyShadow and data correctness. We improved compaction to
guarantee the removal of stale data, meeting the increasing
demands of data privacy.

This practice is valuable because: (1) Since SQL databases built on
LSM-tree are gaining popularity, the practical techniques of tuning
and improving LSM-tree are valuable. To the best of our
knowledge, this is the first time these techniques have been
implemented on a large-scale production system. (2) While some
high-level B-tree vs LSM-tree comparisons are documented, our
work exposed implementation challenges for LSM-tree to match B-
tree performance, extra benefits from a LSM-tree, and
optimizations that can narrow the gap. (3) Migrating data across
different databases or storage engines is common. This paper shares
the processes used to migrate the database to a different storage
engine. The experience is more interesting because the storage
engine moved to is relatively immature.

In this paper, we describe three contributions:

1. UDB overview, challenges with B-Tree indexes and why
we thought LSM-tree database optimized for flash
storage was suitable (Section 2).

2. How we optimized MyRocks for various read workloads
and compactions (Section 3).

3. How we migrated to MyRocks in production (Section 4).

Then we show migration results in Section 5, followed by lessons
learned in Section 6. Finally, we show related work in Section 7,
and concluding remarks in Section 8.

2. BACKGROUND AND MOTIVATION
2.1 UDB Architecture
UDB is our massively sharded database service. We have
customized MySQL with hundreds of features to operate the
database for our needs. All customized extensions to MySQL are
released as open source [4].

Facebook has many geographically distributed data centers across
the world [5] and the UDB instances are running in some of them.
Where other distributed database solutions place up to three copies
in the same region and synchronously replicate among them, the
Facebook ecosystem is so large that adopting this architecture for
UDB is not practical as it would force us to maintain more than 10
database copies. We only maintain one database copy for each
region. However, there are many applications which relied on short
commit latency and did not function well with tens of millisecond
for synchronous cross region transaction commits. These
constraints led us to deploy a MySQL distributed systems
architecture as shown in Figure 2.

We used traditional asynchronous MySQL replication for cross
region MySQL replication. However, for in-region fault tolerance,
we created a middleware called Binlog Server (Log Backup Unit)
which can retrieve and serve the MySQL replication logs known as
Binary Logs. Binlog Servers only retain a short period of recent
transaction logs and do not maintain a full copy of the database.
Each MySQL instance replicates its log to two Binlog Servers using
MySQL Semi-Synchronous protocol. All three servers are spread
across different failure domains within the region. This architecture

3218

made it possible to achieve both short (in-region) commit latency
and one database copy per region.

UDB is a persistent data store of our social graphs. On top of UDB,
there is a huge cache tier called TAO [3]. TAO is a distributed write
through cache handling social graphs and mapping them to
individual rows in UDB. Aside from legacy applications, most read
and write requests to UDB originate from TAO. In general,
applications do not directly issue queries to UDB, but instead issue
requests to TAO. TAO provides limited number of APIs to
applications to handle social graphs. Limiting access methods to
applications helped to prevent them from issuing bad queries to
UDB and to stabilize workloads.

We use MySQL’s Binary Logs not only for MySQL Replication,
but also for notifying updates to external applications. We created
a pub-sub service called Wormhole [6] for this. One of the use cases
of Wormhole is invalidating the TAO cache in remote regions by
reading the Binary Log of the region's MySQL instance.

Figure 2: UDB Architecture

2.2 UDB Storage
UDB was one of the first database services built at Facebook. Both
software and hardware trends have changed significantly since that
time. Early versions of UDB ran on spinning hard drives that had a
small amount of data because of low IOPS. Workload was carefully
monitored to prevent the server from overwhelming the disk drives.

In 2010, we started adding solid state drives to our UDB servers to
improve I/O throughput. The first iteration used a flash device as a
cache for the HDD. While increasing server cost, Flashcache [7]
improved IOPS capacity from hundreds per second to thousands
per second, allowing us to support much more data on a single
server. In 2013, we eliminated the HDD and switched to a pure
flash storage. This setup was no longer bounded by read I/O
throughput, but overall cost per GB was significantly higher than
HDD or Flashcache. Reducing the space used by the database
became a priority. The most straight-forward solution was to
compress the data. MySQL’s InnoDB storage engine supports
compression and we enabled it in 2011. Space reduction was
approximately 50%, which was still insufficient. In studying the
storage engine, we found the B-Tree structure wasted space because
of index fragmentations. Index fragmentation was a common issue
for B-Tree database and approximately 25% to 30% of each
InnoDB block space was wasted. We tried to mitigate the problem
with B-tree defragmentation, but it was less effective on our
workload than expected. In UDB, a continuous stream of mostly
random writes would quickly fragment pages that were just

defragmented. In order to keep the space usage down, we needed
to defragment constantly and aggressively, which in turn, reduced
server performance and wore out the flash faster. Flash durability
was already becoming a concern since higher durability drives were
more expensive.

Compression was also limited in InnoDB. Default InnoDB data
block size was 16KB and table level compression required
predefining the after-compressed block size (key_block_size), to
one of 1KB, 2KB, 4KB or 8KB. This is to guarantee that pages can
be individually updated, a basic requirement for B-tree. For
example, if key_block_size was 8KB, then even if 16KB data was
compressed to 5KB, actual space usage was still 8KB, so the
storage savings was capped at 50%. Too small a block size results
in high CPU overhead for increased page splits and compression
attempts. We used 8KB for most tables, and 4KB for tables updated
infrequently, so overall space saving impacts were limited.

Another issue we faced with InnoDB on flash storage was higher
write amplification and occasional stalls caused by writes to flash.
In InnoDB, a dirty page is eventually written back to a data file.
Because TAO is responsible for most caching, to be efficient,
MySQL runs on hardware where the working set is not cached in
DRAM, so writing back dirty pages happens frequently. Even a
single row modification in an InnoDB data block results in the
entire 8KB page to be written. InnoDB also has a “double-write”
feature to protect from torn page corruptions during unexpected
shutdowns. These amplified writes significantly. In some cases, we
hit issues where burst write rates triggered I/O stalls on flash.

Based on issues we faced in InnoDB in UDB, it was obvious we
needed a better space optimized, lower write amplification database
implementation. We found that LSM-tree database fitted well for
those two bottlenecks. Another reason we got interested in LSM-
tree was its friendliness to tiered storage, and new storage
technologies created more tiering opportunities. Although we have
not yet taken advantage of it, we anticipate benefits from it in the
future.

Despite potential benefits, there were several challenges to
adopting a LSM-tree database for UDB. First, there was not a
production proven database that ran well on flash back in 2010. The
majority of popular LSM databases ran on HDD and none had a
proven case study for running on flash at scale.

Secondly, UDB still needed to serve a lot of read requests. While
TAO has a high hit rate, read efficiency was still important because
TAO often issued read requests from UDB for batch-style jobs that
had low TAO cache hit rate. Also, TAO often went through “cold
restart” to invalidate caches and refresh from UDB. Write requests
also triggered read requests. All UDB tables had primary keys, so
inserts needed to perform unique key constraint checks and
updates/deletes needed to find previous rows. Delete or update via
non-primary keys needed to read to find primary keys.

For these reasons, it was important to serve reads efficiently as well.
A B-Tree database like InnoDB is well suited for both read and
write workloads, while LSM-tree shifted more for write and space
optimizations. So, it was questionable if LSM-tree databases could
handle read workloads on flash.

2.3 Common UDB Tables
UDB has mainly two types of tables to store social data – one for
objects and the other for associations of the objects [3]. Each object

3219

and association have types (fbtype and assoc_type) defining its
characteristics. The fbtype or assoc_type determines the physical
table that stores the object or association. Common object table is
called fbobj_info, which stores common objects, keyed by object
type (fbtype) and identifiers (fbid). The object itself is stored in a
“data” column in a serialized format, and its format is dependent on
each fbtype. Association tables store associations of the objects. For
example, the assoc_comments table stores associations of
comments on Facebook activities (e.g. posts), keyed by pair of
identifiers (id1 and id2) and type of the association (assoc_type).
The association tables have secondary indexes called id1_type.
Secondary index of the association table (id1_type index) was
designed to optimize range scans. Getting list of ids (id2) associated
to id (id1) is a common logic on Facebook, such as getting a list of
people’s identifiers who liked a certain post.

From schema point of view, object tables are accessed like a key
value store than a relational model. On the other hand, association
tables have meaningful schema such as pair of ids. We adopted an
optimization called “covering index” [8] in id1_type secondary
index, so that range scans can be completed without randomly
reading from primary keys, by including all relevant columns in the
index. Typical social graph updates modify both object tables and
association tables for the same id1s in one database transaction, so
having both tables inside one database instance makes sense to get
benefits of ACID capabilities of the transactions.

2.4 RocksDB: Optimized for Flash
Utilizing Flash Storage is not unique to MySQL and other
applications at Facebook already had years of experience. In order
to address similar challenges faced by other applications, in 2012,
a new key/value store library, RocksDB [9] was created for flash.
By the time we started to look for an alternative storage engine for
MySQL, RocksDB was already used in a list of services, including
ZippyDB [10] Laser [11] and Dragon [12].

RocksDB is a key/value store library optimized for characteristics
of flash-based SSDs. When choosing the main data structure of the
engine, we studied several known data structures and chose LSM-
tree for its good write amplification feature, with a good balance of
read performance [1]. The implementation is based on LevelDB
[13].

2.4.1 RocksDB Architecture
Whenever data is written to RocksDB, it is added to an in-memory
write buffer called MemTable, as well as Write Ahead Log (WAL).
Once the size of the MemTable reaches a predetermined size, the
contents of the MemTable are flushed out to a “Sorted Strings
Table” (SST) data file. Each of the SSTs stores data in sorted order,
divided into blocks. Each SST also has an index block for binary
search with one key per SST block. SSTs are organized into a
sequence of sorted runs of exponentially increasing size, called
level, where each level will have multiple SSTs, as depicted in
Figure 3. In order to maintain the size for each level, some SSTs in
level-L are selected and merged with the overlapping SSTs in
level(L+1). The process is called compaction. We call the last level
as Lmax.

In the read path, a key lookup occurs at each successive level until
the key is found or it is determined that the key is not present in the
last level. It begins by searching all MemTables, followed by all
Level-0 SSTs and then the SST’s at the next following levels. At
each of these successive levels, a whole binary search is used.

Bloom filters are kept in each SST file and used to eliminate
unnecessary search within an SST file.

Figure 3: RocksDB Architecture

2.4.2 Why RocksDB?
As mentioned in Section 2.2, space utilization and write
amplification are two bottlenecks of UDB. Write amplification is
the initial optimization goal for RocksDB, so it is a perfect fit.
LSM-tree is more effective because it avoids in-place updates to
pages, which eventually caused page writes with small updates in
UDB. Updates to a LSM-tree are batched and when they are written
out, pages only contain updated entries, except for the last sorted
run. When updates are finally applied to the last sorted run, lots of
updates are already accumulated, so that a good percentage of page
would be newly updated data.

Besides write amplification, we still need to address the other major
bottleneck: space utilization. We noticed that, LSM-tree does
significantly better than B-tree for this metric too. For InnoDB,
space amplification mostly comes from fragmentation and less
efficient compression. As mentioned in Section 2.2, InnoDB
wasted 25-30% space in fragmentation. LSM-tree does not suffer
from the problem and its equivalence is dead data not yet removed
in the tree. LSM-tree’s dead data is removed by compaction, and
by tuning compaction, we are able to maintain the ratio of dead data
to as low as 10% [14]. RocksDB also optimizes for space because
it works well with compression. If 16KB data was compressed to
5KB, RocksDB uses just 5KB while InnoDB aligns to 8KB, so
RocksDB is much more space efficient. Also, InnoDB has
significant space overhead per row for handling transactions (6-
byte transaction id and 7-byte roll pointer). RocksDB has 7-byte
sequence number for each row, for snapshot reads. However,
RocksDB converts sequence numbers to zero during compactions,
if no other transaction is referencing them. Zero sequence number
uses very little space after compression. In practice, most rows in
Lmax have zero sequence numbers, so space saving is significant,
especially if average row size is small.

Since RocksDB is a good fit to address the performance and
efficiency challenges of UDB workloads, we decided to build
MyRocks, a new MySQL storage engine on top of RocksDB. The
engine implemented in MySQL 5.6 performs well compared to
InnoDB in TPC-C benchmark results [14]. As Oracle releases
newer versions of MySQL, we will continue to port MyRocks
forward. The development work can be substantial because of new
requirements for storage engines.

3220

3. MYROCKS/ROCKSDB DEVELOPMENT
3.1 Design Goals
Re-architecting and migrating a large production database is a big
engineering project. Before starting, we created several goals.
While increasing efficiency was high priority, it was also important
that many other factors, such as reliability, privacy, security, and
simplicity, did not regress when transitioning to MyRocks.

3.1.1 Maintained Existing Behavior of Apps and Ops
Implementing a new database was only part of our project.
Successfully migrating a continuously operating in UDB was also
important. Hence, we made the ease of migration and operation a
goal. The pluggable storage engine architecture in MySQL enabled
that goal. Using the same client and SQL interface meant UDB
client applications did not have to change, and many of our
automation tools, such as instance monitoring, backups, and
failover, continued to function with no usability loss.

3.1.2 Limited Initial Target Scope
We did not want to spend many years on a new database project.
Spending five or more years to implement a great database, then
spending additional multiple years to migrate, was not a reasonable
direction for us. Our UDB databases kept growing, so we wanted
to save space earlier rather than later.

We decided to limit the initial MyRocks product scope to UDB.
Since UDB had specific table structures and query patterns, we
believed it was feasible to make MyRocks beat our efficiency goals
on UDB. On the other hand, fundamental designs such as on-disk
index and row formats were discussed in the early stages. These
were needed to support all workloads and were harder to change
once implemented.

During MyRocks development, we continuously benchmarked
against InnoDB based on UDB equivalent workloads. We used
LinkBench [15], an open source benchmark tool that simulated
UDB-like workloads. We also analyzed UDB production
workloads. Based on this data, we drew up development tasks and
prioritized accordingly. Once UDB on MyRocks reached
production quality, we started supporting additional use cases.

3.1.3 Set Clear Performance and Efficiency Goals
As described previously, MyRocks was an efficiency driven
project, so the focus was significant efficiency gains without
sacrificing consistency. There were two goals compared to InnoDB
in UDB. The first was a reducing database space by at least 50%,
and the second, to do so without regressing CPU and I/O usage.
Saving 50% disk space means that MySQL instance density is
doubled per host, so a single database host needs to serve twice the
amount of traffic. As more CPU and I/O pressure was expected, the
specific goal was that they did not regress. Most UDB tables had
secondary indexes, and LSM-tree database could manipulate
secondary indexes more efficiently than InnoDB. We anticipated
MyRocks could use less CPU and I/O for writes, while it was also
expected to use more for reads.

Not all production workloads could migrate from InnoDB to
MyRocks. We could not make a database that was better than
InnoDB in all aspects. We picked LSM-tree over B-Tree to save
space at the expense of read performance. For read intensive
databases where all data resides in memory, MyRocks was hardly
better than InnoDB and the space savings benefit was minimal. We

made it clear we did not target such use cases (RUM Conjecture
compromise [1]).

3.1.4 Design Choices

3.1.4.1 Contributions to RocksDB
We added features to RocksDB where possible. RocksDB is a
widely used open source software and we thought it would benefit
other RocksDB applications. MyRocks used the RocksDB APIs.

3.1.4.2 Clustered Index Format
UDB took advantage of the InnoDB clustered index structure.
Primary key lookups could be completed by a single read since all
columns are present. We adopted the same clustered index structure
for MyRocks. Secondary key entries include primary key columns
to reference corresponding primary key entries. There is no row ID.

Figure 4: MyRocks Index Format

3.2 Performance Challenges
We made several read performance optimizations so that overall
resource utilization was comparable to InnoDB. This section
discusses these optimization improvements and features. Since
RocksDB was a LSM-tree database, worse read performance as
compared to InnoDB was expected. As we measured read
performance gaps, we noted optimization opportunities that could
fill the gaps. During early stage benchmarks, we also found that
improving CPU efficiency was more important than I/O. Modern
flash had sufficient read IOPS and since RocksDB wrote much less
to flash, I/O was the lesser concern.

Another big challenge for LSM-tree databases was large number of
tombstones can greatly slow down range scans. We implemented
several features to mitigate the negative impact of delete markers.

3.2.1 CPU Reduction

3.2.1.1 Mem-comparable Keys
With LSM-tree, more key comparisons are made when executing
queries as compared to InnoDB. Although RocksDB did several
optimizations for it, the number is still significantly higher than
InnoDB, especially in range queries. To look for the start key of a
range, we only need one binary search in a B-tree, while we need
to do one binary search for each sorted run in a LSM-tree and merge
them using a heap. This can lead to several times more key
comparisons. Similarly, simple key advancement does not require
any key comparison in B-tree, while in LSM-tree, at least one key
comparison is needed to adjust the heap, while often another one is
needed to identify whether a record represents an older version. As
a result, RocksDB is more sensitive to key comparison cost than
InnoDB.

For example, most MySQL storage engines, including InnoDB,
support case insensitive collations. This allows “ABC” to match
“abc” on character comparisons, but it comes with a performance
cost because each key comparison involves multiple steps,
including key de-serialization. Even case sensitive collations data
types may be required to go through some of these steps. In
MyRocks, we always encode MySQL data to RocksDB keys in a

3221

bytewise-comparable way which is much more efficient for
comparisons.

3.2.1.2 Reverse Key Comparator
In RocksDB, iterating keys in forward order is much faster than
reverse order. There are several reasons and most of them are
fundamental to LSM-tree. Firstly, LSM-tree allows RocksDB to
use key delta encoding inside each data block, but delta encoding
is unfriendly to reverse iteration. Secondly, with LSM-tree, stale
records may be present when we iterate through data. The records
are stored in the tree in the reverse order of the key versions. This
order guarantees fast forward iteration, but also slows reverse
iteration because RocksDB needs to read one extra record for a key
to find the latest version. Finally, the MemTable is implemented
using a skip list with single direction pointers, so reverse iteration
requires another binary search. As a result, ORDER BY query
direction with reverse iteration is much slower than a forward one.

Fortunately, most UDB queries are uniform so that we can tune data
placement based on common queries. As described in Section 2.3,
we have two major data models in UDB – objects and associations.
Associations are more expensive because they are fetched by range
scans as opposed to objects which are fetched by point lookups.
Range scans might span thousands of edges, and thus it was
important to optimize them for social graph workloads.

TAO issues association range scans in descending order sorted by
update time. To optimize descending scan performance, we
implemented a reverse key comparator in RocksDB. It stores keys
in inverse bytewise order. We adopted reverse key comparator for
association secondary keys, so the descending scan by time
internally executes a forward iteration scan, which was efficient.
Our reverse key comparator improved descending scan throughput
by approximately 15% in UDB.

3.2.1.3 Faster Approximate Size to Scan Calculation
As a MySQL storage engine, MyRocks needs to tell the MySQL
optimizer the estimated cost to scan for each query plan candidate.
For each query plan candidate, MySQL passes both minimum key
and maximum key values to the storage engine, and MyRocks
estimates the cost to scan the range and returns the cost to MySQL.
RocksDB implements the functionality by finding the block
location of both of minimum and maximum keys and calculating
the size distance between the two blocks, including MemTables.
This can cause nontrivial CPU overhead. We implemented two
features to improve the performance of query cost calculation. One
was completely skipping cost calculation when a hint to force a
specific index was given. This is effective because the social graph
queries are highly uniform so adding this hint in several SQL
queries can reduce most of the approximate size overheads. We also
improved the RocksDB algorithm to get the estimated size of scan
ranges by estimating total size of full SST files within the range
first and skipping the remaining of partial files as soon as RocksDB
determines that they would not significantly change the result.
RocksDB also tries to combine diving for minimum and maximum
keys into one operation.

3.2.2 Latency Reduction/Range Query Performance

3.2.2.1 Prefix Bloom Filter
UDB had lots of range scans and it was more challenging in LSM-
tree database. In B-tree, a range query starts from one leaf page,

and a short range query only needs to read from one or two leaf
pages. With LSM-tree, it has two parts – seek and next. The LSM-
tree has much higher seek overhead. We usually need to read one
data block from each sorted run, and it needs to be done even for
sorted runs where there are no keys in the range. Reading more
blocks means potentially more I/O and CPU for decompression.

To mitigate short range scan performance, we introduced the prefix
bloom filter in RocksDB. Users specify the number of bytes as a
“prefix”, so that users can skip all sorted runs that do not contain
any key starting with specific prefix.

Our association range scan was done by equal predicates from
prefixes of indexed columns. Association range scan used the
id1_type secondary key. The secondary key started with equal
predicates (id1, assoc_type) and included several other columns,
including timestamp. The latter columns were used to determine the
sort order of the scan. For most TAO range scans, equal predicates
were used for only the first prefix (id1, assoc_type) columns.

The prefix bloom filter is 20 bytes and is composed of the internal
index id (4 bytes), the id1 (8 bytes), and the assoc_type (8 bytes).
These two columns are always set in the WHERE clause with equal
predicates for the id1_type secondary key. By supporting the prefix
bloom filter, common index scans with equal predicates can use the
bloom filter and improve read performance.

3.2.2.2 Reducing Tombstone on Deletes and Updates
Compaction was a major factor in RocksDB performance,
impacting both read and write performance. One of the biggest pain
points was how to handle deletions (called “tombstones”) more
efficiently. In the early stages, benchmarks like LinkBench were
used to simulate UDB workloads. We observed an issue where the
association range scan performance gradually degraded as the
number of delete tombstones gradually increased in RocksDB data
files. As mentioned in Section 2.3, the secondary index id1_type
had many columns, including timestamp and version, and was a
covering index [8]. This made range scans faster since random
reads from primary keys were not needed for these columns.
However, every update query modified the timestamp and version
fields, resulting in constant updates to the secondary index.

Updating indexed columns in MyRocks means changing “keys” in
RocksDB. Changing the RocksDB keys requires a Delete for the
old key and a Put for the new key. The delete tombstone removes
the matching Put during the MemTable Flush or Compactions, but
the tombstone itself remains, since it is possible that a Put for the
same key may exist in lower level SST files. The RocksDB
compaction process drops tombstones during compaction once they
reached Lmax. Updating MyRocks index key fields many times
means generating huge number of tombstones. This makes range
scans significantly expensive, since it needs to scan all tombstones.
In UDB, changing primary key columns does not happen in usual
workloads, so changing the primary keys incurred no performance
implications. However, changing secondary keys does occur in
steady state workloads. The association secondary keys were
heavily used for range scans, such as returning a list of IDs who
liked a specific photo.

To resolve tombstone inefficiencies, we introduced a new RocksDB
Deletion type called SingleDelete. Compared to Delete,
SingleDelete can immediately be dropped when removing a
matched Put. The expected shorter lifespan of SingleDelete
tombstones maintained range scan performance even with a steady

3222

stream of secondary index changes. SingleDelete does not work
when multiple Puts occur to the same key. For example, Put(key=1,
value=1), Put(key=1, value=2) then SingleDelete(key=1) ends up
as (key=1, value=1) still remaining, while Delete(key=1) hides
both Puts. This is a data inconsistency scenario and SingleDelete
should not be used in this case. The MyRocks secondary key
prevents multiple Puts to the same key. If a secondary key does not
change, MyRocks does not issue a RocksDB update call for the
secondary key. If the secondary key changes, MyRocks issues
SingleDelete(old_secondary_key) and Put(new_secondary_key).
Multiple Puts to the same secondary_key without SingleDelete
never occurs.

3.2.2.3 Triggering Compaction based on Tombstones
When deleting large numbers of rows, some SST files might
become filled with tombstones and impact range scan performance.
RocksDB extended compaction to track close-by tombstones.
When a key range with a high density of tombstones is detected
during flush or compaction, it immediately triggers another
compaction. This helps reduce range scan performance skews
caused by scanning an excessive number of tombstones. We call it
the feature Deletion Triggered Compaction (DTC).

Figure 5 was a LinkBench results with and without DTC and
SingleDelete. X-axis was time spent and Y-axis was query per
second. With no optimization, QPS significantly degraded with
time spent, and did not come back until most tombstone
disappeared by compactions. SingleDelete showed similar
behavior but QPS drop was lower and maximum throughput was
higher. DTC made overall QPS drop much less significant. In
production, providing stable performance was important so using
both DTC and SingleDelete was more valuable to us.

Figure 5: Linkbench with deletion optimizations

3.2.3 Space and Compaction Challenges

3.2.3.1 DRAM Usage Regression
The bloom filter is important for LSM-tree performance and needs
to be cached in DRAM to be effective. This caused a significant
DRAM usage regression compared to InnoDB. Our design used the
typical bloom filter size of 10 bits per key. In order to reduce
DRAM usage by bloom filters, we extended RocksDB to optionally
allow it to skip creating the bloom filter in the last sorted run. By
tuning the level size multiplier to 10 and the last run contain 90%
of the data, the total bloom filter size was reduced by 90%, while
the bloom filter is still effective. Skipping the bloom filter when
using compression in the last level had the side effect that empty
key lookups, such as unique key check by INSERTs, become more
expensive. We chose memory efficiency over extra CPU time there.

3.2.3.2 SSD Slowness Because of Compaction
MyRocks relies on SSD’s Trim command to reduce SSD’s internal
write amplification and improve performance [16]. However, we
noticed that performance for some SSDs may temporarily drop
after a spike of Trim commands. Compactions may create hundreds
of megabytes to gigabytes of SST files. Deleting all of those files
at once may cause a spike in trims resulting in potential
performance issues or even stalls on flash storage. The solution was
to add rate limiting to file deletion speeds to avoid such stalls.

Compaction I/O requests may also compete with user query I/O
requests, causing query latency to increase. We added rate limits to
compaction I/O requests to mitigate their effect on user query I/O.

3.2.3.3 Physically Removing Stale Data
In UDB, migration jobs are scheduled to remove unused data.
Deletions have several types. Normal deletions, which execute the
DELETE statement and use Delete/SingleDelete RocksDB APIs
are typically related to user driven data deletion requests. Logical
deletions, which execute UPDATE statements and use Put
RocksDB APIs, are usually driven for space savings optimizations,
such as overwriting unused data column to NULL but not deleting
the record.

Our social graph workload typically allocates ever increasing fbid
for object tables. The rate of modifications for an object usually
decreases over time. If the object is deleted, no further
modifications will be made to it. Since object tables use fbid as a
primary key and since most insert/update/delete queries are for
newly allocated fbid, there is a high chance that SST files
containing both normal and logical deletions for old objects/fbids
do not get picked up for compaction because all new changes come
from newer fbids. These Delete or Put RocksDB operations for old
fbids made their way into L1~L2, but compactions never continued
to push them into Lmax. As a result, the row images containing the
data remained in Lmax and they continued to take up space.

This was resolved by implementing Periodic Compaction in
RocksDB. The feature checked the age of the data in the SST files,
and if it was older than a settable threshold, it triggered
compactions until it reached Lmax. This ensured that both Delete
and Put eventually reached Lmax within reasonable time frames
and that the space can be reclaimed.

3.2.3.4 Bulk Loading
One of the most common causes of stalls in LSM-tree databases
like RocksDB was burst writes. Several types of data migration
jobs, such as online schema changes and data loading, generated
massive data writes. For example, the InnoDB to MyRocks
migration needed to dump from InnoDB and load into MyRocks.
MemTable flush and compaction are unable to keep up with heavy
write ingestion rates. Writes, including those from user queries,
would then be stalled until flush and compaction has made
sufficient progress. Throttling was one way to mitigate, but it
increased overall migration time.

To optimize burst writes and ensure they do not interfere with user
queries, we implemented a bulk loading capability in RocksDB and
MyRocks takes advantage of it. With bulk loading, MyRocks used
RocksDB File Ingestion API to create SST files. The new SST files
are directly ingested into Lmax, automatically and atomically
updating the RocksDB Manifest to reflect the data files. Using Bulk
Loading allows data migration jobs to bypass the MemTable and

3223

compactions through each RocksDB sorted run level, thus
eliminating any write stalls from those applications. Bulk loading
requires that ingested key ranges never overlap with existing data.
For us, massive data writes typically occurred when creating new
tables, so bulk loading supports this scenario. Figure 6 was a
benchmark to load our associations tables, which had both primary
and secondary keys, into InnoDB and MyRocks, with and without
bulk loading. X-axis was the number of tables to load in parallel,
and Y-axis was rows inserted per second. With MyRocks bulk
loading, insert throughput linearly scaled at least up to 20 tables and
throughput was higher than InnoDB by 2.2 times (with one table,
one concurrency) to 5.7 times (with 20 tables, 20 concurrency).
Bulk loading eliminated stalls caused by these migration jobs.

Figure 6: Bulk Loading throughput

3.3 Extra Benefits of Using MyRocks
While we had to overcome many challenges by using LSM-tree, in
addition to space and write efficiency, the development effort also
yielded the following benefits.

3.3.1 Online Backup and Restore Performance
We take logical backups from the database for disaster recovery and
take binary log backups for point in time recovery. We implemented
a read only snapshot to take consistent reads in MyRocks and let
our logical backup tool use it. Compared to InnoDB, long running
consistent reads were more efficient in MyRocks. InnoDB
implemented UNDO logs [17] as a linked list and needed to keep
all changes in the list after creating a transaction snapshot. It also
needed to rewind the list to find the row based on the consistent
snapshot. This caused significant slowdown if there were hot rows
that changed a lot and a long running select needed to read the row
after creating a snapshot. In MyRocks, a long running snapshot can
maintain a reference to the specific version of the row needed.

Restore from logical backups is much faster than InnoDB since
MyRocks can utilize bulk loading features (Figure 6).

We use physical backups for cloning a replica instance. Cloning an
instance is done by creating a checkpoint in RocksDB and then
sending all SST files and WAL files to a destination location. A
RocksDB checkpoint creates hard links of the SST files. Since SST
files are immutable, no modification to the original files can be
made, allowing the checkpoint to point to a snapshot in time.
Cloning to a host in a different region may take hours due to
network transfer rates, especially if the source instance is large. A
newly cloned instance will then replicate from the MySQL primary
instance. This process to catch up the clone on transactions that
took place after checkpoint creation may also take hours, depending

on the rate of changes made on primary. To reduce replica
synchronization time, we periodically re-create checkpoints during
cloning, and continuously send newly hard linked SST files to the
destination. Replication synchronization is only needed between
the last checkpoint and the end of the copy, which could be limited
regardless of database instance size.

3.3.2 Scales Better with Many Secondary Indexes
In MyRocks, manipulating secondary indexes can be done without
random reads. Internally MyRocks issues RocksDB Put for
inserting, SingleDelete and Put for updating, and SingleDelete for
deleting secondary indexes, but they do not need to call
Get/GetForUpdate. This was a significant advantage over InnoDB
for heavily modified tables with multiple secondary indexes. Figure
6 shows that MyRocks had better insert throughput than InnoDB
for a table that had one secondary index.

3.3.3 Replace and Insert Without Reads
MySQL has a REPLACE syntax, which blindly inserts/overwrites
a new row. Internally REPLACE reads from a primary key to
discover a matching row by the key. If the row exists, it is deleted
and a new row overwrites it with the new value. Otherwise it
behaves like INSERT. MyRocks optimized REPLACE to issue the
RocksDB Put and skip unique key checks. The LSM-tree database
made it possible to skip the random read and improved the write
throughput.

MyRocks also has an option for INSERT statements to skip
checking unique key constraints. If it is skipped, MyRocks does not
need to perform a random read, while InnoDB still needs to issue
the read. The drawback is these blind insertions may easily
introduce data consistency bugs when interacting with other
MySQL features like triggers and replication. We were not willing
to take that risk in UDB so we took the safer direction to disable
these optimizations. This performance feature is still available to
users.

3.3.4 More Compression Opportunities
LSM-tree databases like RocksDB have multiple compression
opportunities. We highlight one effective compression
optimization, the “per level compression” algorithm.

RocksDB has multiple compression levels from L0 to Lmax. While
RocksDB has 90% of the data in Lmax by default, most
compactions typically happen at levels other than Lmax. This drove
us to configure different compression algorithms between levels.
Using a strong compression algorithm for Lmax and faster
algorithm such as LZ4, or even no compression in non-Lmax
levels, makes sense. RocksDB explicitly sets specific compression
algorithms in Lmax. In UDB, we used Zstandard for Lmax, and
LZ4 for other levels. Using faster compression algorithm for levels
like L0 and L1 was helpful for MemTable flush and compactions
to keep up with write ingestions. In UDB, approximately 80% of
compaction bytes are completed in non-Lmax levels. By adopting
LZ4 for non-Lmax levels, overall compaction time spent could
drop to one third, compared to using Zstandard for all levels.

4. PRODUCTION MIGRATION
We started migrating from InnoDB to MyRocks in UDB after a year
and a half of development and testing. Since new software will
likely have bugs, we first added MyRocks as a “disabled replica”,

3224

which meant executing replication traffic from the InnoDB primary
instance, while not serving production read traffic. This enabled
testing of MyRocks functionality without affecting production
services. We could verify if MyRocks could serve writes without
replication being stopped or inducing inconsistent data. We could
validate data recovery correctness if the MyRocks instance crashed.
Various automation tools, such as instance upgrade and database
backup, can test interactions with the instance.

We created a disabled MyRocks replica instance by logically
exporting InnoDB tables and then importing them into MyRocks
using the bulk loading feature. Since InnoDB had clustered index
structures, exported data was already sorted by primary key, which
could be bulk loaded into MyRocks without extra sorting. For each
replica set, we could migrate 200~300GB of InnoDB data per hour.

4.1 MyShadow – Shadow Query Testing
MyRocks needed to be tested before enabling it in a production
environment. Of specific concern was how to verify that MyRocks
could serve queries reliably, including verifying CPU and I/O
utilization as compared to InnoDB, and checking for unexpected
crashes or query plan regressions.

To test production queries, we created a shadow testing tool called
MyShadow. At Facebook, we had a custom MySQL Audit Plugin
that captured production queries and recorded them to our internal
logging service. MyShadow read these captured queries from the
logging service and replayed them to target MySQL instances. We
used MyShadow first to capture read queries from the production
InnoDB replica, then replayed the queries to a test MyRocks
replica, allowing us to fix any query regressions before serving
production read requests in MyRocks.

Figure 7: MyShadow Architecture

4.2 Data Correctness Checks
When starting to use a new database in production, it was a big
challenge to validate the new database stored and returned correct
data. We have InnoDB as the reference implementation to validate
data correctness by comparing its data to MyRocks’s. We created a
data correctness tool to compare data returned from each storage
engine. Our tool had three modes: Single, Pair and Select.

Single mode checked consistency between primary key and
secondary keys of the same table in the instance by verifying if row
counts and checksum of overlapping columns were identical.
Single mode could find some internal MyRocks or RocksDB bugs
that did not update either of the index correctly. For example, we
could find a few RocksDB compaction bugs that ended up not
deleting keys correctly, which showed up as index inconsistencies.

Pair mode ran full table scans to check row counts and checksum
of the primary keys from two instances, based on a consistent
snapshot at the same transaction state (Figure 8). Pair mode could
compare InnoDB and MyRocks instances. It could find bugs that
was not covered by Single mode, such as missing or extra rows in
one of the instances.

Select mode was like pair mode, but instead of full scan statements,
it ran select statements captured from MyShadow, and compared
results between two instances. If select statement results were not
consistent, it indicated inconsistencies so we could investigate
further. Select mode could find inconsistencies reliably, but it also
required filtering out false positives from nondeterministic queries
(e.g. use of functions like NOW(), which returns the current time).

Figure 8: Data Correctness algorithm (Pair and Select mode)

4.3 Fixed Incompatible Queries
MyShadow and Data Correctness Tests revealed several issues that
we could not find during unit tests or using common benchmarks
like sysbench and LinkBench. Single mode Data Correctness found
some RocksDB compaction bugs that did not handle
Delete/SingleDelete correctly. Select mode Data Correctness found
interesting bugs in the prefix bloom filter where some range scans
with equal predicates returned fewer rows than expected. These
were fixed prior to enabling MyRocks.

We will highlight one outstanding issue we found during
MyShadow write traffic tests.

4.3.1 Gap Lock and Isolation Behavior Differences
Default transaction isolation level in MySQL is Repeatable Read,
and is used in UDB. Repeatable Read implementation in InnoDB
was unique compared to other database products. InnoDB’s locking
reads behaved as Read Committed, by returning the current
snapshot. It was not strictly Repeatable Read. Instead, InnoDB
locks ranges (Gap) on locking reads, and holds the locks even when
the rows do not exist, to block other transactions from updating the
same ranges. Statement Based Binary Logging also requires Gap
Locks for correctness.

On the other hand, MyRocks adopted Snapshot Isolation model for
Repeatable Read, which was the same as found in PostgreSQL. We
considered the InnoDB style Gap Lock based implementation as
well, but we concluded that Snapshot Isolation was simpler to
implement. We can also switch our replicas to use Row Based
Binary Logging and obviate the need for Gap Lock support.

This behavior difference caused issues when testing MyShadow
write traffic. Snapshot Isolation based Repeatable Read returned
errors if rows were conflicted, while InnoDB style locking reads
did not conflict since it was essentially Read Committed. As a
result, MySQL primary instances running MyRocks returned
visibly higher number of errors than InnoDB primary instances

3225

when using Repeatable Read isolation level. To reduce error rates,
we investigated common conflicting queries, discussed the issue
with application developers, and switched to Read Committed
when we confirmed they were safe. We also added a logging feature
to log queries using Gap Locks. Some apps explicitly depended on
Gap Locks while others benefited from it by accident, and logging
helped uncover these different cases.

4.4 Actual Migration
After passing MyShadow and Data Correctness testing, we started
enabling MyRocks instances in production. We started with replica
instances that served production read traffic and replicated from the
primary instance.

Figure 9 shows migration steps we took in UDB. When we
migrated to MyRocks in 2016-2017, we had six MySQL instances
for each MySQL Replica Set (one primary and five replica
instances replicating from the primary). We configured four
InnoDB and two MyRocks instances in the same replica set, and
the primary instance was fixed to InnoDB. MyRocks instances
replicated from the InnoDB primary. MySQL separated the storage
engines (InnoDB/MyRocks) from the replication streams (Binary
Logs), so Binary Log formats were independent from storage
engines. This architecture made the MyRocks deployment much
less complex.

This configuration ran for a few months to validate that MyRocks
could serve production read traffic reliably. We also continued
intensive MyShadow write traffic tests to prepare for making
MyRocks the primary.

Promoting MyRocks to primary was the culmination of years of
effort since there was only one primary in each MySQL replica set.
Despite all the planning and testing, there was still some
trepidation. It required a leap of faith that we found all problems.
When we enabled MyRocks as the primary, we monitored all
applications closely for any unexpected behavior, but it all went
smoothly. We continued to maintain a number of InnoDB replica
instances in case we needed to revert MyRocks, but they were never
needed. At this stage, we kept three MyRocks instances, including
one primary, and three InnoDB replica instances for each replica
set, and kept the topology up for another few months until we were
confident that we could remove the InnoDB.

Having two or more instances with the same storage engine was
essential during the transition phase. We had tens of thousands of
replica sets, so losing some instances by hardware or software
failures was normal. Had we lost all InnoDB or MyRocks instances
in the same replica set, we would have had to perform a logical
copy (exporting from InnoDB/MyRocks then importing into
MyRocks/InnoDB), which was much more expensive than physical
copy. Migrating from MyRocks to InnoDB was very painful
because InnoDB did not have bulk loading capabilities. We kept
three InnoDB instances for each replica set so that losing all
instances at the same time was very unlikely.

We started enabling MyRocks replicas to serve production read
traffic in mid 2016. We added MyRocks primary instances in early
2017. We gradually promoted more MyRocks instances to
primaries. We removed almost all InnoDB instances by August
2017. Until migrations were complete, we kept two or more
InnoDB and MyRocks instances in the same replica set, to avoid
logical migrations when losing instances.

Figure 9: MyRocks instance migration steps.

5. RESULTS
These days we operate tens of thousands of MySQL replica sets in
UDB, and the majority are only MyRocks. We keep a very small
number of replica sets containing both InnoDB and MyRocks.
These replica sets help us continuously benchmark against InnoDB
based on our production workloads, as well as finding any
unexpected bugs, such as query correctness or optimizer plan
regressions.

5.1 MyRocks vs InnoDB Efficiency in UDB
Table 1 reflects a set of statistics from one of the UDB replica sets.
It includes database instance size and the average CPU utilizations
during peak time for two scenarios, with and without user read
requests. Both scenarios include replication write requests. The
data excludes DBA batch jobs such as backups and schema
changes. We typically monitor space and CPU utilization for
capacity planning. Common benchmarks like sysbench and TPC-C
measure throughput rather than CPU utilization. In production
database operations, we are working to save CPU time for given
workloads. If a replica hits 100% CPU time, it will not be able to
reliably serve more requests. So it is more important to track how
much CPU time is spent on given workloads.

The MyRocks instance size was 37.7% compared to the InnoDB
instance size with the same data sets. Our InnoDB instance was
using compressed format. This shows that LSM-based RocksDB
can be much more space efficient compared to B+Tree based
compressed InnoDB. When we first deployed MyRocks in
production in 2016, approximate space reduction was slightly
above 50%. Since then, we changed the compression algorithm
from Zlib to Zstandard, and support PeriodicCompaction to
periodically reclaim stale data, realizing even greater space savings.

MyRocks was nearly 40% more CPU efficient than InnoDB when
not serving read traffic and only serving write requests through
replication. We have secondary indexes in most of the tables
including objects and associations. When modifying rows
MyRocks could maintain secondary indexes without random reads,
which made a big difference compared to InnoDB.

CPU time spent serving both read and write traffic was slightly
lower in MyRocks than in InnoDB. 1.65 means the MySQL server
process (mysqld) used 1.65 CPU seconds for both user and system
per second. Commodity servers have tens of CPU cores. We are
targeting aggregated CPU utilizations by mysqld process under
40% of the total CPU cores during peak time. On typical hardware,
we run many MyRocks instances per host. The MyRocks instances
were more than 60% smaller compared to InnoDB, which means
instance density became 2.5 times larger, and resulted in much
higher aggregated CPU utilization. Note that these numbers were
from replica instances. Primary instances used more CPU time for

3226

sending binary logs to replicas, which were equally expensive
between InnoDB and MyRocks. Some batch operations like logical
backups also added CPU time although we did not usually run them
during peak time. Right now our CPU utilization in UDB is still
under target, but optimizing further is one of our long-term goals.
Latency of read requests were comparable between InnoDB and
MyRocks.

Overall, we could operate MyRocks with much smaller footprint
and slightly lower CPU utilizations for our production UDB,
compared to the compressed InnoDB we primarily used until 2017.

There were multiple factors where InnoDB could have been more
efficient. For example, InnoDB supported only Zlib compression
algorithm, while MyRocks had additional options like LZ4 and
Zstandard, which were more CPU and/or space efficient
compression algorithms. Also, our MySQL server binary was built
with feedback-directed optimization (FDO), which optimized the
binary based on MyRocks workloads. These reduced the CPU
usage of MyRocks instances by approximately 7~10%. Due to
maintenance considerations, we do not keep binaries optimized for
InnoDB. By supporting Zstandard for InnoDB compression and
building InnoDB optimized binary, CPU utilization of InnoDB
instance will be comparable to MyRocks in our UDB workloads.
Since we are already operating MyRocks everywhere in UDB, and
due to density reasons, MyRocks is serving much more traffic than
InnoDB per same space, we are focusing more optimizing CPU
efficiencies in MyRocks.

Table 1: UDB statistics compared to InnoDB and MyRocks
Engine Space CPU

seconds/s
for writes

CPU
seconds/s

for reads +
writes

Bytes
written per

second

InnoDB 2187.4GB 0.89 1.83 13.34MB

MyRocks 824.4GB 0.55 1.65 3.42MB

5.2 Migrated Facebook Messenger Backend
from HBase to MySQL With MyRocks
HBase [18] was the choice for the Facebook Messenger backend
database since its launch in 2010. At that time, HBase was chosen
as the Facebook Messenger database because Messenger was write
intensive and HBase was a good fit for it. HBase is based on a LSM
algorithm, is strongly consistent, and runs well on HDD [19].
InnoDB was not chosen because it was not write and space
optimized. Several years since then, flash storage has come to
dominate database storage, and we have encountered issues where
HBase could not use flash storage capacity because it exhausted
CPU quickly, caused mainly by Garbage Collections.

The successful InnoDB to MyRocks migration in UDB suggested
a direction to migrate from HBase to MySQL with the MyRocks
engine, too. The migration was more complex than UDB since
HBase and MySQL were very different database products. The
migration was done in conjunction with refactoring the Facebook
Messenger application. The data migration was done using
MapReduce jobs to extract the data from HBase and loading it into
MySQL. During the transition phase, consistency was checked by
double writing and reading. The full details are discussed in [20].

UDB (InnoDB to MyRocks) and Facebook Messenger (HBase to
MySQL/MyRocks) were very large OLTP database services at

Facebook, and we were very excited that our research projects,
which started in mid 2014, have come this far. We decided to move
away from HBase to MySQL/MyRocks primarily since the latter
ran much better on flash storage. MyRocks used less CPU time and
stalled less often. People might be surprised that we migrated from
NoSQL to SQL because of performance, since NoSQL was
supposed to be faster. But in general, fundamentals like database
architecture, data modeling, data access algorithm and ability to
tune them easily mattered more than CPU time to parse SQL
statements.

6. LESSONS LEARNED
The MySQL team at Facebook had Software Engineers who
modified the MySQL server code base for Facebook workloads,
and Production Engineers (PE) who made MySQL infrastructure
automated and reliable day to day. PE were also heavily involved
in MyRocks and RocksDB developments from very early stages.
The PE spent significant efforts to stabilize InnoDB in UDB in the
past, so they had better predications about what kinds of issues
might happen during migrations. This helped prioritize and
determine the features and directions for improving MyRocks and
RocksDB. Ultimately, this reduced the time it took to successfully
migrate the UDB backends. Driving migration projects without
understanding the current production database workloads is harder
to succeed.

When developing a new storage engine, it is very important to
understand how core components worked, including flash storage
and the Linux Kernel, from development to debugging production
issues. It is important not only for database servers, but also for
operational tools like backups. While it may be simpler to treat
underlying components as black boxes, we believe this may lead to
missed opportunities for improvement. Also, problems that occur
between an application and the underlying component are harder to
debug without first building expertise in these areas.

Outliers should not be ignored. Many of our production issues
happened on only one or a few instances. Checking at the p90 or
p99 data points would not have caught such issues. At Facebook,
we have invested a lot in monitoring to quickly catch such outliers.
Running correctness checks, even after production deployment,
was important for finding bugs.

From operational standpoint, SQL compatibility was extremely
helpful to migrate within reasonable time. Many of our important
tools, such as MyShadow and data correctness, worked for both
InnoDB and MyRocks thanks to SQL compatibility.

We realized that a LSM-tree database like RocksDB has many more
adjustable parameters. It was much more workload dependent and
harder to tune correctly. Applications generating many tombstones
affected performance more severely than InnoDB and calibrating
MyRocks properly was challenging. It is our long term goal to
make MyRocks require less tuning to support a greater range of
workload patterns. The LSM-tree database had features to speed up
writes by sacrificing consistency, but we currently favor more
conservative settings.

6.1 Memory Stalls and Efficiency
We have learned several lessons from memory allocation reliability
and efficiency. RocksDB is more heavily dependent on memory
allocator implementations than InnoDB. RocksDB allocates
memory for each block and the actual block size differs from block

3227

to block. We used jemalloc [21] and it was crucial for our
workloads.

RocksDB used to rely on Linux’s page cache for Buffered I/O with
simply POSIX fadvise hints, while InnoDB supports Direct I/O
(Linux O_DIRECT). We started using MyRocks with Buffered I/O
in production, however we faced two challenges. One was
transaction commit stalls triggered by the Linux page cache
allocations, and the other was higher Linux kernel memory usage
leading to swapping.

MyRocks transaction commit paths perform many memory
operations (e.g. MemTable writes, binlog/wal writes), which
caused Kernel Memory allocation stalls with the Linux Kernel 4.0.
We upgraded Linux to 4.6, which solved most VM allocation issues
and mitigated the problem.

6.1.1 Transitioning to Direct I/O in RocksDB
To achieve higher efficiency gains, we tried to use bigger flash
storage capacity without increasing DRAM size, but we started
seeing swaps triggered by memory pressure. We found that the
Linux kernel allocated approximately 2~3GB of slab memory per
1TB of RocksDB SST files. As the storage size increased the
overhead was not negligible, especially with a smaller DRAM
configuration. Though our Linux Kernel team at Facebook
implemented a new radix tree structure to reduce memory overhead
to manage large data files, we decided to support Direct I/O in
RocksDB and make it less dependent on a Linux kernel distribution
[22]. Making MyRocks less dependent on specific operation
system optimizations is important for the open source community.
Most database users do not have a dedicated Linux kernel team, and
some use proven stable kernel versions, which are relatively old.
They could see better benchmark results even with older kernel.
After using Direct I/O, our average slab size dropped by over 80%.

One notable challenge transitioning from buffered I/O to direct I/O
in production was that we had to make sure we did not mix buffered
and direct I/O to the same file. It was undefined behavior in Linux
and caused significant performance slowdown. We adjusted our
tools reading the files to match the access pattern. For example, our
online MyRocks binary backup tool copied RocksDB SST files
either using direct or buffered I/O, based on the instance’s setting.

7. RELATED WORK
LSM-tree based databases have existed for a long time. Big Table
[23], LevelDB [13], Cassandra [24] and HBase [18] are a few
examples. To our knowledge, most of the optimization techniques
we introduced in this paper are novel and not present in previous
systems. MyRocks also differs from other systems as space
capacity efficiency is the primary optimization goal.

Spanner [25] is a SQL database based on LSM-tree, but it is a SQL
database built from ground up while MyRocks has a clear goal of
matching performance of existing systems and keeping the
database behavior compatible.

Several database services built their SQL databases using RocksDB
as a storage engine, such as CockroachDB [26], Yugabytes [27],
and TiDB [28]. Those systems built SQL and distributed capability
from scratch, while one important goal of MyRocks is to keep those
layers intact by continuing using MySQL.

There are other projects that create or extend MySQL storage
engines, while keeping it transparent to database users and
administrators. Amazon Aurora [29], TokuDB [30] and PolarDB

[31] are a few examples. The MyRocks solution differs from these
solutions for (1) MyRocks uses LSM-tree; (2) an existing key/value
store library, RocksDB, is used rather than implementing a new
one.

Some works, e.g. [32], introduce database migration system in the
context of multi-tenant databases in cloud. Others shared
experience on large scale migration of their databases, e.g. [33][34].
While their works focused on data integrity for the migrated data
itself and performance tuning, we focused on detecting
performance regression, data correctness bugs and query
incompatibility caused by storage engine implementation as early
as possible.

Regarding saving DRAM for bloom filter in LSM-trees, [35] and
[36] proposed more adaptive and general approaches. While
RocksDB uses prefix bloom filter to filter out short range queries,
[37] proposed a general range filter for LSM-trees.

8. CONCLUSION AND FUTURE WORKS
This paper introduces UDB, our largest OLTP database for handling
social activities at Facebook. We placed a high priority on
continually increasing efficiency, which led to the development of
a LSM-tree database that is more space and write optimized than
the B+Tree database, InnoDB. We created MyRocks, a MySQL
storage engine, on top of RocksDB, a key/value store library.
MyRocks made our production database migration from InnoDB
significantly easier, since both are MySQL storage engines.
Leveraging MySQL features, MyRocks and InnoDB instances
could replicate from each other. No significant client changes were
needed. The LSM-tree database was known to be space and write
optimized, but the downside was more expensive reads. While
MyRocks addresses two major bottlenecks of the systems, we faced
several challenges, including CPU efficiencies. Significant
optimizations in RocksDB, such as hybrid compression algorithms
and flexible bloom filter, addressed these issues. Our MyRocks
mixed read and write workloads in UDB were eventually more
CPU efficient than InnoDB’s. Our success with UDB led to the
HBase to MyRocks migration in Facebook Messenger.

Simplifying MyRocks performance tuning so it can be used without
in depth knowledge is our next milestone. While configuring the
prefix bloom filter, reverse key comparators and skipping last level
bloom filters, we have managed to match the performance of
InnoDB, it required significant effort. We plan to allow RocksDB
to adaptively tune itself dynamically.

9. ACKNOWLEDGMENTS
While we cannot list all our contributors to the MyRocks and
RocksDB engineering projects, we would like to thank everyone
who supported us and note a few special contributors. Sergey
Petrunya at MariaDB worked with us from very early stage of
MyRocks and LevelDB Storage Engines. Sergey developed much
of MyRocks storage engine implementation, including
comparators, secondary index support, optimizer statistics, index
condition pushdown, and batched key access. We would also like
to thank Google for releasing LevelDB as an open source LSM-tree
database, Dhruba Borthakur for creating RocksDB from LevelDB,
and Mark Callaghan for generous mentoring and great advice. And
finally, many thanks to our former and current colleagues on the
MySQL Software Engineering, RocksDB Software Engineering,
and MySQL Production Engineering teams at Facebook.

3228

10. REFERENCES
[1] M. Athanassoulis, M. S. Kester, L. M. Maas, R. I. Stoica, S.

Idreos, A. Ailamaki, and M. Callaghan. Designing Access
Methods: The RUM Conjecture. In Proceedings of the
International Conference on Extending Database Technology
(EDBT) Conference, 2016

[2] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and
Elizabeth O’Neil. 1996. The log-structured merge-tree
(LSM-tree). Acta Inf. 33, 4 (June 1996), 351–385.

[3] Venkateshwaran Venkataramani, Zach Amsden, Nathan
Bronson, George Cabrera III, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Jeremy Hoon,
Sachin Kulkarni, Nathan Lawrence, Mark Marchukov,
Dmitri Petrov, and Lovro Puzar. 2012. TAO: how facebook
serves the social graph. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data
(SIGMOD ’12). Association for Computing Machinery, New
York, NY, USA, 791–792.

[4] Facebook’s MySQL extensions.
https://github.com/facebook/mysql-5.6

[5] Data centers year in review. Facebook Engineering.
https://engineering.fb.com/data-center-engineering/data-
centers-2018/.

[6] Sharma, Y., Ajoux, P., Ang, P., Callies, D., Choudhary, A.,
Demailly, L., Fersch, T., Guz, L.A., Kotulski, A., Kulkarni, S.
and Kumar, S., 2015. Wormhole: Reliable pub-sub to support
geo-replicated internet services. In 12th USENIX
Symposium on Networked Systems Design and
Implementation (NSDI 15) (pp. 351-366).

[7] Flashcache https://www.facebook.com/notes/mysql-at-
facebook/releasing-flashcache/388112370932/

[8] MySQL Glossary for Covering Index
https://dev.mysql.com/doc/refman/5.6/en/glossary.html#glos
_covering_index

[9] RocksDB. https://github.com/facebook/rocksdb

[10] Amy Tai, Andrew Kryczka, Shobhit O. Kanaujia, Kyle
Jamieson, Michael J. Freedman, and Asaf Cidon. 2019.
Who’s afraid of uncorrectable bit errors? online recovery of
flash errors with distributed redundancy. In Proceedings of
the 2019 USENIX Conference on Usenix Annual Technical
Conference (USENIX ATC ’19). USENIX Association,
USA, 977–991.

[11] Guoqiang Jerry Chen, Janet L. Wiener, Shridhar Iyer, Anshul
Jaiswal, Ran Lei, Nikhil Simha, Wei Wang, Kevin Wilfong,
Tim Williamson, and Serhat Yilmaz. 2016. Realtime Data
Processing at Facebook. In Proceedings of the 2016
International Conference on Management of Data (SIGMOD
’16). Association for Computing Machinery, New York, NY,
USA, 1087–1098.

[12] Arun Sharma. Dragon: A distributed graph query engine.
https://engineering.fb.com/data-infrastructure/dragon-a-
distributed-graph-query-engine/

[13] Ghemawat, S. and Dean, J., 2011. LevelDB.
https://github.com/google/leveldb

[14] S. Dong, M. Callaghan, L. Galanis, D. Borthakur, T. Savor,
and M. Strumm. Optimizing space amplification in
RocksDB. In CIDR, volume 3, page 3, 2017.

[15] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba
Borthakur, and Mark Callaghan. 2013. LinkBench: a
database benchmark based on the Facebook social graph. In
Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’13).
Association for Computing Machinery, New York, NY, USA,
1185–1196.

[16] Tasha Frankie, Gordon Hughes, and Ken Kreutz-Delgado.
2012. A mathematical model of the trim command in NAND-
flash SSDs. In Proceedings of the 50th Annual Southeast
Regional Conference (ACM-SE ’12). Association for
Computing Machinery, New York, NY, USA, 59–64.

[17] MySQL InnoDB Undo Logs
https://dev.mysql.com/doc/refman/5.6/en/innodb-undo-
logs.html

[18] George, Lars. HBase: the definitive guide: random access to
your planet-size data. " O'Reilly Media, Inc.", 2011.

[19] Tyler Harter, Dhruba Borthakur, Siying Dong, Amitanand
Aiyer, Liyin Tang, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. 2014. Analysis of HDFS under HBase: a
facebook messages case study. In Proceedings of the 12th
USENIX conference on File and Storage Technologies
(FAST’14). USENIX Association, USA, 199–212.

[20] Xiang Li, Thomas Georgiou. Migrating Messenger storage to
optimize performance https://engineering.fb.com/core-
data/migrating-messenger-storage-to-optimize-performance/

[21] Evans, J. 2006, A Scalable Concurrent malloc(3)
Implementation for FreeBSD

[22] Stonebraker, M. 1981. Operating System Support for
Database Management. Communications of the ACM 24(7):
412-418

[23] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C.
Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra,
Andrew Fikes, and Robert E. Gruber. 2008. Bigtable: A
Distributed Storage System for Structured Data. ACM Trans.
Comput. Syst. 26, 2, Article 4 (June 2008), 26 pages.

[24] Lakshman, A. and Malik, P., 2010. Cassandra: a
decentralized structured storage system. ACM SIGOPS
Operating Systems Review, 44(2), pp.35-40.

[25] Bacon, D.F., Bales, N., Bruno, N., Cooper, B.F., Dickinson,
A., Fikes, A., Fraser, C., Gubarev, A., Joshi, M., Kogan, E.
and Lloyd, A., 2017, May. Spanner: Becoming a SQL
system. In Proceedings of the 2017 ACM International
Conference on Management of Data (pp. 331-343).

[26] Taft, R., Sharif, I., Matei, A., VanBenschoten, N., Lewis, J.,
Grieger, T., Niemi, K., Woods, A., Birzin, A., Poss, R. and
Bardea, P., 2020, June. CockroachDB: The Resilient Geo-
Distributed SQL Database. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data
(pp. 1493-1509).

3229

[27] Yugabyte, Inc. The Leading High-Performance Distributed
SQL Database. https://www.yugabyte.com/. Accessed: 2020-
02-09.

[28] PingCAP. Tackling MySQL Scalability with TiDB: the most
actively developed open source NewSQL database on
GitHub. https://pingcap.com/. Accessed: 2020-02-09.

[29] Verbitski, A., Gupta, A., Saha, D., Brahmadesam, M., Gupta,
K., Mittal, R., Krishnamurthy, S., Maurice, S., Kharatishvili,
T. and Bao, X., 2017, May. Amazon aurora: Design
considerations for high throughput cloud-native relational
databases. In Proceedings of the 2017 ACM International
Conference on Management of Data (pp. 1041-1052).

[30] I. Tokutek, “TokuDB: MySQL performance, MariaDB
performance,” http://www.tokutek.com/products/tokudb-for-
mysql/, 2013.

[31] Feifei Li. Cloud-Native Database Systems at Alibaba:
Opportunities and Challenges. PVLDB, 12(12): 2263 - 2272,
2019.
DOI: https://doi.org/10.14778/3352063.3352141

[32] Elmore, A.J., Das, S., Agrawal, D. and El Abbadi, A., 2011,
June. Zephyr: live migration in shared nothing databases for
elastic cloud platforms. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of
data (pp. 301-312).

[33] Netflix Technology Blog. Netflix Billing Migration to AWS
— Part III. https://netflixtechblog.com/netflix-billing-
migration-to-aws-part-iii-7d94ab9d1f59

[34] Migrating from AWS RDS MySQL to AWS Aurora
Serverless MySQL Database.
https://www.adelatech.com/migrating-from-aws-rds-mysql-
to-aws-aurora-serverless-mysql-database/

[35] Dayan, N., Athanassoulis, M. and Idreos, S., 2017, May.
Monkey: Optimal navigable key-value store. In Proceedings
of the 2017 ACM International Conference on Management
of Data (pp. 79-94).

[36] Zhang, Y., Li, Y., Guo, F., Li, C. and Xu, Y., 2018. ElasticBF:
Fine-grained and Elastic Bloom Filter Towards Efficient
Read for LSM-tree-based {KV} Stores. In 10th {USENIX}
Workshop on Hot Topics in Storage and File Systems
(HotStorage 18).

[37] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G.
Andersen, Michael Kaminsky, Kimberly Keeton, and
Andrew Pavlo. 2018. SuRF: Practical Range Query Filtering
with Fast Succinct Tries. In Proceedings of the 2018
International Conference on Management of Data (SIGMOD
’18). Association for Computing Machinery, New York, NY,
USA, 323–336.

3230

