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ABSTRACT 
Facebook uses MySQL to manage tens of petabytes of data in its 
main database named the User Database (UDB). UDB serves social 
activities such as likes, comments, and shares. In the past, Facebook 
used InnoDB, a B+Tree based storage engine as the backend. The 
challenge was to find an index structure using less space and write 
amplification [1]. LSM-tree [2] has the potential to greatly improve 
these two bottlenecks. RocksDB, an LSM tree-based key/value 
store was already widely used in variety of applications but had a 
very low-level key-value interface. To overcome these limitations, 
MyRocks, a new MySQL storage engine, was built on top of 
RocksDB by adding relational capabilities. With MyRocks, using 
the RocksDB API, significant efficiency gains were achieved while 
still benefiting from all the MySQL features and tools. The 
transition was mostly transparent to client applications.  

Facebook completed the UDB migration from InnoDB to MyRocks 
in 2017. Since then, ongoing improvements in production 
operations, and additional enhancements to MySQL, MyRocks, 
and RocksDB, provided even greater efficiency wins. MyRocks 
also reduced the instance size by 62.3% for UDB data sets and 
performed fewer I/O operations than InnoDB. Finally, MyRocks 
consumed less CPU time for serving the same production traffic 
workload. These gains enabled us to reduce the number of database 
servers in UDB to less than half, saving significant resources. In 
this paper, we describe our journey to build and run an OLTP LSM-
tree SQL database at scale. We also discuss the features we 
implemented to keep pace with UDB workloads, what made 
migrations easier, and what operational and software development 
challenges we faced during the two years of running MyRocks in 
production.  

Among the new features we introduced in RocksDB were 
transactional support, bulk loading, and prefix bloom filters, all are 
available for the benefit of all RocksDB users. 
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1. INTRODUCTION 
The Facebook UDB serves the most important social graph 
workloads [3]. The initial Facebook deployments used the InnoDB 
storage engine using MySQL as the backend. InnoDB was a robust, 
widely used database and it performed well. Meanwhile, hardware 
trends shifted from slow but affordable magnetic drives to fast but 
more expensive flash storage. Transitioning to flash storage in UDB 
shifted the bottleneck from Input/Output Operations Per Second 
(IOPS) to storage capacity. From a space perspective, InnoDB had 
three big challenges that were hard to overcome, index 
fragmentation, compression inefficiencies, and space overhead per 
row (13 bytes) for handling transactions. To further optimize space, 
as well as serving reads and writes with appropriate low latency, we 
believed an LSM-tree database optimized for flash storage was 
better in UDB. However, there were many different types of client 
applications accessing UDB. Rewriting client applications for a 
new database was going to take a long time, possibly multiple 
years, and we wanted to avoid that as well. 

We decided to integrate RocksDB, a modern open source LSM-tree 
based key/value store library optimized for flash, into MySQL. As 
seen in Figure 1, by using the MySQL pluggable storage engine 
architecture, it was possible to replace the storage layer without 
changing the upper layers such as client protocols, SQL and 
Replication. 

 
Figure 1: MySQL and MyRocks Storage Engine 

We called this engine MyRocks. When we started the project, our 
goal was to reduce the number of UDB servers by 50%. That 
required the MyRocks space usage to be no more than 50% of the 
compressed InnoDB format, while maintaining comparable CPU 
and I/O utilization. We expected that achieving similar CPU 
utilization vs InnoDB was the hardest challenge, since flash I/O had 
sufficient read IOPS capacity and the LSM-tree database had less 
write amplification. Since InnoDB was a fast, reliable database 
with many features on which our Engineering team relied, there 
were many challenges ensuring there was no gap between InnoDB 
and MyRocks.  

Among the significant challenges were: (1) Increased CPU, 
memory, and I/O pressure. MyRocks compresses the database size 
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by half which requires more CPU, memory, and I/O to handle the 
2x number of instances on the host. (2) A larger gap between 
forward and backward range scans. The LSM-tree allows data 
blocks to be encoded in a more compacted form. As a result, 
forward scans are faster than backward scans. (3) Key comparisons. 
LSM-tree key comparisons are invoked more frequently than B-
tree. (4) Query performance. MyRocks was slower than InnoDB in 
range query performance. (5) LSM-tree performance needs 
memory-based caching bloom filters for optimal performance. 
Caching bloom filters in memory is important to LSM-tree 
performance, but this consumes a non-trivial amount of DRAM and 
increases memory pressure. (6) Tombstone Management. With 
LSM-trees, deletes are processed by adding markers, which can 
sometimes cause performance problem with frequently 
updated/deleted rows. (7) Compactions, especially when triggered 
by burst writes, may cause stalls. 

Section 3 provides the details for how those challenges were 
addressed. In short, the highlighted innovations implemented are 
the (1) prefix bloom filter so that range scans with equal predicates 
are faster (Section 3.2.2.1), the (2) mem comparable keys in 
MyRocks allowing more efficient character comparisons (Section 
3.2.1.1), a (3) new tombstone/deletion type to more efficiently 
handle secondary index maintenance (Section 3.2.2.2), (4) bulk 
loading to skip compactions on data loading, (Section 3.2.3.4), (5) 
rate limited compaction file generations and deletions to prevent 
stalls (Section 3.2.3.2), and (6) hybrid compressions – using a faster 
compression algorithm for upper RocksDB levels, and a stronger 
algorithm for the bottommost level, so that MemTable flush and 
compaction can keep up with write ingestion rates with minimal 
space overhead (Section 3.3.4). 

MyRocks also has native performance benefits over InnoDB such 
as not needing random reads for maintaining non-unique secondary 
indexes. More writes can be consolidated, with fewer total bytes 
written to flash. The read performance improvements and write 
performance benefits were evident when the UDB was migrated 
from InnoDB to MyRocks with no degradation of CPU utilization. 

Comprehensive correctness, performance and reliability 
validations were needed prior to migration. We built two 
infrastructure services to help the migration. One was MyShadow, 
which captured production queries and replayed them to test 
instances. The other was a data correctness tool which compared 
full index data and query results between InnoDB and MyRocks 
instances. We ran these two tools to verify that MySQL instances 
running MyRocks did not return wrong results, did not return 
unexpected errors, did not regress CPU utilizations, and did not 
cause outstanding stalls. After completing the validations, the 
InnoDB to MyRocks migration itself was relatively easy. Since 
MySQL replication was independent of storage engine, adding 
MyRocks instances and removing InnoDB instances were simple. 
The bulk data loading feature in MyRocks greatly reduced data 
migration time as it could load indexes directly into the LSM-tree 
and bypass all MemTable writes and compactions. 

The InnoDB to MyRocks UDB migrations were completed in 
August 2017. For the same data sets, MyRocks and modern LSM-
tree structures and compression techniques reduced the instance 
size by 62.3% compared to compressed InnoDB. Lower secondary 
index maintenance overhead and overall read performance 
improvements resulted in  slightly reduced CPU time. Bytes written 
to flush storage went down by 75%, which helped not to hit IOPS 
bottlenecks, and opened possibilities to use more affordable flash 

storage devices that had lower write cycles. These enabled us to 
reduce the number of database servers in UDB to less than half with 
MyRocks. Since 2017, regressions have been continuously tracked 
via MyShadow and data correctness. We improved compaction to 
guarantee the removal of stale data, meeting the increasing 
demands of data privacy. 

This practice is valuable because: (1) Since SQL databases built on 
LSM-tree are gaining popularity, the practical techniques of tuning 
and improving LSM-tree are valuable. To the best of our 
knowledge, this is the first time these techniques have been 
implemented on a large-scale production system. (2) While some 
high-level B-tree vs LSM-tree comparisons are documented, our 
work exposed implementation challenges for LSM-tree to match B-
tree performance, extra benefits from a LSM-tree, and 
optimizations that can narrow the gap. (3) Migrating data across 
different databases or storage engines is common. This paper shares 
the processes used to migrate the database to a different storage 
engine. The experience is more interesting because the storage 
engine moved to is relatively immature. 

In this paper, we describe three contributions: 

1. UDB overview, challenges with B-Tree indexes and why 
we thought LSM-tree database optimized for flash 
storage was suitable (Section 2).  

2. How we optimized MyRocks for various read workloads 
and compactions (Section 3).  

3. How we migrated to MyRocks in production (Section 4).  

Then we show migration results in Section 5, followed by lessons 
learned in Section 6. Finally, we show related work in Section 7, 
and concluding remarks in Section 8. 

2. BACKGROUND AND MOTIVATION 
2.1 UDB Architecture 
UDB is our massively sharded database service. We have 
customized MySQL with hundreds of features to operate the 
database for our needs. All customized extensions to MySQL are 
released as open source [4]. 

Facebook has many geographically distributed data centers across 
the world [5] and the UDB instances are running in some of them. 
Where other distributed database solutions place up to three copies 
in the same region and synchronously replicate among them, the 
Facebook ecosystem is so large that adopting this architecture for 
UDB is not practical as it would force us to maintain more than 10 
database copies. We only maintain one database copy for each 
region. However, there are many applications which relied on short 
commit latency and did not function well with tens of millisecond 
for synchronous cross region transaction commits. These 
constraints led us to deploy a MySQL distributed systems 
architecture as shown in Figure 2.  

We used traditional asynchronous MySQL replication for cross 
region MySQL replication. However, for in-region fault tolerance, 
we created a middleware called Binlog Server (Log Backup Unit) 
which can retrieve and serve the MySQL replication logs known as 
Binary Logs. Binlog Servers only retain a short period of recent 
transaction logs and do not maintain a full copy of the database. 
Each MySQL instance replicates its log to two Binlog Servers using 
MySQL Semi-Synchronous protocol. All three servers are spread 
across different failure domains within the region. This architecture 

3218



 

made it possible to achieve both short (in-region) commit latency 
and one database copy per region. 

UDB is a persistent data store of our social graphs. On top of UDB, 
there is a huge cache tier called TAO [3]. TAO is a distributed write 
through cache handling social graphs and mapping them to 
individual rows in UDB. Aside from legacy applications, most read 
and write requests to UDB originate from TAO. In general, 
applications do not directly issue queries to UDB, but instead issue 
requests to TAO. TAO provides limited number of APIs to 
applications to handle social graphs. Limiting access methods to 
applications helped to prevent them from issuing bad queries to 
UDB and to stabilize workloads. 

We use MySQL’s Binary Logs not only for MySQL Replication, 
but also for notifying updates to external applications. We created 
a pub-sub service called Wormhole [6] for this. One of the use cases 
of Wormhole is invalidating the TAO cache in remote regions by 
reading the Binary Log of the region's MySQL instance. 

 
Figure 2: UDB Architecture 

2.2  UDB Storage 
UDB was one of the first database services built at Facebook. Both 
software and hardware trends have changed significantly since that 
time. Early versions of UDB ran on spinning hard drives that had a 
small amount of data because of low IOPS. Workload was carefully 
monitored to prevent the server from overwhelming the disk drives. 

In 2010, we started adding solid state drives to our UDB servers to 
improve I/O throughput. The first iteration used a flash device as a 
cache for the HDD. While increasing server cost, Flashcache [7] 
improved IOPS capacity from hundreds per second to thousands 
per second, allowing us to support much more data on a single 
server. In 2013, we eliminated the HDD and switched to a pure 
flash storage. This setup was no longer bounded by read I/O 
throughput, but overall cost per GB was significantly higher than 
HDD or Flashcache. Reducing the space used by the database 
became a priority. The most straight-forward solution was to 
compress the data. MySQL’s InnoDB storage engine supports 
compression and we enabled it in 2011. Space reduction was 
approximately 50%, which was still insufficient. In studying the 
storage engine, we found the B-Tree structure wasted space because 
of index fragmentations. Index fragmentation was a common issue 
for B-Tree database and approximately 25% to 30% of each 
InnoDB block space was wasted. We tried to mitigate the problem 
with B-tree defragmentation, but it was less effective on our 
workload than expected. In UDB, a continuous stream of mostly 
random writes would quickly fragment pages that were just 

defragmented. In order to keep the space usage down, we needed 
to defragment constantly and aggressively, which in turn, reduced 
server performance and wore out the flash faster. Flash durability 
was already becoming a concern since higher durability drives were 
more expensive. 

Compression was also limited in InnoDB. Default InnoDB data 
block size was 16KB and table level compression required 
predefining the after-compressed block size (key_block_size), to 
one of 1KB, 2KB, 4KB or 8KB. This is to guarantee that pages can 
be individually updated, a basic requirement for B-tree. For 
example, if key_block_size was 8KB, then even if 16KB data was 
compressed to 5KB, actual space usage was still 8KB, so the 
storage savings was capped at 50%. Too small a block size results 
in high CPU overhead for increased page splits and compression 
attempts. We used 8KB for most tables, and 4KB for tables updated 
infrequently, so overall space saving impacts were limited. 

Another issue we faced with InnoDB on flash storage was higher 
write amplification and occasional stalls caused by writes to flash. 
In InnoDB, a dirty page is eventually written back to a data file. 
Because TAO is responsible for most caching, to be efficient, 
MySQL runs on hardware where the working set is not cached in 
DRAM, so writing back dirty pages happens frequently. Even a 
single row modification in an InnoDB data block results in the 
entire 8KB page to be written. InnoDB also has a “double-write” 
feature to protect from torn page corruptions during unexpected 
shutdowns. These amplified writes significantly. In some cases, we 
hit issues where burst write rates triggered I/O stalls on flash. 

Based on issues we faced in InnoDB in UDB, it was obvious we 
needed a better space optimized, lower write amplification database 
implementation. We found that LSM-tree database fitted well for 
those two bottlenecks. Another reason we got interested in LSM-
tree was its friendliness to tiered storage, and new storage 
technologies created more tiering opportunities. Although we have 
not yet taken advantage of it, we anticipate benefits from it in the 
future. 

Despite potential benefits, there were several challenges to 
adopting a LSM-tree database for UDB. First, there was not a 
production proven database that ran well on flash back in 2010. The 
majority of popular LSM databases ran on HDD and none had a 
proven case study for running on flash at scale. 

Secondly, UDB still needed to serve a lot of read requests. While 
TAO has a high hit rate, read efficiency was still important because 
TAO often issued read requests from UDB for batch-style jobs that 
had low TAO cache hit rate. Also, TAO often went through “cold 
restart” to invalidate caches and refresh from UDB. Write requests 
also triggered read requests. All UDB tables had primary keys, so 
inserts needed to perform unique key constraint checks and 
updates/deletes needed to find previous rows. Delete or update via 
non-primary keys needed to read to find primary keys. 

For these reasons, it was important to serve reads efficiently as well. 
A B-Tree database like InnoDB is well suited for both read and 
write workloads, while LSM-tree shifted more for write and space 
optimizations. So, it was questionable if LSM-tree databases could 
handle read workloads on flash. 

2.3 Common UDB Tables 
UDB has mainly two types of tables to store social data – one for 
objects and the other for associations of the objects [3]. Each object 
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and association have types (fbtype and assoc_type) defining its 
characteristics. The fbtype or assoc_type determines the physical  
table that stores the object or association. Common object table is 
called fbobj_info, which stores common objects, keyed by object 
type (fbtype) and identifiers (fbid). The object itself is stored in a 
“data” column in a serialized format, and its format is dependent on 
each fbtype. Association tables store associations of the objects. For 
example, the assoc_comments table stores associations of 
comments on Facebook activities (e.g. posts), keyed by pair of 
identifiers (id1 and id2) and type of the association (assoc_type). 
The association tables have secondary indexes called id1_type.  
Secondary index of the association table (id1_type index) was 
designed to optimize range scans. Getting list of ids (id2) associated 
to id (id1) is a common logic on Facebook, such as getting a list of 
people’s identifiers who liked a certain post. 

From schema point of view, object tables are accessed like a key 
value store than a relational model. On the other hand, association 
tables have meaningful schema such as pair of ids. We adopted an 
optimization called “covering index” [8] in id1_type secondary 
index, so that range scans can be completed without randomly 
reading from primary keys, by including all relevant columns in the 
index. Typical social graph updates modify both object tables and 
association tables for the same id1s in one database transaction, so 
having both tables inside one database instance makes sense to get 
benefits of ACID capabilities of the transactions. 

2.4 RocksDB: Optimized for Flash 
Utilizing Flash Storage is not unique to MySQL and other 
applications at Facebook already had years of experience. In order 
to address similar challenges faced by other applications, in 2012, 
a new key/value store library, RocksDB [9] was created for flash. 
By the time we started to look for an alternative storage engine for 
MySQL, RocksDB was already used in a list of services, including 
ZippyDB  [10] Laser [11] and Dragon [12]. 

RocksDB is a key/value store library optimized for characteristics 
of flash-based SSDs. When choosing the main data structure of the 
engine, we studied several known data structures and chose LSM-
tree for its good write amplification feature, with a good balance of 
read performance [1]. The implementation is based on LevelDB 
[13]. 

2.4.1 RocksDB Architecture 
Whenever data is written to RocksDB, it is added to an in-memory 
write buffer called MemTable, as well as Write Ahead Log (WAL). 
Once the size of the MemTable reaches a predetermined size, the 
contents of the MemTable are flushed out to a “Sorted Strings 
Table” (SST) data file. Each of the SSTs stores data in sorted order, 
divided into blocks. Each SST also has an index block for binary 
search with one key per SST block. SSTs are organized into a 
sequence of sorted runs of exponentially increasing size, called 
level, where each level will have multiple SSTs, as depicted in 
Figure 3. In order to maintain the size for each level, some SSTs in 
level-L are selected and merged with the overlapping SSTs in 
level(L+1). The process is called compaction. We call the last level 
as Lmax. 

In the read path, a key lookup occurs at each successive level until 
the key is found or it is determined that the key is not present in the 
last level. It begins by searching all MemTables, followed by all 
Level-0 SSTs and then the SST’s at the next following levels. At 
each of these successive levels, a whole binary search is used. 

Bloom filters are kept in each SST file and used to eliminate 
unnecessary search within an SST file. 

 
Figure 3: RocksDB Architecture 

2.4.2 Why RocksDB? 
As mentioned in Section 2.2, space utilization and write 
amplification are two bottlenecks of UDB. Write amplification is 
the initial optimization goal for RocksDB, so it is a perfect fit. 
LSM-tree is more effective because it avoids in-place updates to 
pages, which eventually caused page writes with small updates in 
UDB. Updates to a LSM-tree are batched and when they are written 
out, pages only contain updated entries, except for the last sorted 
run. When updates are finally applied to the last sorted run, lots of 
updates are already accumulated, so that a good percentage of page 
would be newly updated data. 

Besides write amplification, we still need to address the other major 
bottleneck: space utilization. We noticed that, LSM-tree does 
significantly better than B-tree for this metric too. For InnoDB, 
space amplification mostly comes from fragmentation and less 
efficient compression. As mentioned in Section 2.2, InnoDB 
wasted 25-30% space in fragmentation. LSM-tree does not suffer 
from the problem and its equivalence is dead data not yet removed 
in the tree. LSM-tree’s dead data is removed by compaction, and 
by tuning compaction, we are able to maintain the ratio of dead data 
to as low as 10% [14]. RocksDB also optimizes for space because 
it works well with compression. If 16KB data was compressed to 
5KB, RocksDB uses just 5KB while InnoDB aligns to 8KB, so 
RocksDB is much more space efficient. Also, InnoDB has 
significant space overhead per row for handling transactions (6-
byte transaction id and 7-byte roll pointer). RocksDB has 7-byte 
sequence number for each row, for snapshot reads. However, 
RocksDB converts sequence numbers to zero during compactions, 
if no other transaction is referencing them. Zero sequence number 
uses very little space after compression. In practice, most rows in 
Lmax have zero sequence numbers, so space saving is significant, 
especially if average row size is small. 

Since RocksDB is a good fit to address the performance and 
efficiency challenges of UDB workloads, we decided to build 
MyRocks, a new MySQL storage engine on top of RocksDB. The 
engine implemented in MySQL 5.6 performs well compared to 
InnoDB in TPC-C benchmark results [14]. As Oracle releases 
newer versions of MySQL, we will continue to port MyRocks 
forward. The development work can be substantial because of new 
requirements for storage engines. 
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3. MYROCKS/ROCKSDB DEVELOPMENT 
3.1 Design Goals 
Re-architecting and migrating a large production database is a big 
engineering project. Before starting, we created several goals. 
While increasing efficiency was high priority, it was also important 
that many other factors, such as reliability, privacy, security, and 
simplicity, did not regress when transitioning to MyRocks. 

3.1.1 Maintained Existing Behavior of Apps and Ops 
Implementing a new database was only part of our project. 
Successfully migrating a continuously operating in UDB was also 
important. Hence, we made the ease of migration and operation a 
goal. The pluggable storage engine architecture in MySQL enabled 
that goal. Using the same client and SQL interface meant UDB 
client applications did not have to change, and many of our 
automation tools, such as instance monitoring, backups, and 
failover, continued to function with no usability loss. 

3.1.2 Limited Initial Target Scope 
We did not want to spend many years on a new database project. 
Spending five or more years to implement a great database, then 
spending additional multiple years to migrate, was not a reasonable 
direction for us. Our UDB databases kept growing, so we wanted 
to save space earlier rather than later. 

We decided to limit the initial MyRocks product scope to UDB. 
Since UDB had specific table structures and query patterns, we 
believed it was feasible to make MyRocks beat our efficiency goals 
on UDB. On the other hand, fundamental designs such as on-disk 
index and row formats were discussed in the early stages. These 
were needed to support all workloads and were harder to change 
once implemented. 

During MyRocks development, we continuously benchmarked 
against InnoDB based on UDB equivalent workloads. We used 
LinkBench [15], an open source benchmark tool that simulated 
UDB-like workloads. We also analyzed UDB production 
workloads. Based on this data, we drew up development tasks and 
prioritized accordingly. Once UDB on MyRocks reached 
production quality, we started supporting additional use cases. 

3.1.3 Set Clear Performance and Efficiency Goals 
As described previously, MyRocks was an efficiency driven 
project, so the focus was significant efficiency gains without 
sacrificing consistency. There were two goals compared to InnoDB 
in UDB. The first was a reducing database space by at least 50%, 
and the second, to do so without regressing CPU and I/O usage. 
Saving 50% disk space means that MySQL instance density is 
doubled per host, so a single database host needs to serve twice the 
amount of traffic. As more CPU and I/O pressure was expected, the 
specific goal was that they did not regress. Most UDB tables had 
secondary indexes, and LSM-tree database could manipulate 
secondary indexes more efficiently than InnoDB. We anticipated 
MyRocks could use less CPU and I/O for writes, while it was also 
expected to use more for reads. 

Not all production workloads could migrate from InnoDB to 
MyRocks. We could not make a database that was better than 
InnoDB in all aspects. We picked LSM-tree over B-Tree to save 
space at the expense of read performance. For read intensive 
databases where all data resides in memory, MyRocks was hardly 
better than InnoDB and the space savings benefit was minimal. We 

made it clear we did not target such use cases (RUM Conjecture 
compromise [1]). 

3.1.4 Design Choices 

3.1.4.1 Contributions to RocksDB 
We added features to RocksDB where possible. RocksDB is a 
widely used open source software and we thought it would benefit 
other RocksDB applications. MyRocks used the RocksDB APIs. 

3.1.4.2 Clustered Index Format 
UDB took advantage of the InnoDB clustered index structure. 
Primary key lookups could be completed by a single read since all 
columns are present. We adopted the same clustered index structure 
for MyRocks. Secondary key entries include primary key columns 
to reference corresponding primary key entries. There is no row ID. 

 
Figure 4: MyRocks Index Format 

3.2 Performance Challenges  
We made several read performance optimizations so that overall 
resource utilization was comparable to InnoDB. This section 
discusses these optimization improvements and features. Since 
RocksDB was a LSM-tree database, worse read performance as 
compared to InnoDB was expected. As we measured read 
performance gaps, we noted optimization opportunities that could 
fill the gaps. During early stage benchmarks, we also found that 
improving CPU efficiency was more important than I/O. Modern 
flash had sufficient read IOPS and since RocksDB wrote much less 
to flash, I/O was the lesser concern. 

Another big challenge for LSM-tree databases was large number of 
tombstones can greatly slow down range scans. We implemented 
several features to mitigate the negative impact of delete markers.  

3.2.1 CPU Reduction 

3.2.1.1 Mem-comparable Keys 
With LSM-tree, more key comparisons are made when executing 
queries as compared to InnoDB. Although RocksDB did several 
optimizations for it, the number is still significantly higher than 
InnoDB, especially in range queries. To look for the start key of a 
range, we only need one binary search in a B-tree, while we  need 
to do one binary search for each sorted run in a LSM-tree and merge 
them using a heap. This can lead to several times more key 
comparisons. Similarly, simple key advancement does not require 
any key comparison in B-tree, while in LSM-tree, at least one key 
comparison is needed to adjust the heap, while often another one is 
needed to identify whether a record represents an older version. As 
a result, RocksDB is more sensitive to key comparison cost than 
InnoDB. 

For example, most MySQL storage engines, including InnoDB, 
support case insensitive collations. This allows “ABC” to match 
“abc” on character comparisons, but it comes with a performance 
cost because each key comparison involves multiple steps, 
including key de-serialization. Even case sensitive collations data 
types may be required to go through some of these steps. In 
MyRocks, we always encode MySQL data to RocksDB keys in a 
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bytewise-comparable way which is much more efficient for 
comparisons. 

3.2.1.2 Reverse Key Comparator 
In RocksDB, iterating keys in forward order is much faster than 
reverse order. There are several reasons and most of them are 
fundamental to LSM-tree. Firstly, LSM-tree allows RocksDB to 
use key delta encoding inside each data block, but delta encoding 
is unfriendly to reverse iteration. Secondly, with LSM-tree, stale 
records may be present when we iterate through data. The records 
are stored in the tree in the reverse order of the key versions. This 
order guarantees fast forward iteration, but also slows reverse 
iteration because RocksDB needs to read one extra record for a key 
to find the latest version. Finally, the MemTable is implemented 
using a skip list with single direction pointers, so reverse iteration 
requires another binary search. As a result, ORDER BY query 
direction with reverse iteration is much slower than a forward one. 

Fortunately, most UDB queries are uniform so that we can tune data 
placement based on common queries. As described in Section 2.3, 
we have two major data models in UDB – objects and associations. 
Associations are more expensive because they are fetched by range 
scans as opposed to objects which are fetched by point lookups. 
Range scans might span thousands of edges, and thus it was 
important to optimize them for social graph workloads.  

TAO issues association range scans in descending order sorted by 
update time. To optimize descending scan performance, we 
implemented a reverse key comparator in RocksDB. It stores keys 
in inverse bytewise order. We adopted reverse key comparator for 
association secondary keys, so the descending scan by time 
internally executes a forward iteration scan, which was efficient. 
Our reverse key comparator improved descending scan throughput 
by approximately 15% in UDB. 

3.2.1.3 Faster Approximate Size to Scan Calculation 
As a MySQL storage engine, MyRocks needs to tell the MySQL 
optimizer the estimated cost to scan for each query plan candidate. 
For each query plan candidate, MySQL passes both minimum key 
and maximum key values to the storage engine, and MyRocks 
estimates the cost to scan the range and returns the cost to MySQL. 
RocksDB implements the functionality by finding the block 
location of both of minimum and maximum keys and calculating 
the size distance between the two blocks, including MemTables. 
This can cause nontrivial CPU overhead. We implemented two 
features to improve the performance of query cost calculation. One 
was completely skipping cost calculation when a hint to force a 
specific index was given. This is effective because the social graph 
queries are highly uniform so adding this hint in several SQL 
queries can reduce most of the approximate size overheads. We also 
improved the RocksDB algorithm to get the estimated size of scan 
ranges by estimating total size of full SST files within the range 
first and skipping the remaining of partial files as soon as RocksDB 
determines that they would not significantly change the result. 
RocksDB also tries to combine diving for minimum and maximum 
keys into one operation. 

3.2.2 Latency Reduction/Range Query Performance 

3.2.2.1 Prefix Bloom Filter 
UDB had lots of range scans and it was more challenging in LSM-
tree database. In B-tree, a range query starts from one leaf page, 

and a short range query only needs to read from one or two leaf 
pages. With LSM-tree, it has two parts – seek and next. The LSM-
tree has much higher seek overhead. We usually need to read one 
data block from each sorted run, and it needs to be done even for 
sorted runs where there are no keys in the range. Reading more 
blocks means potentially more I/O and CPU for decompression. 

To mitigate short range scan performance, we introduced the prefix 
bloom filter in RocksDB. Users specify the number of bytes as a 
“prefix”, so that users can skip all sorted runs that do not contain 
any key starting with specific prefix.  

Our association range scan was done by equal predicates from 
prefixes of indexed columns. Association range scan used the 
id1_type secondary key. The secondary key started with equal 
predicates (id1, assoc_type) and included several other columns, 
including timestamp. The latter columns were used to determine the 
sort order of the scan. For most TAO range scans, equal predicates 
were used for only the first prefix (id1, assoc_type) columns. 

The prefix bloom filter is 20 bytes and is composed of the internal 
index id (4 bytes), the id1 (8 bytes), and the assoc_type (8 bytes). 
These two columns are always set in the WHERE clause with equal 
predicates for the id1_type secondary key. By supporting the prefix 
bloom filter, common index scans with equal predicates can use the 
bloom filter and improve read performance. 

3.2.2.2 Reducing Tombstone on Deletes and Updates 
Compaction was a major factor in RocksDB performance, 
impacting both read and write performance. One of the biggest pain 
points was how to handle deletions (called “tombstones”) more 
efficiently. In the early stages, benchmarks like LinkBench were 
used to simulate UDB workloads. We observed an issue where the 
association range scan performance gradually degraded as the 
number of delete tombstones gradually increased in RocksDB data 
files. As mentioned in Section 2.3, the secondary index id1_type 
had many columns, including timestamp and version, and was a 
covering index [8]. This made range scans faster since random 
reads from primary keys were not needed for these columns. 
However, every update query modified the timestamp and version 
fields, resulting in constant updates to the secondary index.  

Updating indexed columns in MyRocks means changing “keys” in 
RocksDB. Changing the RocksDB keys requires a Delete for the 
old key and a Put for the new key. The delete tombstone removes 
the matching Put during the MemTable Flush or Compactions, but 
the tombstone itself remains, since it is possible that a Put for the 
same key may exist in lower level SST files. The RocksDB 
compaction process drops tombstones during compaction once they 
reached Lmax. Updating MyRocks index key fields many times 
means generating huge number of tombstones. This makes range 
scans significantly expensive, since it needs to scan all tombstones. 
In UDB, changing primary key columns does not happen in usual 
workloads, so changing the primary keys incurred no performance 
implications. However, changing secondary keys does occur in 
steady state workloads. The association secondary keys were 
heavily used for range scans, such as returning a list of IDs who 
liked a specific photo. 

To resolve tombstone inefficiencies, we introduced a new RocksDB 
Deletion type called SingleDelete. Compared to Delete, 
SingleDelete can immediately be dropped when removing a 
matched Put. The expected shorter lifespan of SingleDelete 
tombstones maintained range scan performance even with a steady 
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stream of secondary index changes. SingleDelete does not work 
when multiple Puts occur to the same key. For example, Put(key=1, 
value=1), Put(key=1, value=2) then SingleDelete(key=1) ends up 
as (key=1, value=1) still remaining, while Delete(key=1) hides 
both Puts. This is a data inconsistency scenario and SingleDelete 
should not be used in this case. The MyRocks secondary key 
prevents multiple Puts to the same key. If a secondary key does not 
change, MyRocks does not issue a RocksDB update call for the 
secondary key. If the secondary key changes, MyRocks issues 
SingleDelete(old_secondary_key) and Put(new_secondary_key). 
Multiple Puts to the same secondary_key without SingleDelete 
never occurs. 

3.2.2.3 Triggering Compaction based on Tombstones 
When deleting large numbers of rows, some SST files might 
become filled with tombstones and impact range scan performance. 
RocksDB extended compaction to track close-by tombstones. 
When a key range with a high density of tombstones is detected 
during flush or compaction, it immediately triggers another 
compaction. This helps reduce range scan performance skews 
caused by scanning an excessive number of tombstones. We call it 
the feature Deletion Triggered Compaction (DTC). 

Figure 5 was a LinkBench results with and without DTC and 
SingleDelete. X-axis was time spent and Y-axis was query per 
second. With no optimization, QPS significantly degraded with 
time spent, and did not come back until most tombstone 
disappeared by compactions. SingleDelete showed similar 
behavior but QPS drop was lower and maximum throughput was 
higher. DTC made overall QPS drop much less significant. In 
production, providing stable performance was important so using 
both DTC and SingleDelete was more valuable to us. 

 
Figure 5: Linkbench with deletion optimizations 

3.2.3 Space and Compaction Challenges 

3.2.3.1 DRAM Usage Regression  
The bloom filter is important for LSM-tree performance and needs 
to be cached in DRAM to be effective. This caused a significant 
DRAM usage regression compared to InnoDB. Our design used the 
typical bloom filter size of 10 bits per key. In order to reduce 
DRAM usage by bloom filters, we extended RocksDB to optionally 
allow it to skip creating the bloom filter in the last sorted run. By 
tuning the level size multiplier to 10 and the last run contain 90% 
of the data, the total bloom filter size was reduced by 90%, while 
the bloom filter is still effective. Skipping the bloom filter when 
using compression in the last level had the side effect that empty 
key lookups, such as unique key check by INSERTs, become more 
expensive. We chose memory efficiency over extra CPU time there. 

3.2.3.2 SSD Slowness Because of Compaction 
MyRocks relies on SSD’s Trim command to reduce SSD’s internal 
write amplification and improve performance [16]. However, we 
noticed that performance for some SSDs may temporarily drop 
after a spike of Trim commands. Compactions may create hundreds 
of megabytes to gigabytes of SST files. Deleting all of those files 
at once may cause a spike in trims resulting in potential 
performance issues or even stalls on flash storage. The solution was 
to add rate limiting to file deletion speeds to avoid such stalls. 

Compaction I/O requests may also compete with user query I/O 
requests, causing query latency to increase. We added rate limits to 
compaction I/O requests to mitigate their effect on user query I/O. 

3.2.3.3 Physically Removing Stale Data 
In UDB, migration jobs are scheduled to remove unused data. 
Deletions have several types. Normal deletions, which execute the 
DELETE statement and use Delete/SingleDelete RocksDB APIs 
are typically related to user driven data deletion requests. Logical 
deletions, which execute UPDATE statements and use Put 
RocksDB APIs, are usually driven for space savings optimizations, 
such as overwriting unused data column to NULL but not deleting 
the record. 

Our social graph workload typically allocates ever increasing fbid 
for object tables. The rate of modifications for an object usually 
decreases over time. If the object is deleted, no further 
modifications will be made to it. Since object tables use fbid as a 
primary key and since most insert/update/delete queries are for 
newly allocated fbid, there is a high chance that SST files 
containing both normal and logical deletions for old objects/fbids 
do not get picked up for compaction because all new changes come 
from newer fbids. These Delete or Put RocksDB operations for old 
fbids made their way into L1~L2, but compactions never continued 
to push them into Lmax. As a result, the row images containing the 
data remained in Lmax and they continued to take up space. 

This was resolved by implementing Periodic Compaction in 
RocksDB. The feature checked the age of the data in the SST files, 
and if it was older than a settable threshold, it triggered 
compactions until it reached Lmax. This ensured that both Delete 
and Put eventually reached Lmax within reasonable time frames 
and that the space can be reclaimed. 

3.2.3.4 Bulk Loading 
One of the most common causes of stalls in LSM-tree databases 
like RocksDB was burst writes. Several types of data migration 
jobs, such as online schema changes and data loading, generated 
massive data writes. For example, the InnoDB to MyRocks 
migration needed to dump from InnoDB and load into MyRocks. 
MemTable flush and compaction are unable to keep up with heavy 
write ingestion rates. Writes, including those from user queries, 
would then be stalled until flush and compaction has made 
sufficient progress. Throttling was one way to mitigate, but it 
increased overall migration time.  

To optimize burst writes and ensure they do not interfere with user 
queries, we implemented a bulk loading capability in RocksDB and 
MyRocks takes advantage of it. With bulk loading, MyRocks used 
RocksDB File Ingestion API to create SST files. The new SST files 
are directly ingested into Lmax, automatically and atomically 
updating the RocksDB Manifest to reflect the data files. Using Bulk 
Loading allows data migration jobs to bypass the MemTable and 
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compactions through each RocksDB sorted run level, thus 
eliminating any write stalls from those applications. Bulk loading 
requires that ingested key ranges never overlap with existing data. 
For us, massive data writes typically occurred when creating new 
tables, so bulk loading supports this scenario. Figure 6 was a 
benchmark to load our associations tables, which had both primary 
and secondary keys, into InnoDB and MyRocks, with and without 
bulk loading. X-axis was the number of tables to load in parallel, 
and Y-axis was rows inserted per second. With MyRocks bulk 
loading, insert throughput linearly scaled at least up to 20 tables and 
throughput was higher than InnoDB by 2.2 times (with one table, 
one concurrency) to 5.7 times (with 20 tables, 20 concurrency). 
Bulk loading eliminated stalls caused by these migration jobs. 

 
Figure 6: Bulk Loading throughput 

3.3 Extra Benefits of Using MyRocks 
While we had to overcome many challenges by using LSM-tree, in 
addition to space and write efficiency, the development effort also 
yielded the following benefits. 

3.3.1 Online Backup and Restore Performance 
We take logical backups from the database for disaster recovery and 
take binary log backups for point in time recovery. We implemented 
a read only snapshot to take consistent reads in MyRocks and let 
our logical backup tool use it. Compared to InnoDB, long running 
consistent reads were more efficient in MyRocks. InnoDB 
implemented UNDO logs [17] as a linked list and needed to keep 
all changes in the list after creating a transaction snapshot. It also 
needed to rewind the list to find the row based on the consistent 
snapshot. This caused significant slowdown if there were hot rows 
that changed a lot and a long running select needed to read the row 
after creating a snapshot. In MyRocks, a long running snapshot can 
maintain a reference to the specific version of the row needed. 

Restore from logical backups is much faster than InnoDB since 
MyRocks can utilize bulk loading features (Figure 6). 

We use physical backups for cloning a replica instance. Cloning an 
instance is done by creating a checkpoint in RocksDB and then 
sending all SST files and WAL files to a destination location. A 
RocksDB checkpoint creates hard links of the SST files. Since SST 
files are immutable, no modification to the original files can be 
made, allowing the checkpoint to point to a snapshot in time. 
Cloning to a host in a different region may take hours due to 
network transfer rates, especially if the source instance is large. A 
newly cloned instance will then replicate from the MySQL primary 
instance. This process to catch up the clone on transactions that 
took place after checkpoint creation may also take hours, depending 

on the rate of changes made on primary. To reduce replica 
synchronization time, we periodically re-create checkpoints during 
cloning, and continuously send newly hard linked SST files to the 
destination. Replication synchronization is only needed between 
the last checkpoint and the end of the copy, which could be limited 
regardless of database instance size. 

3.3.2 Scales Better with Many Secondary Indexes 
In MyRocks, manipulating secondary indexes can be done without 
random reads. Internally MyRocks issues RocksDB Put for 
inserting, SingleDelete and Put for updating, and SingleDelete for 
deleting secondary indexes, but they do not need to call 
Get/GetForUpdate. This was a significant advantage over InnoDB 
for heavily modified tables with multiple secondary indexes. Figure 
6 shows that MyRocks had better insert throughput than InnoDB 
for a table that had one secondary index. 

3.3.3 Replace and Insert Without Reads 
MySQL has a REPLACE syntax, which blindly inserts/overwrites 
a new row. Internally REPLACE reads from a primary key to 
discover a matching row by the key. If the row exists, it is deleted 
and a new row overwrites it with the new value. Otherwise it 
behaves like INSERT. MyRocks optimized REPLACE to issue the 
RocksDB Put and skip unique key checks. The LSM-tree database 
made it possible to skip the random read and improved the write 
throughput. 

MyRocks also has an option for INSERT statements to skip 
checking unique key constraints. If it is skipped, MyRocks does not 
need to perform a random read, while InnoDB still needs to issue 
the read. The drawback is these blind insertions may easily 
introduce data consistency bugs when interacting with other 
MySQL features like triggers and replication. We were not willing 
to take that risk in UDB so we took the safer direction to disable 
these optimizations. This performance feature is still available to 
users.  

3.3.4 More Compression Opportunities 
LSM-tree databases like RocksDB have multiple compression 
opportunities. We highlight one effective compression 
optimization, the “per level compression” algorithm. 

RocksDB has multiple compression levels from L0 to Lmax. While 
RocksDB has 90% of the data in Lmax by default, most 
compactions typically happen at levels other than Lmax. This drove 
us to configure different compression algorithms between levels. 
Using a strong compression algorithm for Lmax and faster 
algorithm such as LZ4,  or even no compression in non-Lmax 
levels, makes sense. RocksDB explicitly sets specific compression 
algorithms in Lmax. In UDB, we used Zstandard for Lmax, and 
LZ4 for other levels. Using faster compression algorithm for levels 
like L0 and L1 was helpful for MemTable flush and compactions 
to keep up with write ingestions. In UDB, approximately 80% of 
compaction bytes are completed in non-Lmax levels. By adopting 
LZ4 for non-Lmax levels, overall compaction time spent could 
drop to one third, compared to using Zstandard for all levels. 

4. PRODUCTION MIGRATION 
We started migrating from InnoDB to MyRocks in UDB after a year 
and a half of development and testing. Since new software will 
likely have bugs, we first added MyRocks as a “disabled replica”, 
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which meant executing replication traffic from the InnoDB primary 
instance, while not serving production read traffic. This enabled 
testing of MyRocks functionality without affecting production 
services. We could verify if MyRocks could serve writes without 
replication being stopped or inducing inconsistent data. We could 
validate data recovery correctness if the MyRocks instance crashed.  
Various automation tools, such as instance upgrade and database 
backup, can test interactions with the instance. 

We created a disabled MyRocks replica instance by logically 
exporting InnoDB tables and then importing them into MyRocks 
using the bulk loading feature. Since InnoDB had clustered index 
structures, exported data was already sorted by primary key, which 
could be bulk loaded into MyRocks without extra sorting. For each 
replica set, we could migrate 200~300GB of InnoDB data per hour. 

4.1 MyShadow – Shadow Query Testing  
MyRocks needed to be tested before enabling it in a production 
environment. Of specific concern was how to verify that MyRocks 
could serve queries reliably, including verifying CPU and I/O 
utilization as compared to InnoDB, and checking for unexpected 
crashes or query plan regressions. 

To test production queries, we created a shadow testing tool called 
MyShadow. At Facebook, we had a custom MySQL Audit Plugin 
that captured production queries and recorded them to our internal 
logging service. MyShadow read these captured queries from the 
logging service and replayed them to target MySQL instances. We 
used MyShadow first to capture read queries from the production 
InnoDB replica, then replayed the queries to a test MyRocks 
replica, allowing us to fix any query regressions before serving 
production read requests in MyRocks. 

 
Figure 7: MyShadow Architecture 

4.2 Data Correctness Checks 
When starting to use a new database in production, it was a big 
challenge to validate the new database stored and returned correct 
data. We have InnoDB as the reference implementation to validate 
data correctness by comparing its data to MyRocks’s. We created a 
data correctness tool to compare data returned from each storage 
engine. Our tool had three modes: Single, Pair and Select. 

Single mode checked consistency between primary key and 
secondary keys of the same table in the instance by verifying if row 
counts and checksum of overlapping columns were identical. 
Single mode could find some internal MyRocks or RocksDB bugs 
that did not update either of the index correctly. For example, we 
could find a few RocksDB compaction bugs that ended up not 
deleting keys correctly, which showed up as index inconsistencies. 

Pair mode ran full table scans to check row counts and checksum 
of the primary keys from two instances, based on a consistent 
snapshot at the same transaction state (Figure 8). Pair mode could 
compare InnoDB and MyRocks instances. It could find bugs that 
was not covered by Single mode, such as missing or extra rows in 
one of the instances. 

Select mode was like pair mode, but instead of full scan statements, 
it ran select statements captured from MyShadow, and compared 
results between two instances. If select statement results were not 
consistent, it indicated inconsistencies so we could investigate 
further. Select mode could find inconsistencies reliably, but it also 
required filtering out false positives from nondeterministic queries 
(e.g. use of functions like NOW(), which returns the current time). 

 
Figure 8: Data Correctness algorithm (Pair and Select mode) 

4.3 Fixed Incompatible Queries 
MyShadow and Data Correctness Tests revealed several issues that 
we could not find during unit tests or using common benchmarks 
like sysbench and LinkBench. Single mode Data Correctness found 
some RocksDB compaction bugs that did not handle 
Delete/SingleDelete correctly. Select mode Data Correctness found 
interesting bugs in the prefix bloom filter where some range scans 
with equal predicates returned fewer rows than expected. These 
were fixed prior to enabling MyRocks. 

We will highlight one outstanding issue we found during 
MyShadow write traffic tests. 

4.3.1 Gap Lock and Isolation Behavior Differences 
Default transaction isolation level in MySQL is Repeatable Read, 
and is used in UDB. Repeatable Read implementation in InnoDB 
was unique compared to other database products. InnoDB’s locking 
reads behaved as Read Committed, by returning the current 
snapshot. It was not strictly Repeatable Read. Instead, InnoDB 
locks ranges (Gap) on locking reads, and holds the locks even when 
the rows do not exist, to block other transactions from updating the 
same ranges. Statement Based Binary Logging also requires Gap 
Locks for correctness. 

On the other hand, MyRocks adopted Snapshot Isolation model for 
Repeatable Read, which was the same as found in PostgreSQL. We 
considered the InnoDB style Gap Lock based implementation as 
well, but we concluded that Snapshot Isolation was simpler to 
implement. We can also switch our replicas to use Row Based 
Binary Logging and obviate the need for Gap Lock support. 

This behavior difference caused issues when testing MyShadow 
write traffic. Snapshot Isolation based Repeatable Read returned 
errors if rows were conflicted, while InnoDB style locking reads 
did not conflict since it was essentially Read Committed. As a 
result, MySQL primary instances running MyRocks returned 
visibly higher number of errors than InnoDB primary instances 
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when using Repeatable Read isolation level. To reduce error rates, 
we investigated common conflicting queries, discussed the issue 
with application developers, and switched to Read Committed 
when we confirmed they were safe. We also added a logging feature 
to log queries using Gap Locks. Some apps explicitly depended on 
Gap Locks while others benefited from it by accident, and logging 
helped uncover these different cases. 

4.4 Actual Migration 
After passing MyShadow and Data Correctness testing, we started 
enabling MyRocks instances in production. We started with replica 
instances that served production read traffic and replicated from the 
primary instance. 

Figure 9 shows migration steps we took in UDB. When we 
migrated to MyRocks in 2016-2017, we had six MySQL instances 
for each MySQL Replica Set (one primary and five replica 
instances replicating from the primary). We configured four 
InnoDB and two MyRocks instances in the same replica set, and 
the primary instance was fixed to InnoDB. MyRocks instances 
replicated from the InnoDB primary. MySQL separated the storage 
engines (InnoDB/MyRocks) from the replication streams (Binary 
Logs), so Binary Log formats were independent from storage 
engines. This architecture made the MyRocks deployment much 
less complex. 

This configuration ran for a few months to validate that MyRocks 
could serve production read traffic reliably. We also continued 
intensive MyShadow write traffic tests to prepare for making 
MyRocks the primary. 

Promoting MyRocks to primary was the culmination of years of 
effort since there was only one primary in each MySQL replica set. 
Despite all the planning and testing, there was still some 
trepidation. It required a leap of faith that we found all problems. 
When we enabled MyRocks as the primary, we monitored all 
applications closely for any unexpected behavior, but it all went 
smoothly. We continued to maintain a number of InnoDB replica 
instances in case we needed to revert MyRocks, but they were never 
needed. At this stage, we kept three MyRocks instances, including 
one primary, and three InnoDB replica instances for each replica 
set, and kept the topology up for another few months until we were 
confident that we could remove the InnoDB. 

Having two or more instances with the same storage engine was 
essential during the transition phase. We had tens of thousands of 
replica sets, so losing some instances by hardware or software 
failures was normal. Had we lost all InnoDB or MyRocks instances 
in the same replica set, we would have had to perform a logical 
copy (exporting from InnoDB/MyRocks then importing into 
MyRocks/InnoDB), which was much more expensive than physical 
copy. Migrating from MyRocks to InnoDB was very painful 
because InnoDB did not have bulk loading capabilities. We kept 
three InnoDB instances for each replica set so that losing all 
instances at the same time was very unlikely.  

We started enabling MyRocks replicas to serve production read 
traffic in mid 2016. We added MyRocks primary instances in early 
2017. We gradually promoted more MyRocks instances to 
primaries. We removed almost all InnoDB instances by August 
2017. Until migrations were complete, we kept two or more 
InnoDB and MyRocks instances in the same replica set, to avoid 
logical migrations when losing instances. 

 
Figure 9: MyRocks instance migration steps. 

5. RESULTS 
These days we operate tens of thousands of MySQL replica sets in 
UDB, and the majority are only MyRocks. We keep a very small 
number of replica sets containing both InnoDB and MyRocks. 
These replica sets help us continuously benchmark against InnoDB 
based on our production workloads, as well as finding any 
unexpected bugs, such as query correctness or optimizer plan 
regressions. 

5.1 MyRocks vs InnoDB Efficiency in UDB 
Table 1 reflects a set of statistics from one of the UDB replica sets. 
It includes database instance size and the average CPU utilizations 
during peak time for two scenarios, with and without user read 
requests. Both scenarios include replication write requests. The 
data excludes DBA batch jobs such as backups and schema 
changes. We typically monitor space and CPU utilization for 
capacity planning. Common benchmarks like sysbench and TPC-C 
measure throughput rather than CPU utilization. In production 
database operations, we are working to save CPU time for given 
workloads. If a replica hits 100% CPU time, it will not be able to 
reliably serve more requests. So it is more important to track how 
much CPU time is spent on given workloads. 

The MyRocks instance size was 37.7% compared to the InnoDB 
instance size with the same data sets. Our InnoDB instance was 
using compressed format. This shows that LSM-based RocksDB 
can be much more space efficient compared to B+Tree based 
compressed InnoDB. When we first deployed MyRocks in 
production in 2016, approximate space reduction was slightly 
above 50%. Since then, we changed the compression algorithm 
from Zlib to Zstandard, and support PeriodicCompaction to 
periodically reclaim stale data, realizing even greater space savings.  

MyRocks was nearly 40% more CPU efficient than InnoDB when 
not serving read traffic and only serving write requests through 
replication. We have secondary indexes in most of the tables 
including objects and associations. When modifying rows 
MyRocks could maintain secondary indexes without random reads, 
which made a big difference compared to InnoDB. 

CPU time spent serving both read and write traffic was slightly 
lower in MyRocks than in InnoDB. 1.65 means the MySQL server 
process (mysqld) used 1.65 CPU seconds for both user and system 
per second. Commodity servers have tens of CPU cores. We are 
targeting aggregated CPU utilizations by mysqld process under 
40% of the total CPU cores during peak time. On typical hardware, 
we run many MyRocks instances per host. The MyRocks instances 
were more than 60% smaller compared to InnoDB, which means 
instance density became 2.5 times larger, and resulted in much 
higher aggregated CPU utilization. Note that these numbers were 
from replica instances. Primary instances used more CPU time for 
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sending binary logs to replicas, which were equally expensive 
between InnoDB and MyRocks. Some batch operations like logical 
backups also added CPU time although we did not usually run them 
during peak time. Right now our CPU utilization in UDB is still 
under target, but optimizing further is one of our long-term goals. 
Latency of read requests were comparable between InnoDB and 
MyRocks. 

Overall, we could operate MyRocks with much smaller footprint 
and slightly lower CPU utilizations for our production UDB, 
compared to the compressed InnoDB we primarily used until 2017.  

There were multiple factors where InnoDB could have been more 
efficient. For example, InnoDB supported only Zlib compression 
algorithm, while MyRocks had additional options like LZ4 and 
Zstandard, which were more CPU and/or space efficient 
compression algorithms. Also, our MySQL server binary was built 
with feedback-directed optimization (FDO), which optimized the 
binary based on MyRocks workloads. These reduced the CPU 
usage of MyRocks instances by approximately 7~10%. Due to 
maintenance considerations, we do not keep binaries optimized for 
InnoDB. By supporting Zstandard for InnoDB compression and 
building InnoDB optimized binary, CPU utilization of InnoDB 
instance will be comparable to MyRocks in our UDB workloads. 
Since we are already operating MyRocks everywhere in UDB, and 
due to density reasons, MyRocks is serving much more traffic than 
InnoDB per same space, we are focusing more optimizing CPU 
efficiencies in MyRocks. 

Table 1: UDB statistics compared to InnoDB and MyRocks 
Engine Space CPU 

seconds/s  
for writes 

CPU 
seconds/s  

for reads + 
writes 

Bytes 
written per 

second 

InnoDB 2187.4GB 0.89 1.83 13.34MB 

MyRocks 824.4GB 0.55 1.65 3.42MB 

 

5.2 Migrated Facebook Messenger Backend 
from HBase to MySQL With MyRocks 
HBase [18] was the choice for the Facebook Messenger backend 
database since its launch in 2010. At that time, HBase was chosen 
as the Facebook Messenger database because Messenger was write 
intensive and HBase was a good fit for it. HBase is based on a LSM 
algorithm, is strongly consistent, and runs well on HDD [19]. 
InnoDB was not chosen because it was not write and space 
optimized. Several years since then, flash storage has come to 
dominate database storage, and we have encountered issues where 
HBase could not use flash storage capacity because it exhausted 
CPU quickly, caused mainly by Garbage Collections. 

The successful InnoDB to MyRocks migration in UDB suggested 
a direction to migrate from HBase to MySQL with the MyRocks 
engine, too. The migration was more complex than UDB since 
HBase and MySQL were very different database products. The 
migration was done in conjunction with refactoring the Facebook 
Messenger application. The data migration was done using 
MapReduce jobs to extract the data from HBase and loading it into 
MySQL. During the transition phase, consistency was checked by 
double writing and reading. The full details are discussed in [20]. 

UDB (InnoDB to MyRocks) and Facebook Messenger (HBase to 
MySQL/MyRocks) were very large OLTP database services at 

Facebook, and we were very excited that our research projects, 
which started in mid 2014, have come this far. We decided to move 
away from HBase to MySQL/MyRocks primarily since the latter 
ran much better on flash storage. MyRocks used less CPU time and 
stalled less often. People might be surprised that we migrated from 
NoSQL to SQL because of performance, since NoSQL was 
supposed to be faster. But in general, fundamentals like database 
architecture, data modeling, data access algorithm and ability to 
tune them easily mattered more than CPU time to parse SQL 
statements. 

6. LESSONS LEARNED 
The MySQL team at Facebook had Software Engineers who 
modified the MySQL server code base for Facebook workloads, 
and Production Engineers (PE) who made MySQL infrastructure 
automated and reliable day to day. PE were also heavily involved 
in MyRocks and RocksDB developments from very early stages. 
The PE spent significant efforts to stabilize InnoDB in UDB in the 
past, so they had better predications about what kinds of issues 
might happen during migrations. This helped prioritize and 
determine the features and directions for improving MyRocks and 
RocksDB. Ultimately, this reduced the time it took to successfully 
migrate the UDB backends. Driving migration projects without 
understanding the current production database workloads is harder 
to succeed.  

When developing a new storage engine, it is very important to 
understand how core components worked, including flash storage 
and the Linux Kernel, from development to debugging production 
issues. It is important not only for database servers, but also for 
operational tools like backups. While it may be simpler to treat 
underlying components as black boxes, we believe this may lead to 
missed opportunities for improvement. Also, problems that occur 
between an application and the underlying component are harder to 
debug without first building expertise in these areas.  

Outliers should not be ignored. Many of our production issues 
happened on only one or a few instances. Checking at the p90 or 
p99 data points would not have caught such issues. At Facebook, 
we have invested a lot in monitoring to quickly catch such outliers. 
Running correctness checks, even after production deployment, 
was important for finding bugs. 

From operational standpoint, SQL compatibility was extremely 
helpful to migrate within reasonable time. Many of our important 
tools, such as MyShadow and data correctness, worked for both 
InnoDB and MyRocks thanks to SQL compatibility. 

We realized that a LSM-tree database like RocksDB has many more 
adjustable parameters. It was much more workload dependent and 
harder to tune correctly. Applications generating many tombstones 
affected performance more severely than InnoDB and calibrating 
MyRocks properly was challenging. It is our long term goal to 
make MyRocks require less tuning to support a greater range of 
workload patterns. The LSM-tree database had features to speed up 
writes by sacrificing consistency, but we currently favor more 
conservative settings. 

6.1 Memory Stalls and Efficiency 
We have learned several lessons from memory allocation reliability 
and efficiency. RocksDB is more heavily dependent on memory 
allocator implementations than InnoDB. RocksDB allocates 
memory for each block and the actual block size differs from block 
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to block. We used jemalloc [21] and it was crucial for our 
workloads. 

RocksDB used to rely on Linux’s page cache for Buffered I/O with 
simply POSIX fadvise hints, while InnoDB supports Direct I/O 
(Linux O_DIRECT). We started using MyRocks with Buffered I/O 
in production, however we faced two challenges. One was 
transaction commit stalls triggered by the Linux page cache 
allocations, and the other was higher Linux kernel memory usage 
leading to swapping. 

MyRocks transaction commit paths perform many memory 
operations (e.g. MemTable writes, binlog/wal writes), which 
caused Kernel Memory allocation stalls with the Linux Kernel 4.0. 
We upgraded Linux to 4.6, which solved most VM allocation issues 
and mitigated the problem. 

6.1.1 Transitioning to Direct I/O in RocksDB 
To achieve higher efficiency gains, we tried to use bigger flash 
storage capacity without increasing DRAM size, but we started 
seeing swaps triggered by memory pressure. We found that the 
Linux kernel allocated approximately 2~3GB of slab memory per 
1TB of RocksDB SST files. As the storage size increased the 
overhead was not negligible, especially with a smaller DRAM 
configuration. Though our Linux Kernel team at Facebook 
implemented a new radix tree structure to reduce memory overhead 
to manage large data files, we decided to support Direct I/O in 
RocksDB and make it less dependent on a Linux kernel distribution 
[22]. Making MyRocks less dependent on specific operation 
system optimizations is important for the open source community. 
Most database users do not have a dedicated Linux kernel team, and 
some use proven stable kernel versions, which are relatively old. 
They could see better benchmark results even with older kernel. 
After using Direct I/O, our average slab size dropped by over 80%.  

One notable challenge transitioning from buffered I/O to direct I/O 
in production was that we had to make sure we did not mix buffered 
and direct I/O to the same file. It was undefined behavior in Linux 
and caused significant performance slowdown. We adjusted our 
tools reading the files to match the access pattern. For example, our 
online MyRocks binary backup tool copied RocksDB SST files 
either using direct or buffered I/O, based on the instance’s setting. 

7. RELATED WORK 
LSM-tree based databases have existed for a long time. Big Table 
[23], LevelDB [13], Cassandra [24] and HBase [18] are a few 
examples. To our knowledge, most of the optimization techniques 
we introduced in this paper are novel and not present in previous 
systems. MyRocks also differs from other systems as space 
capacity efficiency is the primary optimization goal. 

Spanner [25] is a SQL database based on LSM-tree, but it is a SQL 
database built from ground up while MyRocks has a clear goal of 
matching performance of existing systems and keeping the 
database behavior compatible. 

Several database services built their SQL databases using RocksDB 
as a storage engine, such as CockroachDB [26], Yugabytes [27], 
and TiDB [28]. Those systems built SQL and distributed capability 
from scratch, while one important goal of MyRocks is to keep those 
layers intact by continuing using MySQL.  

There are other projects that create or extend MySQL storage 
engines, while keeping it transparent to database users and 
administrators. Amazon Aurora [29], TokuDB [30] and PolarDB 

[31] are a few examples. The MyRocks solution differs from these 
solutions for (1) MyRocks uses LSM-tree; (2) an existing key/value 
store library, RocksDB, is used rather than implementing a new 
one. 

Some works, e.g. [32], introduce database migration system in the 
context of multi-tenant databases in cloud. Others shared 
experience on large scale migration of their databases, e.g. [33][34]. 
While their works focused on data integrity for the migrated data 
itself and performance tuning, we focused on detecting 
performance regression, data correctness bugs and query 
incompatibility caused by storage engine implementation as early 
as possible. 

Regarding saving DRAM for bloom filter in LSM-trees, [35] and 
[36] proposed more adaptive and general approaches. While 
RocksDB uses prefix bloom filter to filter out short range queries, 
[37] proposed a general range filter for LSM-trees. 

8. CONCLUSION AND FUTURE WORKS 
This paper introduces UDB, our largest OLTP database for handling 
social activities at Facebook. We placed a high priority on 
continually increasing efficiency, which led to the development of 
a LSM-tree database that is more space and write optimized than 
the B+Tree database, InnoDB. We created MyRocks, a MySQL 
storage engine, on top of RocksDB, a key/value store library. 
MyRocks made our production database migration from InnoDB 
significantly easier, since both are MySQL storage engines. 
Leveraging MySQL features, MyRocks and InnoDB instances 
could replicate from each other. No significant client changes were 
needed. The LSM-tree database was known to be space and write 
optimized, but the downside was more expensive reads. While 
MyRocks addresses two major bottlenecks of the systems, we faced 
several challenges, including CPU efficiencies. Significant 
optimizations in RocksDB, such as hybrid compression algorithms 
and flexible bloom filter, addressed these issues. Our MyRocks 
mixed read and write workloads in UDB were eventually more 
CPU efficient than InnoDB’s. Our success with UDB led to the 
HBase to MyRocks migration in Facebook Messenger. 

Simplifying MyRocks performance tuning so it can be used without 
in depth knowledge is our next milestone. While configuring the 
prefix bloom filter, reverse key comparators and skipping last level 
bloom filters, we have managed to match the performance of 
InnoDB, it required significant effort. We plan to allow RocksDB 
to adaptively tune itself dynamically. 
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