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1 Introduction

Renormalization group (RG) flow of a supersymmetric theory preserving its full or part

of supersymmetries is a quite non-trivial but remarkably tractable phenomenon, thanks

to various techniques developed in the past several decades [1–3]. Physics at the infrared

fixed point is described by a superconformal field theory (SCFT), thus the RG flow defines

the SCFT.

In this paper, we study the deformation of four-dimensional N = 2 SCFTs which

preserves at least N = 1 supersymmetry and the RG flow caused by this.1 The deformation

1Our deformation does not belong to the one classified in [4], since we add extra chiral multiplets to

the theory.
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is described as follows: suppose we have an N = 2 SCFT, T , with a non-Abelian (semi-

simple) flavor symmetry F , then

• add an N = 1 chiral multiplet M transforming in the adjoint representation of F via

the superpotential coupling with the moment map operator µ of F given by

W = TrMµ , (1.1)

• then give a nilpotent vacuum expectation value (vev) to the chiral multiplet M

〈M〉 = ρ(σ+) , (1.2)

where σ+ = σ1 + iσ2 and σi are the Pauli matrices.

The nilpotent vev is specified by the embedding ρ: su(2) → f, where f is the Lie algebra of

F . When F = SU(N), the embedding is classified by the partition of N . This procedure

defines the theory TIR[T , ρ] in the IR fixed point.

Among the embeddings (or the partitions), we focus here on the flow by the principal

embedding. The principal embedding is the one ρ such that f is decomposed into rank-f

irreducible representations. Thus this breaks the flavor symmetry F completely and leaves

the theory with only U(1)F global symmetry coming from the Cartan of the SU(2)R×U(1)r
symmetry of T (and Abelian factors of the original flavor symmetry). This U(1)F symmetry

can mix with R-symmetry in the IR, and the superconformal R-symmetry is determined

via a-maximization [3]. Remarkably we observe in various examples that the fixed point

theory due to the principal embedding has an enhanced N = 2 supersymmetry. Along the

RG flow the scaling dimensions of some of the chiral operators hit the unitarity bound and

get decoupled. Therefore the N = 2 supersymmetry in the IR cannot be the original UV

one, rather it is an accidental symmetry.

However it is not always the case that the principal embedding leads to the enhance-

ment of the supersymmetry in the IR. While it would be interesting to figure out the

physical mechanism and even the necessary condition for T to have this enhancement,

we only list the theories with the enhancement in this paper. Indeed, we check the IR

enhancement when T is the following SCFT:

• the so-called (A1, Dk) [5–7] and (IN,Nm+1, F ) theories [8] of Argyres-Douglas type

• the rank-one SCFTs H1, H2, D4, E6, E7 and E8 [9–12].

• Conformal SQCDs: SU(N) gauge theory with 2N fundamental hypermultiplets and

Sp(N) gauge theory with 4N + 4 fundamental half-hypermultiplets [13, 14].

For the first case, the IR theories are (A1, Ak−1) and (AN−1, ANm+N ) theories of Argyres-

Douglas type respectively. For the second case, one always gets the simplest N = 2

SCFT, H0 [15]. For the last case, the IR theories are the (A1, A2N−1) and (A1, A2N )

theories respectively.
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Our discussion does not depend on whether the theory T admins a Lagrangian de-

scription or not. Most examples we study do not have (known) Lagrangian descriptions.

But special cases are when T is the D4 theory, and the conformal SQCDs, which have

Lagrangian realizations. Therefore the deformation due to the principal embedding can

be analyzed in a Lagrangian level. This leads in the D4 case to the theory studied re-

cently in [16], which flows to H0 in the IR. The SU(N) SQCD with 2N flavors has the

SU(2N) × U(1) flavor symmetry. We break the SU(2N) part of the global symmetry by

the deformation. This triggers a flow to the (A1, A2N−1) theory, which has the U(1) global

symmetry for N > 2 and SU(2) for N = 2. For the Sp(N) SQCD, the deformation breaks

the SO(4N+4) flavor symmetry completely. Note that when SU(2) = Sp(1), depending on

breaking the SU(4) subgroup of the flavor symmetry or the entire SO(8) flavor symmetry,

we obtain flow to the H1 = (A1, A3) or the H0 = (A1, A2) theory.

These Lagrangian theories open up a way to compute the superconformal index [17, 18]

of the IR theory in full generality, namely with p, q and t fugacities. The only nontrivial

issue is the existence of the decoupled chiral multiplets along the RG flow whose contri-

butions are subtracted by hand, as in [19] for the central charge computation. This was

demonstrated in [16] for the H0 theory. We give the expressions for the full superconformal

indices of the (A1, Ak) theories here.

On the other hand, we find that the following theories flow to genuine N = 1 SCFTs:

• A number of rank-one SCFTs [20–24] do not belong to the H1,2, D4, E6,7,8 series,

• TN theory and R0,N theory in class S [25, 26],

• N = 4 SU(2) super Yang-Mills theory,

as can be seen by irrational central charges.2 Indeed, the same deformation has been

already studied in [28–31] in the framework of class S theories [25, 32, 33]. We take the

principal embeddings of all the SU(N)3 flavor symmetry of TN theory. Thus when N = 3

this is not the principal embedding of the full flavor symmetry E6. This deformation of the

TN theory leads us to the N = 1 SCFTs corresponding to the sphere with 0, 1, 2 punctures.

The organization of this paper is as follows. In section 2, the general procedure of

the deformation applicable to any N = 2 SCFT with non-Abelian flavor symmetry is

introduced. We give a formula of the ’t Hooft anomaly coefficients, which is necessary

for computing the IR R-symmetry. Sections 3 to 6 discuss examples of the flow by the

principal embedding. Then we conclude with some remarks in section 7. In addition we

give a brief explanation on our convention of the N = 2 R-charges and ’t Hooft anomaly

coefficients in appendix A.

2Let us argue that any N = 2 SCFT should have rational central charges. Assuming any N = 2 SCFTs

has a suitable Seiberg-Witten (SW) geometry describing its Coulomb branch, the central charges can be

obtained from the SW curve [27]. The SW geometry is given by an algebraic curve and a canonical one-

form that are written in terms of polynomials. This makes all the quantities appear in the central charge

computation to be rational numbers.
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2 Deformation of N = 2 SCFT with non-Abelian flavor symmetry

In this section we consider the N = 1 deformation procedure in a generic fashion. This is

applied for any N = 2 SCFT with non-Abelian flavor symmetry.

Suppose we have an N = 2 SCFT, T , with a non-Abelian flavor symmetry F . The F

could be a subgroup of the full flavor symmetry of T . The R-symmetry of T is SU(2)R ×
U(1)r. We denote the generators of the Cartan part of the SU(2)R and of U(1)r as I3 and

r respectively. Due to the flavor symmetry, there exists the associated conserved current

multiplet whose lowest component µ is the scalar with charge (2I3, r) = (2, 0).

We deform T by adding an N = 1 chiral multiplet M transforming in the adjoint

representation of F and the superpotential coupling

W = TrµM. (2.1)

This superpotential breaks the supersymmetry to N = 1. In the following we denote the

R-symmetry of the theory as

2I3 = J+, r = J−, (2.2)

and sometimes set R0 =
1
2(J++J−). The residual symmetry F = 1

2(J+−J−) is the global
symmetry of the N = 1 theory. The N = 1 R-charge in the N = 2 algebra of the original

theory T is given by

RN=1 = R0 +
1

3
F =

2

3
J+ +

1

3
J− . (2.3)

The charges of µ and M are (J+, J−) = (2, 0) and (J+, J−) = (0, 2) respectively. Even

though the superpotential (2.1) makes the theory N = 1 supersymmetric, this term turns

out to be irrelevant and the deformed theory in the IR simply decouples into the original

T and the free chiral multiplets M we added in the beginning.

A nontrivial N = 1 fixed point can be produced by giving a nilpotent vev to M , as

in [28–31, 34]. From the Jacobson-Morozov theorem, any nilpotent element of a semi-

simple Lie algebra f is given via embedding ρ : su(2) → f as ρ(σ+). Under the embedding,

the adjoint representation of f decomposes into

adj →
⊕

j

Vj ⊗Rj , (2.4)

where Vj is the spin-j representation of su(2) and Rj is a representation under the commu-

tant h of f under the embedding ρ. The commuting subgroup becomes the flavor symmetry

of the theory after Higgsing.

When the flavor group is F = SU(N), the vev is written in the block-diagonal Jordan

form ρ(σ+) =
⊕

k J
⊕nk

k , where Jk is the Jordan form of size k and nk are integers. In other

words this is specified by a partition of N :

N =

ℓ
∑

k=1

knk. (2.5)
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f di

su(n) 2, 3, . . . , n

so(2n+ 1) 2, 4, 6, . . . , 2n

sp(n) 2, 4, 6, . . . , 2n

so(2n) 2, 4, 6, . . . , 2n− 2, n

e6 2, 5, 6, 8, 9, 12

e7 2, 6, 8, 10, 12, 14, 18

e8 2, 8, 12, 14, 18, 20, 24, 30

f4 2, 6, 8, 12

g2 2, 6

Table 1. Degrees of the Casimir invariants of the simple Lie algebras.

Under the embedding, the adjoint representation decomposes into

adj →
⊕

k<l

k
⊕

i=1

V l−k+2i−2
2

⊗ (nk ⊗ n̄l ⊕ n̄k ⊗ nl)⊕
ℓ
⊕

k=1

k
⊕

i=1

Vi−1 ⊗ nk ⊗ n̄k − V0 . (2.6)

The commutant h of su(N) under ρ(σ+) is given by s[
∏

k u(nk)], where s means the overall

traceless condition.

In this paper, we will mainly focus on the case of principal embedding ρ, which breaks

the flavor symmetry F completely upon Higgsing. In this case, the adjoint representation

of f decomposes as

adj →
r
⊕

i=1

Vdi−1 , (2.7)

where r = rank(f) and di are the degrees of Casimir invariants of f. The degrees of invariants

of the semi-classical Lie algebra are shown in table 1. The numbers di − 1 are also called

the exponents of f.

Upon Higgsing via vev ρ(σ+), the superpotential term becomes

W = µ1,−1,1 +
∑

j,j3,f

Mj,−j3,fµj,j3,f , (2.8)

where Mj,j3,f is the fluctuation of M from the vev, and j, j3 and f labels the spins, σ3-

eigenvalues and the representations of the flavor symmetry h. Due to the first term of (2.8),

the R-symmetry gets shifted

J+ → J+, J− → J− − 2ρ(σ3), (2.9)

in order for the superpotential to have (J+, J−) = (2, 2). Furthermore the non-conservation

of the flavor current (D2JF )j,j3,f = δW = µj,j3−1,f shows that the components of µj,j3,f
with j3 6= j combine with the current and become non-BPS. The corresponding multi-

plets Mj,j3,f with j3 6= −j thus decouple. The remaining multiplets Mj,−j,f have charges

– 5 –
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(J+, J−) = (0, 2 + 2j), coupled to µj,j,f . Therefore, we end up with the superpotential

W =
∑

j,f

Mj,−j,fµj,j,f . (2.10)

When ρ is the principal embedding, we have r chiral superfields Mj,−j with j = di − 1

having charges (J+, J−) = (0, 2di), i = 1, . . . , r.

Chiral multiplets. The deformed theory has many N = 1 chiral operators, in addition

to Mj,−j,f . They come from the original theory T which has Coulomb, Higgs and mixed

branches. A Coulomb branch operator belongs to an N = 2 short multiplet Er(0,0) [35]

with r = 2∆.3 The components in the multiplets are

0r(0,0) →
(

1

2

)r−1

(0,± 1
2
)

→ 0r−2
(0,±1), 0

r−2
(0,0), 1

r−2
(0,0) →

(

1

2

)r−3

(0,± 1
2
)

→ 0r−4
(0,0) (2.11)

where (I3)
r
(j1,j2)

stands for a component with spin (j1, j2), U(1)r charge r and SU(2)R

charge I3. The scaling dimension of the components are r
2 ,

r+1
2 , r+2

2 , r+3
2 , r+4

2 respectively.

This N = 2 chiral multiplet can be decomposed into N = 1 chiral multiplets. (See

appendix A of [36] for the detailed discussion on N = 1 short multiplets.) In terms of their

notation, the N = 2 multiplet Er(0,0) can be decomposed into

Er(0,0) → B r
3
(0,0) ⊕ B r+2

3
(0,0) ⊕ B r+1

3
(0, 1

2
) ⊕ B r+1

3
(0,− 1

2
) , (2.12)

where the notation BRN=1(j1,j2) stands for the short multiplet with N = 1 R-charge RN=1.

The N = 1 short multiplet BR(j1,j2) contains

R∆
(j1,j2)

→ (R− 1)
∆+ 1

2

(j1,j2± 1
2
)
→ (R− 2)∆+1

(j1,j2)
, (2.13)

where R∆
(j1,j2)

denotes operator with R-charge R, spin (j1, j2) and dimension ∆. For com-

pleteness, let us write down N = 1 chiral operators in Er(0,0) multiplet and their charges.

N = 1 multiplet (j1, j2) J+ J− ∆UV = 3
2RN=1 RIR = 1+ǫ

2 J+ + 1−ǫ
2 J−

B r
3
(0,0) (0, 0) 0 r r

2
1−ǫ
2 r

B r+2
3

(0,0) (0, 0) 2 r − 2 r
2 + 1 1−ǫ

2 r + 2ǫ

B r+1
3

(0, 1
2
) (0, 12) 1 r − 1 r+1

2
1−ǫ
2 r + ǫ

B r+1
3

(0,− 1
2
) (0,−1

2) 1 r − 1 r+1
2

1−ǫ
2 r + ǫ

(2.14)

Here the last column is the candidate N = 1 R-charge after the deformation, as we will

see later. The UV R-charge RN=1 is the same as RIR with ǫ = 1
3 .

3Our convention is slightly different from the one in [35] where r charge was normalized to be equal to

the scaling dimension for the Coulomb branch operators, so that rours = 2rtheirs.
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f su(N) so(2N + 1) sp(N) so(2N) e6 e7 e8 f4 g2

Ipr,f
N(N2−1)

6
N(N+1)(2N+1)

3
N(4N2−1)

3
N(N−1)(2N−1)

3 156 399 1240 156 28

Table 2. The embedding indices associated to the principal embeddings for all simple Lie alge-

bras [38].

Central charges. The central charges, aT and cT , and the flavor central charge kF of

an N = 2 SCFT T can be written in terms of the ’t Hooft anomaly coefficients of the

R-symmetries as follows [37]:

TrJ+ = TrJ3
+ = 0,

TrJ− = TrJ3
− = 48(aT − cT ),

TrJ2
+J− = 8(2aT − cT ),

TrJ+J
2
− = 0,

TrJ−T aT a = −kF
2
,

(2.15)

where Ta are the generators of the flavor symmetry F . After the N = 1 deformation, the

TrJ3
− anomaly coefficient shifted due to (2.9) as

TrJ3
− → TrJ3

− + 12TrJ−ρ(σ3)2, (2.16)

while all the other anomalies remain fixed. The second term of (2.16) can be computed

by remembering

TrJ−ρ(σ3)2 = IρTrJ−T aT a = −kF
2
Iρ, (2.17)

where the flavor index a is not summed and Iρ is the embedding index. When F = SU(N)

where the embedding is given by the partition N =
∑

k knk, the embedding index Iρ is

given as

Iρ =
1

6

ℓ
∑

k=1

k(k2 − 1)nk. (2.18)

For the principal embedding associated with the partition nN = 1, this gives Iρ = N(N2−1)
6 .

In the case of the other semi-classical group, the embedding index for the principal embed-

ding is given in table 2.

By adding the contribution of the remaining chiral multiplet Mj,−j,f one gets the

anomalies of the deformed theory. When ρ is given by the principal embedding into f, the

anomalies are given by

TrJ+ = TrJ3
+ = −r, TrJ− = 48(aT − cT ) +

r
∑

i=1

(2di − 1),

TrJ3
− = 48(aT − cT )− 6kF Iρ +

r
∑

i=1

(2di − 1)3,

TrJ2
+J− = 8(2aT − cT ) +

r
∑

i=1

(2di − 1), TrJ+J
2
− = −

r
∑

i=1

(2di − 1)2.

(2.19)
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For the F = SU(N) case, they are

TrJ+ = TrJ3
+ = −N + 1,

TrJ− = 48(aT − cT ) +N2 − 1,

TrJ3
− = 48(aT − cT )− kSU(N)N(N2 − 1) +N2(2N2 − 1)− 1,

TrJ2
+J− = 8(2aT − cT ) +N2 − 1,

TrJ+J
2
− = −N(4N2 − 1)

3
+ 1.

(2.20)

By assuming that there is no accidental global symmetry in the IR, the IR U(1)R
symmetry is a combination of two U(1)J± which is determined by using a-maximization [3].

Other U(1) global symmetries in T or those may come from the subgroup of F cannot be

mixed with R-symmetry. This is because TrR2F = 0 for any global symmetry F in an

N = 2 SCFT [39], and it also implies TrF = 0 so that the flavor symmetry F is “baryonic”.4

Baryonic symmetries cannot be mixed with the R-symmetry [3]. Therefore, we pick the

trial U(1)R symmetry as

R =
1 + ǫ

2
J+ +

1− ǫ

2
J− (2.21)

and compute the trial central charge a(ǫ) = 3
32(3TrR

3 − TrR). Maximizing a(ǫ) gives a

solution of ǫ. However there is a caveat here: one should check that all the dimensions of

the operators, which is given by ∆(Oi) =
3
2R(Oi), satisfy the unitarity bound. If it hits the

bound, the operator becomes free and U(1) symmetry under which only the free multiplet

is charged appears. One thus has to subtract the contribution of this operator from the

trial central charge and re-maximize, as in [19]. This process has to be repeated until all

the chiral operators satisfy the unitarity bound.

3 Generalized Argyres-Douglas theories

In this section we apply the general argument in the previous section to a family of SCFTs

of Argyres-Douglas type with an SU(N) flavor symmetry. After reviewing the SCFTs, we

consider the deformations of the so-called (A1, Dk) theory with an SU(2) flavor symmetry,

and the (IN,k, F ) theory with an SU(N) flavor symmetry. Interestingly, for all these cases

we will see the supersymmetry is enhanced to N = 2 in the IR.

3.1 N = 2 Argyres-Douglas theories

An N = 2 SCFT with Coulomb branch operators with fractional dimensions is called as

(a generalized) Argyres-Douglas theory. The simplest example is the H0 theory found

in [10, 15] which has the single dimension- 65 operator. In the following, we will review

the four classes of the Argyres-Douglas theories, collecting the results necessary for the

computation in the subsequent subsection.

4We would like to thank Ken Intriligator for instructing this to us.
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(A1, Ak) theory. This class of theories is obtained as the maximal conformal point

on the moduli space of N = 2 pure SU(k + 1) super Yang-Mills theory where mutually

non-local massless particles appear. We assume that k is greater than or equal to 2.

The central charges of the SCFT were given in [27]:

a =
n(24n+ 19)

24(2n+ 3)
, c =

n(6n+ 5)

6(2n+ 3)
(3.1)

for k = 2n, and

a =
12n2 + 19n+ 2

24(n+ 2)
, c =

3n2 + 5n+ 1

6(n+ 2)
(3.2)

for k = 2n+ 1.

From the fixed point, one can deform the theory by the Coulomb branch operator

Oi (which is the lowest component of a Er(0,0) multiplet). The scaling dimensions of the

operators are

∆(Oi) =
2(2n+ 3− i)

2n+ 3
, i = 2, 3, . . . , n+ 1 (3.3)

for k = 2n, and

∆(Oi) =
2n+ 4− i

n+ 2
, i = 2, 3, . . . , n+ 1 (3.4)

for k = 2n+ 1. Their R-charges are I3(Oi) = 0 and r = 2∆(Oi). They span the Coulomb

branch of the theory. In the latter case we have a mass parameter with dimension 1

associated to a U(1) global symmetry. (For k = 3 case it is enhanced to SU(2) [7].)

(A1, Dk) theory. This class of theories is obtained as the maximal conformal point on

the moduli space of N = 2 SU(k− 1) gauge theory with two fundamental hypermultiplets.

The dimensions of the Coulomb branch operators Oi are determined to be

∆(Oi) = 2− 2i

k
, i = 1, 2, . . . , [(k − 1)/2] (3.5)

where [. . .] is the integer part of . . .. This class of theories has the SU(2) flavor symmetry

whose conserved current multiplet has a moment map operator µ as a lowest component,

and a corresponding mass parameter of dimension 1. When k = 2n+2, the flavor symmetry

is SU(2)×U(1) as we can see that there is an additional dimension 1 coupling. Furthermore

when k = 4 this will enhance to SU(3) [7].

The central charges are given by [40]:

a =
n(8n+ 3)

8(2n+ 1)
, c =

n

2
, (3.6)

for k = 2n+ 1, and

a =
n

2
+

1

12
, c =

n

2
+

1

6
(3.7)

for k = 2n+ 2. The flavor central charge of the SU(2) symmetry is given by

kSU(2) =
4(k − 1)

k
. (3.8)
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(AN−1, Ak−1) theory. Let us now see the generalization of these two classes. The

generalization of the (A1, Ak) is the class (AN−1, Ak−1) [5].

There are a large variety of theories depending on k. For simplicity, we will focus here

on the special case where k = Nm +N + 1. In this case, the dimensions of the Coulomb

branch operators are

∆(Oi,j) =
Nj − (N − 1)i

Nm+ 2N + 1
, (3.9)

where i = 2, 3, . . . , N and j = m+ 2 + i, . . . , (m+ 2)i.

The central charges are computed in [41]

a =
(m+ 1)(N − 1)N(4(m+ 1)N2 + 4(m+ 3)N + 3)

48(N(m+ 2) + 1)
,

c =
(m+ 1)(N − 1)N(N2(m+ 1 +N(m+ 3) + 1))

12(N(m+ 2) + 1)
. (3.10)

See appendix A.1 for a detailed computation.

(IN,k, F ) theory. Then let us consider the so-called (IN,k, F ) theory. The scaling di-

mensions of the Coulomb branch operators Oi,j are given by

∆(Oi,j) =
ki−Nj

k +N
, (3.11)

where i = 2, 3, . . . , N and j ≥ −i such that the above dimension is greater than 1. For

simplicity we will consider the case where k = Nm+ 1. In this case the index j runs from

−i to im. This theory has a Higgs branch whose isometry is SU(N). The mass parameters

associated to it are Oi,−i with i = 2, . . . , N . There is no other flavor symmetry, and thus

this can be regarded as a natural generalization of the (A1, D2n+1) theory.

The central charges of the theory with k = Nm+ 1 are given by

a =

(

N2 − 1
)

(k +N − 1)(4k + 4N − 1)

48(k +N)
,

c =
1

12
(N + k − 1)(N2 − 1) , kSU(N) =

2N(N + k − 1)

N + k
. (3.12)

See appendix A.1 for the detail.

3.2 Deformation of (A1, D2n+1) theory

Let us apply the deformation discussed in section 2 to the (A1, D2n+1) theory. The nilpotent

vev specified by the partition of 2, thus the only nontrivial vev is given by n1 = 0, n2 = 1.

The remaining component of M is M1,−1 with charges (J+, J−) = (0, 4). By us-

ing (2.20), the total anomaly coefficients of the deformed theory are

TrJ3
+ = TrJ+ = −1 ,

TrJ− =
3

2n+ 1
, TrJ3

− =
27

2n+ 1
,

TrJ2
+J− =

8n2 + 8n+ 3

2n+ 1
, TrJ+J

2
− = −9 .

(3.13)
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By a-maximization, we obtain

ǫ =
−3n2 + 3n+ 12 +

√
36n4 + 156n3 + 241n2 + 136n+ 16

3 (3n2 + 10n+ 8)
. (3.14)

As we have discussed in the previous section, an N = 2 Coulomb branch multiplet can

be decomposed in terms of N = 1 multiplets as

Er(0,0) → B 1−ǫ
2

r(0,0) ⊕ B( 1−ǫ
2

r+2ǫ)(0,0) ⊕ B( 1−ǫ
2

r+ǫ)(0, 1
2
) ⊕ B( 1−ǫ

2
r+ǫ)(0,− 1

2
) . (3.15)

In the UV, before turning on the nilpotent deformation, ǫ = 1
3 and r = 2∆(Oi), for

the chiral multiplet containing Oi. Now, with (3.14), we see that the multiplet B 1−ǫ
2

r(0,0)

which includes the operator On violates the unitarity bound. Thus, this indicates that the

multiplet becomes free and decouple. On the other hand, the rest of the B short multiplets

inside E multiplets are above the unitarity bound, so they stay coupled.

Upon re-maximizing a, we obtain ǫ = 7+2n
9+6n . The Coulomb multiplets of the deformed

(A1, D2n+1) theory in the IR are:

E 4(2n+1−i)
2n+1

(0,0)
→ B 4(2n+1−i)

3(2n+3)
(0,0)

⊕B 2(6n+9−2i)
3(2n+3)

(0,0)
⊕B 10n+11−4i

3(2n+3)
(0, 1

2
)⊕B 10n+11−4i

3(2n+3)
(0,− 1

2
), (3.16)

for i = 1, 2, · · · , n− 1, and

E 4(n+1)
2n+1

(0,0)
→
(

B 4(n+1)
3(2n+3)

(0,0)

)

decoupled

⊕ B 2(4n+9)
3(2n+3)

(0,0)
⊕ B 6n+11

6n+9
(0, 1

2
) ⊕ B 6n+11

6n+9
(0,− 1

2
). (3.17)

Here the first B multiplet in the parenthesis is the one that is decoupled along the RG

flow and simply becomes the free chiral multiplet. We also have M1,−1 which is indeed the

short multiplet B 4(2n+1)
3(2n+3)

(0,0)
.

Now the central charges are

a =
n(24n+ 19)

24(2n+ 3)
, c =

n(6n+ 5)

6(2n+ 3)
. (3.18)

One may notice that these are exactly the central charges of the (A1, A2n) theory. Indeed

one could see this appearance of the N = 2 SCFT in the IR by comparing the chiral oper-

ators as follows. The (A1, A2n) theory has E-type short multiplets that can be decomposed

in terms of N = 1 short multiplets:

E 4(2n+3−j)
2n+3

(0,0)
→ B 4(2n+3−j)

3(2n+3)
(0,0)

⊕B 2(6n+9−2j)
3(2n+3)

(0,0)
⊕B 10n+15−4j

3(2n+3)
(0, 1

2
)⊕B 10n+15−4j

3(2n+3)
(0,− 1

2
), (3.19)

where j = 2, 3, · · · , n+1. By comparing with (3.16), one can see the matching of the chiral

operators in the E-type chiral multiplets via
(

OD2n+1

i

)

B1

→
(

OA2n
i+2

)

B1

(i = 1, · · · , n− 1)
(

OD2n+1

i

)

B2

→
(

OA2n
i

)

B2

(i = 2, · · · , n) (3.20)
(

OD2n+1

i

)

F3,4

→
(

OA2n
i+1

)

F3,4

(i = 1, · · · , n)
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where B1,2 and F3,4 refers to the top components in the first and the latter two N = 1

components in an E multiplet. We have one extra chiral multiplet M1,−1, which is exactly

the one corresponding to
(

OA2n
2

)

B1

.

We seem to have one missing and one superfluous B multiplet in this analysis to

completely match with the Coulomb branch multiplets in the (A1, A2n) theory. We need

(

OA2n
n+1

)

B2

= B 2(4n+7)
3(2n+3)

(0,0)
, (3.21)

and we have extra
(

OD2n+1

1

)

B2

= B 2(6n+7)
3(2n+3)

(0,0)
. (3.22)

It is not so obvious from our analysis here whether we get the needed (3.21), and

whether (3.22) survives in the IR or not. From the superconformal index we compute

in the section 5, we find that there is indeed the multiplet (3.21), and the superfluous

one (3.22) decouples.

Other than subtleties regarding the short multiplets (3.21), (3.22), we have a nice

match of N = 2 chiral multiplets along the RG flow. One noticeable feature is that N = 1

multiplets in each of E multiplets in the IR comes from distinct E multiplets in the UV.

This shows that our deformation preserves only N = 1 supersymmetry along the RG flow,

but it enhances to N = 2 in the IR.

3.3 Deformation of (A1, D2n+2) theory

Let us turn to the (A1, D2n+2) theory. The anomaly coefficients of the deformed (A1, D2n+2)

theory after the Higgsing are

TrJ+ = TrJ3
+ = −1,

TrJ− = −1, TrJ3
− =

−n+ 11

n+ 1
,

TrJ2
+J− = 4n+ 3, TrJ+J

2
− = −9.

(3.23)

The trial central charge is maximized at ǫ = n+4
3(n+2) , which gives a = 8n2+13n+2

16n+32 and

c = 4n2+7n+2
8n+16 .

The E-multiplets of the (A1, D2n+2) theory in the UV decomposes into N = 1 multi-

plets in the IR as

E 4(2n+2−i)
2n+2

(0,0)
→ B 2(2n+2−i)

3(n+2)
(0,0)

⊕ B 2(3n+6−i)
3(n+2)

(0,0)
⊕ B 5n+8−2i

3(n+2)
(0, 1

2
) ⊕ B 5n+8−2i

3(n+2)
(0,− 1

2
), (3.24)

where i = 1, 2, · · ·n. When i = n, the first B multiplet have R-charge 2
3 and becomes free.

Thus this operator decouples, leaving dimension one mass parameter. Upon subtracting

the contribution of the decoupled chiral multiplet, we get

a =
12n2 + 19n+ 2

24n+ 48
, c =

3n2 + 5n+ 1

6n+ 12
, (3.25)

which are exactly the same as those of the (A1, A2n+1) theory.
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The E-multiplets in the (A1, A2n+1) theory are given by

E 2(2n+3−j)
n+2

(0,0)
→ B 2(2n+3−j)

3(n+2)
(0,0)

⊕ B 2(3n+5−j)
3(n+2)

(0,0)
⊕ B 5n+8−2j

3(n+2)
(0, 1

2
) ⊕ B 5n+8−2j

3(n+2)
(0,− 1

2
), (3.26)

with j = 1, 2, · · · , n. We see that the above bosonic B-multiplets inside the E-multiplets

match upon i = j− 1 for the first, and i = j+1 for the second. The Fermionic ones match

with i = j. The first missing bosonic B-multiplets (j = 1) comes from the M1,−1 field with

the R-charge 4(n+1)
3(n+2) in the IR.

Therefore we have the matching of the spectrum of Coulomb branch operators except

for the superfluous one B 2(3n+5)
3(n+2)

(0,0)
and the missing one B 2(2n+5)

3(n+2)
(0,0)

. It is not clear to us

from here, how the superfluous operator decouple and the missing one appears along the

RG flow. From the superconformal index we compute in section 5, we see that B 2(3n+5)
3(n+2)

(0,0)

multiplet is removed along the flow and the B 2(2n+5)
3(n+2)

(0,0)
multiplet indeed appears.

3.4 Deformation of (IN,k, F ) theory

Now we turn to a case with an SU(N) flavor symmetry. As we review in section 3.1, we

focus here on the case with k = Nm + 1. Let us consider the deformation corresponding

to the principal embedding: the partition specified by nN = 1. Due to the Higgsing, the

remaining components of M are the ones Mj,−j with j = 1, . . . , N − 1 where the charges

are given by (J+, J−) = (0, 2j + 2). Thus from (2.20), the total anomalies are obtained as

TrJ+ = TrJ3
+ = −N + 1 ,

TrJ− =
N2 − 1

N + k
, TrJ3

− =
2N4 −N2 − 1

k +N
,

TrJ2
+J− =

(

N2 − 1
) (

2k2 + 4kN + 2N2 + 1
)

3(k +N)
,

TrJ+J
2
− =

1

3

(

−4N3 +N + 3
)

.

(3.27)

By performing a-maximization with the above anomaly coefficients we find the N − 1

Coulomb branch operators Oi,j , with (i, j) = (i, (i − 1)m − 1), hit the unitarity bound.

By subtracting these contributions as in the previous section, and a-maximizing again,

we obtain

ǫ =
Nm+ 4N + 1

3(Nm+ 2N + 1)
(3.28)

and the central charges

a =
(m+ 1)(N − 1)N(4(m+ 1)N2 + 4(m+ 3)N + 3)

48(N(m+ 2) + 1)
,

c =
(m+ 1)(N − 1)N(N2(m+ 1 +N(m+ 3) + 1))

12(N(m+ 2) + 1)
. (3.29)

The dimensions of the remaining operators are now given by

[ûi,j ] =
(Nm+ 1)i−Nj

N(m+ 2) + 1
(3.30)
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G H0 H1 H2 D4 E6 E7 E8

kG · 8
3 3 4 6 8 12

a 43
120

11
24

7
12

23
24

41
24

59
24

95
24

c 11
30

1
2

2
3

7
6

13
6

19
6

31
6

∆(u) 6
5

4
3

3
2 2 3 4 6

Table 3. The central charges and the dimensions of the Coulomb branch operators of the rank-one

SCFTs [20, 27, 45, 46].

where i = 2, 3, . . . , N and j = −i,−i + 1, . . . , (i − 1)m − 2. The operators (i, j) = (i,−i)
come from Mi−1,−(i−1).

We note that these dimensions and the central charges agree with (3.9) and (3.10) in

section 3.1. Thus we conclude that by the deforming the (IN,Nm+1, F ) theory corresponding

to the principal nilpotent element, one gets the (AN−1, ANm+N ) theory in the IR.

4 The rank-one SCFTs

In this section, we consider the N = 1 deformations of rank-one SCFTs with non-Abelian

flavor symmetries. By rank we mean the complex dimension of the Coulomb branch.

A classification of the N = 2 rank-one SCFTs has been performed in [21, 22] from the

perspective of the Coulomb branch geometry, which is restricted to be the singularities

of Kodaira type. The possible (relevant) deformations from these geometries classify the

N = 2 rank-one theories.

The first series of the theories which we will discuss in subsection 4.1 is specified by the

“maximal” deformations of the Kodaira singularities. This leads to the SCFTs which we

call as H0,1,2, D4, and E6,7,8. These were found originally in [9–12, 15]. We will see that for

all of these theories, the N = 1 deformations associated to the principal embedding lead

to the H0 theory in the IR with some decoupled chiral multiplets. In subsection 4.2, we

deal with some of the other SCFTs associated to the other deformations of the Coulomb

branch geometry.

4.1 Flows to H0 N = 2 SCFT

Let us consider rank-one SCFTs H0, H1, H2, D4, E6, E7, E8, where the H0, H1, H2 theo-

ries are the same as (A1, A2), (A1, A3) = (A1, D3) and (A1, D4) Argyres-Douglas theories

respectively. We summarize the central charges and dimensions of the Coulomb branch

operators in the table 3. They also have a simple realization as world-volume theories on

a D3-brane in F-theory singularities [42–44].

We have already found that the N = 1 principal deformation of the H1 theory (which

is (A1, D3)) leads to the H0 theory in section 3. We examine the remaining cases in

this subsection.

H2 theory. We considered the deformation of H2 = (A1, D4) theory in section 3.3. There

we only considered a deformation breaking the SU(2) (⊂ SU(3)) flavor symmetry leaving
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U(1) symmetry. We have observed that in this case the U(1) symmetry is actually enhanced

to SU(2) symmetry. Here, let us consider breaking the entire SU(3) flavor symmetry.

Under the principal embedding, the adjoint representation of SU(3) decomposes into

8 → V1 ⊕ V2, where Vj is the spin-j irreducible representation of SU(2). We are now left

withMj,−j with j = 1, 2 with (J+, J−) = (0, 4), (0, 6). The anomalies after the deformation

are given by

TrJ+ = TrJ3
+ = −2,

TrJ− = 4, TrJ3
− = 76, (4.1)

TrJ2
+J− = 12, TrJ+J

2
− = −34.

From here, we obtain the trial a-function as a(ǫ) = 3
32

(

81ǫ3 − 108ǫ2 + 33ǫ− 2
)

, which

upon a-maximization, we get ǫ = 1
9

(√
5 + 4

)

≃ 0.692896. This makes the M1,−1 and

the Coulomb branch operator (having (J+, J−) = (0, 3)) to violate the unitarity bound.

Therefore they have to be decoupled. After decoupling, the anomalies are

TrJ+ = TrJ3
+ = −2,

TrJ− = −1, TrJ3
− = 41, (4.2)

TrJ2
+J− = 7, TrJ+J

2
− = −21,

which gives the trial a-function to be a(ǫ) = − 3
256

(

375ǫ3 − 495ǫ2 + 121ǫ− 1
)

. Now, we

obtain ǫ = 11
15 , from which the central charges are calculated as

a =
43

120
, c =

11

30
. (4.3)

These are exactly the same values as those of the H0 (or (A1, A2)) theory. We also find

that the operator M2,−2 has the conformal dimension ∆ = 6
5 , which is the same as that of

the Coulomb branch operator of the H0 theory. Therefore we have found an RG flow that

takes the H2 theory (with chiral multiplets) to H0 (with some free chiral multiplets).

D4 theory. Let us consider the D4 theory, which is the N = 2 SCFT realized by SU(2)

theory with 4 fundamental hypermultiplets. We couple 28 chiral multiplet M with the

SO(8) moment map operator µ via W = TrMµ. We give a nilpotent vev corresponding to

the principal embedding of SU(2) into SO(8). Under the principal embedding, the adjoint

representation of SO(8) decomposes into

28 → V1 ⊕ V3 ⊕ V5 ⊕ V3. (4.4)

Upon giving the vev to M , we are left with Mj,−j with j = 1, 3, 5, 3 with (J+, J−) =

(0, 2 + 2j).

The anomalies after the deformation are given by

TrJ+ = TrJ3
+ = −4,

TrJ− = 18, TrJ3
− = 1362, (4.5)

TrJ2
+J− = 34, TrJ+J

2
− = −228,
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SU(2) SO(8) (J+, J−)

q � � (1, 0)

φ adj 1 (0, 2)

M 1 adj (0, 2)

Table 4. Charges of the fields of the SU(2) gauge

theory with eight half-hypermultiplets.

SU(2) (J+, J−)

q � (1, 0)

q′ � (1, -6)

φ adj (0, 2)

M1 1 (0, 4)

M3 1 (0, 8)

M5 1 (0, 12)

M ′
3 1 (0, 8)

Table 5. Charges of the fields after the Higgsing

due to the nilpotent vev.

from which we get the trial a-function as a(ǫ) = − 3
32

(

807ǫ3 − 1746ǫ2 + 1231ǫ− 284
)

. Upon

a-maximization, we get ǫ = 1
807

(

582 +
√
7585

)

≃ 0.82911. This makes the Coulomb branch

operator (that has (J+, J−) = (0, 4)) andM1,−1 to violate the unitarity bound so that they

become free along the RG flow and get decoupled.

The computation after was reported in [16]: we redo the a-maximization twice due to

the unitarity violating operators, and the resulting central charges are the same as those

of the H0 theory (4.3). We also find that the operator M5,−5 has the conformal dimension

∆ = 6
5 . Therefore we have found an RG flow that takes the D4 theory to H0 (with some

free chiral multiplets).

Lagrangian after the nilpotent Higgsing. Since the D4 theory has a Lagrangian

description, we can write down the matter content after integrating out massive modes

from the Higgsing. The procedure is essentially the same as the one considered in [30, 31].

Before the Higgsing, the matter content is simply given by that of N = 2 SU(2) gauge

theory with eight fundamental half-hypermultiplets q and a chiral multipletM transforming

in the adjoint representation of the flavor group SO(8). The charges of the superfields are

given in table 4. The superpotential is simply given by

W = Trφµ̃+TrMµ, (4.6)

with µij = ǫαβqiαq
j
β and µ̃αβ = δijq

i
αq

j
β where α, β are gauge indices and i, j are the flavor

indices, and φ is the adjoint chiral superfield in the N = 2 vector multiplet.

After the Higgsing, the (J+, J−) charges are shifted according to (2.9). As above we

are left with 4 components Mj,−j with j = 1, 3, 5, 3. In order to see the remaining quarks,

note that the fundamental representation of SO(8) decomposes 8 → 7⊕ 1 = V3 ⊕ V0 under

the principal embedding. Therefore, we are left with 2 doublets of SU(2), with charges

(1, 0) and (1,−6). To summarize, we get the matter content in table 5. The superpotential

is given by

W = φqq +
∑

j=1,3,5,3′

µjMj,−j , (4.7)
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where j = 3′ means µ′3 and M ′
3,−3. The µj operators are given by appropriate combination

of q, q′ and φ to have the appropriate charges (2,−2j). It leaves us with the unique choice

µ1 = φqq′, µ3 = qq′, µ5 = φq′q′, µ′3 = φ3q′q′ , (4.8)

where we omitted the indices. This gauge theory preserves U(1)F×U(1)R global symmetry,

which gets enhanced to SU(2)R × U(1)r in the IR. This is the N = 1 Lagrangian gauge

theory flows to the “non-Lagrangian” Argyres-Douglas theory H0. This result has been

reported in [16], where we computed the full superconformal index of the H0 theory using

this “Lagrangian” description.

E6 theory. Let us consider the deformation of the E6 SCFT. Let us add 78 chiral

multiplets M to couple with the moment map operator of the E6 flavor symmetry via

W = TrMµ. Under the principal embedding, the adjoint representation of E6 decomposes

into the SU(2) representation as

78 → V1 ⊕ V4 ⊕ V5 ⊕ V7 ⊕ V8 ⊕ V11. (4.9)

We give the vev toM according to this embedding, which leaves all the E6 symmetry to be

broken, and six componentsMj,−j with j = 1, 4, 5, 7, 8, 11 which have (J+, J−) = (0, 2+2j).

By recalling that the embedding index for the principal embedding is IE6 = 156 (see

the table 2), the anomaly coefficients are given by

TrJ+ = TrJ3
+ = −6,

TrJ− = 56, TrJ3
− = 16904, (4.10)

TrJ2
+J− = 88, TrJ+J

2
− = −1254.

This leads to the trial function a(ǫ) = − 3
32

(

7851ǫ3 − 20322ǫ2 + 17483ǫ− 5000
)

, which

upon a-maximization gives ǫ = 6774+
√
134065

7851 ≃ 0.909457. This makes Mj,−j with j = 1, 4, 5

and the Coulomb branch operator to have R-charges below the unitarity bound.

Let us decouple these unitarity violating operators. Then we get the ’t Hooft anomaly

coefficients

TrJ+ = TrJ3
+ = −2,

TrJ− = 28, TrJ3
− = 14692, (4.11)

TrJ2
+J− = 60, TrJ+J

2
− = −1018.

from which we obtain the a-function to be a(ǫ) = − 3
32

(

6723ǫ3 − 17604ǫ2 + 15303ǫ− 4418
)

.

From a-maximization, we get ǫ = 1
747

(

652 +
√
1721

)

≃ 0.92836. This makes Mj,−j with

j = 7, 8 to violate the unitarity bound.

Decoupling these operators as well, finally we get

TrJ+ = TrJ3
+ = 0,

TrJ− = −4, TrJ3
− = 6404, (4.12)

TrJ2
+J− = 28, TrJ+J

2
− = −504.
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and a(ǫ) = −3
8

(

750ǫ3 − 1935ǫ2 + 1652ǫ− 467
)

. Upon a-maximization, we get ǫ = 14
15 . This

gives us the central charges of the H0 theory (once we throw away 6 decoupled free chiral

multiplets). Note that the conformal dimension of the M11,−11 operator is ∆ = 6
5 , which

is the same as that of the Coulomb branch operator of the H0 theory.

There is an N = 1 gauge theory flows to this N = 2 E6 SCFT in the infrared [47],

which provides a physical interpretation of the computation of the superconformal index

done in [48]. Combined with our result in this section, we have an alternative UV or a

“dual” description of the H0 theory with different matter content and gauge group.

E7 theory. Let us consider the N = 2 SCFT with the E7 global symmetry. Under the

principal embedding, the adjoint of the E7 decomposes into

133 → V1 ⊕ V5 ⊕ V7 ⊕ V9 ⊕ V11 ⊕ V13 ⊕ V17 . (4.13)

From here, we obtain the anomaly coefficients after Higgsing to be

TrJ+ = TrJ3
+ = −7,

TrJ− = 99, TrJ3
− = 67131, (4.14)

TrJ2
+J− = 147, TrJ+J

2
− = −3199.

The repeated a-maximization as the E6 case makes Mj,−j with j = 1, 5, 7, 9, 11, 13 and the

Coulomb branch operator (having (J+, J−) = (0, 8)) to violate the unitarity bound. After

all, we obtain the same central charges as those of the H0 theory. The M13,−13 has the

scaling dimension 6
5 . Therefore we obtain H0 theory at the end of the RG flow.

E8 theory. Let us consider the N = 2 SCFT with E8 the global symmetry. The adjoint

representation of E8 decomposes under the principal embedding as

248 → V1 ⊕ V7 ⊕ V11 ⊕ V13 ⊕ V17 ⊕ V19 ⊕ V23 ⊕ V29 . (4.15)

The anomalies after Higgsing are given by

TrJ+ = TrJ3
+ = −8,

TrJ− = 190, TrJ3
− = 357310, (4.16)

TrJ2
+J− = 270, TrJ+J

2
− = −9928.

We repeat the same procedure as before multiple times to find that the only Mj,−j operator

that remains coupled is the one with j = 29. Then this again leads to the central charges

a = 43
120 and c = 11

30 and ∆(M29,−29) =
6
5 . Therefore we end up with the H0 theory as the

previous examples.

4.2 Other rank-one SCFTs

Let us consider other rank-one SCFTs with non-Abelian flavor symmetries found in [20–

24]. We consider here some of the SCFTs obtained by non-maximal deformation of the

Coulomb branch geometry of Kodaira type IV ∗, III∗ and II∗, and N = 4 SU(2) super
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Yang-Mills theory, which are listed in the table 1 in [24]. While these are specified by

the type of geometries, we refer to these in terms of their flavor symmetries. From the

IV ∗ geometry we have an SCFT with Sp(2) × U(1) flavor symmetry while the maximal

deformation gives the E6 theory. There are SCFTs with SU(2) × U(1) and Sp(3)× SU(2)

flavor symmetries from the III∗ type, and the ones with SU(3), SU(4) and Sp(5) from the

II∗ type.

We will consider these theories in order and find that they in general flow to N = 1

SCFTs. For the Sp(2) × U(1) and SU(3) theories we get rational central charges. We are

not sure whether there is the enhancement of the supersymmetry in these cases, as we

could not figure out these from the known central charges of the N = 2 SCFTs.

N = 4 SU(2) super Yang-Mills theory. The N = 4 super Yang-Mills theory is

regarded as the N = 2 gauge theory with the hypermultiplet transforming in the adjoint

representation of the gauge group. When the gauge group is SU(2) this is rank-one SCFT,

with Coulomb branch operator of dimension 2. Also in this case the flavor symmetry is

SU(2), thus we can perform our N = 1 deformation. The central charges are easy to

obtain as

a = c =
3

4
, kSU(2) = 4. (4.17)

Let us consider the N = 1 deformation associated with the principal embedding of

SU(2) flavor symmetry. After the deformation, the remaining component of M is only

M1,−1 with charges (J+, J−) = (0, 4). The ’t Hooft anomaly coefficients

TrJ+ = TrJ3
+ = −1,

TrJ− = 3, TrJ3
− = 9, (4.18)

TrJ2
+J− = 9, TrJ+J

2
− = −9.

The a-maximization gives ǫ = 3+
√
97

24 , and there is no operator which violates the unitarity

bound. The IR theory is an N = 1 SCFT with irrational central charges a ≃ 0.6362 and

c ≃ 0.6406. Both u and M1,−1 have the same dimension ∆(u) = ∆(M1,−1) ≃ 1.3939.

Sp(2) × U(1) theory. The central charges are

a =
17

12
, c =

19

12
, kSp(2) = 4. (4.19)

The Coulomb branch operator has dimension 3.

In this case the N = 1 deformation leaves us Mj,−j with charge (0, 2 + 2j) where

j = 2, 4. The ’t Hooft anomaly coefficients are given by

TrJ+ = TrJ3
+ = −2,

TrJ− = 2, TrJ3
− = 122, (4.20)

TrJ2
+J− = 20, TrJ+J

2
− = −58.

The a-maximization gives ǫ = 237+2
√
5137

537 , which means that M2,−2 violates the unitarity

bound. After subtracting this contribution and a-maximizing again, we obtain ǫ = 5
7 and
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the central charges

a =
87

112
, c =

47

56
. (4.21)

The scaling dimensions of the chiral operators are ∆(M4,−4) =
12
7 and ∆(u) = 9

7 . While it

has rational central charges, we are not aware of whether the SCFT has N = 2 supersym-

metry or not.

SU(2) × U(1) theory. The central charges are

a =
15

8
, c = 2, kSU(2) = 10. (4.22)

The Coulomb branch operator u has dimension 4.

After the deformation we have M1,−1 with charge (0, 4). The ’t Hooft anomaly coeffi-

cients

TrJ+ = TrJ3
+ = −1,

TrJ− = −3, TrJ3
− = −39, (4.23)

TrJ2
+J− = 17, TrJ+J

2
− = −9.

The a-maximization gives ǫ = −18+
√
679

15 . There is no unitarity violating operators. The

central charges are a ≃ 0.7845 and c ≃ 1.0658. The dimensions of the chiral operators are

∆(M1,−1) ≃ 1.3885, ∆(u) ≃ 2.7770.

Sp(3) × SU(2) theory. The central charges of the Sp(3) × SU(2) theory are given by

a =
25

12
, c =

29

12
, kSp(3) = 5, kSU(2) = 8 (4.24)

The Coulomb branch operator has dimension 4.

We first consider the deformation associated to the principal embedding of the Sp(3)

part. In this case we have Mj,−j with charge (0, 2 + 2j) where j = 2, 4, 6. The ’t Hooft

anomaly coefficients are

TrJ+ = TrJ3
+ = −3,

TrJ− = 5, TrJ3
− = 635, (4.25)

TrJ2
+J− = 35, TrJ+J

2
− = −179.

The a-maximization gives ǫ = 291+
√
9001

480 , which means that M2,−2 violates the unitarity

bound. After subtracting and redoing the a-maximization, we obtain an N = 1 SCFT

with a ≃ 0.8110 and c ≃ 0.9125. The scaling dimensions are ∆(u) = ∆(M4,−4) ≃ 1.1247

and ∆(M6,−6) ≃ 1.6870.

Then let us consider the principal deformation of Sp(3) × SU(2). In addition to the

above M , we have M ′
1,−1 with (J+, J−) = (0, 4). The ’t Hooft anomaly coefficients are

TrJ+ = TrJ3
+ = −4,

TrJ− = 8, TrJ3
− = 614, (4.26)

TrJ2
+J− = 38, TrJ+J

2
− = −188.
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The a-maximization gives ǫ = 95+
√
1195

162 , which means that M2,−2 and M ′
2,−2 violate the

unitarity bound. By a-maximizing again, we obtain an N = 1 SCFT with a ≃ 0.8002

and c ≃ 0.9021. The scaling dimensions are ∆(u) = ∆(M4,−4) ≃ 1.1048 and ∆(M6,−6) ≃
1.6572.

SU(3) theory. The central charges are given by

a =
71

24
, c =

19

6
, kSU(3) = 14. (4.27)

The Coulomb branch operator has dimension 6. We have Mj,−j with charge (0, 2 + 2j)

where j = 1, 2. The ’t Hooft anomaly coefficients are

TrJ+ = TrJ3
+ = −2,

TrJ− = −2, TrJ3
− = −194, (4.28)

TrJ2
+J− = 30, TrJ+J

2
− = −34.

The a-maximization gives ǫ = 2
3 , which implies that the dimension of M1,−1 is 1. Therefore

this operator simply is free and decouple. By subtracting this contribution, we obtain

a =
89

48
, c =

47

24
. (4.29)

This theory has two chiral operators with dimensions 3
2 and 3. We are not aware of whether

this is an N = 2 SCFT or not.

SU(4) theory. The central charges of this theory are given by

a =
25

8
, c =

7

2
, kSU(4) = 14. (4.30)

The Coulomb branch operator has dimension 6. We have Mj,−j with charge (0, 2 + 2j)

where j = 1, 2, 3. The ’t Hooft anomaly coefficients

TrJ+ = TrJ3
+ = −3,

TrJ− = −3, TrJ3
− = −363, (4.31)

TrJ2
+J− = 37, TrJ+J

2
− = −83.

The a-maximization gives ǫ = 3
4 , which implies theM1,−1 operator decouples along the flow.

By subtracting this and doing the a-maximization again we obtain the irrational central

charges a ≃ 1.5356 and c ≃ 1.6912. These are three chiral operators with dimensions

∆(M2,−2) ≃ 1.1086, ∆(M3,−3) ≃ 1.4781 and ∆(u) ≃ 2.2171.

Sp(5) theory. The central charges are

a =
41

12
, c =

49

12
, kSp(5) = 7. (4.32)
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The Coulomb branch operator has dimension 6. We have Mj,−j with charge (0, 2 + 2j)

where j = 2, 4, . . . , 10. The ’t Hooft anomaly coefficients

TrJ+ = TrJ3
+ = −5,

TrJ− = 23, TrJ3
− = 4973, (4.33)

TrJ2
+J− = 77, TrJ+J

2
− = −765.

The a-maximization gives ǫ = 2121+
√
147259

2814 . The Coulomb branch operator and Mj,−j with

j = 2, 4, 6 are unitarity violating. After subtracting these contributions and a-maximizing

again, we obtain an N = 1 SCFT with a ≃ 0.7399 and c ≃ 0.8274. The scaling dimensions

of the remaining Mj,−j are ∆(M8,−8) ≃ 1.1990 and ∆(M10,−10) ≃ 1.4988 respectively.

5 From conformal SQCD to Argyres-Douglas theory

5.1 SU(N) with 2N flavors to (A1, A2N−1) theory

In this section we consider the case where T is N = 2 SU(N) gauge theory with 2N

fundamental hypermultiplets. This theory has SU(2N) × U(1) flavor symmetry. The

central charges are

a =
7N2 − 5

24
, c =

2N2 − 1

6
, kSU(N) = 2N. (5.1)

Upon coupling the SU(N) adjoint chiral multiplet M , and Higgsing via nilpotent vev, the

remaining components of M are Mj , where j = 1, . . . , 2N − 1 with charge (J+, J−) =

(0, 2 + 2j). Thus the anomalies are calculated as

TrJ3
+ = TrJ+ = 1− 2N,

TrJ− = 2N2 − 3, TrJ3
− = 16N4 − 2N2 − 3,

TrJ2
+J− = 6N2 − 3, TrJ+J

2
− =

−32N3 + 2N + 3

3
.

(5.2)

By maximizing the trial central charge, we see various operators violate the unitarity

bounds: all the Coulomb branch operators Trφi (i = 2, 3, . . . , N) and the Mj with j =

1, 2, . . . , N − 1. As above these will decouple. After subtracting the contribution of these

fields, we re-do the a-maximization. The result is ǫ = 3N+1
3N+3 . The field MN has dimension

1, thus decouples, and Mj with j = N + 1, . . . , 2N − 1 has dimensions

∆(Mj) =
j + 1

N + 1
(5.3)

This is exactly the operator spectrum of the (A1, A2N−1) theory which we review in sec-

tion 3.1. Indeed the central charges are calculated, after subtracting the contribution of

MN , as

a =
12N2 − 5N − 5

24(N + 1)
, c =

3N2 −N − 1

6(N + 1)
(5.4)

Note that the unbroken U(1)B symmetry of T is precisely the U(1) of the (A1, A2N−1)

theory. Note also that when N = 2, the (A1, A2N−1) theory has the enhanced SU(2) flavor

symmetry. Thus we expect in this case that the global symmetry is also enhanced in the IR.
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fields SU(N) U(1)B (J+, J−)

q � 1 (1,−2N + 1)

q̃ �̄ −1 (1,−2N + 1)

φ adj 0 (0, 2)

Mj , (j = 1, 2, . . . , 2N − 1) 1 0 (0, 2j + 2)

Table 6. Matter content of the “Lagrangian description” for the (A1, A2N−1) theory.

Lagrangian for the (A1, A2N−1) theory. Before the deformation, we have 2N

quarks/anti-quarks in the fundamental/anti-fundamental representation of the gauge group

that has charge (1, 0). The adjoint chiral multiplet in the N = 2 vector has charge (0, 2).

Then we add the chiral multiplet M transform under the adjoint of SU(2N), which has

the charge (0, 2), with the coupling W = TrMµ.

We can easily get an N = 1 theory after giving the nilpotent vev to M . The remaining

components of the quarks and M fields are given by the “Fan” associated to the partition

2N → 2N considered in [30]. In the end, we obtain SU(N) gauge theory with one adjoint

chiral multiplet φ with charge (0, 2), a pair of fundamental and anti-fundamantal chiral

multiplets q, q̃ with (1,−2N + 1), and gauge-singlet chiral multiplets Mj with charge

(0, 2 + 2j) with j = 1, 2, . . . , 2N − 1. (See the table 6.) The superpotential is given by

W =

2N−1
∑

j=1

Mj(φ
2N−1−jqq̃) , (5.5)

where µj = φ2N−1−jqq̃ are the remaining components of the moment map µ of SU(2N)

after nilpotent Higgsing.

5.2 Sp(N) with 2N + 2 flavors to (A1, A2N) theory

Let us consider the case where T is N = 2 Sp(N) gauge theory with 2N + 2 fundamental

hypermultiplets (4N+4 fundamental half-hypermultiplets). This theory has the SO(4N+4)

flavor symmetry. The central charges are

a =
1

24
N(14N + 9), c =

1

6
N(4N + 3), kSO(4N+4) = 4N. (5.6)

We now couple a chiral multipletM transforming in the adjoint representation of SO(4N+

4) and give the principal nilpotent vev to M . This will break the SO(4N + 4) fla-

vor symmetry completely, and the remaining components of M would be Mj with j =

1, 3, . . . , 4N + 1; 2N + 1 having charges (J+, J−) = (0, 2j + 2). (Note that there are two

M ’s with j = 2N + 1.) Now, the anomalies are given as

TrJ+ = TrJ3
+ = −2(N+1),

TrJ− = 4N2+8N+6, TrJ3
− = 128N4+416N3+500N2+264N+54,

TrJ2
+J− = 2

(

6N2+8N+3
)

, TrJ+J
2
− = −2

3

(

64N3+144N2+107N+27
)

.

(5.7)
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Given these anomalies we perform a-maximization. We find various operators get decoupled

along the RG flow. The decoupled operators are all the Coulomb branch operators Trφ2i

with i = 1, 2, . . . , N andMj with j = 1, 3, . . . , 2N +1 (there are two Mj ’s with j = 2N +1)

so we are left with N singlet Mj with j = 2N +3, 2N +5, . . . , 4N +1. Upon removing the

decoupled operators, the anomalies are

TrJ+ = TrJ3
+ = 0,

TrJ− = −2N, TrJ3
− = 2N(27 + 108N + 128N2 + 48N3),

TrJ2
+J− = 2N(3 + 4N), TrJ+J

2
− = −8N(3 + 7N + 4N2).

(5.8)

Maximizing the trial a-function, we obtain

ǫ =
7 + 6N

9 + 6N
, (5.9)

and the central charges

a =
N(24N + 19)

24(2N + 3)
, c =

N(6N + 5)

6(2N + 3)
. (5.10)

The central charges are exactly the same as those of the (A1, A2N ) theory. The dimensions

of the operators Mj are given by

∆(Mj) =
j + 1

2N + 3
(j = 2N + 3, 2N + 5, . . . , 4N + 1) , (5.11)

which are the same as those of (3.3). When N = 1, this is the same flow we considered in

section 4.1.

Lagrangian for the (A1, A2N) theory. One can write down the matter content of

the deformed Sp(N) SQCD theory that flows to (A1, A2N ) theory. In order to see the

remaining quarks after nilpotent Higgsing, we note that the fundamental of SO(4N + 4)

decomposes into

4N + 4 → V2N+1 ⊕ V0, (5.12)

under the principal embedding. Therefore we have two fundamental quarks q, q′ having
charges (1, 0) and (1,−2N + 1) from (2.9). We have the chiral multiplet φ in the adjoint

of Sp(N) and singlet fields Mj with j = 1, 3, . . . , 4N + 4 and M ′
2N+1. The matter content

of the theory is given as in table 7. The superpotential is given by

W = φqq +

2N+1
∑

i=1

M2i−1

(

φ4N+3−2iq′q′
)

+M ′
2N+1qq

′ . (5.13)

The terms φ4N+3−2iq′q′ and qq′ are the components of the moment map µ of SO(4N + 4)

that survive upon Higgsing.
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fields Sp(N) (J+, J−) (R0,F)

q � (1, 0) (12 ,
1
2)

q′ � (1,−4N − 2) (12(−4N − 1), 12(4N + 3))

φ adj (0, 2) (1,−1)

Mj , (j = 1, 3, . . . , 4N + 1) 1 (0, 2j + 2) (j + 1,−j − 1)

M ′
2N+1 1 (0, 4N + 4) (2N + 2,−2N − 2)

Table 7. Matter content of the “Lagrangian description” for the (A1, A2N ) theory.

5.3 The full superconformal index of (A1, AN) Argyres-Douglas theory

Recently, the superconformal index in various limits for the Argyres-Douglas theory has

been computed [49–54]. Here, we compute the full superconformal index of the Argyres-

Douglas theory using the gauge theory description we obtained.5

Generalities. The superconformal index [17, 18] for the N = 1 theory is defined as

IN=1(p, q, t;a) = Tr(−1)F pj1+j2+
R
2 qj2−j1+

R
2 ξF

∏

i

ai
Fi , (5.14)

where (j1, j2) are the Cartans of the Lorentz group SU(2)1 × SU(2)2, and R is the U(1)R
charge, F is the global U(1)F charge and Fi are the Cartans for the global symmetries.

Here, R can be any candidate R-charge, which we pick to be R0 = 1
2(J+ + J−). Upon

finding the superconformal R charge via a-maximization, we rescale ξ → (pq)
ǫ
2 ξ to obtain

the proper index.

The superconformal index for a gauge theory can be computed by multiplying con-

tributions from the matter contents and then by integrating over the gauge group. For a

chiral multiplet of R-charge r, and F-charge f , the index is given by

I(r,f)
chiral(p, q, ξ;a) =

∏

wi∈R
Γ((pq)

r
2 ξfawi) , (5.15)

where R denotes the set of weights in the representation of the flavor symmetry where the

chiral multiplet is in. The elliptic gamma function is defined as

Γ(z) ≡ Γ(z; p, q) =
∞
∏

m,n=0

1− z−1pm+1qn+1

1− zpmqn
. (5.16)

We also use the standard abbreviated notation zw ≡ ∏

i z
wi

i , and f(z±) ≡ f(z+)f(z−).
The vector multiplet contributes to the index by

Ivec(p, q) = κr
∏

α∈∆G

1

Γ(zα)
, (5.17)

5The index computation does not depend on the energy scale of the theory as is well-known, and one can

perform the localization at any scale if it is possible. The Lagrangian model we give is not UV complete,

but is a theory below the scale specified by a vev which we gave. Thus it is possible to use this Lagrangian

to compute the partition function.
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where ∆G is the set of all roots of G and κ = (p; p)(q; q). Here (z; q) =
∏∞

m=0(1− zqm) is

the q-Pochhammer symbol.

The N = 2 index is defined as

IN=2(p, q, t) = Tr(−1)F pj1+j2+
r
2 qj2−j1+

r
2 tR− r

2 , (5.18)

where R, r denote the Cartans for the SU(2)R×U(1)r.
6 The index gets contributions from

the states satisfying ∆ ≡ E − 2j2 − 2R − r/2 = 0 where E is the scaling dimension. The

fugacities satisfy

|p| < 1, |q| < 1, |t| < 1, |pq
t
| < 1 . (5.19)

One can map N = 1 fugacities to N = 2 fugacities by mapping ξ → (t(pq)−
2
3 )β where β

depends on the normalization of the U(1)F charge inside SU(2)R ×U(1)r.

Sometimes, it is useful to use the following reparametrization p = t3y, q = t3/y, t = t4/v

to write

IN=2(t, y, v) = Tr(−1)F t2(E+j2)y2j1v−R+ r
2 , (5.20)

with |t| < 1. This expression makes it easier to expand the index in terms of t.

(A1, A2N−1) theory. Using the N = 1 gauge theory description for the (A1, A2N−1)

theory we discussed in this section, it is possible to compute the supersymmetric indices.

Here, we compute the full superconformal index and compare against the partial results.

As we have analyzed, many of the gauge invariant operators of this theory hit the

unitarity bound and get decoupled. The decoupled operators are Trφi with i = 2, 3, . . . , N

and Mj with j = 1, . . . , N . Among the Mj operators, N − 1 of them with j = N +

1, . . . , 2N−1 survives and become the Coulomb branch operators at the end of the RG flow.

Hence, we have the following integral for the index

I(A1,A2N−1)
N=1 =

∏2N−1
j=N+1 Γ

(

(pq)
j+1
2 ξ−(j+1)

)

∏N
i=2 Γ

(

(pq)
i
2 ξ−i

)

κN−1

N !
Γ
(

(pq)
1
2 ξ−1

)N−1

×
∮

[dz]
∏

a∈∆

Γ(zα(pq)
1
2 ξ−1)

Γ(zα)

∏

w∈R
Γ
(

(zwa)±(pq)
1−N

2 ξN
)

, (5.21)

where [dz] =
∏N−1

i=1
dzi
2πizi

, ∆ is the set of all roots of SU(N) and R is the set of weights

of the fundamental representation of SU(N). The integration contour is given by the unit

circle |zi| = 1. The numerator in the first line comes from theMj fields that remain coupled

in the IR. The denominator comes from the decoupled Trφi operators. The second line

comes from the gauge fields and matter fields φ, q, q̃.

The fugacity ξ has to be redefined by ξ → ξ′(pq)
ǫ
2 since RIR = R0 + ǫF . Fur-

thermore, we map to the N = 2 fugacities by taking ξ′ → (t(pq)−
2
3 )

1
N+1 . So we take

6Our r charge is defined in such a way that the Coulomb branch operators have 2∆ = r.
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ξ → (pq)
N−1
2N+2 t

1
N+1 . Upon this reparametrization, we obtain the following integral

I(A1,A2N−1)
N=2 =

N−1
∏

i=1

Γ
(

(pqt )
2N+1−i

N+1

)

Γ
(

(pqt )
i+1
N+1

)

κN−1

N !
Γ

(

(pq

t

)
1

N+1

)N−1

×
∮

[dz]
∏

i 6=j

Γ
(

zi
zj

(pq
t

)
1

N+1

)

Γ
(

zi
zj

)

N
∏

i=1

Γ

(

(zia)
±
(pq

t

)
1−N
2N+2

t
1
2

)

. (5.22)

The integral is over the unit circles, but one has to be careful about the modulus of the

integrand. It is most straight-forward to evaluate after reparametrizing the fugacities to

p = t3y, q = t3/y, t = t4/v and then expand the integrand in t. We claim this expression

gives the full superconformal index of the (A1, A2N−1) theory. In the following, we perform

a number of checks against other results in the simplification limits.

The Coulomb branch limit of the index [55] is obtained by taking p, q, t → 0 while
pq
t = u fixed. This gives us the integral

IC(u) =
(

N−1
∏

i=1

1

1− u
2N+1−i

N+1

)

×





N−1
∏

i=1

1− u
i+1
N+1

1− u
1

N+1

1

N !

∮

[dz]
∏

i 6=j

1− zi/zj

1− u
1

N+1 zi/zj



 , (5.23)

where the expression inside the bracket becomes 1 upon evaluating the integral. We do

not have an analytic proof of this, but we have checked for a number of cases. This indeed

agrees with the general expectation that the Coulomb branch is freely generated so that

the Coulomb branch index (or the Hilbert series on the Coulomb branch) should be simply

given by

IC(u) =
∏

i

1

1− u∆(Oi)
, (5.24)

where the product is over the Coulomb branch operators Oi. See also [56].

When N = 2, for example, we obtain the following index

I(A1,A3) = 1 + t8/3v4/3 − t11/3v1/3χ2(y) + t4v−1χ3(a) + t14/3v−2/3 + t16/3v8/3

+ t17/3v4/3χ2(y)− t6(χ3(a) + χ1(a))− t19/3v5/3χ2(y)

− t20/3v1/3(χ3(y) + χ1(y)) + t7v−1χ2(y)(χ3(a) + χ1(a)) + t22/3v2/3

+ t23/3v−2/3χ2(y) + t8
(

v−2χ5(a) + v4 + v
)

+ t25/3v8/3χ2(y) + . . . ,

(5.25)

and for N = 3, we obtain

I(A1,A5) = 1 + t5/2v5/4 + t3v3/2 − t7/2v1/4χ2(y) + t4(v−1 − v1/2χ2(y))

+ t9/2v−3/4 + t5(v−1/2 + v5/2) + t11/2(v5/4χ2(y) + v11/4)

+ t6(−2 + v−3/2(a3 + a−3) + v3) + . . . ,

(5.26)

where χn denotes the character for the n-dimensional irreducible representation of SU(2).

Here the term t4v−1 comes from the conserved current multiplet. We see that for (A1, A3)

theory, there is a SU(2) current transforming under the adjoint of SU(2) flavor symmetry.
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For the (A1, A5) theory, the coefficient in front of t4y−1 is 1, which implies there is a U(1)

conserved current.

We find this expression agrees with the index in the Macdonald and Schur limits [55, 57]

computed in [49–53]. Especially, we find that in the Schur limit t → q, the expression

becomes independent of p. This is consistent with the expectation that our theory preserves

N = 2 supersymmetry in the IR.7 To be more precise, one can identify from the index that

there is indeed a contribution from the N = 2 stress tensor multiplet, which contains the

R-symmetry current.

We would like to point out that it is rather non-trivial to show that the integral (5.22)

agrees with other expressions, because they are written in very different manners. More-

over, in the Macdonald limit, our integrand is singular. Therefore it is not so straight-

forward to evaluate the simplification limits. For example, since the Higgs branch is given

by a simple orbifold C2/ZN , the Hall-Littlewood limit of the index (p→ 0, q → 0) is given

by (see also [58])

I
(A1,A2N−1)
HL (t; a) =

1− tN

(1− t)(1− t
N
2 aN )(1− t

N
2 a−N )

. (5.27)

It would be interesting to find a proof that this expression agrees with the limit of our

integral formula.

(A1, A2N) theory. Let us compute the superconformal index for the (A1, A2N ) theory

using the gauge theory we obtained. Note that the operators Trφ2i with i = 1, 2, . . . , N

decouples along the RG flow. Among the M ′
js, the components that remain coupled in the

IR are j = 2N + 3, 2N + 5, . . . , 4N + 1. From this, we get the index as

I(A1,A2N )
N=1 =

[

N
∏

i=1

Γ
(

(pq)N+i+1ξ−2(N+i+1)
)

Γ ((pq)iξ−2i)

]

Γ
(

(pq)
1
2 ξ−1

)N
(5.28)

× κN

2NN !

∮

[dz]
∏

a∈∆

Γ(zα(pq)
1
2 ξ−1)

Γ(zα)

∏

w∈R
Γ
(

zw(pq)
1
4 ξ

1
2

)

Γ
(

zw(pq)
−4N−1

4 ξ
4N+3

2

)

,

where [dz] =
∏N

i=1
dzi
2πizi

, ∆ is the set of all roots of Sp(N) and R is the set of all weights

in the fundamental representation of Sp(N). When N = 1, this is the integral formula

derived in [16]. Now, let us replace the N = 1 fugacities to the N = 2 by substituting

ξ → (t(pq)−
2
3 )

1
2N+3 . Then we get the integral

I(A1,A2N )
N=2 =









N
∏

i=1

Γ

(

(pq
t

)

2(N+i+1)
2N+3

)

Γ
(

(pq
t

)
2i

2N+3

)









Γ

(

(pq

t

)
1

2N+3

)N
κN

2NN !

∮

[dz]
∏

a∈∆

Γ
(

zα
(pq

t

)
1

2N+3

)

Γ (zα)

×
∏

w∈R
Γ

(

zw
(pq

t

)
N+1
2N+3

t
1
2

)

Γ

(

zw
(pq

t

)
−N

2N+3
t
1
2

)

. (5.29)

7We would like to thank Abhijit Gadde for pointing this out to us.
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The integration contour should enclose the poles at zi = a−1(pqt )
1−N
2N+2 t

1
2 but not at zi =

a−1(pqt )
− 1−N

2N+2 t−
1
2 .

The Coulomb branch limit is particularly tractable. In this limit, we obtain

IC(u) =
(

N
∏

i=1

1

1− u
2(N+i+1)

2N+3

)[

N
∏

i=1

1− u
2i

2N+3

1− u
1

2N+3

1

2NN !

∮

[dz]
∏

a∈∆

1− zα

1− u
1

2N+3zα

]

, (5.30)

where the terms in the bracket becomes 1 upon evaluating the integral. This also agrees

with the expected result for the Coulomb branch index for the (A1, A2N ) theory.

We have checked that when N = 1, 2, the leading terms for the Macdonald limit p→ 0

and Schur limit p→ 0, t→ q of this integral agrees with the results in [50, 52, 53] computed

using different methods. Especially, in the Hall-Littlewood limit, the index becomes trivial

since there is no Higgs branch in this theory.

We note that the Schur index can be written in a simple form by using the Plethystic

exponential

I
(A1,A2N )
S (q) = PE

[

q2 − q2N+2

(1− q)(1− q2N+3)

]

, (5.31)

which is the same as the vacuum character of the Virasoro minimal model M(2, 2N+3). It

would be interesting to prove that the Schur limit of our integral formula indeed reproduce

this result.

Checking SUSY enhancement from N = 1 index. Let us briefly comment on the

method to test the enhancement of supersymmetry from computing the N = 1 supercon-

formal index.8 In the section 5.5.1 of the recent paper [59], they list the conserved current

multiplets of four-dimensional N = 1 superconformal theory. Once there is a flavor sym-

metry, we have a conserved current multiplet in the theory. The extra supersymmetry

implies that there is extra conserved R-symmetry. But the latter belongs to a different

multiplet from the usual conserved current. Therefore, the superconformal index for each

multiplets differ. To be concrete, let us compute the N = 1 index

IN=1(t, y) = Tr(−1)F t2(E+j2)y2j1 , (5.32)

for the current multiplets. Note that this trace formulas is the same as the N = 2 version

defined in (5.20) except for the extra fugacity v. The trace is over the states with E −
2j2 − 3

2r = 0. The index for the N = 1 stress tensor is given by

Istress tensor(t, y) = −t9
(

y +
1

y

)

, (5.33)

and an N = 1 flavor current is given by

Iflavor(t, y) = −t6 . (5.34)

On the other hand, the index for the extended SUSY current is given by

Iextended SUSY(t, y) = t7
(

y +
1

y

)

+ t8. (5.35)

8We thank anonymous referee for pointing out such a possibility.
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Note that the N = 2 stress tensor gets contributions from all 3 piece we listed above.

Therefore, it is possible check whether there is any extended supersymmetry by looking

into the N = 1 index and check if there is a contribution of the form given as (5.35). We

indeed find such contributions exist for all the cases where we can compute the index.

6 TN and R0,N theories of class S

In this section we consider the N = 1 deformation of the TN and R0,N theories in class

S [25, 26, 32]. We first give a brief review of the class S theories.

The class S theory of AN−1 type is obtained by the twisted compactification of the

six-dimensional N = (2, 0) theory of AN−1 type on a Riemann surface with punctures.

The four-dimensional theory has N = 2 superconformal symmetry when all the punctures

are of regular type which is associated to the particular codimension-two half-BPS defect

in the six-dimensional theory classified by the partition of N : N =
∑

k knk. This regular

puncture gives the flavor symmetry S[
∏

k U(nk)] in four dimensions.

For our purpose, let us choose the Riemann surface to be a sphere with three regular

punctures. This defines N = 2 SCFTs without exactly marginal deformation. The TN
theory is the one obtained by choosing three maximal punctures given by the partition

n1 = N , thus has SU(N)3 flavor symmetry. The R0,N theory is associated to two maximal

punctures and one puncture with the partition n1 = 2 and nN−2 = 1, thus the flavor

symmetry is SU(N)2 × SU(2) × U(1). It is known that the flavor symmetry in the latter

case is enhanced to SU(2N)× SU(2).

The central charges of the class S theories were obtained in [25, 26, 60]. Thus it is

straightforward to perform the calculation of the deformed N = 1 theory as in the previous

sections. However let us see more details of the construction which would gain an insight

to the deformation procedure.

Starting from the maximal puncture associated to the partition n1 = N , we can get the

other type of regular punctures by giving the nilpotent vev of the moment map operator

µ. For example one can get the R0,N theory from the TN theory by the nilpotent vev of µ

which is the moment map operator of the one of the puncture. This higgsing looks similar

to our deformation procedure, but a crucial difference is that the latter has an additional

adjoint chiral multipletM andM is given a nilpotent vev rather than µ. This difference can

be understood once we consider the N = 1 version of the class S theories [28, 33, 61, 62].

The N = 1 class S theory is obtained again by the compactification of the same six-

dimensional theory on the Riemann surface but with the different twist which preserve

only an N = 1 supersymmetry. In the M-theory language, we consider the N M5-branes

wrapped on the Riemann surface which is the base space of the two line bundles L1 and

L2. The N = 1 condition is that the determinant line bundle L1 ⊗ L2 has to be equal

to the canonical bundle KCg,n of the curve where Cg,n is the Riemann surface of genus g

and with n punctures. By denoting the degrees of L1 and L2 as p and q respectively, the

condition is p+q = 2g−2+n. The puncture could be singular either in the fiber directions

of the line bundles. (One could have a puncture where both of them are singular. But we

do not consider it here.) The theory gets back to N = 2 class S if one of the line bundle
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is trivial and punctures are not singular in this bundle. Therefore we notice that there is

an additional Z2 label to the puncture and the pair of pants, which we denote as σp = ±1

and σb = ±1.

It was found in [28] that the four-dimensional description corresponding to the σp = −1

maximal puncture attached to the σb = +1 pair of pants is to add the chiral multiplet

M transforming in the adjoint representation of the SU(N) flavor symmetry, and the

superpotential coupling TrMµ. The other punctures labelled by general partitions are

obtained by giving the corresponding nilpotent vev to M . At this stage, one could see this

is precisely the procedure which we are considering in this paper if we could identify T with

the class S theory and the F comes from the regular maximal puncture. The principal

embedding breaking all the flavor symmetry F corresponds to closing the puncture.

6.1 Deformation of TN theory

The central charges of the TN theory is given by

a =
8N3 − 15N2 − 3N + 10

48
, c =

2N3 − 3N2 −N + 2

12
, kSU(N) = 2N. (6.1)

It is known [25, 55, 63–65] that there are Higgs branch operators µ(A),(B),(C) of dimension

2 that transforms in the adjoint representation of SU(N)A,B,C and Q(k) transforming in

the (∧k,∧k,∧k) representation of SU(N)A,B,C where ∧k is the k-th anti-symmetric repre-

sentation of SU(N). The dimension of Q(k) is k(N − k). Thus, the J+ and J− charges

of µ(A),(B),(C) and Q(k) are (J+, J−) = (2, 0) and (k(N − k), 0) respectively. There are

also the Coulomb branch operators ud,i with dimension d, where d = 3, 4, . . . , N and

i = 1, 2, . . . , d− 2. The charges of these operators are (J+, J−) = (0, 2d).

Two-punctured sphere. Now, let us consider the deformations by adding the chiral

multiplet M transforming under the one of the SU(N) flavor symmetry and the superpo-

tential W = TrMµ. In the class S language this corresponds to a sphere with σb = +1 and

two maximal punctures with σp = +1 and one maximal puncture with σp = −1. Then give

nilpotent vev ρ(σ+) corresponding to the principal embedding nN = 1. As mentioned above

this corresponds to closing of the puncture with σp = −1, so that it decreases the degree

of the normal bundle. This procedure realizes two-punctured sphere with (p, q) = (1,−1).

This theory has been already discussed in [31].

After the deformation, the shifted charges of the chiral operators MJ,−J is (0, 2J + 2)

where J = 1, 2, . . . , N − 1. The ’t Hooft anomaly coefficients are calculated by follo-

wing (2.20):

TrJ3
+ = TrJ+ = 1−N,

TrJ3
− = TrJ− = (1−N)(2N + 1),

TrJ2
+J− =

(N − 1)(4N2 − 2N − 3)

3
,

TrJ+J
2
− =

(1−N)(4N2 + 4N + 3)

3
.

(6.2)
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Now, we a-maximize to obtain ǫ = 1
3

√

3 + 2
N . With this value of ǫ, we find that all the

MJ,−J operators have R-charges R(MJ,−J) = (1− ǫ)(j+1) > 2
3 above the unitarity bound

for N > 2 and similarly all the Coulomb branch operators have R-charge greater than 2/3.

The other Higgs branch operators do not violate unitarity bound because their J+ charge

is greater than that of µ. When N = 2, T2 theory is a free theory in the beginning, so we

simply get a theory of free chiral multiplets.

One-punctured sphere. Now, let us further close the one of the punctures by con-

sidering the same deformation as above. In the class S language, the deformed theory

corresponds to the one-punctured sphere with normal bundle of bidegree (1,−2). In ad-

dition to MJ,−J , we get another set of singlets M ′
J,−J by closing another puncture. This

gives us the anomaly coefficients:

TrJ3
+ = TrJ+ = 2(1−N),

TrJ3
− = TrJ− = N(1−N),

TrJ2
+J− =

N(N − 1)(4N + 1)

3
,

TrJ+J
2
− =

2(1−N)(4N2 + 4N + 3)

3
.

(6.3)

Upon a-maximization, we obtain

ǫ =
N2 +N +

√
28N4 + 44N3 + 41N2 + 20N + 4

9N2 + 6N + 6
. (6.4)

We find that this value of ǫ makes the singlets of charge (J+, J−) = (0, 4) to have R-charge

below the unitarity bound. Therefore, the operators M1,−1 and M ′
1,−1 are decoupled along

the RG flow.

Now, let us redo a-maximization. Removing the decoupled chiral multiplets, we get

the anomaly coefficients as

TrJ3
+ = TrJ+ = 2(1−N) + 2,

TrJ− = N(1−N)− 6,

TrJ3
− = N(1−N)− 54,

TrJ2
+J− =

N(N − 1)(4N + 1)

3
− 6,

TrJ+J
2
− =

2(1−N)(4N2 + 4N + 3)

3
+ 18.

(6.5)

Upon a-maximizing again, we obtain

ǫ =
N3 −N − 48 +

√
28N6 − 12N5 − 19N4 − 210N3 − 27N2 + 300N + 196

3 (3N3 −N2 − 34)
. (6.6)
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The correct a-function is given by

a = − 3

64

(

N3
(

9ǫ3 − 3ǫ2 − 9ǫ+ 3
)

+N2
(

−3ǫ3 + ǫ+ 2
)

+N
(

3ǫ2 + 6ǫ− 1
)

− 102ǫ3 + 144ǫ2 − 62ǫ+ 4
)

+ 2afree ,
(6.7)

c =
1

64

(

− 9N3
(

3ǫ3 − ǫ2 − 3ǫ+ 1
)

+N2
(

9ǫ3 − 5ǫ− 4
)

+N
(

−9ǫ2 − 12ǫ+ 5
)

+ 306ǫ3 − 432ǫ2 + 166ǫ− 8
)

+ 2cfree ,
(6.8)

where afree =
1
48 , cfree =

1
24 . For example, when N = 3, we have

a ≃ 0.9512 + 2afree , c ≃ 1.165 + 2cfree . (6.9)

Sphere without puncture. Now, let us consider closing all the punctures. The corre-

sponding geometry is given by the normal bundle O(−3)⊕O(1) → P1. We get the singlets

MJ,−J ,M
′
J,−J ,M

′′
J,−J with J = 1, . . . N − 1. The anomaly coefficients are:

TrJ3
+ = TrJ+ = 3(1−N),

TrJ3
− = TrJ− = N − 1,

TrJ2
+J− =

(N − 1)(4N2 + 4N + 3)

3
,

TrJ+J
2
− = (1−N)(4N2 + 4N + 3).

(6.10)

Upon a-maximization, we get

ǫ =
N2 +N +

√
13N4 + 26N3 + 29N2 + 16N + 4

6 (N2 +N + 1)
. (6.11)

This gives the operators MJ,−J ,M
′
J,−J ,M

′′
J,−J with J = 1 to have R-charges below the

unitarity bound, therefore they become free and get decoupled along the RG flow.

The rest of the operators do not violate the unitarity bound. We can redo a-maximi-

zation by subtracting the contribution of the decoupled fields. This gives

ǫ =
N3 −N − 36 +

√
13N6 − 10N4 − 136N3 +N2 + 176N + 100

6 (N3 − 13)
. (6.12)

The conformal anomalies are

a = − 3

32

(

N3
(

6ǫ3−3ǫ2−6ǫ+3
)

+N
(

3ǫ2+4ǫ−1
)

−78ǫ3+108ǫ2−46ǫ+4
)

+3afree, (6.13)

c =
1

32

(

−9N3
(

2ǫ3−ǫ2−2ǫ+1
)

+N
(

−9ǫ2−8ǫ+5
)

+234ǫ3−324ǫ2+122ǫ−8
)

+3cfree.

(6.14)

For example, when N = 3, we get

a ≃ 0.8731 + 3afree , c ≃ 1.092 + 3cfree . (6.15)
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Our result here resolves a puzzle raised in [33], where they found the N = 1 SCFT

coming from the N M5-branes wrapped on a sphere with normal bundle O(−3) ⊕ O(1)

seem to violate the bound on the ratio of central charges a/c when N = 2. As we have

seen in this section, this is due to the fact that there are accidental symmetries (not just

for N = 2, but for general N ≥ 2) coming from the decoupled operators along the RG flow.

Especially when N = 2, we get a free theory.

6.2 Deformation of R0,N theory

Let us turn to the R0,N theory. This has SU(2) × SU(2N) flavor symmetry, thus the

Higgsing of SU(2N) symmetry does not have class S meaning.

The central charges of R0,N is given by

a =
7N2 − 22

24
, c =

2N2 − 5

6
, kSU(2) = 6, kSU(2N) = 2N (6.16)

The Higgs branch operator is µ transforming in (adj,1) of SU(2N)× SU(2). The charges

of this are (J+, J−) = (2, 0). The other Higgs brach operators have J+ charge greater than

this. Also there are Coulomb branch operators ud with dimension d where d = 3, 4, . . . , N .

Their charges are (J+, J−) = (0, 2d).

SU(2N) deformation. Let us first consider the deformation of R0,N taking F to be

SU(2N). The remaining singlets have charges (0, 2J + 2) with J = 1, 2, . . . , 2N − 1. It is

easy to calculate the anomalies

TrJ3
+ = TrJ+ = −2N + 1,

TrJ3
− = 16N4 − 2N2 − 5,

TrJ− = 2N2 − 5,

TrJ2
+J− = 6N2 − 9,

TrJ+J
2
− =

−32N3 + 2N + 3

3
.

(6.17)

A-maximization tells us that all the Coulomb branch operators and MJ,−J with J =

1, 2, . . . , N get decoupled. By subtracting these contributions and re-maximizing, we get

ǫ =
9N4−15N2−6N+27+2

√
9N6+12N5+7N4+42N3−96N2−18N+81

3 (3N4+4N3−3N2−6N+9)
. (6.18)

The central charges are a ≃ 0.5677 + 4afree and c ≃ 0.6577 + 4cfree for the N = 3 case.

Full Higgsing. We can further break the remaining SU(2) symmetry. We do not repeat

the calculation here. We find that the decoupled fields are the same as the above case.

The central charges of the IR theory are a ≃ 0.53334 + 4afree and c ≃ 0.6681 + 4cfree for

the N = 3 case.
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T F N = 2 Sugawara kF bound TIR[T , ρ]
(A1, Dk), (k ≥ 4) SU(2) yes yes no (A1, Ak−1)

(IN,Nm+1, F ) SU(N) yes yes no (AN−1, ANm+N )

H1 SU(2) yes yes yes H0

H2 SU(3) yes yes yes H0

D4 SO(8) yes yes yes H0

E6 E6 yes yes yes H0

E7 E7 yes yes yes H0

E8 E8 yes yes yes H0

SU(N) SQCD SU(2N) yes yes yes (A1, A2N−1)

Sp(N) SQCD SO(4N + 4) yes yes yes (A1, A2N )

N = 4 SU(2) SU(2) no yes no new

[IV ∗, Sp(2)×U(1)] Sp(2) no(?) no yes new

[III∗, SU(2)×U(1)] SU(2) no no no new

[III∗, Sp(3)× SU(2)] Sp(3)× SU(2) no no yes new

[II∗, SU(3)] SU(3) no(?) no no new

[II∗, SU(4)] SU(4) no no no new

[II∗, Sp(5)] Sp(5) no no yes new

TN SU(N)3 no no yes new

R0,N SU(2N) no no yes new

Table 8. Summary of results. Here F denotes the global symmetry that is broken by the principal

embedding. (not necessarily the same as the full symmetry of T ) We list whether the deformed

theory flows to an N = 2 theory and whether T satisfies the Sugawara condition for the cen-

tral charges of the chiral algebra [66] and whether the flavor central charge saturates the bound

of [66, 67].

7 Discussion

In this paper, we considered the N = 1 deformation of N = 2 SCFTs. Among various

N = 2 SCFTs, we found the deformation of a particular class of theories flow to the IR

fixed point with the enhanced N = 2 supersymmetry. We list the summary of our result

in the table 8.

To any N = 2 SCFT T , there is an associated two-dimensional chiral algebra χ[T ] as

discussed in [66]. The central charges for the chiral algebra are given as

c2d = −12c4d, k2d = −1

2
k4d . (7.1)

If the two-dimensional Virasoro algebra is given by the Sugawara construction of the affine

Lie algebra, the 2d central charge has to be given by c2d = cSugawara, where

cSugawara =
k2ddimF

k2d + h∨
, (7.2)
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where h∨ is the dual coxeter number of the flavor symmetry group F . For a general 4d

N = 2 SCFT, c2d ≥ cSugawara.

From the list of N = 2 SCFTs T we considered, it is tempting to conjecture that the

saturation of the Sugawara bound on the central charges is related to the enhancement of

the supersymmetry in the IR. An exception to this idea is the N = 4 SU(2) SYM. This is

possibly due to the enhanced symmetry of the chiral algebra associated to the N = 4 SYM,

where χ[T ] has two-dimensional N = 4 supersymmetry. It would be interesting to find a

criterion for the T to exhibit supersymmetry enhancement at the end of the RG flow.

In this paper, we have mostly considered deformations corresponding to the principal

embedding. It is possible to consider non-principal embedding as well, which will leave some

of the flavor symmetry unbroken. It seems the principal embedding is not the essential

condition to ensure N = 2 supersymmetry enhancement, as we have seen in the case of the

deformation of the H2 = (A1, D4) theory. A systematic study of the deformation associated

to the non-principal embedding is work in progress.

We have discovered simple N = 1 Lagrangian descriptions for the “non-Lagrangian”

N = 2 Argyres-Douglas theories. We expect this gauge theory description to be a useful

tool to understand aspects of the Argyres-Douglas theories. As an application, we com-

puted the full superconformal indices. One observation is that our formula obtained from

the gauge theory seems to be very different from the ones obtained in [49, 51, 52], moti-

vated from the M5-brane realization of the Argyres-Douglas theory [8]. This may be a hint

towards a dual Lagrangian description that leads us to the same IR fixed point described

by the Argyres-Douglas theory.
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A Convention

A.1 N = 2 SCFT

N = 2 superconformal algebra has U(1)r and SU(2)R symmetries. We denote by r and I3
the charge of the former and those of the Cartan part of the latter respectively. Component

fields in a free N = 2 vector multiplet have the following R charges:

r \ I3 1
2 0 −1

2

0 Aµ

1 λ λ′

2 φ

– 36 –



J
H
E
P
0
2
(
2
0
1
7
)
0
7
5

and the hypermultiplet has the following charges:

r \ I3 1
2 0 −1

2

-1 ψ

0 q q̃†

1 ψ̃†

The ’t Hooft anomaly coefficients and the conformal anomalies are related by [37]

TrR3
N=2 = TrRN=2 = 48(a− c) , Tr(RN=2IaIb) = δab(4a− 2c) . (A.1)

In terms of effective number of hyper/vector multiplet, we can write

nh = 4(2a− c) , nv = 4(5c− 4a) . (A.2)

There is a relation between the central charges and the dimensions of the Coulomb branch

operators [27]:

2a− c =
1

4

∑

i

(2∆(ui)− 1) . (A.3)

Another representation of the conformal anomalies are given by [27]

a =
1

4
R(A) +

1

6
R(B) +

5r

24
, c =

1

3
R(B) +

r

6
, (A.4)

where r is the dimension of the Coulomb branch and

R(A) =
∑

i

∆(ui)− r, (A.5)

R(B) is the quantity determined from the Seiberg-Witten curve.

Central charges of (AN−1, Ak−1) and (IN,k, F ) theories. Let us focus on the theory

(AN−1, ANm+N ). The Coulomb branch operators are given in (3.9). Thus the R(A) is

computed as

R(A) =
(k − 1)(N − 1)(k(2N − 1)−N − 1)

12(k +N)
. (A.6)

where k = Nm+N + 1. Also the R(B) is given by [41]

R(B) =
(k − 1)(N − 1)Nk

4(N + k)
(A.7)

These lead to the central charges

a =
(m+ 1)(N − 1)N(4(m+ 1)N2 + 4(m+ 3)N + 3)

48(N(m+ 2) + 1)
,

c =
(m+ 1)(N − 1)N(N2(m+ 1 +N(m+ 3) + 1))

12(N(m+ 2) + 1)
. (A.8)
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Let us then consider the (IN,k, F ) theory. In this case R(A), R(B) and r are given

by [68, 69]

R(A) =
N
∑

i=2

⌊

(i−1)k
N

−1
⌋

∑

j=−i+1

(

ik − jN

k +N
− 1

)

. (A.9)

and

R(B) =
1

4
N(N − 1)(N + k − 1), r =

1

2
(N − 1)(N + k − 1) , (A.10)

One can further simplify R(A) when k = Nm+ 1 to obtain

R(A) =
(N − 1)(k +N − 1)(2N2 + 2kN − 2N − k − 1)

12(k +N)
. (A.11)

Thus the central charges a and c are given by

a =

(

N2 − 1
)

(k +N − 1)(4k + 4N − 1)

48(k +N)
,

c =
1

12
(N + k − 1)(N2 − 1). (A.12)

The flavor central charge is given by

kSU(N) =
2N(N + k − 1)

N + k
. (A.13)

A.2 N = 1 SCFT

Relation between N = 1 U(1)R and N = 2 U(1)r charge

RN=1 =
1

3
RN=2 +

4

3
I3 . (A.14)

Conformal anomaly for an N = 1 theory is

a =
3

32

(

3TrR3
N=1 − TrRN=1

)

, c =
1

32

(

9TrR3
N=1 − 5TrRN=1

)

(A.15)

In terms of U(1)± in class S language, we can write R-charges as

J+ = 2I3, J− = RN=2 . (A.16)

We can also write

TrJ+ = TrJ3
+ = 0 ,

TrJ− = TrJ3
− = 48(a− c)

TrJ2
+J− = 8(2a− c) ,

TrJ+J
2
− = 0 .

(A.17)

In this language, we write the R charges for N = 1 SCFT as

RIR = R0 + ǫF =
1 + ǫ

2
J+ +

1− ǫ

2
J− , (A.18)
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where we define R0 = 1
2(J+ + J−) and F = 1

2(J+ − J−). The trial a(ǫ) and c(ǫ) functions

are given by

a(ǫ) =
3

32

(

3TrR3 − TrR
)

(A.19)

Flavor central charge

kF δ
ab = −3TrRN=1T

aT b = −2TrRN=2T
aT b , (A.20)

where kF is normalized so that the hypermultiplet in the fundamental representation has

kF = 1 and a chiral multiplet has kF = 1
2 . The contribution to the 1-loop beta function

for the flavor current is given by

β = 3TrRN=1T
aT b. (A.21)

Open Access. This article is distributed under the terms of the Creative Commons
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