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Myth, Confusion, and Science in Causal Analysis

J. Pearl*

Cognitive Systems Laboratory
Computer Science Department
University of California, Los Angeles, CA 90024 USA

SUMMARY

This letter argues that the practice of conditioning on all observed covariates, recently advocated by
several analysts, should be treated with great caution. Graphical methods explain why, and provide
the scientific basis for principled selection of covariates.
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Introduction

In a Letter to the Editor of Statistics in Medicine, Ian Shrier [1], presented a question to Don
Rubin (paraphrased):

Is it possible that, asymptotically, the use of Propensity Scores (PS) methods may
actually increase, not decrease, overall bias, compared with the crude, unadjusted
estimate of a causal effect?

As most students of causality know, the answer is of course, Yes; the M-graph model presented
by Shrier (see also [2], p. 186, and [3]) provides a simple such example; the crude estimate
in this example is bias-free, while PS methods, or any method that adjusts for the measured
covariate (a collider), introduce new bias.’

In his reply [4], Rubin did not address Shrier’s question. To do so would have required
modeling the treatment assignment mechanism in a communicable scientific language (e.g.,
graphs or structural equations), which Rubin vigorously opposes. Instead, Rubin pleaded to
be “puzzled” and “confused” by the terminology, by the example, and by graphs in general,
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TFor the novice, the M-structure contains the path X «— U; — Z « Uy — Y where X,Y, Z are measured
and U; and Uz are unmeasured; conditioning on Z creates spurious dependence between X (treatment) and Y
(outcome), and thus would bias our estimate of the causal effect of X on Y.
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and repeated his decade-long confession that he does not find graphs to be “helpful to clear
thinking about the estimation of causal effects”

Hoping to illuminate Rubin’s confusion, three letters were then sent to Statistics in Medicine,
by Shrier [5], Sjélander [6], and myself [7], in which the nature of the M-bias was explained and
exemplified, and Shrier’s question repeated and demonstratively shown to yield an affirmative
answer.

To no avail. In his Author Reply, Rubin [8] rejected all three letters as “based on an
unprincipled and confused theoretical perspective.” Fortunately, this time Rubin understood
Shrier’s question and, anxious to demonstrate the superior insight of his graph-less model,
answered it with a sweeping and false NO: “to avoid conditioning on some observed
covariates,... is nonscientific ad hockery.”

Not surprisingly, Rubin’s attempt to defend this answer uncovered a much deeper confusion,
this time touching on the nature of confounding, the dictates of the Bayesian paradigm, and
the norms of principled scientific perspectives. Given the esteemed stature of professor Rubin
in statistics circles, it is important to discuss these confusions at some length, for they may be
broadly held among readers of SIM.

1. The more the better?

Rubin starts by arguing that the phenomenon of M-bias is not new; it merely reflects the well
known fact that two independent variables may become dependent once we condition on a
third.

Indeed, the phenomenon rests on the well known Berkson paradox [9] (see [2], p. 17, for
historical background), in which two independent causes of a common effect (e.g., U; and Us
in footnote f) become dependent when we observe the effect; intuitively, information refuting
one cause should make the other more likely. This phenomenon is in fact the basis for reading
independencies in graphical models (DAG’s) where conditioning on a collider (or a descendant
thereof) is treated differently from conditioning on a non-collider (see [10, 11]).

Given that the phenomenon is common and well known, the question arises why many
researchers within the potential-outcome paradigm are unaware of its logical consequences,
namely, that adding a covariate to the analysis may create spurious associations between
treatment and outcome and this, in turns, may increase or decrease confounding bias. Paul
Rosenbaum, for example, is one of many researchers who seems unaware of this possibility,
for he writes: “there is no reason to avoid adjustment for a variable describing subjects before
treatment” [12], p. 76.%

Rubin tries to defend this tradition using an example in which gender is the covariate in
question. This, of course, does not address Shrier’s question, because it a priori excludes M-
bias from consideration. Gender is a variable that is exogenous in most studies of interest and,
hence, cannot be modeled as a collider and cannot exhibit M-bias. With this in mind, Rubin’s
logic reads as follows: since it is silly not to adjust for gender in observational studies, it must

My survey of the propensity score literature has revealed that this belief is shared by almost all authors who
do not use graphs. Alerting them to its fallacy has resulted in thankful acknowledgments, with the exception
of a few hard-liners whom I prefer not to name.
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be “nonscientific” to refrain from adjusting for any measured covariate. I do not know many
readers who would be persuaded by this logic, but one can never predict the psychological
ripple of a bad example.

2. Is M-bias rare?

Rubin’s next claim is that M-bias is a rare phenomenon, like “trying to balance a
multidimensional cone on its tip.” This is factually wrong. M-bias is not a phenomenon that
depends on finely-tuned, “hoped-for compensating imbalances” as caricatured by Rubin but,
rather, a structural property, persisting no matter what parameters are assigned to the various
associations in the model.?

While finding a pure M-structure, totally free of bias, may indeed be rare in practical
studies (not unlike the rarity of finding any conditional independence,) cases containing local
M-structures are abound. For example, every time we condition on a variable that is not
causally related to both treatment and outcome but merely associated with the two, we may
introduce an M-bias. This is because such a variable may be an indicator of several unobserved
factors, some affecting treatment and some affecting outcome; by conditioning on this variable,
we induce associations among those two types of factors. In doing so, we would not know if
we increased, or decreased, overall bias.

As a curious and illuminating example, many of the covariates listed in Rubin’s account of the
US tobacco litigation [13] fall into this category; they have no causal effect on smoking habits
or on lung diseases, and yet they are statistically related to both, and are selected therefore
for adjustment by astute researchers. To witness, the first covariate that appears in Rubin’s
table (p. 28) is “seat-belt usage.” Obviously, seat-belt usage has no causal effect on smoking
or lung diseases; it is merely an indicator of a person’s attitudes toward societal norms as
well as safety and health related measures. Some of these attitudes may affect smoking habits,
and some may affect susceptibility to lung diseases. If we have good reasons to believe that
these two types of attitudes are marginally independent, we have a pure M-structure on our
hand. But even if marginal independence does not hold precisely, conditioning on “seat-belt
usage” is likely to introduce spurious associations, hence bias, and should be approached with
caution. Cogently, Rubin’s sweeping advice “to condition on all observed covariates” is likely
to be harmful if applied uniformly to the covariates that he himself lists in the US tobacco
litigation study. ¥

§Take two independent variables, say the outcomes, U; and Us, of two fair coins, and a third variable, Z, that
depends on both, say a bell that rings with probability p = 0.75 when U; = Us. If we insist on estimating the
conditional probabilities P(u1,u2|Z = 0) and P(u1,u2|Z = 1) from finite sample, it would be a “hoped-for”
miracle indeed to discover that U; and Us are independent. However, given our prior knowledge about the
science of coins, the independence of U; and U; ceases to be “hoped-for” and becomes structural; it can be
assumed a priori without taking any measurement of Z. Even the strictest Bayesian would forgive us in this
case for refraining from conditioning on Z or, for that matter, ignoring measurements of Z altogether.

Y Other listed covariates in this category are: “Insurance type,” “whether Doctor ever told having diabetes,”
“whether reported suffering from arthritis,” “membership in clubs,” “home ownership,” and more.
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3. Bayesianism versus Dogmatism

Rubin’s last defense of indiscriminate adjustment appeals to Bayesian philosophy: “The
Bayesian paradigm” says Rubin, “essentially directs us to condition on all observed values.
To avoid conditioning on some observed covariates,... is neither Bayesian nor scientifically
sound but rather it is distinctly frequentist and 'nonscientific ad hockery.”

I differ with Rubin on this interpretation of Bayesianism, and, naturally, on his conception
of principled scientific methodology. While the Bayesian paradigm teaches us indeed that one
should not ignore the prior knowledge in our possession and the variables that we can observe,
it does not license us to blindly condition all probabilities on those observations. Instead, it
instructs us to think carefully if conditioning would advance us towards the quantity we wish
estimated, or away from that quantity.

In causal analysis, Bayesianism actually directs us to refrain from conditioning on certain
variables. This occurs when prior scientific knowledge informs us that conditioning would bias
our estimates. Perhaps the most familiar example of such warning is the classical prohibition
against adjusting for variables that lie on the causal pathway between treatment and outcome
[14], p. 48. Here, qualitative knowledge about causal relationships, inexpressible in the language
of statistical associations warns us to ignore available measurements. The M-structure
constitutes another example in this class; again, knowledge about causal relationships, depicted
graphically, warns us that adjusting for available measurements (e.g., seat-belt usage) would
be inappropriate for estimating a causal effect.

There are of course problems where it is appropriate to condition on the collider of an M-
structure. For example, if we merely wish to predict whether a given person is a smoker, and we
have data on the smoking behavior of seat-belt users and non-users, we should condition our
prior probability P(smoking) on whether that person is a “seat-belt user” or not. Likewise, if we
wish to predict the causal effect of smoking for a person known to use seat-belts, and we have
separate data on how smoking affects seat-belt users and non-users, we should use the former in
our prediction. Such class-specific causal effects could be estimated, for example, by conducting
randomized clinical trials among seat-belt users and non-users, or, in observational studies, by
finding a set of covariates S that renders the class-specific causal effect among seat-belt users
and non-users identifiable.! However, if our interest lies in the average causal effect over the
entire population, then there is nothing in Bayesianism that compels us to do the analysis in
each subpopulation separately and then average the results. The class-specific analysis may
actually fail if the causal effect in each class is not identifiable. This is precisely what happens
in M-structured cases; the causal effect in each sub-population is not identifiable, while the
overall causal effect is. By blindly conditioning on the collider of an M-structure one does
not estimate the causal effect in the corresponding subpopulation but, rather, some spurious
association that may have nothing to do with cause or effect. Principled researchers, both
Bayesians and non-Bayesians, should shun such methodology as “nonscientific ad hockery.”

But the M-structure is but the simplest toy example where uncritical conditioning may
lead to increased bias. In a complex multivariable observational study there may be several

“Identiﬁability is a more general concept than “strong ignorability,” permitting a bias-free estimation of the
target quantity by any means, not necessarily through adjustment. Complete criteria for the identifiability of
class-specific causal effects is given in Shpitser and Pearl [15].
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covariates embedded in a complex network of relationships which act like colliders in local
M-structures; conditioning on these covariates may increase or decrease bias in a way that is
not totally predictable without a detailed scientific model of the problem at hand.

The source of Rubin’s confusion lies in refusing to accept M-structures, and graphs in
general, as a legitimate representation of scientific knowledge, from which one can tell a priori
whether bias may or may not be created by adjustment. The only notation that Rubin accepts
is the one based on ignorability type equations. Unfortunately, this notation discourages a
serious examination of prior scientific knowledge available to researchers and, consequently,
it does not allow quick determination of whether conditioning is admissible. For example,
to express the common knowledge that seat-belt usage (Z) has no effect on smoking (S) or
outcome (Y'), which in the graphical language would be represented as missing arrows from Z
to S or Y, would be written

Sy (u) = S(u) and Ys(u) = Ys(u)

in the restricted potential-outcome language used by Rubin. To further express the assumption
that factors causing seat-belt usage are mutually independent, ignorability type expressions
are needed, which represent independencies among counterfactual variables.

While it is possible to translate the knowledge conveyed by a graph into formulae in
potential-outcome language (see [2], pp. 98-102) the resulting mathematical expressions are
so far removed from the way people communicate scientific knowledge that researchers in
Rubin’s camp have simply given up on representing such knowledge. This leaves them unable
to tell whether “ignorability” holds or does not hold in a given problem. For many in the
graph-less camp, the notion of “ignorability” is viewed as a miracle to be hoped for, not a
condition that one can confirm or disaffirm from scientific knowledge, nor is it a target to be
achieved by careful selection of covariates.* In contrast, graphical methods permit researchers
to understand what conditions covariates must fulfill before they eliminate bias, what to watch
for and what to think about when covariates are selected and, not the least important, whether
we have the knowledge needed for principled covariate selection.

In general, causal inference is orthogonal to the Bayesian-frequentist debate. Berkson’s
paradox, the basis for M-bias, can be demonstrated using both frequency analysis and
subjective human judgment. Once a Bayesian philosopher accepts and respects causal
information as a legitimate component of one’s prior knowledge, the Bayesian paradigm would
protect one from following Rubin’s advice to condition on all available measurements.

This discussion does not negate, of course, any of the teachings of the potential-outcome
framework, which was shown ([2], pp. 228-234) to be a limited-vocabulary, yet mathematically
equivalent version of the structural causal model that my colleagues and I have developed; a

** A recent confession reads: “[ignorability] assumptions are usually made casually, largely because they justify
the use of available statistical methods and not because they are truly believed” (workshop proceedings,
unpublished). I am yet to find a single article that uses what Rubin [13] calls “the assignment mechanism,”
P(W|X,Y(0),Y(1)), to determine whether “strong ignorability” holds in a given problem (see [2], pp. 341-4).
tTEqually puzzling is Rubin’s new definition of “ignorability,” a word he helped coin. In his concluding
comments, he states: “‘strong ignorability’ is defined to be conditional on all observed covariates.” Now, what
if bias can be eliminated by conditioning on a subset of the observed covariates, and not the whole set. Are
we instructed then to refrain from naming the treatment “strongly ignorable given the subset?” Or should we
perhaps rename it “wisely ignorable” ? Frankly, I prefer the adjective “de-confoundable” over “ignorable,” it is
far more informative and definitely more resilient to surprising re-definitions of the kind introduced by Rubin.
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theorem in one is a theorem in the other. It merely points to fallacies that are likely to emerge
from an opaque notational system that has been insulated by a sub-culture of exclusivism at
the expense of conceptual clarity and mathematical precision. It also points, in contrast, to
insights obtained from modern, principled, and more embracing approaches to causation, ones
that deploy formal and transparent representations of the science behind each problem and
thus permit the mathematical analysis of confounding bias and covariate selection, liberated
from myths and dogmas.

Rubin will do well to expand the horizons of his students with some of the tools that his
admirers now deem illuminating.
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