
Autonomous Agents and Multi-Agent Systems, 5, 221–229, 2002
© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

MySpiders: Evolve Your Own Intelligent
Web Crawlers

GAUTAM PANT AND FILIPPO MENCZER {gautam-pant, filippo-menczer}@uiowa.edu
Department of Management Sciences, The University of Iowa, Iowa City, IA 52242

Abstract. The dynamic nature of the World Wide Web makes it a challenge to find information that
is both relevant and recent. Intelligent agents can complement the power of search engines to meet
this challenge. We present a Web tool called MySpiders, which implements an evolutionary algorithm
managing a population of adaptive crawlers who browse the Web autonomously. Each agent acts as an
intelligent client on behalf of the user, driven by a user query and by textual and linkage clues in the
crawled pages. Agents autonomously decide which links to follow, which clues to internalize, when to
spawn offspring to focus the search near a relevant source, and when to starve. The tool is available to
the public as a threaded Java applet. We discuss the development and deployment of such a system.

Keywords:

1. Introduction

The World Wide Web is a rapidly growing and changing information source. Its
growth and change rates make the task of finding relevant and recent information
harder. Search engines attempt to crawl the Web exhaustively for new pages, and to
keep track of changes made to pages visited earlier. The crawled pages are stored in
a static index mapping every term from a controlled vocabulary onto the collection
of URLs containing that term. The index is used at query time to return the sets of
URLs containing the terms in users’ queries.
Due to the dynamic nature of the Web, the set of relevant pages for any given

query is also highly dynamic, leading to a scalability problem—the assumption of an
accurate and complete static image of the Web breaks down with its rate of change.
As search engines fail to satisfy the user’s need for complete and recently updated
information, it becomes highly desirable to improve the coverage and recency of
search engines.
One approach to address the coverage issue is the use of meta-search techniques

to combine relevant sets from multiple search engines [7, 15, 16]. Yet even meta-
search engines cannot locate recent pages unknown to the individual engines whose
results are combined. A number of intelligent agents have been developed in recent
years to help users manage the information available through the Web [1, 2, 8,
13, 14]. However, such agents have generally limited autonomy—either they rely
completely on search engines, or they must be told where to go by the user, or they
follow some fixed heuristics. Other systems, such as Fish Search [4] and Fetuccino
[3], crawl at query time but are hindered by a lack of adaptability—all agents are
identical clones following fixed search strategies.

Gautam
au: Please supply keywords.

Gautam
au: OK to delete "s" from algorithm?

Gautam



222 pant and menczer

We suggest a more radical solution to the scalability problem: complementing
index-based search engines with intelligent search agents at the user’s end. This
paper describes an evolutionary multi-agent system designed to browse adaptively
on behalf of the user to complement search engines. We discuss the implementation
of such agents in Java.

2. MySpiders

2.1. InfoSpiders algorithm

InfoSpiders [9] is a multi-agent system for online, dynamic Web search. Each agent
checks its information neighborhood (defined by hyperlinks) looking for new doc-
uments relevant to the user’s query and having little or no interaction with other
agents. InfoSpiders are able to display an intelligent behavior by evaluating the rel-
evance of the document content with respect to the user’s query, and by reasoning
autonomously about future actions that mimic the browsing habits of human users.
Adaptation occurs at both individual and population levels, by evolutionary and
reinforcement learning. The goal is to maintain diversity at a global level, trying
to achieve a good coverage of all aspects related to the query, while capturing the
relevant features of each agent’s local information environment.
InfoSpiders employ an evolutionary computation approach based on local selection

[12]. An agent’s “energy,” related to the relevance of the pages visited by that agent,
is accumulated over time (Figure 1). We want to reward agents that find relevant
pages first, and not agents that visit those pages subsequently. The primary reasons
for the first-time-only reward are to detect loops, prevent population explosion, and
improve coverage. For this we employ a caching system, and the interaction among
individuals is limited to sharing access to this cache. Reproduction and death occur
in an autonomous fashion, when an agent’s energy reaches a fixed threshold or runs
out. Offspring internalize features of the documents leading to reproduction events,
by expanding their parents’ query representation with terms frequent in the birth
pages.
InfoSpiders rely on traditional search engines to obtain a set of starting URLs

pointing to pages supposedly relevant to the query submitted by the user. An agent
is positioned at each of these starting URLs. Each agent analyzes its current page
to decide the next link to follow. The analysis includes looking at a small set of
words around each hyperlink. The frequencies of query matching terms in such a
neighborhood are used as inputs to a neural net that scores each outlink. One link
is then picked with a probability proportional to its score.
After a document has been visited, its similarity to the query is used as a learning

signal to update the weights of the neural net. Further, the agent computes a fitness
value to update its energy level. Since the energy dynamics of an agent determine
its reproductive rate, determining an appropriate fitness function to map the quality
and cost of visited pages into energy is crucial for the success of the system. Users
will only use tools that are both effective and efficient. For this reason we use two
components in our fitness functions: a benefit based on the similarity to the query,



MYSPIDERS 223

MySpiders(query, MAX_PAGES) {
starting_urls := search_engine(query);
for agent (1..#INIT_URLS) {

initialize(agent, query);
agent.location = one_of(starting_urls);
agent.energy := THETA / 2;

}
foreach agent {

while (alive & (visited < MAX_PAGES)) {
p := fetch_page(agent.location);
lock(cache_semaphore);
update(cache);
unlock(cache_semaphore);
agent.energy += fitness(p);
learn(agent);
if (agent.energy > THETA) {
offspring := mutate(clone(agent));
offspring.energy := agent.energy / 2;
agent.energy -= offspring.energy;

}
elseif (agent.energy < 0) die(agent);
agent.location = pick_new_location();

}
}

}

Figure 1. Pseudocode of MySpiders.

and a cost to account for the network resources used to download pages:

fitness �p� = sim�p� query�− ct
t�p�

tmax

where sim() is the cosine similarity function, t�p� is the real time in which the page
is downloaded, tmax is the timeout parameter for the socket connection, and

ct =
#INIT_URLS ∗ THETA

MAX_PAGES

is a constant designed to ensure that the system will crawl MAX_PAGES pages (cf.
Figure 1). We have found through experiments that such a latency dependent cost
helps in getting faster results without penalizing the quality [5].1

The output of the algorithm is a flux of links to documents, ranked by estimated
relevance. The algorithm can terminate before MAX_PAGES documents if it is ter-
minated by the user, or if the population goes extinct for lack of relevant pages.
Additional details on the algorithm can be found elsewhere [9].

2.2. MySpiders applet

Due to the parallel nature of the InfoSpiders algorithm, multi-threading is expected
to provide better utilization of resources as compared to a single thread (sequential)
implementation. Since Java has built-in support for threads and allows for classes



224 pant and menczer

to be loaded at runtime over the Web, we implemented a multi-threaded version of
InfoSpiders as a Java applet, called MySpiders.
The multi-threaded implementation allows one agent to use the network connec-

tion to retrieve a document, while other agents can use the CPU, or access cache
information on the local disk. Figure 1 illustrates the MySpiders applet. The only
addition to the algorithm described in the previous section is a synchronization
mechanism to allow concurrent access to the shared cache.
MySpiders is deployed on a public Web server.2 Figure 2 shows the user interface

of the applet in the course of a query search. MySpiders hides from the user many
parameters in order to keep the user interface as simple as possible. For example,
the parameter MAX_PAGES is provided by the user while THETA is determined
empirically and hidden.
Once the start button is pressed, an automated browsing process is initiated.

#INIT_URLS hits are retrieved from a search engine3 and a spider is initiated at
each of the links (Figure 2a). The user can scan through a ranked list of relevant
pages found up to that time, in a tabular format. The relevant URLs are preceded
by name of the agent (spider) that found the page. If the URL is one of the initial
links from the search engine, it is preceded by the name of the search engine. The
hierarchy of spiders is shown as an expandable tree structure (Figure 2b). If the
user likes a page, clicking on the spider that found it provides additional details
about the spider, e.g., its history of crawled pages (Figure 2c). Clicking on a URL
in the results frame brings up the page in a browser window (Figure 2d). The user
has the choice to stop the search process at any time if she has already found the
desired results, or if the process is taking too long.

2.3. Software architecture

The MySpiders system can be divided into five subsystems—user interface, manager,
shared objects, utilities, and spiders (Figure 3). The algorithm has many aspects that
can be tuned for better performance. For example we could tweak some parameter
values or change the fitness function to bias the search. We are also looking at using
InfoSpiders in non-Web environments. Hence, we needed a system that can be easily
reconfigured and extended. For the same reason, it was important to separate the
front-end of the system from the algorithmic details. In the latest implementation,
the user interface (described above) acts as a client that can query the back-end
search agents for their status.
The isolation of the front-end from the agents is managed through use of a

middle manager tier. The manager provides an API that allows the front-end to
start and stop the search, provide user modifiable parameters, and to query for
search status. The manager knows how to initiate and monitor threaded search
agents. The current design makes it easy to plug-in a new search mechanism with
minimal code change. For example, the latest implementation allows the user to
change the crawling algorithm from InfoSpiders to Best-First, a crawler that has
proved to be a valid alternative under certain circumstances [9, 11].4



MYSPIDERS 225

Fi
gu
re

2.
T
he

us
er

in
te
rf
ac
e
of

M
yS
pi
de
rs
du

ri
ng

a
cr
aw

l.
(a
)
E
ar
ly
in

th
e
se
ar
ch

pr
oc
es
s;
m
os
t
of

th
e
to
p
hi
ts
ar
e
fr
om

G
oo
gl
e.
(b
)
L
at
er

in
th
e
se
ar
ch

pr
oc
es
s;
Sp
id
er

5
ha
s
re
pr
od
uc
ed

an
d
its

pr
og
en
y
is
vi
si
bl
e
in

th
e
ex
pa
nd
ab
le

tr
ee
.(
c)

A
t
th
e
en
d
of

th
e
cr
aw

l;
th
e
de
ta
ils

of
Sp
id
er

6,
w
ho

fo
un

d
th
e
to
p
hi
t,
ar
e
di
sp
la
ye
d
in

a
po
p-
up

w
in
do
w
.(
d)

V
ie
w
in
g
th
e
to
p
hi
t
by

cl
ic
ki
ng

its
U
R
L
in

th
e
re
su
lts

fr
am

e.



226 pant and menczer

Figure 3. Software architecture of the system.

As mentioned before, the shared cache is essential for the working of the multi-
threaded MySpiders system. Another shared object is the naming mechanism that
provides a unique name to each spider. A results table is a shared object that
maintains details about the pages that the spiders want to add to the results. Finally,
a shared log object is used to maintain a system wide mechanism for logging major
events. The shared objects other than the cache can be easily replaced by non-shared
ones (as would be required for a distributed implementation), but have been kept
for efficiency. Access to all shared objects is thread-safe.
The utilities include an entire gamut of functions that provide facilities for retriev-

ing documents from the Web, HTML and XML parsing, stemming, measuring sim-
ilarity and other tools used by most Web crawlers.
The architecture of a MySpiders agent is shown in Figure 4. In addition to the

current location, the agent stores a back-link so that it can move to the previous
page and escape (some) dead-ends. It also maintains a backup of inputs used by
the neural network’s learning algorithm.
All the back-end storage is done in XML. This aids system portability and helps

in storing and parsing hierarchical data. An example is the spider hierarchy shown
in Figure 2.

2.4. Java security

While Java is a powerful language there are issues that weaken the Java choice,
the most important of which are the low speed of execution of Java byte code and
the need to provide a mechanism for granting privileges to the applet. In fact, to
be able to open network connections to hosts other than the one from where the
applet itself was downloaded, and to access the local disk for cache I/O operations,
the applet has to bypass the browser’s security manager. To accomplish this task



MYSPIDERS 227

Figure 4. Representation of a MySpiders agent.

we used a combination of digitally signed applets and policy files [6]. Both of these
solutions have platform dependencies that hinder portability and ease of use. We
are currently exploring the use of the Java Network Launching Protocol and Java
Web Start.

3. Conclusions

We have described MySpiders, a deployed system in which adaptive information
agents browse the Web concurrently and autonomously on behalf of the user. This
tool can be applied to several problems confronting information seekers:

• As a search refinement tool, to save the user from manually browsing through
the hits returned by a search engine when the relevant pages may not have been
indexed due to their recency.

• As a personalized background search and notification tool, serving long-standing
queries such as user profiles.

• As a competitive intelligence tool, to monitor sites mining for new information
on a given subject.

• As a portal crawler, to gather and index relevant pages and update specialized
(topical or personal) search engines.

The object-oriented nature of Java and built-in facilities for multi-threading
decreased our implementation effort. A modular software design makes it easy to
reconfigure the system for various experiments. Though Java code is portable by
nature, lack of adequate support for applets on popular browsers adds extra effort
to its deployment. In addition, an applet based implementation of Web browsing
agents suffers further portability limitations due to its security issues.



228 pant and menczer

InfoSpiders has been evaluated favorably on a controlled corpus [9], as well as
through anecdotic evidence on the Web [10]. We continue to evaluate the utility
of the technique as compared to other state-of-the-art crawling methods [11]. The
Applet has gained considerable visibility since its deployment (for example, there
were 1,723 unique users in the month of April 2001).

Acknowledgments

MySpiders is work in progress and through its previous versions it has embodied con-
tributions and feedback from several people, including Melania Degeratu, Alvaro
Monge, Padmini Srinivasan, Dave Eichmann, Mason Lee, Nick Street, Dario Flore-
ano, Rik Belew, and Charles Elkan. MySpiders is hosted on a server funded in part
by an Instructional Improvement Award from the University of Iowa.

Notes

1. Note that client connections with higher bandwidth also lead to higher population sizes.
2. http://myspiders.biz.uiowa.edu
3. We currently use http://www.google.com for this purpose.
4. Best-First selects links from a priority queue where it keeps outlinks from visited pages sorted by

similarity of these pages to the query.

References

1. R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell, “Webwatcher: A learning apprentice for
the world wide web,” in AAAI Spring Symposium on Information Gathering from Heterogeneous,
Distributed Environments, 1995.

2. M. Balabanović, “An adaptive web page recommendation service,” in Proc. 1st Int. Conf. Autonomous
Agents, 1997.

3. I. Ben-Shaul, M. Herscovici, M. Jacovi, Y. Maarek, D. Pelleg, M. Shtalhaim, V. Soroka, and S. Ur,
“Adding support for dynamic and focused search with fetuccino,” in Proc. 8th Int. World Wide Web
Conf. 1999.

4. P. De Bra and R. Post, “Information retrieval in the world wide web: Making client-based searching
feasible,” in Proc. First Int. World Wide Web Conf., 1994.

5. M. Degeratu, G. Pant, and F. Menczer. “Latency-dependent fitness in evolutionary multithreaded
web agents,” in Proc. GECCO Workshop on Evolutionary Computation and Multi-Agent Systems
(ECOMAS’01), 2001.

6. L. Gong, Inside Java 2 Platform Security: Architecture, API Design, and Implementation, Addison
Wesley, 1999.

7. S. Lawrence and C. Giles, “Context and page analysis for improved web search,” IEEE Internet
Computing, vol. 2, no. 4, pp. 38–46, 1998.

8. H. Lieberman, “Autonomous interface agents,” in Proc. ACM Conf. Computers and Human Interface,
Atlanta, GA, 1997.

9. F. Menczer and R. Belew, “Adaptive retrieval agents: Internalizing local context and scaling up to
the web,” Machine Learning, vol. 39, nos. 2/3, pp. 203–242, 2000.

10. F. Menczer and A. Monge, “Scalable web search by adaptive online agents: An InfoSpiders case
study,” in M. Klusch (ed.), Intelligent Information Agents: Agent-Based Information Discovery and
Management on the Internet, Springer, Berlin, 1999.



MYSPIDERS 229

11. F. Menczer, G. Pant, M. Ruiz, and P. Srinivasan. “Evaluating topic-driven web crawlers,” in Proc.
24th Annual Int. ACM SIGIR Conf. Research and Development in Information Retrieval, 2001.

12. F. Menczer, W. Street, and M. Degeratu, “Evolving heterogeneous neural agents by local selec-
tion,” in M. Patel, V. Honavar, and K. Balakrishnan (eds.), Advances in the Evolutionary Synthesis of
Intelligent Agents, MIT Press, 2001.

13. A. Moukas, “Amalthaea: Information discovery and filtering using a multiagent evolving ecosystem,”
in Proc. Conf. Practical Applications of Intelligent Agent Technology, 1996.

14. M. Pazzani, J. Muramatsu, and D. Billsus. “Syskill & Webert: Identifying interesting websites,” in
Proc. National Conf. Artificial Intelligence (AAAI96), 1996.

15. E. Selberg and O. Etzioni, “The metacrawler architecture for resource aggregation on the web,”
IEEE Expert, vol. 12, no. 1, pp. 8–14, 1997, http://www.metacrawler.com.

16. C. Vogt and G. Cottrell, “Predicting the performance of linearly combined ir systems,” in Proc. ACM
SIGIR Conf., 1998.



Annotations from agnt399757.pdf

Page 1

Annotation 1; Label: Gautam; Date: 2/14/2002 2:26:48 PM
au: Please supply keywords.

Annotation 2; Label: Gautam; Date: 2/14/2002 2:27:14 PM
au: OK to delete "s" from algorithm?


