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MYSTERY OF POINT CHARGES

A. GABRIELOV, D. NOVIKOV and B. SHAPIRO

To Vladimir Igorevich Arnold who taught us to study classics

Abstract

We discuss the problem of finding an upper bound for the number of equilibrium points of a potential of several
fixed point charges in R

n. This question goes back to J. C. Maxwell and M. Morse. Using fewnomial theory
we show that for a given number of charges there exists an upper bound independent of the dimension, and
show it to be at most 12 for three charges. We conjecture an exact upper bound for a given configuration of
non-negative charges in terms of its Voronoi diagram, and prove it asymptotically.

1. Introduction

Consider a configuration of l = μ + ν fixed point charges in R
n, with n � 3, consisting of μ

positive charges with the values ζ1, . . . , ζμ, and ν negative charges with the values ζμ+1, . . . , ζl.
They create an electrostatic field whose potential equals

V (x̄) =
(

ζ1

rn−2
1

+ . . . +
ζμ

rn−2
μ

)
+

(
ζμ+1

rn−2
μ+1

+ . . . +
ζl

rn−2
l

)
, (1.1)

where ri is the distance between the ith charge and the point x̄ = (x1, . . . , xn) ∈ R
n which we

assume to be different from the locations of the charges. Below we consider the problem of
finding effective upper bounds on the number of critical points of V (x̄), that is, the number
of points of equilibrium of the electrostatic force. In what follows we mostly assume that
considered configurations of charges have only non-degenerate critical points. This guarantees
that the number of critical points is finite. Such configurations of charges and potentials will
be called non-degenerate. Surprisingly little is known about this whole topic and the references
are very scarce.

The classical case of R
2 � C when the potential of the unit charge placed at the origin equals

ln |z| was a subject of investigation by C. F. Gauss; see [4, 11]. In particular, he noticed that the
electrostatic force, that is, the gradient of V (x̄) =

∑
ζi log |z − zi|, created by a configuration

of charges with values ζ1, . . . , ζl located at the points z1, . . . , zl respectively equals

F (z) =
l∑

i=1

ζi

z − zi

which implies that the equilibrium points of this force coincide with the zeros of the rational
function in the right-hand side of the latter expression. Therefore, their total number is at
most l.

In the case of R
3 one of the very few known results obtained by direct application of Morse

theory to V (x̄) is as follows; see [14, Theorem 32.1; 8, Theorem 6].
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Theorem 1.1 (Morse and Kiang). Assume that the total charge
∑l

i=1 ζj in (1.1) is negative
(respectively positive). Let m1 be the number of the critical points of index 1 of V , and m2 be
the number of the critical points of index 2 of V . Then m2 � μ (respectively m2 � μ − 1) and
m1 � ν − 1 (respectively m1 � ν). Additionally, m1 − m2 = ν − μ − 1.

Note that the potential V (x̄) has no (local) maxima or minima due to its harmonicity.

Remark. The remaining (more difficult) case
∑μ

i=1 ζi +
∑l

j=μ+1 ζj = 0 is treated in [8].

Remark. The above theorem has a generalization to any R
n (n � 3) with m1 being the

number of the critical points of index 1 and m2 being the number of the critical points of
index n − 1.

Definition 1.2. Configurations of charges with all non-degenerate critical points and
m1 + m2 = μ + ν − 1 are said to be minimal; see [14, p. 292].

Remark. Minimal configurations occur if one places, for example, all charges of the
same sign on a straight line. On the other hand, it is easy to construct generic non-minimal
configurations of charges; see [14].

Remark. The major difficulty of this problem is that the lower bound on the number of
critical points of V given by Morse theory is known to be not exact. Therefore, since we are
interested in an effective upper bound, the Morse theory arguments do not provide an answer.

The question about the maximum (if it exists) of the number of points of equilibrium of a
non-degenerate configuration of charges in R

3 was posed in [14, p. 293]. In fact, J. C. Maxwell
in [12, Section 113] made an explicit claim answering exactly this question.

Conjecture 1.3 ([12], see also the appendix below). The total number of points of
equilibrium (all assumed to be non-degenerate) of any configuration with l charges in R

3

never exceeds (l − 1)2.

Remark. In particular, there are at most four points of equilibrium for any configuration
of three point charges according to Maxwell; see Figure 1.

Remark. The above conjecture, buried among other material in [12], was apparently
completely forgotten for over a 130 years and by chance (re)discovered by one of the authors.

Before formulating our results and conjectures let us first generalize the set-up. In the
notation of Theorem 1.1 consider the family of potentials depending on a (now not necessarily
integer) parameter α > 0 and given by

Vα(x̄) =
(

ζ1

ρα
1

+ . . . +
ζμ

ρα
μ

)
+

(
ζμ+1

ρα
μ+1

+ . . . +
ζl

ρα
l

)
, (1.2)

where ρi = r2
i for i = 1, . . . , l. (The choice of ρi instead of ri is motivated by convenience of

algebraic manipulations.) The limit case of α = 0 corresponds to

V0(x̄) =
∑

ζi log ρi,

that is, the logarithmic potential considered by Gauss.
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Figure 1. Configurations with two and with four critical points.

Notation 1.4. Denote by Nl(n, α) the maximal number of the critical points of the
potential (1.2) where the maximum is taken over all non-degenerate configurations with l
variable point charges, that is, over all possible values and locations of l point charges forming
a non-degenerate configuration.

Our first result is the following uniform (that is, independent of n and α) upper bound.

Theorem 1.5. (a) For any α � 0 and any positive integer n one has

Nl(n, α) � 4l2(3l)2l. (1.3)

(b) For l = 3 one has a significantly improved upper bound

N3(n, α) � 12.

Remark. Note that the right-hand side of the formula (1.3) gives, even for l = 3, the
horrible upper bound 139, 314, 069, 504. On the other hand, computer experiments suggest
that Maxwell was right and that for any three charges there are at most four (and not twelve)
critical points of the potential (1.2); see Figure 1.

Remark. Figure 1 shows the level curves of the restrictions of the potential of three positive
charges to the plane they span in two essentially different cases (conjecturally, the only ones).
The graph on the left has three saddles and one local minimum and the graph on the right has
just two saddle points.

1.1. Voronoi diagrams and the main conjecture

Theorem 1.7 below determines the number of critical points of the function Vα for large α
in terms of the combinatorial properties of the configuration of the charges. To describe it we
need to introduce several notions.

Notation. By a (classical) Voronoi diagram of a configuration of pairwise distinct points
(called sites) in the Euclidean space R

n we understand the partition of R
n into convex cells

according to the distance to the nearest site; see, for example, [3, 17].
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Remark 1.6. The first known application of Voronoi diagrams can be traced back to
Aristotle’s De Caelo where Aristotle asked how a dog faced with the choice of two equally
tempting meals could rationally choose between the two. These ideas were later developed by
the well-known French philosopher and physicist Jean Buridan (1300–1356) who sowed the
seeds of religious scepticism in Europe. Buridan allowed that the will could delay the choice in
order to more fully assess the possible outcomes of the choice. Later writers satirized this view
in terms of an ass who, confronted by two equally desirable and accessible bales of hay, must
necessarily starve while pondering a decision. Apparently the Roman Catholic Church found
unrecoverable errors in Buridan’s arguments since about hundred and twenty years after his
death a posthumous campaign by Okhamists succeeded in having Buridan’s writings placed
on the Index Librorum Prohibitorum (List of Forbidden Books) from 1474–1481.

A Voronoi cell S of the Voronoi diagram consists of all points having exactly the same set
of nearest sites. The set of all nearest sites of a given Voronoi cell S is denoted by NS(S).
Using the terminology of [3, 17], we see that the NS(S) is the set of vertices of the cell of the
Delaunay triangulation corresponding to the cell S. One can see that each Voronoi cell is the
interior of a convex polyhedron, probably of positive codimension. This is a slight generalization
of traditional terminology, which considers the Voronoi cells of the highest dimension only.

A Voronoi cell of the Voronoi diagram of a configuration of sites is said to be effective if it
intersects the convex hull of NS(S).

If we have an additional affine subspace L ⊂ R
n, we say that a Voronoi cell S of the Voronoi

diagram of a configuration of charges in R
n is effective with respect to L if S intersects the

(closed) convex hull of the orthogonal projection of NS(S) onto L.
A configuration of points is said to be generic if any Voronoi cell S of its Voronoi diagram

of any codimension k has exactly k + 1 nearest sites and does not intersect the boundary of
the convex hull of NS(S). Notice that one can show that if the cell S does not intersect the
interior of the convex hull of NS(S) then it consists of topological regular points of the function
‘distance to the nearest site’ in the terminology of [19].

A subspace L intersects a Voronoi diagram generically if it intersects all its Voronoi cells
transversally, any Voronoi cell S of codimension k intersecting L has exactly k + 1 nearest
sites, and S does not intersect the boundary of the convex hull of the orthogonal projection of
NS(S) onto L.

The combinatorial complexity of a given configuration of points is the total number of cells
of all dimensions in its Voronoi diagram, and the effective combinatorial complexity of a given
configuration of points is the total number of effective cells of all dimensions in its Voronoi
diagram.

Example. A Voronoi diagram of three non-collinear points A, B, C on the plane consists
of seven Voronoi cells:

(i) three two-dimensional cells SA, SB , SC with NS(S) consisting of one point;
(ii) three one-dimensional cells SAB , SAC , SBC with NS(S) consisting of two points; for

example, SAB is a part of the perpendicular bisector of the segment [A, B];
(iii) one zero-dimensional cell SABC with NS(S) consisting of all three points; this is the

point equidistant from all three points.
There are two types of generic configurations of three points; see Figure 3. The first type is

of an acute triangle ΔABC and then all Voronoi cells are effective. The second type is of an
obtuse triangle ΔABC and then (for the obtuse angle A) the Voronoi cells SBC and SABC are
not effective.

The case of the right-angled triangle ΔABC is non-generic: the cell SABC , though effective,
lies on the boundary of the triangle.
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The following result motivates our main conjecture, Conjecture 1.8 below.

Theorem 1.7. (a) For any generic configuration of point charges of the same sign there
exists α0 > 0 such that for any α � α0 the critical points of the potential Vα(x̄) are in one-to-
one correspondence with effective cells of positive codimension in the Voronoi diagram of the
considered configuration. The Morse index of each critical point coincides with the dimension
of the corresponding Voronoi cell.

(b) Suppose that an affine subspace L intersects generically the Voronoi diagram of a given
configuration of point charges of the same sign. Then there exists α0 > 0 (depending on the
configuration and L) such that for any α � α0 the critical points of the restriction of the
potential Vα(x̄) to L are in one-to-one correspondence with cells that are effective with respect
to L and are of positive codimension in the Voronoi diagram of the considered configuration.
The Morse index of each critical point coincides with the dimension of the intersection of the
corresponding Voronoi cell with L.

More exactly, we prove below that critical points of the potential corresponding to an effective
cell S lie on the distance O(α−1) from the point of intersection of S and of the convex hull
of NS(S). Note that the genericity assumption in the theorem is essential: it is easy to see
that in the case of the right-angled triangle the zero-dimensional cell, though effective, does
not correspond to a critical point of a potential.

Finally, our computer experiments in one- and two-dimensional cases led us to the following
optimistic conjecture.

Conjecture 1.8. (a) For any generic configuration of unit point charges and any α � 1
2

one has

aj
α � �j , (1.4)

where aj
α is the number of the critical points of index j of the potential Vα(x̄) and �j is the

number of all effective Voronoi cells of dimension j in the Voronoi diagram of the considered
configuration.

(b) For any affine subspace L generically intersecting the Voronoi diagram of a given
configuration of unit point charges one has

aj
α,L � �j

L, (1.5)

where aj
α,L is the number of the critical points of index j of the potential Vα(x̄) restricted to

L and �j
L is the number of all Voronoi cells with dim(S ∩ L) = j effective with respect to L in

the Voronoi diagram of the considered configuration.

We will refer to the inequality (1.4) as the Maxwell inequality, and to (1.5) as the relative
Maxwell inequality.

Remark. Theorem 1.7 and Conjecture 1.8 were inspired by two observations. On one
hand, the critical points of Vα(x̄) and of V

−1/α
α (x̄) are the same (one needs here positiveness of

charges). However, the limit of V
−1/α
α (x̄) when α → ∞ can be easily computed. Namely, one

can easily show that

lim
α→∞

Vα
−1/α(x̄) = V∞(x̄) = min

i=1,...,l
ρi(x̄).
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Figure 2. The potential V
−1/α

α (x) converges to V∞(x) as α → ∞.

Indeed, denoting ρ(x) = mini=1,...,l ρi(x̄), we get

lim
α→∞

Vα
−1/α(x̄) = ρ(x̄) lim

α→∞

[∑
i

ζi

(
ρ(x̄)
ρi(x̄)

)α
]−1/α

= ρ(x̄) lim
α→∞

(
C1 + C2e

O(−α))−1/α = ρ(x̄) = V∞(x̄).

This limiting function is only piecewise smooth. In the planar case in [19] an analogue of
the standard Morse theory for this function was constructed. Generalizing this approach, we
define critical points of V∞(x̄) and their Morse indices. Moreover, it turns out that for generic
configurations every critical point of V∞(x̄) lies on a separate effective cell of the Voronoi
diagram whose dimension equals the Morse index of that critical point; see § 2.4.3. Theorem 1.7
above claims that for sufficiently large α the situation is the same, except that the critical point
does not lie exactly on the corresponding Voronoi cell (in fact, it lies an O(α−1) distance from
this Voronoi cell; see Lemmas 2.30 and 2.35). On the other hand, computer experiments show
that the largest number of critical points (if one fixes the positions of charges) occurs when
α → ∞; see Figure 2.

Even the special case of Conjecture 1.8 when L is one-dimensional is of interest and still open.
Its slightly stronger version supported by extensive numerical evidence can be reformulated as
follows.

Conjecture 1.9. Consider an l-tuple of points (x1, y1), . . . , (xl, yl) in R
2. Then for any

values of charges (ζ1, . . . , ζl) the function V ∗
α (x) in (one real) variable x given by

V ∗
α (x) =

l∑
i=1

ζi

((x − xi)2 + y2
i )α

(1.6)

has at most (2l − 1) real critical points, provided one assumes that α � 1
2 .

Remark. In the simplest possible case α = 1, Conjecture 1.9 is equivalent to showing that
real polynomials of degree (4l − 3) of a certain form have at most (2l − 1) real zeros.

1.1.1. Complexity of the Voronoi diagram and Maxwell’s conjecture. In the classical planar
case one can show that the total number of cells of positive codimension of the Voronoi diagram
of any l sites on the plane is at most 5l − 11 and this bound is exact.

Since (l − 1)2 is larger than the conjectural exact upper bound 5l − 11 for all l > 5 and
coincides with 5l − 11 for l = 3, 4, we conclude that Conjecture 1.8 implies a stronger form of
Maxwell’s conjecture for any l positive charges on the plane and any α � 1

2 .
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For n > 2 the worst-case complexity Γ(l, n) of the classical Voronoi diagram of an l-tuple
of points in R

n is Θ(l[n/2+1]); see [3]. Namely, there exist positive constants A < B such
that Al[n/2+1] < Γ(l, n) < Bl[n/2+1]. Moreover, the Upper Bound Conjecture of the convex
polytopes theory proved by McMullen implies that the number of Voronoi cells of dimension
k of a Voronoi diagram of l charges in R

n does not exceed the number of (n − k)-dimensional
faces in the (n + 1)-dimensional cyclic polytope with l vertices; see [5, 13]. This bound is exact,
that is, is achieved for some configurations; see [18].

In R
3 this means that the number of 0-dimensional Voronoi cells of the Voronoi diagram of

l points is at most 1
2 l(l − 3), the number of 1-dimensional Voronoi cells is at most l(l − 3), and

the number of 2-dimensional Voronoi cells is at most 1
2 l(l − 1).

We were unable to find a similar result about the number of effective cells of a Voronoi
diagram. However, already for a regular tetrahedron the number of effective cells is 11, which
is greater than Maxwell’s bound 9. Thus a stronger version of Maxwell’s conjecture in R

3 fails:
the number of critical points of Vα can be bigger than (l − 1)2 for α sufficiently large.

However Maxwell’s original conjecture miraculously agrees with Maxwell inequalities (1.4)
and we obtain the following conditional statement.

Theorem 1.10. Conjecture 1.8 implies the validity of the original Maxwell conjecture for
any configuration of positive charges in R

3 in the standard 3-dimensional Newton potential,
that is, α = 1

2 .

Existing literature and outline of the paper. Logarithmic potentials in R
3 similar to (1.2)

(that is, the case of the electrostatic force proportional to the inverse of the distance) were
studied in a number of papers of J. L. Walsh; see [15] and references therein. In this case it is
possible to generalize the classical Gauss–Lucas theorem and some results on Jensen’s circles
for polynomials in one complex variable to real vector spaces of higher dimension.

Some interesting examples of electrostatic potentials whose critical points form curves were
considered in [6]. The question of whether degenerate electrostatic potential defined by a finite
number of charges can have an analytic arc of critical points was stated in [14, p. 294]. Finally,
the results about instability of critical points for more general potentials and dynamical systems
are obtained in [9]. Instability in our context follows from subharmonicity of the considered
potential and had already been mentioned in [12, Section 116] under the name Earnshaw’s
theorem.

The structure of the paper is as follows. In Section 2 we prove the above results. Section 3
contains further remarks and open problems related to the topic. Finally, in the appendix
we reproduce the original Section 113 of [12] where Maxwell presents the arguments of Morse
theory (developed at least 50 years later), and names the ranks of the 1st and the 2nd homology
groups of domains in R

3 in the language of (apparently existing) topology of the 1870s to
formulate his claim.

Acknowledgements. The authors are sincerely grateful to A. Eremenko, A. Fryntov,
D. Khavinson, H. Shapiro, M. Shapiro and A. Vainshtein for valuable discussions and references,
and to the anonymous referee for very careful and helpful comments. B. Shapiro wants to
acknowledge the hospitality of the Department of Mathematics, Purdue University during his
visit in the spring of 2003.

2. Proofs

We start this section with a discussion of the non-degeneracy requirement and the
(co)dimension of the affine span of a configuration of point charges.
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2.1. Relation between the number of charges and dimension

Consider a non-degenerate configuration of l = μ + ν point charges in R
n, and let L ⊆ R

n

be the affine subspace spanned by the points where the charges are located. Evidently, we have
dim L � l − 1.

Theorem 2.1. If all critical points of the potential Vα are isolated, then either all critical
points belong to L or n � l − 1.

Let us first show that it is enough to consider the cases n � l only.

Lemma 2.2. If a configuration of charges in R
n has only isolated critical points then either

all its critical points belong to L or L is a hyperplane in R
n.

Proof. Indeed, assume that there is a critical point outside L and codimL > 1. Then the
whole orbit of this point under the action of the group of rotations of R

n preserving L consists
of critical points (since this action preserves the potential).

To complete the proof one has to exclude the case n = l. We show that if dimL = l − 1 then
all critical points of the potential are in L.

Lemma 2.3. If one can find a hyperplane H in L separating positive charges from the
negative ones, then the potential of the configuration has no critical points outside L.

Proof. Indeed, let x 	∈ L be any point outside L, and let Hx be any hyperplane containing
both x and H and transverse to L. Let n be a vector normal to Hx at x. The signs of scalar
products of the gradients of the potentials of each charge with n are the same, so x cannot be
an equilibrium point.

Physically, the statement is obvious: all negative charges lie one side of Hx while all positive
charges lie on its other side. A positive test charge lying on Hx is pushed away from positive
charges and towards the negative ones. By the above assumptions, the resulting force is non-
vanishing and directed towards the half-space containing the negative charges.

Corollary 2.4. The potential of any configuration of positive charges has no critical
points outside L.

Corollary 2.5. Any configuration with l point charges such that dim L = l − 1 has no
critical points of the potential outside L.

Proof. These points should form a non-degenerate simplex, and any subset of vertices of a
simplex can be separated from the rest of the vertices by a hyperplane, so the claim follows
from the previous lemma.

Remark. As one can see from the proof, the set of critical points of a configuration is
a union of spheres with centers in L and of dimension equal to codimL. As n grows, the
dimension of spheres is the only parameter that changes, so the case codim L = 1 is the most
general one.

We conclude that in any case it is enough to consider the case n � l − 1.
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2.2. Proof of Theorem 1.5(a)

The proof is an application of the theory of fewnomials developed by A. G. Khovanskii in [7].
A serious drawback of this theory is that the obtained estimates, though effective, are usually
highly excessive. Applying the methods, rather than the results, of this theory one might get
a much better estimate which we illustrate while proving part (b) of Theorem 1.5.

We start with the following result from [7, § 1.2].

Theorem 2.6 (Khovanskii). Consider a system of m quasipolynomial equations

P1(ū, w̄(ū)) = . . . = Pm(u, w̄(ū)) = 0, where ū = (u1, . . . , um),

where each Pi is a real polynomial of degree di in (m + k) variables (u1, . . . , um, w1, . . . , wk)
and

wj = exp〈āj , ū〉, āj = (a1
j , . . . , a

m
j ) ∈ R

m, for j = 1, . . . , k.

Then the number of real isolated solutions of this system does not exceed

d1 . . . dm (d1 + . . . + dm + 1)k 2k(k−1)/2.

The estimate of Theorem 1.5(a) will follow from a presentation of the critical points of
a configuration of point charges as solutions to an appropriate system of quasipolynomial
equations; see below.

2.2.1. Constructing a quasipolynomial system. Consider a configuration with l point
charges in R

n. Denote by x̄ = (x1, . . . , xn) the coordinates of a critical point and denote by
(ci

1, . . . , c
i
n), for i = 1, . . . , l, the coordinates of the ith charge. We assume that the 1st charge

is placed at the origin, that is, that c1
1 = . . . = c1

n = 0.
The first l equations of our system define the variables ρ̄ = (ρ1, . . . , ρl) as the squares of

distances between the variable point x̄ and the charges. They can be rewritten as

P1(x̄, ρ̄) = . . . = Pl(x̄, ρ̄) = 0, (2.1)

where

P1(x̄, ρ̄) =
n∑

j=1

x2
j − ρ1, Pi(x̄, ρ̄) = ρ1 − ρi +

n∑
j=1

ci
j(−2xj + ci

j), for i = 2, . . . , l. (2.2)

The second group of equations expresses the fact that the point x̄ = (x1, . . . , xn) is the critical
point of the potential Vα(x̄) =

∑
ζiρ

−α
i . Namely,

∂

∂xj
Vα(x̄) =

l∑
i=1

ζi
∂

∂xj
ρ−α

i = −2α

l∑
i=1

ζihi(xj − ci
j) = Pl+j(x̄, h̄), for j = 1, . . . , n,

where we denote

hi = ρ−α−1
i , for i = 1, . . . , l, and h̄ = (h1, . . . , hl). (2.3)

Introducing new variables si = log ρi we get the system

P1(x̄, s̄, ρ̄, h̄) = . . . = Pn+l(x̄, s̄, ρ̄, h̄) = 0,

of (l + n) quasipolynomial equations in (l + n) variables (x̄, s̄, ρ̄, h̄) with

ρi = exp(si), hi = exp(−(α + 1)si), for i = 1, . . . , l.

This system has the type described in Theorem 2.6, with m = n + l, k = 2l,

deg P1 = deg Pl+1 = . . . = deg Pn+k = 2, and deg P2 = . . . = deg Pl = 1.
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By Proposition 2.1, one has n � l − 1 which implies the required estimate:

Nl(n, α) � Nl(l − 1, α) � 4l29ll2l = 4l2(3l)2l.

For example, for l = 3 one gets N3(n, α) � 139, 314, 069, 504.

2.3. Proof of Theorem 1.5(b)

As we mentioned above, one can do much better by applying the fewnomials method rather
than results, and here we demonstrate this in the case of three charges. By Proposition 2.1
we can restrict our consideration to the case of R

l−1 = R
2 (however the exponent α in the

potential Vα can be an arbitrary positive number).
The scheme of this rather long proof is as follows. First, we pass to more convenient

coordinates. In these new coordinates the equilibrium points correspond to the intersection
points of two explicitly written planar curves γ1 and γ2 in the positive quadrant R

2
+ of the real

plane. Both curves are separating solutions of Pfaffian forms. Two consecutive applications of
the Rolle–Khovanskii theorem result in two real polynomials R and Q such that the required
upper bound can be given in terms of the number of their common zeros in R

2
+. The latter is

bounded by the Bernstein–Kushnirenko bound and then decreased by the number of common
roots of R and Q known to be outside of R

2
+.

2.3.1. Changing variables and getting a system of equations. To emphasize that the
methods given below can be generalized we make the change of variables in the situation
of l charges in R

n (we assume, as before, that n � l − 1). This, as a by-product, produces
another proof of Theorem 1.5 with a somewhat better upper bound.

As above, we assume that the charges ζi are located at (ci
1, . . . , c

i
n), for i = 1, . . . , l, and

assume for simplicity that c1
1 = . . . = c1

n = 0. We consider the potential

Vα(x1, . . . , xn) =
l∑

i=1

ζiρ
−α
i , where ρi =

n∑
j=1

(xj − ci
j)

2 for i = 1, . . . , l.

The system of equations defining the critical points of Vα(x̄) is

∂Vα(x̄)
∂xj

= 0 for j = 1, . . . , n, where
∂Vα(x̄)

∂xj
= −2α

l∑
i=1

ζiρ
−α−1
i (xj − ci

j).

Introducing hi = ρ−α−1
i one can solve each equation of this system and express xj in terms

of hi:

xj =
σj

σ
, where σ =

l∑
i=1

ζihi and σj =
l∑

i=1

ζihic
i
j (2.4)

are homogeneous linear functions of hi. The equilibrium points correspond to the solutions of
the following system of equations obtained from the definition of hi by substitution of σj/σ
instead of xj :

h
−1/(α+1)
i =

ξi

σ2 for i = 1, . . . , l, where ξi =
n∑

j=1

(σj − ci
jσ)2. (2.5)

This system has the following remarkable properties.

Proposition 2.7. (a) Any solution of σ = ξ1 = 0 is also a zero of all the ξi.
(b) Each ξi is a strictly positive real quadratic polynomial that is homogeneous in h and

independent of hi.
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Proof. Indeed, ξ1 − ξi = σ
∑n

j=1 ci
j(2σj − σci

j).
The second statement is obvious except for the independence of hi, which can be proved by

direct computation.

Remark. Note that the above system can be represented as a system of quasipolynomials
as in Theorem 2.6. Namely, the equations in (2.5) are polynomials in hi, h

1/(α+1)
i . Introducing

si = log(σi/σ1) one can apply Theorem 2.6. After several small tricks — dehomogenization of
the system, introduction of a new variable z = ξ1 and noticing that the expression for ξ1 − ξi

then becomes linear — we obtain an upper bound 2 · 4l2(2l + 3)2l on the number of equilibrium
points of a system of l charges. For l > 3 this bound is somewhat better than the bound (1.3).

Now, let us use the previous construction for l = 3 and n = 2. To save subscripts, we denote
coordinates in R

2 by (x, y) instead of (x1, x2). Without loss of generality we can assume that
the three charges with the values ζ1, ζ2 and 1 are located at (0, 0), (1, 0) and (a, b) respectively.

Expressions (2.4) are homogeneous in hj , so we introduce the non-homogeneous variables f
and g as follows:

f =
h2

h1
=

(
ρ1

ρ2

)α+1

and g =
h3

h1
=

(
ρ1

ρ3

)α+1

. (2.6)

Then equations (2.4) become

x =
ag + ζ2f

ζ1 + ζ2f + g
, y =

bg

ζ1 + ζ2f + g
. (2.7)

The system (2.5) reduces to the following two equations describing two curves γ1 and γ2 in
the positive quadrant R

2
+ of the (f, g)-plane:

γ1 =
{

f1/(α+1)ξ2ξ
−1
1 = 1

}
, γ2 =

{
g−1/(α+1)ξ2 = f−1/(α+1)ξ3

}
. (2.8)

Here

ξ1 = (ag + ζ2f)2 + b2g2,

ξ2 = ((a − 1)g − ζ1)2 + b2g2,

ξ3 = ((a − 1)ζ2f + aζ1)2 + b2(ζ2f + ζ1)2.

The following facts about ξi follow from Proposition 2.7.

Proposition 2.8. The following hold:
(i) ξ2 depends only on g, and ξ3 depends only on f ;
(ii) ξ2 and ξ3 are strictly positive quadratic polynomials;
(iii) ξ1 is a positive definite homogeneous quadratic form;
(iv) ξ1 = ξ2 = ξ3 = 0 have two complex solutions.

The goal of all subsequent computations is to give an upper bound on the number N of
the intersection points between γ1 and γ2 in R

2
+. We are able to obtain the following estimate

proved below.

Proposition 2.9. The number of intersection points of γ1 and γ2 lying in R
2
+ is at most 12.

We note that any intersection point of γ1 and γ2 lying in the positive quadrant R
2
+ =

{f > 0, g > 0} corresponds, via (2.7), to the unique critical point of Vα(x, y), so the estimate
of Theorem 1.5(b) immediately follows.
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2.3.2. The Rolle–Khovanskii theorem. Before we move further let us recall the R
2-version

of a generalization of Rolle’s theorem due to Khovanskii.
Suppose that we are given a smooth differential 1-form ω defined in a domain D ⊂ R

2. Let
γ ⊂ D be a (not necessarily connected) one-dimensional integral submanifold of ω.

Definition 2.10. We say that γ is a separating solution of ω if
(a) γ is the boundary of some (not necessarily connected) domain U ;
(b) the coorientations of γ defined by ω and by U coincide (that is, ω is positive on the

outer normal to the boundary of U).

Let γ1 and γ2 be two separating solutions of two 1-forms ω1 and ω2 respectively.

Theorem 2.11 (see [7]). We have

�(γ1, γ2) � �(γ1) + �(γ1, γ2),

where �(γ1, γ2) is the number of intersection points between γ1 and γ2, �(γ1) is the number of
non-compact components of γ1, and �(γ1, γ2) is the number of the points of contact of γ1 and
ω2, that is, the number of points of γ1 such that ω2(γ̇1) = 0. (One can also characterize the
latter points as the intersection points of γ1 with an algebraic set {ω1 ∧ ω2 = 0}.)

2.3.3. First application of the Rolle–Khovanskii theorem. We apply Theorem 2.11 to the
curves γ1 and γ2 defined in (2.8). These curves are integral curves in R

2
+ of the one-forms η1

and η2 respectively, where

η1 =
df

(α + 1)f
+

ξ′
2dg

ξ2
− dξ1

ξ1
, (2.9)

η2 =
(

− 1
(α + 1)f

+
ξ′
3

ξ3

)
df +

(
1

(α + 1)g
− ξ′

2

ξ2

)
dg. (2.10)

These forms are logarithmic differentials of the functions defining the curves: if we denote
F = (f/g)−1/(α+1)ξ3ξ

−1
2 , then γ2 = {F = 1} and η2 = d log F . Similarly, η1 = d log G, where

G = f1/(α+1)ξ2ξ
−1
1 .

In what follows, we assume that 1 is a regular value of F and G. This can always be achieved
by a small perturbation of parameters and is enough for the proof of Theorem 1.5(b) by
upper-continuity of the number of the non-degenerate critical points.

Lemma 2.12. The curves γ1 and γ2 are separating solutions of the polynomial forms η1
and η2 respectively.

Proof. Indeed, γ2 is a level curve of the function F = (f/g)−1/(α+1)ξ3ξ
−1
2 , which is a smooth

function on R
2
+. Thus, γ2 coincides with the boundary of the domain ∂{F < 1}. Therefore the

value of η2 = d(log F ) on the outer normal to {F < 1} is non-negative, and is everywhere
positive since 1 is not a critical value of F . This means that the coorientations of γ2 as the
boundary of {F < 1} and as defined by the polynomial form η2 coincide.

Similar arguments hold for γ1, and we conclude that γ1 and γ2 are separating solutions of
the forms η1 and η2.

This enables application of Theorem 2.11 to the pair (γ1, γ2) and we obtain the following
estimate.

Proposition 2.13. We have
N � N1 + N2,
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where N is the number of points in the intersection γ1 ∩ γ2 ∩ R
2
+, N1 is the number of the

non-compact components of γ2 in R
2
+, and N2 is the number of points of intersection of γ2

with the set Γ = {η1 ∧ η2 = 0} in R
2
+.

Lemma 2.14. N1 = 2.

Proof. Indeed, if we denote β = −1/(α + 1), then the equation f−1/(α+1)ξ3 = g−1/(α+1)ξ2
can be rewritten as

ζ2
2fβ+2 + C1f

β+1 + C2f
β = gβ+2 + C3g

β+1 + C4g
β ,

with some constants Ci. Since −1 < β < 0 and C2, C4 > 0, the left-hand side tends
monotonically to +∞ as f tends to ∞ or to zero, and similarly for the right-hand side. Therefore
as g  1 or 0 < g � 1, the right-hand side of the resulting equation in f has two positive
solutions, one close to zero, and another close to infinity. For bounded g, with g ∈ [ε1, ε−1

1 ],
the solution f = f(g) is bounded as well: f ∈ [ε2, ε−1

2 ] for some ε2 � ε1. We conclude that the
number of intersection points of γ2 with the boundary of a large rectangle

{ε1 � f � ε−1
1 , ε2 � g � ε−1

2 , 0 < ε1 � ε2 � 1}

is 4. The number of non-compact components of γ2 in R
2
+ is equal to half of this number, that

is, to 2.

Remark. By a slightly more careful analysis one can show that the asymptotical behavior
of four ends of γ2 is as follows: g ∼ const · f as f → 0 or ∞, g ∼ const · f−1−2α as f → ∞, and
f ∼ const · g−1−2α as g → ∞.

2.3.4. Second application of the Rolle–Khovanskii theorem. In order to estimate N2 we
apply Theorem 2.11 again. The set Γ = {η1 ∧ η2 = 0} is a real algebraic curve given by the
equation Q = 0, where

Q df ∧ dg = fgξ1ξ2ξ3 · η1 ∧ η2 (2.11)

is a polynomial in (f, g). Applying Theorem 2.11 again we get the following estimate.

Proposition 2.15. We have

N2 � N3 + N4,

where (as above) N2 is the number of points in {γ2 ∩ Γ ∩ R
2
+}, N3 is the number of non-compact

components of Γ in R
2
+, and N4 is the number of points in Γ ∩ {dQ ∧ η = 0} ∩ R

2
+.

Notation 2.16. For any polynomial S in two variables let NP(S) denote the Newton
polygon of S. We denote the partial order on the set of plane polygons by inclusion by ≺,
namely, A ≺ B means that a polygon A lies strictly inside a polygon B.

Lemma 2.17. The set Γ has no unbounded components in R
2. Moreover, Γ does not

intersect the coordinate axes except at the origin, which is an isolated point of Γ.

Proof. We start by identifying the essential part of Q.

Lemma 2.18. We have

Q =
−1 − 2α

(α + 1)2
ξ1ξ2ξ3 + fgQ1, where Q1 = ξ′

2ξ3
∂ξ1

∂f
+ ξ2ξ

′
3
∂ξ1

∂g
− ξ′

2ξ
′
3ξ1. (2.12)
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Proof. We defined Q in (2.11) via one-forms ηi defined in (2.9). Rewrite ηi as a linear
combination of df and dg (recall that ξ2 depends only on g, and ξ3 depends only on f):

η1 =
(

1
(α + 1)f

− (ξ1)f

ξ1

)
df +

(
ξ′
2

ξ2
− (ξ1)g

ξ1

)
dg,

η2 =
(

− 1
(α + 1)f

+
ξ′
3

ξ3

)
df +

(
1

(α + 1)g
− ξ′

2

ξ2

)
dg.

Calculate the ratio η1 ∧ η2/df ∧ dg:(
1

(α + 1)f
− (ξ1)f

ξ1

) (
1

(α + 1)g
− ξ′

2

ξ2

)
−

(
ξ′
2

ξ2
− (ξ1)g

ξ1

) (
− 1

(α + 1)f
+

ξ′
3

ξ3

)
=

(
1

(α + 1)2fg
− (ξ1)f

(α + 1)ξ1g
− ξ′

2

(α + 1)fξ2
+

(ξ1)fξ′
2

ξ1ξ2

)
−

(
− ξ′

2

(α + 1)fξ2
+

(ξ1)g

(α + 1)fξ1
+

ξ′
2ξ

′
3

ξ2ξ3
− (ξ1)gξ

′
3

ξ1ξ3

)
.

Observe that the third and fifth terms cancel. The function ξ1 is quadratic and homogeneous
in f and g. Therefore the second and sixth terms can be rewritten using Euler’s identity
2ξ1 = f(ξ1)f + g(ξ1)g as

− (ξ1)f

(α + 1)ξ1g
− (ξ1)g

(α + 1)fξ1
= −f(ξ1)f + g(ξ1)g

(α + 1)fgξ1
= − 2

(α + 1)fg
.

Therefore the ratio η1 ∧ η2/df ∧ dg is equal to

1
(α + 1)2fg

− 2
(α + 1)fg

+
(ξ1)fξ′

2

ξ1ξ2
+

(ξ1)gξ
′
3

ξ1ξ3
− ξ′

2ξ
′
3

ξ2ξ3

=
1

fgξ1ξ2ξ3

(
−1 − 2α

(1 + α)2
ξ1ξ2ξ3 + fg

[
(ξ1)fξ′

2ξ3 + (ξ1)gξ
′
3ξ2 − ξ1ξ

′
2ξ

′
3
])

,

which is what is needed.

One can easily check that

∂3Q1

∂f3 =
∂3Q1

∂g3 =
∂4Q1

∂f2∂g2 ≡ 0.

Indeed, Q1 is a polynomial of degree at most 4. However, the terms of the highest degree 4 are

2c2c3f
2g(ξ1)f + 2c2c3fg2(ξ1)g − 4c2c3fgξ1 = 2c2c3fg(f(ξ1)f + g(ξ1)g − 2ξ1),

which is zero by Euler’s identity for ξ1 (here ci denote the leading coefficients of ξi). Therefore
Q1 has degree 3 in f and g. Terms of degree 3 in f appear only in (ξ1)fξ′

2ξ3 and ξ1ξ
′
2ξ

′
3 and

cancel each other. A similar result holds for g.
Also, Q1(0, 0) = 0 since ξ1 is homogeneous in f and g of degree 2. This implies that the

Newton polygon of the polynomial fgQ1 lies strictly inside the Newton polygon of ξ1ξ2ξ3:

NP(fgQ1) = {3 � p + q � 5, 1 � p, q � 3} ≺ NP(Q) = {2 � p + q � 6, 0 � p, q � 4}.

Therefore the number of unbounded components of Γ in R
2
+ coincides with the number of

unbounded components of the zero locus of ξ1ξ2ξ3 in R
2
+, the latter being equal to zero.

Another proof can be obtained by parameterizing the unbounded components of Γ near
infinity and near the axes as (f = Btε1 + . . . ; g = Atε2 + . . .). From the shape of the Newton
polygon of Q one can show that ε1/ε2 is either 0, 1 or ∞. Therefore, B should be a root of ξ3,
A/B should be a root of ξ1, or A should be a root of ξ2, respectively. Since neither of them
has real roots, we conclude that Γ has no real unbounded components.
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On the coordinate axes the polynomial Q equals ξ1ξ2ξ3 and is therefore positive with the
exception of the origin. The quadratic form of Q at the origin, being proportional to ξ1, is
definite. Therefore the origin is an isolated zero of Q and, therefore, an isolated point of Γ.

Corollary 2.19. N3 = 0.

2.3.5. Estimating the number N4 of points of contact between Γ and η2. These points are
the zeros of the polynomial form

Rdf ∧ dg = fgξ2ξ3 · dQ ∧ η2.

Thus we have to estimate the number of solutions of the system Q = R = 0 in R
2
+.

We proceed as follows. Using the Bernstein–Kushnirenko theorem we find an upper bound on
the number of solutions of Q = R = 0 in (C∗)2, and then reduce it by the number of solutions
known to lie outside R

2
+.

The Bernstein–Kushnirenko upper bound for the number of common zeros of polynomials
Q and R is expressed in terms of the mixed volume of their Newton polygons. In fact, in
computation of this mixed volume we replace R by its difference with a suitable multiple of
Q: this operation does not change common zeros of Q and R, but might significantly decrease
the mixed volume of their Newton polygons.

Simple degree count shows that the Newton polygon of R is given by

NP(R) = {2 � p + q � 10, 0 � p, q � 6}.

Lemma 2.20. There exists a polynomial q = q(f, g) such that the Newton polygon of
R̃ = R − qQ lies strictly inside the Newton polygon of R. In other words,

NP(R̃) ⊆ {3 � p + q � 9, 1 � p, q � 5}.

Proof. Our goal is to prove that all monomials lying on the boundary of NP(R) (further
called boundary monomials) are equal to monomials lying on the boundary of a Newton polygon
of some multiple of Q. We constantly use the fact that the boundary monomials of a product
are equal to the boundary monomials of the product of boundary monomials of the factors.

First, let us replace R by a polynomial R2 with the same Newton polygon and the same
monomials on its boundary, but with a simpler definition. We have seen above that

NP(fgQ1) ≺ NP(Q) = NP(ξ1ξ2ξ3).

Denote R1df ∧ dg = fgξ2ξ3 · d(fgQ1) ∧ η2. Computation of degrees shows that

NP(R1) ⊆ {3 � p + q � 9, 1 � p, q � 5} ≺ NP(R) = {2 � p + q � 10, 0 � p, q � 6}.

Therefore one can disregard R1 and consider only R2 = R − R1, where

R2df ∧ dg = fgξ2ξ3 · d(Q − fgQ1) ∧ dη2 = const · fgξ2ξ3 · d(ξ1ξ2ξ3) ∧ η2.

Computing the product we see that

R2 = const · d(ξ1ξ2ξ3) ∧
[
gξ2

(
− ξ3

1 + α
+ fξ′

3

)
df + fξ3

(
ξ2

1 + α
− gξ′

2

)
dg

]
= const · ξ2ξ3

{
ξ1

[
2ξ2ξ3 + fξ2ξ

′
3 + gξ3ξ

′
2 − 3(1 + α)fgξ′

2ξ
′
3
]
− (1 + α)fgQ1

}
.

Simple computation using (2.8) shows that the Newton polygon of the first product in the figure
brackets coincides with NP(Q) = NP(ξ1ξ2ξ3). The Newton polygon of the second product
lies strictly inside of NP(Q), as was shown in (2.12). Therefore it does not affect boundary
monomials and can be disregarded.
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Figure 3. Relevant Newton polygons.

The remaining terms sum to qξ1ξ2ξ3, where we denote

q = fξ2ξ
′
3 + gξ3ξ

′
2 + 2ξ2ξ3 − 3(1 + α)fgξ′

2ξ
′
3.

Up to a non-zero constant factor, its boundary monomials are the same as the boundary
monomials of qQ: the polynomials Q and ξ1ξ2ξ3 have proportional boundary monomials
by (2.12).

Using these facts we conclude that for R̃ = R − const · qQ one gets NP(R̃) ≺ NP(R).

2.3.6. The Bernstein–Kushnirenko theorem. Applying the well-known result of [2, 10] we
know that the number of common zeros of Q and R̃ in (C∗)2 does not exceed twice the mixed
volume of NP(Q) and NP(R̃).

Recall the definition of the mixed volume of two polygons. Let A and B be two planar
convex polygons. It is common knowledge that the volume of their Minkowsky sum λA + μB
is a homogeneous quadratic polynomial in (positive) λ and μ:

Vol(λA + μB) = Vol(A)λ2 + 2 Vol(A, B)λμ + Vol(B)μ2.

By definition the mixed volume of two polygons A and B is the coefficient Vol(A, B).
Setting λ = μ = 1, one gets

2 Vol(A, B) = Vol(A + B) − Vol(A) − Vol(B).

Lemma 2.21. There are at most 28 common zeros of Q = R = 0 in (C∗)2.

Proof. A simple count gives 2 Vol(NP(Q),NP(R̃)) = 28. See Figure 3.

2.3.7. Common zeros of Q and R outside R
2
+. By Lemma 2.8 the quadratic polynomials

ξ1, ξ2 and ξ3 have two common zeros. Denote them by (f1, g1) and (f2, g2). Evidently, they are
not real (since, for example, ξ3 is strictly positive on R

2).

Lemma 2.22. The points (f1, g1) and (f2, g2) are solutions of the system Q = R = 0 of
multiplicity at least 6 each.

Proof. Since (f1, g1) and (f2, g2) are conjugate and the system Q = R = 0 is real, it suffices
to consider one of these points, say (f1, g1).
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From (2.12) one can immediately see that Q(f1, g1) = 0. Indeed, each term has a factor
annihilating at (f1, g1) (recall that all three ξi are zero at this point).

Moreover, differentiating Q1, one can see that
∂Q1

∂f
(f1, g1) =

∂Q1

∂g
(f1, g1) = 0,

so (f1, g1) is a critical point of Q.
Recall that

R = dQ ∧
(

gξ2

(
− ξ3

1 + α
+ fξ′

3

)
df + fξ3

(
ξ2

1 + α
− gξ′

2

)
dg

)
,

that is, R is the product of two polynomial forms each having a simple zero at (f1, g1). Therefore
this point is necessarily a critical point of R as well.

Moreover, the 1-jet of η2 at (f1, g1) equals

j1η2 = f1g1ξ
′
2(g1)ξ′

3(f1)
[
(g − g1)df − (f − f1)dg

]
,

that is, is proportional to the Euler form (g − g1)df − (f − f1)dg. Therefore, the quadratic part
of R at (f1, g1) is proportional to the exterior product of the differential of the quadratic part
of Q at (f1, g1) and the Euler form, so it is proportional to the quadratic form of Q at (f1, g1).
Thus a suitable linear combination of R and Q has both linear and quadratic parts vanishing
at (f1, g1), which implies that the multiplicity of (f1, g1) as a solution of the system Q = R = 0
is at least 6.

Lemma 2.23. At least six real solutions of Q = R = 0 lie outside R
2
+.

Proof. There are exactly four points where the form η2 vanishes, exactly one in each
real quadrant. These points are evidently solutions of the system Q = R = 0. Consider the
connected component of the curve {Q = 0} containing such a point. It is a compact oval not
intersecting the coordinate axes. The polynomial R vanishes at least once on this component,
namely at this point. Therefore, R should have at least another zero on this oval (counting
multiplicities), also necessarily lying in the same quadrant.

2.3.8. Final count. The number N of points in the intersection γ1 ∩ γ2 ∩ R
2
+ is less than

or equal to 2 + 0 + 28 − 18 = 12, where 2 is the number of unbounded components of γ1 in
R

2
+, 0 is the number of unbounded components of {Q = 0}, 28 is the Kushnirenko–Bernstein

upper bound for the number of complex solution of R = Q = 0 in (C∗)2, and 18 is the number
of solutions of R = Q = 0 outside R

2
+ counted with multiplicities. Therefore, Proposition 2.9

and Theorem 1.5(b) are finally proved.

2.3.9. Comments on Theorem 1.5. (1) Computer experiments indicate that, except for the
two solutions of the system ξ1 = ξ2 = ξ3 = 0, all the remaining sixteen solutions of the system
R = Q = 0 can be real. However, not all of them lie in the positive quadrant: typically the
system R = Q = 0 has four solutions in each real open quadrant. This implies that, provided
that this statement about the root configuration could be rigorously proved, the best estimate
obtainable by the above method would be 6, very close to Maxwell’s conjectural bound 4.

(2) An even more important observation is that there are typically only two points of
intersection of γ2 and Γ = {Q = 0} lying in R

2
+. In other words, the first application of the

Rolle–Khovanskii lemma seems to be exact numerically: a rigorous proof that there are just
two points in γ1 ∩ Γ ∩ R

2
+ would imply the original Maxwell conjecture in the case of three

charges.
In fact, it is enough to prove a seemingly simpler statement that the number of intersections

of Γ and γ1 = {f1/(α+1)ξ2 − ξ1 = 0} lying in R
2
+ is at most two. This looks to be easier since the
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equation defining γ1, being a quadratic polynomial in g, can be solved explicitly. The resulting
two solutions g = g1,2(f) parameterize γ1, and the problem reduces to the question about the
number of positive zeros of a univariate algebraic function Q(f, g1(f)).

(3) The fact that the polynomial R can be reduced to a smaller polynomial R̃ by subtraction
of a multiple of Q is a manifestation of a general, yet unexplained, phenomenon: tuples of
polynomials resulting from several consecutive applications of the Rolle–Khovanskii theorem
are very far from generic, and in every specific case one can usually make a reduction similar
to the reduction of R to R̃ above.

2.4. Proof of Theorem 1.7(a)

From now on we will always assume that all our charges are positive (the case of all negative
charges follows by a global sign change).

2.4.1. 1-dimensional case. As a warm-up exercise we will prove Theorem 1.7(b) in the
simplest case of the x-axis.

The idea of the proof is to use the limit function

V∞(x) = min
i=1,...,l

((x − xi)2 + y2
i ) = lim

α→∞
V −1/α

α (x), (2.13)

where (xi, yi), for i = 1, . . . , l, are the coordinates of the ith charge. (We assume for simplicity
that all yi 	= 0. The general case follows by taking the limit.) The function V∞(x) has at most
l − 1 points of non-smoothness. Denote these points by γj .

Lemma 2.24. The convergence V∞(x) = limα→∞ V
−1/α
α (x) is valid in the C2-class on any

closed interval free from the γj .

Proof. We assume that on such an interval ρ1 < (1 − η)ρi, where i � 2 and η > 0. (Here
ρi = (x − xi)2 + y2

i .) Therefore, V∞(x) = ρ1 on this interval. The first derivative of V∞(x)
equals

(V −1/α
α (x))′ = − 1

α
V −1/α−1

α (x)

(
−α

l∑
i=1

2ζiρ
−α−1
i (x − xi)

)

= 2

[
ζ1(x − x1) +

l∑
i=2

ζi(ρi/ρ1)−α−1(x − xi)

]
(ρα

1 Vα(x))−2/α−1

= 2[ζ1(x − x1) + o(1)](ζ1 + o(1))−2/α−1

= 2(x − x1) + o(1) = V ′
∞(x) + o(1),

where limα→∞ o(1) = 0.
Computations with the second derivative are similar, but more cumbersome.

Corollary 2.25. For sufficiently large α any closed interval free from the γj contains at
most one critical point of Vα(x).

Proof. Indeed, for any sufficiently large α the second derivative (V −1/α
α (x))′′, being close

to V ′′
∞ = 2, is positive on this interval. Therefore, V

−1/α
α (x) is convex and can have at most

one critical point on this interval. Finally, the critical points of V
−1/α
α (x) are the same as the

critical points of Vα(x).

Lemma 2.26. For any sufficiently large α a closed interval containing some γj and free
from the xi contains at most one critical point of Vα(x).
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Proof. Note that such an interval contains exactly one γj since the γj are separated by
the xi. The required result follows from the fact that Vα(x) is necessarily convex on any such
interval. Indeed,

(Vα(x))′′ = α(α + 1)
l∑

i=1

ζiρ
−α−2
i

(
4(x − xi)2 − 2ρi

α + 1

)
.

Since x − xi 	= 0 on the interval under consideration, 2ρi/(α + 1) is necessarily smaller than
4(x − xi)2 for α large enough. Thus, (Vα(x))′′ is positive (recall that ζi > 0) and Vα(x) itself
is convex.

2.4.2. Multidimensional case. We start with the discussion of the critical points of the
limiting function V∞(x̄).

2.4.3. Critical points of V∞(x̄). The function V∞(x̄) is the only piecewise smooth
continuous semialgebraic function. Hence the standard definitions of critical points and Morse
indices are not applicable. Therefore we should provide definitions of analogues of critical points
of such functions and generalize the notion of Morse index. This is quite a classical subject,
and an alternative approach giving the same results can be found in [1, 19].

Definition 2.27. A point x̄0 is a critical point of V∞(x̄) if for any sufficiently small ball
B centered at x̄0 its subset B− = {V∞(x̄) < V∞(x̄0)} ⊆ B is either empty or non-contractible.

The critical point x̄0 is said to be non-degenerate if B− is either empty or homologically
equivalent to a sphere. In this case the Morse index of x̄0 is defined as the dimension of this
sphere plus 1. (By default, dim(∅) = −1.)

Lemma 2.28. Every effective Voronoi cell of the Voronoi diagram of a generic configuration
of positive charges contains a unique critical point of V∞(x̄). Its index equals the dimension of
the Voronoi cell.

Proof. Indeed, take any effective Voronoi cell S. As above let NS(S) denote the set of
all the nearest sites of S. By definition, S intersects the convex hull of NS(S). Denote this
(unique) intersection point by p(S). We claim that p(S) is the unique critical point of V∞(x̄)
located on S. Indeed, the function V∞(x̄) restricted to NS(S) has a local maximum at p(S)
since any sufficiently small move within NS(S) brings us closer to one of the nearest sites.
(Here we implicitly use the genericity assumptions on the configuration, that is, that there
are exactly k + 1 nearest sites for any Voronoi cell of codimension k and that S intersects the
interior of the closure of NS(S).) On the other hand, the restriction of V∞(x̄) to S itself has
the global minimum on S for similar reasons.

Remark. Figure 4, also present in [19], illustrates the above Lemma 2.28. The left picture
shows the function V∞(x̄) = min(ρ1, ρ2, ρ3) where the three points are located at (1, 0),
(± 1

2

√
3,− 1

2 ) . It is related to the left picture on Figure 1 showing the corresponding potential
Vα(x̄) for α = 1. In this case all the Voronoi cells of the Voronoi diagram are effective and
one sees the local maximum inside the convex hull of these points. On the right picture the
three points are located at (0, 0), (2, 0) and (1, 1

2 ). In this case the 0-dimensional Voronoi cell
and one of the 1-dimensional Voronoi cells are ineffective and there is no critical point at the
0-dimensional Voronoi cell. This picture is similarly related to the right picture on Figure 1.

2.4.4. Proof continued. In order to settle the multidimensional case we generalize the
previous proof using the following idea.
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Figure 4. Effective and ineffective 0-dimensional Voronoi cell of V∞(x̄).

Main idea for zero-dimensional Voronoi cells. Near an effective zero-dimensional Voronoi
cell of the Voronoi diagram the union of the region where Vα(x̄) is convex (and therefore has
at most one critical point) and the region where Vα(x̄) is too C1-close to V −α

∞ (x̄) to have any
critical points asymptotically covers a complete neighborhood of the Voronoi cell. More exactly,
we compute asymptotics of the sizes of the above regions, and show that the first region shrinks
more slowly than the second region grows.

The following expressions for the gradient and the Hessian form (that is, the quadratic
form defined by the matrix of the 2nd partial derivatives) of Vα(x̄) are crucial for further
computations:

∇Vα(x̄) = −α

l∑
i=1

ζiρ
−α−1
i (x̄)∇ρi(x̄),

Hess Vα(x̄) · ξ = α(α + 1)
l∑

i=1

ζiρ
−α−2
i (x̄)

(
(∇ρi(x̄), ξ)2 − 2

α + 1
ρi(x̄)‖ξ‖2)

)
.

Here · denotes the evaluation of the quadratic form HessVα(x̄) at ξ.
We start with the case of zero-dimensional Voronoi cells. The general case will be a treated

as the direct product of the zero-dimensional case in the direction transversal to the Voronoi
cell and the full-dimensional case along the Voronoi cell.

2.4.5. Zero-dimensional Voronoi cells of a Voronoi diagram. Let S be a zero-dimensional
Voronoi cell of a Voronoi diagram of a generic configuration. We can assume that

ρ1(S) = . . . = ρn+1(S) < ρi(S) for i > n + 1.

Define the functions

m(x̄) = min
i=1,...,n+1

ρi(x̄), M(x̄) = max
i=1,...,n+1

ρi(x̄), r(x̄) = min
i=n+2,...,l

ρi(x̄),

and let

φ(x̄) = log
(

M(x̄)
m(x̄)

)
.

Note that φ(x̄) is everywhere positive except at the origin, and is equivalent to the Euclidean
distance to S in a sufficiently small neighborhood of S.

Lemma 2.29. There exists a δ > 0 such that for any x̄ in the δ-neighborhood U of S the
following conditions hold.
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(i) There exists an ε > 0 such that, for any x̄ ∈ U ,

r(x̄) > e2εm(x̄) > eεM(x̄)

(in particular, φ(x̄) < ε in U).
(ii) Absolute values of all ratios ck(x̄)/cl(x̄) of the unique linear relation

n+1∑
i=1

ci(x̄)∇ρi(x̄) = 0

are bounded by some constant Υ > 0.
(iii) If the cell S is ineffective, then the closure of U can be separated from the convex hull

of NS(S) by a hyperplane.

Proof. For the point S itself, r(S) > m(S) = M(S). Also, in the unique relation
n+1∑
i=1

ci(x̄)∇ρi(S) = 0

all coefficients are non-zero by the genericity of the configuration. Therefore both claims follow
from continuity of the involved functions.

We prove that for a sufficiently large α the domain U is the union of two subdomains
U = U1 ∪ U2 such that Vα(x̄) is convex in U1 and has no critical points in U2.

In what follows Ck and κk denote positive constants independent of α but dependent on the
configuration and the choice of U .

Lemma 2.30. There exists a constant κ1 independent of α such that, for α sufficiently large,
the function Vα(x̄) has no critical points in the domain defined by {φ(x̄) > κ1/(α + 1)} ∩ U .

Proof. First, consider the case l = n + 1.
The condition ∇Vα(x̄) = 0 implies that

ζi

ζj

(
ρi

ρj

)−α−1

=
cj

cj
� Υ,

and, taking the logarithm of both sides, we arrive at

φ(x̄) <
log Υ + log maxi,j(ci/cj)

α + 1
.

Thus one can take κ1 = log Υ + log maxi,j(ci/cj) in this case.
The case l > n + 1 differs by exponentially small terms. Namely, suppose that ρ1(x̄) = M(x̄).

Then

0 = ρα+1
1 ∇Vα(x̄) = (ζ1∇ρ1 − ξ) +

n+1∑
i=2

ζi

(
ρi

ρ1

)−α−1

∇ρi,

where ξ =
∑l

i=n+2 ζi(ρi/ρ1)−α−1∇ρi. One can easily see that ‖ξ‖ � C1e
−ε(α+1). Therefore,

since ∇ρ2(x), . . . ,∇ρn+1(x) are linearly independent in U ,

|ζi(ρi/ρ1)−α−1 − ζ1ci/c1| � C2e
−ε(α+1) = o(1),

and we get the required estimate.

Lemma 2.31. There exists a constant κ2 independent of α such that for all sufficiently
large α the function Vα(x̄) is convex in the domain {φ(x̄) < (log(α + 1) − κ2)/(α + 2)}.
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Proof. Again, start with the case l = n + 1. The gradients ∇ρi, for i = 1, . . . , n + 1, span
the whole R

n. Thus, the quadratic form
∑n+1

i=1 ζi(∇ρi · ξ)2 � C3‖ξ‖2 > 0 is positive definite.
Therefore, one gets

1
α(α + 1)

Hess Vα(x̄) · ξ =
n+1∑
i=1

ζiρ
−α−2
i (∇ρi, ξ)2 − 2

α + 1

n+1∑
i=1

ζiρ
−α−1
i ‖ξ‖2

� M(x̄)−α−2

(
n+1∑
i=1

ζi(∇ρi, ξ)2
)

− 2(n + 1) max ζi

α + 1
m(x̄)−α−1‖ξ‖2

� m(x̄)−α−2
(

C3 · (eφ(x̄))−α−2 − C4

α + 1

)
‖ξ‖2.

The last form is positive definite if

e−(α+2)φ(x̄) >
C5

α + 1
or, equivalently, φ(x̄) <

log(α + 1) − κ2

α + 2
. (2.14)

The case l > n + 1 differs by an exponentially small term, namely by the term∣∣∣∣∣
l∑

i=n+2

ζiρ
−α−2
i

[
(∇ρi, ξ)2 − 2ρi

α + 1
‖ξ‖2

]∣∣∣∣∣ � C6m(x̄)−α−2e−ε(α+2)‖ξ‖2.

Therefore, instead of (2.14) we find that Hess V is positive definite provided

e−(α+2)φ(x̄) >
C5

α + 1
+ C6e

−ε(α+2),

which gives the same estimate with a different constant.

Lemma 2.32. The function Vα(x̄) has at most one critical point in U . If the cell under
consideration is effective then the critical point exists and is a local minimum. If the cell under
consideration is not effective then there is no critical point in U .

Proof. Indeed, in the above notation, for sufficiently large α one has

log(α + 1) − κ2

α + 2
>

κ1

α + 1
.

Thus U is covered by two domains,{
φ(x̄) >

κ1

α + 1

}
and

{
φ(x̄) � log(α + 1) − κ2

α + 2

}
.

By Lemma 2.30, Vα(x̄) has no critical points in the first domain. By Lemma 2.31, Vα(x̄) is
convex and has at most one critical point in the second domain.

In the case when the considered 0-dimensional Voronoi cell is effective, Vα(x̄) actually has
a local minimum located close to that Voronoi cell: the function V

−1/α
α (x̄), being C0-close to

V∞, has a local minimum inside U .
The last statement is a particular case of Lemma 2.36 below.

Taken together with Lemmas 2.30 and 2.31, this proves that, for α sufficiently large, to each
effective zero-dimensional Voronoi cell of a generic configuration of points one has exactly one
corresponding minimum of Vα.

2.4.6. Case of arbitrary codimension. Let S be any Voronoi cell of codimension k of the
Voronoi diagram. We prove that for a generic configuration of positive charges and any compact
K ⊂ S lying inside S there exists a sufficiently small neighborhood UK independent of α and
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containing at most one critical point of Vα(x̄). Moreover, this critical point exists if and only
if the cell is effective, and its Morse index is equal to n − k.

Denote by L the affine subspace spanned by S. Recall that the first genericity assumption
means that there exist exactly k + 1 charges ζ1, . . . , ζk+1 closest to S. Denote by M the affine
subspace orthogonal to L.

Lemma 2.33. dim M = k.

Proof. Indeed, a small shift of any point of S in any direction orthogonal to M produces
a point with the same set of closest charges: distances to the charges not in NS(S) will still
remain bigger than the distances to the charges in NS(S), and the latter distances will remain
equal. Therefore the shifted point still lies in S, so the dimension of S is at least codim M , that
is, dim M � k. The opposite inequality is evident since NS(S) contains k + 1 points.

If the Voronoi cell S intersects the convex hull of NS(S) then the second genericity
assumption means that any k of the charges in NS(S) do not lie on a hyperplane in M
passing through the point L ∩ M .

Choosing an appropriate coordinate system we may assume that L and M intersect at the
origin, that is, are orthogonal complements of each other. Denote by x̄L and x̄M orthogonal
projections of a vector x̄ to the linear subspaces L and M respectively; thus x̄ = x̄M + x̄L.

We assume that the set NS(S) of charges closest to S consists of charges ζ1, . . . , ζk+1 and
denote the distances to these charges by ρ1, . . . , ρk+1 respectively.

As before, introduce the functions

m(x̄) = min
i=1,...,k+1

ρi(x̄), M(x̄) = max
i=1,...,k+1

ρi(x̄), r(x̄) = min
i=k+2,...,l

ρi(x̄),

and let

φM (x̄) = log
(

M(x̄)
m(x̄)

)
.

Let K be a compact subset of S.

Lemma 2.34. There exists δ > 0 so small that in the δ-neighborhood UK ⊂ R
n of K the

following conditions hold.
(i) There exists an ε with 0 < ε such that for any x̄ ∈ UK one has

r(x̄) > e2εm(x̄) > eεM(x̄).

(ii) The absolute value of all ratios ck(x̄)/cl(x̄) in the unique linear dependence
k+1∑
j=1

ck(x̄)∇Mρj = 0

is bounded from above by some constant Υ, where ∇Mρj denotes the orthogonal projection of
the gradient ∇ρj to M . Note that the tuple of ck(x̄) is, up to proportionality, constant on S
(and none of the ck vanishes due to the genericity assumptions).

(iii) If the cell S is ineffective, then the closure of U can be separated from the convex hull
of NS(S) by a hyperplane.

Proof. The proof is analogous to the proof of Lemma 2.29: the required relations hold on
S itself, and can be extended to a neighborhood of K by continuity.

Note that φM is equivalent to ‖x̄M‖ near the origin:

C−1
M φM (x̄) � ‖x̄M‖ � CMφM (x̄) (2.15)
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for some CM > 0 and all x ∈ UK .
We claim that for α big enough the critical points of Vα(x̄) in UK can occur only in a small

neighborhood of the origin, shrinking as α → ∞.

Lemma 2.35. (a) For a certain positive κ3 the function Vα(x̄) has no critical points in the
domain given by UK ∩ {‖x̄L‖ > κ3 · e−ε(α+1)}.

(b) For a certain positive κ4 the function Vα(x̄) has no critical points in the domain given
by UK ∩ {φM (x̄) > κ4/(α + 1)}.

Proof. (a) The idea is that outside M the gradients of the ρi, for i = 1, . . . , k + 1, are all
directed away from M . The contribution of the remaining ρi, being exponentially small, is
negligible outside an exponentially small neighborhood.

We calculate the directional derivative of Vα(x̄) in the direction x̄L at a point x̄ ∈ UK :

− 1
α

∂Vα(x̄)
∂x̄L

(x̄) =
k+1∑
i=1

ζiρ
−α−1
i

∂ρi

∂x̄L
(x̄) +

l∑
i=k+2

ζiρ
−α−1
i

∂ρi

∂x̄L
(x̄).

Since
∂ρi

∂x̄L
(x̄) = 2‖x̄L‖2 for i = 1, . . . , k + 1,

we conclude that the absolute value of the first term is at least C9M(x̄)−α−1‖x̄L‖2. The absolute
value of the second term is at most

C10r(x̄)−α−1‖x̄L‖ < C10M(x̄)−α−1e−ε(α+1)‖x̄L‖,

and the estimate follows.
(b) We essentially repeat the computations of Lemma 2.30:

− 1
α

∇MVα(x̄) =
k+1∑
i=1

ζiρ
−α−1
i ∇Mρi(x̄) +

l∑
j=k+2

ζiρ
−α−1
j ∇Mρj(x̄)

= M(x̄)−α−1

[
k+1∑
i=1

ζi

(
ρi

M(x̄)

)−α−1

∇Mρi(x̄) + O(e−ε(α+1))

]
.

So ∇MVα(x̄) = 0 implies, as in Lemma 2.30, that the functions (ρi/M(x̄))−α−1 are bounded,
which gives φM (x̄) < κ4/(α + 1).

Corollary 2.36. If a cell S is not effective then for α large enough the function Vα(x̄)
has no critical points in UK .

Proof. Indeed, in this case UK ⊂ {‖x̄L‖ > c} for some c > 0.

From now on we suppose that K and the convex hull of NS(S) intersect at the origin, and
consider the domain

Uα =
{

x̄L < κ3 · e−ε(α+1), ‖x̄M‖ <
CMκ4

α + 1

}
⊂ UK . (2.16)

The union of this domain and the domain described in Lemma 2.35 covers U by (2.15).
Moreover, φM (x̄) � C2

Mκ4/(α + 1) in U .
Our next goal is to study the quadratic form HessVα(x̄) in the domain Uα.

Lemma 2.37. Let Vk,α(x̄) =
∑k+1

i=1 ζiρ
−α
i . The following hold.

(a) We have Hess Vα(x̄) − Hess Vk,α(x̄) = M(x̄)−α−2O(e−εα) for x̄ ∈ Uα and α → ∞.
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(b) There exist two quadratic forms A(x) and B(x) on M and L respectively such that
Hess Vk,α(x̄) = A(x̄) ⊕ B(x̄) + M(x̄)−α−2O(e−εα).

In addition, there exist some positive constants κ5 and κ6 such that the form A is positive
definite and bounded from below by a κ5 · α2M(x̄)−α−2, and the form B is negative definite
and bounded from above by −κ6 · αM(x̄)−α−2.

Proof. (a) We have to estimate from above the contribution of the distant charges:

| Hess Vα(x̄) · ξ − Hess Vk,α(x̄) · ξ| � α(α + 1)
l∑

i=k+2

ζiρ
−α−2
i

(
(∇ρi, ξ)2 − 2

α + 1
ρi‖ξ‖2

)
� CM(x̄)−α−2e−ε(α+2)‖ξ‖2.

(b) For i = 1, . . . , k + 1 the charges ζi are in M . Therefore we have

(∇ρi(x̄), ξ)2 = (∇Mρi(x̄), ξM )2 + 2(∇Mρi(x̄), ξM )(∇Lρi(x̄), ξL) + (∇Lρi(x̄), ξL)2

= (∇Mρi(x̄), ξM )2 + O(e−εα)‖ξ‖2.

Here we used the facts that ∇Lρj(x̄) = 2x̄L and ‖x̄L‖ � κ3e
−εα in Uα.

Therefore,

Hess Vk,α(x̄) · ξ = α(α + 1)
k+1∑
i=1

ζiρ
−α−2
i

[
(∇ρi, ξ)2 − 2

α + 1
ρi‖ξ‖2

]

= α(α + 1)
k+1∑
i=1

ζiρ
−α−2
i (∇Mρi, ξM )2 − 2α

k+1∑
i=1

ζiρ
−α−1
i ‖ξ‖2

+ O(e−εα)
k+1∑
i=1

ρ−α−2
i ‖ξ‖2.

Due to the linear independence of the ∇Mρj in Uα we get, exactly as in Lemma 2.31,
l∑

i=1

ζi(∇Mρi, ξM )2 > C9‖ξM‖2

for some C9 > 0. Therefore, one can estimate the first term from below as

α(α + 1)
k+1∑
i=1

ζiρ
−α−2
i (∇ρj , ξM )2 � α(α + 1)C9M(x̄)−α−2‖ξM‖2.

The second term can be estimated using

(min ζi)M(x̄)−α−1 � 1
k + 1

∑
j=1,...,k+1

ζiρ
−α−1
j � (max ζi)M(x̄)−α−1e(α+1)φM (x̄).

The expression e(α+1)φM (x̄) is bounded in Uα by a constant C10 = eC2
M κ4 . Therefore the

restriction of Hess Vk,α(x̄) · ξ to M has the lower bound

α(α + 1)M(x̄)−α−2
(

C9 − 2(k + 1)C10

α + 1
max
i,x̄∈U

ζiρi(x̄) − O(e−εα)
)

‖ξM‖2.

On the other hand, the restriction of HessVk,α(x̄) · ξ to L is negative definite and has the
upper bound

−2α(k + 1) min ζiM(x̄)−α−1‖ξL‖2 (
1 − O(e−εα)

)
.

Corollary 2.38. For large enough α and any x̄ ∈ Uα the signature of the quadratic form
Hess Vα(x̄) is (k, n − k).
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Lemma 2.39. For sufficiently large α there is at most one critical point of Vα(x̄) in UK ,
and its Morse index is equal to n − k.

Proof. As was shown in Lemma 2.35, there are no critical points of Vα in UK \ Uα for α
large enough. So it is enough to prove that the mapping dVα is one-to-one in Uα.

Take any segment I = {at = a + tξ : 0 � t � 1} ⊂ Uα. Let π(t) be the projection of the
point dVα(at) on the direction ξ̄ = ξM − ξL (where ξ = ξM + ξL). We claim that π(t) is a
monotone function of t, and, therefore, its values at a0 and a1 cannot coincide. Indeed, using
Lemma 2.37 one can estimate π′(t) from below as

π′(t) =
(

ξ̄,
∂

∂t
dVα(at)

)
= Hess Vα(ξ̄, ξ)

� M(x̄)−α−2 [
κ5 · α2‖ξM‖2 + κ6 · α‖ξL‖2 + O(e−εα)‖ξ‖2] > 0

for α sufficiently large.
This, by convexity of Uα, immediately implies the claim of the lemma: assuming that there

are two critical points and joining them by a segment we get a contradiction.

In Lemma 2.36 we proved that ineffective cells do not create critical points of Vα for α large
enough. To finish the proof of the one-to-one correspondence between effective cells and critical
points of Vα we have to show that if K contains a critical point of the function V∞ then UK

does contain a critical point of Vα.

Lemma 2.40. Assume that K contains a critical point of V∞. Then UK contains a critical
point of Vα for α sufficiently large.

The idea of the proof is that the smooth function V
−1/α
α is arbitrarily C0-close to V∞ for

large α. The topology of the sets Xc = {V∞ � c} ∩ UK changes as c passes the critical value
implying the change of the topology of the sets Yc = {V

−1/α
α � c} ∩ UK for sufficiently large α,

which in its turn implies the appearance of the critical points of V
−1/α
α , the latter coinciding

with the critical points of Vα.
Let c0 be the critical value of V∞ at the point c ∈ K, and let c1 and c2 be some regular

values, minUK
V∞ < c1 < c0 < c2 < maxUK

V∞. We assume that c1 and c2 are so close to c0
that the interval [c1, c2] contains no critical values of V∞ restricted to the boundary of UK .

Let δ � (c0 − c1)/2. For α large enough the function V
−1/α
α is at least δ/2-close to V∞.

Thus, we have

Xc1 ⊂ Yc1+δ/2 ⊂ Xc1+δ ⊂ Yc1+3δ/2.

These inclusions induce homomorphisms in homology groups:

H∗(Xc1) −→ H∗(Yc1+δ/2) −→ H∗(Xc1+δ) −→ H∗(Yc1+3δ/2). (2.17)

The composition of the first two homomorphisms is a homomorphism induced by the inclusion
Xc1 ⊂ Xc1+δ, which is an isomorphism. Therefore the middle homomorphism in (2.17) is
surjective.

Similarly, the composition of the last two homomorphisms is a homomorphism induced by
the inclusion Yc1+δ/2 ⊂ Yc1+3δ/2, which, assuming that V

−1/α
α has no critical points, is an

isomorphism as well. Therefore the middle homomorphism in (2.17) is injective.
Summing up, we conclude that the middle homomorphism is an isomorphism, and Yc1 is

homologically equivalent to Xc1 .
Similarly, Yc2 is homologically equivalent to Xc2 . However, the sets Xc1 and Xc2 are not

homologically equivalent: the first is homologically equivalent to a sphere, and the second is



MYSTERY OF POINT CHARGES 469

contractible. Therefore Yc1 and Yc2 are also homologically different implying that V
−1/α
α should

have a critical point in UK .

2.4.7. Completing the proof of Theorem 1.7(a). Since Vα has no critical points outside the
convex hull of the charges, it is enough to consider, instead of R

n, an open ball B containing
all charges.

It is easy to see that one can cover B by neighborhoods Uk as in Lemmas 2.29 and 2.34.
Indeed, start from the zero-dimensional Voronoi cells Si, and choose their neighborhoods Ui

according to Lemma 2.29. Then choose compacts K1
i in one-dimensional Voronoi cells in such

a way that their union with these neighborhoods covers the intersection of the union of all
one-dimensional Voronoi cells with B. Choose neighborhoods UK1

i
of these compacts according

to Lemma 2.34. Then choose compact subsets K2
i of two-dimensional Voronoi cells in such a

way that
(⋃

K2
i

)
∪

(⋃
UK1

i

)
covers the intersection of the union of all two-dimensional Voronoi

cells with B, and so on. At the end the union of all selected neighborhoods will cover B.
Each of the neighborhoods corresponding to effective Voronoi cells will contain one critical

point of Vα, and its Morse index will be equal to the dimension of the Voronoi cell. The
neighborhoods of ineffective Voronoi cells will not contain critical points of Vα.

2.5. Proof of Theorem 1.7(b)

We are looking for the critical points of the function Ṽα defined in a linear space L,

Ṽα =
∑

ζiρ̃
−α
i , where ρ̃i = dist2(x̄, c̃i) + y2

i ,

where c̃i are now orthogonal projections on L of the positions ci of the charges ζj . The claim
is that the critical points of Ṽα are in one-to-one correspondence with the cells of the Voronoi
diagram of {ζj} that are effective with respect to L.

We can characterize the partition of L by intersections with the cells of the Voronoi diagram
only in terms of ρ̃i. Namely, a generalized Voronoi diagram in L is defined as the classical
Voronoi diagram in § 1.1, with ρi replaced by ρ̃i: a cell S of a generalized Voronoi diagram
is the set of all points x̄ ∈ N with the same set NS(S) = {i : for all k, ρ̃i(x̄) � ρ̃k(x̄)}. One
can immediately see that, thus defined, the generalized Voronoi diagram coincides with the
intersection of the original Voronoi diagram with L.

It turns out that using this notation one can get the proof of Theorem 1.7(b) from that
of Theorem 1.7(a) by a simple replacement of R

n by L, ρj by ρ̃j , the charges ζj by their
projections on L, ∇Vα by ∇Ṽα, and cells of the Voronoi diagram by cells of the generalized
Voronoi diagram. Namely, since ρ̃j is just the square of the distance to c̃j (up to a constant),
exactly the same formulae for ∇Ṽα and Hess Ṽα hold. Since the ρ̃j are radially symmetric, the
condition that L intersects the Voronoi diagram generically implies the linear independence of
∇ρ̃j , which guarantees the second property of U and UK , etc.

The only difference appears for the full-dimensional strata, that is, the case of k = 0 in
Lemmas 2.35 and 2.37: while in Theorem 1.7(a) these strata do not contain critical points,
in Theorem 1.7(b) the full-dimensional strata corresponding to strictly positive ρ̃j will have a
critical point. This point will be necessarily unique and is a local maximum by Lemmas 2.35
and 2.37 (modified as mentioned above).

We leave it as an exercise to check that the aforementioned modifications of the proof of
Theorem 1.7(a) produce a correct proof of Theorem 1.7(b).

2.6. Proof of Theorem 1.10

Denote by aj
α the number of critical points of Morse index j of Vα(x̄). The standard potential

V1(x̄) is harmonic in R
3, and, therefore, has no local maxima or minima, that is, a0

1 = 0. Using
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the Euler characteristics one can easily check that a2
α − l + 1 = a1

α − a0
α for any α. Therefore,

for α = 1 the total number of critical points a2
1 + a1

1 + a0
1 equals 2a2

1 − l + 1. By the Maxwell
inequalities (1.4) one gets a2

1 � a2
∞ � 1

2 l(l − 1); see § 1. Thus,

a2
1 + a1

1 + a0
1 = 2a2

1 − l + 1 � l(l − 1) − l + 1 = (l − 1)2,

exactly Maxwell’s estimate.

3. Remarks and problems

Remark 1. The main objects of consideration in this paper have a strong resemblance
with the main objects in tropical algebraic geometry. Namely, the potential Vα(x̄) resembles an
actual algebraic hypersurface while V∞(x̄) resembles its tropical limit. Also, Voronoi diagrams
are piecewise linear objects as well as tropical curves. Is this a pure coincidence?

Remark 2. What happens in the case of charges of different magnitudes and signs? Note
that in a Voronoi cell of highest dimension corresponding to a negative charge the potential
of this charge outweighs potentials of all other charges for large α, and |Vα|−1/α converges
uniformly on compact subsets of this cell to V∞(x̄). Therefore it seems that the function
defined on the union of Voronoi cells of highest dimension as

Ṽ∞(x̄) = sign ζi · ρi(x) if ρi(x) = min
j

ρj(x)

is responsible for the critical points of Vα as α → ∞.

Remark 3. Theorem 1.7 is similar to the results of Varchenko [20] and Orlik and Terao
[16] on the number of critical points for the product of powers of real linear forms and the
number of open components in the complement to the corresponding arrangement of affine
hyperplanes. Is there an appropriate result?

Remark 4. Conjecturally in the case of unit charges the number of critical points of Vα(x̄)
is bounded from above by the number of effective Voronoi cells in the corresponding Voronoi
diagram. The number of all Voronoi cells in Voronoi diagrams in R

n with l sites has a nice
upper bound. What is the upper bound for the number of effective Voronoi cells? Is it the same
as for all Voronoi cells?

Remark 5. Many statements in the paper are valid if one substitutes the potential r−α of
a unit charge located at the origin by more or less any concave function ψ(r) of the radius in
R

n. To what extent can the above results and conjecture be generalized for ψ(r)-potentials?

Remark 6. The initial hope in settling Conjecture 1.8 was related to the fact that in our
numerical experiments for a fixed configuration of charges the number of critical points of Vα(x̄)
was a non-decreasing function of α. Unfortunately this monotonicity turned out to be wrong
in the most general formulation: the number of critical points of a restriction of a potential to
a line is not a monotonic function of α.

Example 3.1. The potential

Vα(x) = [(x + 30)2 + 25]−α + [(x + 20)2 + 49]−α + [(x + 2)2 + 144]−α

+ [(x − 20)2 + 49]−α + [(x − 30)2 + 25]−α

has three critical points for α = 0.1, seven critical points for α = 0.2, again three critical points
for α = 0.3, and again seven critical points as α = 1.64, and nine critical points for α � 1.7.
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The existence of such an example for the potential itself (and not of its restriction) is
unknown.

Appendix. James C. Maxwell on points of equilibrium

In his monumental Treatise [12] Maxwell foresaw the development of several mathematical
disciplines. In the passage which we have the pleasure to present to the readers his arguments
are that of Morse theory developed at least 50 years later. He uses the notion of periphractic
number, or degree of periphraxy which is the rank of H2 of a domain in R

3 defined as the
number of interior surfaces bounding the domain, and the notion of cyclomatic number, or
degree of cyclosis which is the rank H1 of a domain in R

3 defined as the number of cycles in
a curve obtained by a homotopy retraction of the domain (none of these notions rigorously
existed then). (For definitions of these notions see [12, Section 18].) Then he actually proves
Theorem 1.1 of § 1 which is usually attributed to M. Morse. Finally in Section 113 he makes
the following claim.

To determine the number of the points and lines of equilibrium, let us consider the surface
or surfaces for which the potential is equal to C, a given quantity. Let us call the regions
in which the potential is less than C the negative regions, and those in which it is greater
than C the positive regions. Let V0 be the lowest and V1 the highest potential existing in the
electric field. If we make C = V0 the negative region will include only one point or conductor
of the lowest potential, and this is necessarily charged negatively. The positive region consists
of the rest of the space, and since it surrounds the negative region it is periphractic.

If we now increase the value of C, the negative region will expand, and new negative regions
will be formed round negatively charged bodies. For every negative region thus formed the
surrounding positive region acquires one degree of periphraxy.

As the different negative regions expand, two or more of them may meet at a point or a
line. If n + 1 negative regions meet, the positive region loses n degrees of periphraxy, and
the point or the line in which they meet is a point or line of equilibrium of the nth degree.

When C becomes equal to V1 the positive region is reduced to the point or the conductor
of highest potential, and has therefore lost all its periphraxy. Hence, if each point or line of
equilibrium counts for one, two, or n, according to its degree, the number so made up by
the points or lines now considered will be less by one than the number of negatively charged
bodies.

There are other points or lines of equilibrium which occur where the positive regions
become separated from each other, and the negative region acquires periphraxy. The number
of these, reckoned according to their degrees, is less by one than the number of positively
charged bodies.

If we call a point or line of equilibrium positive when it is the meeting place of two or
more positive regions, and negative when the regions which unite there are negative, then, if
there are p bodies positively and n bodies negatively charged, the sum of the degrees of the
positive points and lines of equilibrium will be p − 1, and that of the negative ones n − 1.
The surface which surrounds the electrical system at an infinite distance from it is to be
reckoned as a body whose charge is equal and opposite to the sum of the charges of the
system.

But, besides this definite number of points and lines of equilibrium arising from the
junction of different regions, there may be others, of which we can only affirm that their
number must be even. For if, as any one of the negative regions expands, it becomes a cyclic
region, and it may acquire, by repeatedly meeting itself, any number of degrees of cyclosis,
each of which corresponds to the point or line of equilibrium at which the cyclosis was
established. As the negative region continues to expand till it fills all space, it loses every
degree of cyclosis it has acquired, and becomes at last acyclic. Hence there is a set of points
or lines of equilibrium at which cyclosis is lost, and these are equal in number of degrees to
those at which it is acquired.

If the form of the charged bodies or conductors is arbitrary, we can only assert that the
number of these additional points or lines is even, but if they are charged points or spherical
conductors, the number arising in this way cannot exceed (n − 1)(n − 2) where n is the
number of bodies*.

*{I have not been able to find any place where this result is proved.}
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We finish the paper by mentioning that the last remark was added by J. J. Thomson in
1891 while proof-reading the third (and the last) edition of Maxwell’s book. Adding the above
numbers of obligatory and additional critical points one arrives at Conjecture 1.3 which was
the starting point of our paper.
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no. 3, 82–83.

11. M. Marden, Geometry of polynomials (American Mathematical Society, Providence, RI, 1949).
12. J. C. Maxwell, A treatise on electricity and magnetism, vol. 1, republication of the 3rd revised edition

(Dover, New York, 1954).
13. P. McMullen and G. C. Shephard, Convex polytopes and the upper bound conjecture (Cambridge

University Press, 1971).
14. M. Morse and S. Cairns, Critical point theory in global analysis and differential topology (Academic

Press, New York, 1969).
15. T. S. Motzkin and J. L. Walsh, ‘Equilibrium of inverse-distance forces in 3 dimensions’, Pacific J. Math.

44 (1973) 241–250.
16. P. Orlik and H. Terao, ‘The number of critical points of a product of powers of linear functions’, Invent.

Math. 120 (1995) 1–14.
17. F. Preparata and M. Shamos, Computational geometry: an introduction (Springer, Berlin, 1985).
18. R. Seidel, ‘The complexity of Voronoi diagrams in higher dimensions’, Proceedings of the Allerton

Conference on Communication, Control, and Computing 20 (University of Illinois at Urbana–
Champaign, 1982) 94–95.

19. D. Siersma, ‘Voronoi diagrams and Morse theory of the distance function’, Geometry in present day science
(ed. O. E. Barndorff-Nielsen and E. B. V. Jensen; World Scientific, Singapore, 1999) 187–208.

20. A. Varchenko, ‘Critical points of the product of powers of linear functions and families of bases of singular
vectors’, Compositio Math. 97 (1995) 385–401.

A. Gabrielov
Department of Mathematics
Purdue University
West Lafayette, IN 47907-1395
USA

agabriel@math.purdue.edu

D. Novikov
Department of Mathematics
Weizmann Institute of Science
Rehovot, 76100
Israel

dmitry.novikov@weizmann.ac.il

B. Shapiro
Department of Mathematics
University of Stockholm
Stockholm S-10691
Sweden

shapiro@math.su.se

mailto:dmitry.novikov@weizmann.ac.il

	1. Introduction
	1.1. Voronoi diagrams and the main conjecture

	2. Proofs
	2.1. Relation between the number of charges and dimension
	2.2. Proof of Theorem 1.5(a)
	2.3. Proof of Theorem 1.5(b)
	2.4. Proof of Theorem 1.7(a)
	2.5. Proof of Theorem 1.7(b)
	2.6. Proof of Theorem 1.10

	3. Remarks and problems
	Appendix. James C. Maxwell on points of equilibrium
	References

