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1. Introduction

Five-dimensional supergravities have proven to be a powerful tool in the study of

holographic RG flows of field theories on D3-branes. This has been particularly well

studied for the flows of N = 4 supersymmetric Yang-Mills theory under perturbations

that involve either masses or vevs for bilinear operators [1-23]. The corresponding five-

dimensional theory is thus gauged N = 8 supergravity [24-26], but this is to be viewed

as a consistent truncation of ten-dimensional IIB supergravity [27,28]. This paper will,

once again, focus on such flows of N = 4 supersymmetric Yang-Mills theory, but now from

the ten-dimensional perspective, and as we will show, this approach will reveal some very

interesting new features of these flows.

It has become increasingly evident that while the five-dimensional theories are a valu-

able tool, the five-dimensional perspective is somewhat limiting when it comes to physically

interpreting the majority of these flows. To be more precise, almost all flows involve run-

ning to infinite values of the supergravity potential, that is, they are what one of our

earlier collaborators dubbed “Flows to Hades”. In this limit the five-dimensional super-

gravity metric develops a singularity that appears superficially pathological. However when

“lifted” to ten dimensions, the corresponding IIB supergravity solution is typically rather

less singular, and may well admit a simple physical interpretation. This softening of the

five-dimensional singularity arises partially because the “lift” to ten-dimensions involves

multiplying the 5-metric by a warp-factor, and the asymptotic behaviour of the warp factor

modifies the asymptotics of the five-metric. The simplest, but most illustrative example

of this are the N = 4 Coulomb branch flows of [29,30,8,9,11]: In five dimensions these all

generate apparently peculiar metrics with singularities at r = 0, whereas the correspond-

ing ten-dimensional metrics resolve the r = 0 singularity into a smooth distribution of

D3-branes.

A second facet to the lift to ten dimensions is the IIB dilaton. The scalars of the

five-dimensional theory are described by a coset model S ≡ E6(6)/USp(8), which contains

a submanifold: S0 ≡ SL(6, IR)/SO(6) × SL(2, IR)/SO(2). Perturbatively the scalars of

SL(6, IR)/SO(6) correspond to metric perturbations on the S5 of the AdS5 ×S5 compact-

ification of the IIB theory. Similarly, the SL(2, IR)/SO(2) coset may be identified with the

IIB dilaton and axion at the perturbative level. Moreover, it has been argued [8] that this

identification remains true to all orders so long as the scalars of the gauged N = 8 super-

gravity are restricted to S0. Indeed this is strongly substantiated by the five-dimensional

description of the Coulomb branch flows.
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On the other hand, it was first shown in [3] that when more general supergravity

scalars are used (i.e. ones that correspond to fermion bilinears in the Yang-Mills theory,

or corrrespond to Bµν fields in the IIB theory) the deformation of the S5 metric is rather

more complicated. More recently, it was also shown that when the same supergravity

scalars are non-trivial, the dilaton/axion coset, SL(2, IR)IIB/SO(2), is not the same as the

SL(2, IR)5d/SO(2) factor in five-dimensional coset model E6(6)/USp(8). In particular, even

if the five-dimensional scalars of SL(2, IR)5d/SO(2) are set to zero it was shown in [20,21]

that the corresponding ten-dimensional dilaton and axion could be highly non-trivial.

To be more explicit, it was argued in [3] that the inverse metric, gpq, on the deformed

S5 is given by

∆− 2

3 gpq =
1

a2
KIJ pKKL q ṼIJab ṼKLcd Ωac Ωbd , (1.1)

where V = (VIJab,VIα
ab) is the scalar matrix of the E6(6)/USp(8) coset and Ṽ =

(ṼIJab, ṼIα
ab) is the inverse of V [26], KIJ p are Killing vectors on S5, Ωab is the USp(8)

symplectic form, and ∆ = det1/2(gmp

◦
g pq), where

◦
g pq is the inverse of the “round” S5

metric. The quatity ∆ can be determined by taking the determinant of both sides of (1.1).

For more details see [21].

The ten-dimensional solution is then reconstructed by taking:

ds210 = Ω2 ds21,4 + ds25 . (1.2)

where ds21,4 is the metric of the N = 8 supergravity in five dimensions, ds25 = gmndy
mdyn

is the deformed S5 metric given by (1.1), and Ω2 = ∆− 2

3 is the warp factor.

In [21] it was further argued that if xI are the cartesian coordinates that define the S5

in IR6 (with
∑

I(x
I)2 = 1), and S is the IIB dilaton/axion matrix in SL(2, IR)IIB/SO(2),

then one has

∆− 4

3 (S ST )αβ = const × ǫαγǫβδ VIγ
ab VJδ

cd xIxJ Ωac Ωbd , (1.3)

to all orders in the N = 8 supergravity fields. This is sufficient to determine the matrix S

up to an SO(2) gauge choice.

The argument that led to (1.1) showed that if consistent truncation were true then this

was necessarily the exact form of the internal metric. This result has since been extensively

tested [8,11,31-35,21,22]. The argument that led to (1.3) was similar to that for (1.1) but

was based upon an additional (well motivated) assumption. It has also not been quite so

well tested, but it will be implicitly tested further by some of the results in this paper.
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The distinction between the five-dimensional and ten-dimensional SL(2, IR)/SO(2)’s

is a fimiliar one in field theory. The SL(2, IR)5d/SO(2) should be viewed as the N = 4

coupling at the UV fixed point, whereas SL(2, IR)IIB/SO(2) should be viewed as a running

coupling of the theory on the branes. The importance of (1.3) is that it gives the running

coupling as an explicit function of the UV coupling and the masses and vevs along the

flow. The derivative of (1.3) with respect to r is thus a holographic beta function for the

flow. One should also remember that the identification of the dilaton and axion as the

running gauge coupling is based upon perturbation theory about the ten-dimensional IIB

theory, and thus upon perturbations about the UV fixed point of the Yang-Mills theory.

As in field theory, non-trivial operator mixings can and do occur along RG flows, and so

this running coupling may become some other non-trivial coupling of the effective action as

one flows toward the infra-red. Indeed, as we will see, the flow of [7] provides an example

of this phenomenon.

The primary goal of this paper is to construct ten-dimensional “lifts” of two of the N =

1 supersymmetric RG flows and use then these lifts to study the near-brane asymptotics.

The secondary purpose of the paper is to give further support for the formula (1.3) by

showing that it correctly predicts the dilaton behaviour for these lifts.

We will begin in section 2 by reviewing some of the the essential details of the su-

pergravity description of supersymmetric RG flows, and then go on to examine in detail

the N = 2 supersymmetric subsectors of N = 8 supergravity that generate some of the

possible flows of N = 4 Yang-Mills down to an N = 1 theory.

In section 3 we construct the complete ten-dimensional lift of the “Leigh-Strassler”

(LS) flow [36,4,7]. This lift generalizes the recent compactification of the chiral IIB super-

gravity obtained in [34] (see, also [33]).

Sections 4, 5 and 6 contain a rather involved analysis of an SO(3) invariant subsector

of the N = 8 supergravity in five dimensions. This subsector represents the truncation

of N = 8 supergravity down to N = 2 supergravity coupled to two hypermultiplets. In

terms of the field theory on the brane, this sector involves breaking the N = 4 Yang-Mills

to N = 1 with equal masses given to each of the chiral multiplets. A restricted version

of this was studied in detail in [5,13,14,20,37,38] from the perspective of five-dimensional

supergravity. In section 5 we examine this restriction of the the SO(3) invariant sector, and

show that it requires that the solution be S-dual, i.e., self-dual with respect to g → 1/g,

where g is the N = 4 gauge coupling. In section 6 we will then go on to construct the

ten-dimensional metric and dilaton configuration for the RG flow (GPPZ-flow), while in

section 7 we examine the IR asymptotics, and show how dielectric 7-branes emerge at the
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near-brane (IR) end of the flow. In section 8 we take a closer look at the singularities in

ten dimensions and discuss the relationship between our work and that of [39] and [40].

The reader may wish to skip from section 3 to sections 7 and 8 since the IR asymptotics

can be readily understood without pushing through the details of consistent truncations.

We have chosen to include some of the technical details in the intervening sections, partially

to facilitate calculations by others working in this area, but also to highlight the special

“self-dual” structure of the flows considered in [13]. The worst of the technical details have

been relegated to an appendix.

In section 9 we construct the ten-dimensional lift of a restriction of the GPPZ-flow to

one of the fields of the LS-flow. While this flow is “unphysical” from the perspective of

the theory on the brane, it represents one of the very few N = 1 supersymmetric flows for

which we have a complete, analytically known lift. A formal limit of this lift reproduces

the SU(3) compactification of the IIB supergravity discovered by Romans [41].

Finally, in section 10 we summarize our results, and try to draw some general threads

out of what we have learnt in using supergravity to study RG flows holographically.

2. Some N = 1 supersymmetric flows

2.1. Supersymmetric flows in general

As is, by now, standard we generally take the five-dimensional metric to have the

form:1

ds21,4 = e2A(r)ηµνdx
µdxν − dr2 . (2.1)

If the supergravity scalars are canonically normalized, with a scalar kinetic term
1
2

∑
j(∂ϕj)

2, then the supersymmetric flow equations take the form:

dϕj

dr
=

1

L

∂W

∂ϕj
,

dA

dr
= − 2

3L
W . (2.2)

The supergravity potential, P, is obtained from the superpotential via

P =
g2

8

∑

j

(∂W
∂ϕj

)2

− g2

3
W 2 . (2.3)

In our conventions the length scale, L, is related to the coupling constant, g, by g = 2/L.

1 We use the mostly “−” convention.
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We will only consider flows that in the UV start in the maximally supersymmetric

vacuum with ϕj = 0. At this point both P and W have a critical point, and W = −3
2 .

We therefore take A(r) ∼ r/L as r → ∞.

As r decreases there are two possibilities: either there is a “soft landing” in which the

flow approaches another critical point of W , or W decreases without bound along the flow.

If the other end of the flow is a critical point of W then one has A(r) ∼ r/ℓ as r → −∞,

for some value of ℓ < L, and the metric once again approaches that of AdS5.

If the flow goes to negatively infinite values of W , then A′(r) → +∞, and hence

A(r) → −∞, and the five-dimensional space-time is singular. To be more precise, the

superpotential is typically a sum of exponentials of ϕj , and one or more of the exponentials

dominate the IR limit. One then easily solve for the asymptotics, and one typically finds

ϕj ∼ aj log(r− cj) for some constants aj , cj . It also turns out that A(r) ∼ ∑
bj log(r− cj)

for some positive constants bj. As a result, the cosmological term in (2.1) usually vanishes

at finite r as some positive power: (r−c)2b. The power depends upon the details, but rather

little can be deduced from this behaviour alone: One really needs the ten-dimensional

solution to understand the IR limit properly.

Our problem thus is to construct a solution to the field equations of the chiral IIB

supergravity in ten dimensions [27,28], i.e. to find the metric, gMN , the dilaton/axion field,

B, and the antisymmetric tensor fields, AMN and FMNPQRS , expressed in terms of the

fields A and ϕi in the flow, such that the ten dimensional equations of motion2 become

equivalent to the flow equations (2.2).

2.2. Supersymmetric flows in particular: Truncations

A standard process by which one reduces the number of supergravity scalar fields to

a more manageable subset is to impose invariance under a carefully chosen discrete or

continuous symmetry of the action. The idea is that since the symmetry is an invariance

of the action, any expansion of the action will be at least quadratic in non-singlet fields,

and so it is consistent to set all non-singlet fields to zero, and solve the equations on the

space of singlets alone. In this paper we will employ two such trunactions to arrive at

distinct N = 2 supergravities, coupled to matter and vector multiplets, and embedded

in the N = 8 theory. Such N = 2 supergravities are certainly not new: there is a well

established technology for constructing broad classes of such theories (see, e.g., [42,43,44]).

2 We refer the reader to [27] and to our recent paper [21] for the explicit form of those equations.
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The significance of the N = 2 supergravities considered here is that they are dual to

distinct N = 1 Yang-Mills theories arising from massive flows of the N = 4 theory.

The natural way to accomplish this is to use the SO(6) × SL(2, IR) symmetry, and

under the SO(6) the gravitini transform as 4 and 4̄. To get an N = 2 supergravity we

use symmetries for which the 4 has only one singlet. An obvious candidate is to take

SU(3) ⊂ SO(6), under which 4 → 3 ⊕ 1. Imposing SU(3) invariance is, however, far too

restrictive and leaves only one nontrivial scalar field. (This restricted case will, in fact, be

discussed in detail in section 9.) Instead we pass to subgroups of this SU(3). In the first

instance we will impose invariance under SU(2) × U(1) ⊂ SU(3), and in the second we

impose invariance under SO(3) ⊂ SU(3) ⊂ SO(6), where the SO(3) is the real subgroup

of SU(3).

Considering the entire spectrum of the gauged N = 8 supergravity, the space of

SU(2) × U(1) singlets consists of the following: a graviton, two gravitini, two vector

fields, no tensor gauge fields, four spinors, and five scalars. These make up the N = 2

supergravity multiplet coupled to one vector multiplet and one hypermultiplet. A more

careful examination of the group theory shows that the scalar manifold is:

SLS =
SU(2, 1)

SU(2) × U(1)
× SO(1, 1) . (2.4)

An SU(1, 1) subgroup of SU(2, 1) represents the dilaton/axion coset, while the other two

non-compact generators of SU(2, 1) are the supergravity dual of a (complex) Yang-Mills

fermion mass. The SO(1, 1) represents a diagonal element of the SL(6, IR) ⊂ E6(6) and is

dual to a Yang-Mills scalar mass. The dilaton/axion scalars will remain fixed in the flows

considered here, and the corresponding reduction of the scalar manifold can be done by

imposing invariance under another U(1) so that the coset becomes SU(1,1)
U(1) × SO(1, 1). As

in [7], this can be parametrized by two real scalars, χ and α, along with the U(1) symmetry

of the denominator.

The SO(3) invariant subsector of the N = 8 theory consists of: a graviton, two

gravitini, one vector field, no tensor gauge fields, four spinors, and eight scalars. The

result is thus N = 2 supergravity coupled to two hypermultiplets. The scalar manifold of

this N = 2 theory is now the quaternionic manifold:

SQCD =
G2(2)

SU(2) × SU(2)
. (2.5)

We will discuss the parametrization of this extensively in sections 4 and 5.
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3. The LS-flow

The SU(2) × U(1) invariant sector of the supergravity is dual to N = 4 Yang-Mills

perturbed by the bilinear operators with the same invariance. Specifically χ and α are,

respectively, dual to a single fermion mass and the mass of the scalar3 in the same chiral

multiplet. The SU(2) symmetry is a global symmetry of the two remaining massless chiral

multiplets, while the U(1) essentially gives rise to the N = 1 R-symmetry. The N = 1

flows in this sector thus include the flow considered by Leigh and Strassler in [36].

3.1. The five-dimensional flow

The field χ is canonically normalized, whereas α is not: The kinetic term is −1
2
(∂χ)2−

3(∂α)2. The superpotential is:

W =
1

4ρ2

[
cosh(2χ) (ρ6 − 2) − (3ρ6 + 2)

]
. (3.1)

where ρ = exp(α). The resulting field equations are:

dχ

dr
=

g

2

∂W

∂χ
=

g

4

(ρ6 − 2) sinh(2χ)

ρ2
,

dρ

dr
=

g

12
ρ2 ∂W

∂ρ
=

g

12

ρ6 (cosh(2χ) − 3) + 2 cosh2 χ

ρ
.

(3.2)

The superpotential (3.1), and the corresponding potential (2.3) have an N = 2 su-

persymmetric critical point for χ = 1
2

log(3) and α = 1
6

log(2) [3]. As shown in [4,7], this

critical point is the dual of the Leigh-Strassler conformal fixed point of [36]. The compact-

ification of the chiral IIB supergravity corresponding to the critical point has recently been

obtained in [34]. The flow itself can be obtained by solving (3.2) with the proper initial

conditions in the UV [7].

One of the difficulties in studying this flow is that an explicit solution to (3.2) in a

closed form is not known. Formally, one can derive a series solution for the trajectory,

ρ = ρ(χ), which is of the form

ρ(χ) =
∞∑

m=0

∞∑

n=2m

amn (logχ)n χ2m

= 1 + (γ − 2
3

logχ)χ2

+
(

16+42γ+171γ2

18
− 2(7+57γ)

9
logχ+ 38

9
(logχ)2

)
χ4 + . . .

(3.3)

3 The AdS5-normalizable modes of the scalar α can additionally be interpreted in terms of

vevs of scalars in the two massless chiral multiplets.
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where γ is an integration constant parametrizing the trajectory. For futher numerical

analysis we refer the reader to [7,19].

There exists also a closely related N = 2 flow which can be lifted to a solution of the

chiral IIB supergravity in ten dimensions [21] for which the analogue of the series solution

(3.3) can be summed in terms of elementary functions [21,22]. In the following we will use

the general structure of those two solutions to obtain a ten dimensional lift of the present

flow.

3.2. The lift to ten dimensions

As discussed in the introduction, both the ten-dimensional metric and the dila-

ton/axion field are given by the consistent truncation ansatz (1.2) and (1.3), respectively.

In particular, the explicit form of the metric and the warp factor have already been ob-

tained in [34,33]. Let us first recall this result.

In the cartesian coordinates on IR6 with S5 given as a unit sphere,
∑

(xI)2 = 1, the

internal metric is:

ds25(α, χ) =
a2

2

sechχ

ξ
(dxIQ−1

IJ dx
J ) +

a2

2

sinhχ tanhχ

ξ3
(xIJIJdx

J)2 . (3.4)

Here Q is a diagonal matrix with Q11 = . . . = Q44 = e−2α and Q55 = Q66 = e4α, J is an

antisymmetric matrix with J14 = J23 = J65 = 1, and ξ2 = xIQIJx
J . The warp factor is

simply

Ω2 = ξ coshχ . (3.5)

The constant a, introduced to account for an arbitrary normalization of the Killing vectors,

is fixed by requiring that at the N = 8 point the ten-dimensional metric becomes a product

of AdS5 × S5 with equal radii, L = 2/g and a/
√

2, respectively, which gives a =
√

2L.

We need suitable spherical coordinates in which the SU(2) × U(1)2 symmetry of the

metric becomes manifest. First define complex coordinates corresponding to J ,

u1 = x1 + ix4 , u2 = x2 + ix3 , u3 = x5 − ix6 , (3.6)

and then reparametrize them using the group action4

(
u1

u2

)
= cos θ g(α1, α2, α3)

(
1
0

)
, u3 = e−iφ sin θ , (3.7)

4 Note that, unlike in [34], the SU(2) doublet is inert under the φ rotation.
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where g(α1, α2, α3) is an SU(2) matrix expressed in terms of Euler angles.

Define
X1(r, θ) = cos2 θ + ρ(r)6 sin2 θ ,

X2(r, θ) = sechχ(r) cos2 θ + ρ(r)6 coshχ(r) sin2 θ ,
(3.8)

By performing the change of variables (3.7), we find that

ξ =
X

1/2
1

ρ
, (3.9)

and the ten-dimensional metric can be diagonalized in terms of the following frames:

eµ+1 =
X

1/4
1 (coshχ)1/2

ρ1/2
eA dxµ , µ = 0, . . . , 3 ,

e5 =
X

1/4
1 (coshχ)1/2

ρ1/2
dr ,

e6 =
2

g

X
1/4
1

ρ3/2 (coshχ)1/2
dθ ,

e7 =
1

g

ρ3/2 cos θ

X
1/4
1 (coshχ)1/2

σ1 ,

e8 =
1

g

ρ3/2 cos θ

X
1/4
1 (coshχ)1/2

σ2 ,

e9 =
1

g

ρ3/2X
1/4
1 cos θ

X
1/2
2

σ3 ,

e10 =
2

g

X
1/2
2 sin θ

ρ3/2X
3/4
1

dφ+
1

g

ρ9/2 sinhχ tanhχ cos2 θ sin θ

X
3/4
1 X

1/2
2

σ3 ,

(3.10)

where σi, i = 1, 2, 3, are the SU(2) left-invariant 1-forms normalized according to dσi =
1
2
ǫijk σj ∧ σk.

An explicit evaluation of the dilaton/axion matrix (1.3) yields a somewhat surprising

result: the ten-dimensional dilaton/axion field remains constant along this flow. This is

surprising from the field theory perspective in that one might have expected a running

coupling. What we find is that the dilaton and axion value provides a modulus for the

theory all along the flow: at the UV point this is simply the gauge theory coupling constant,

but in the infra-red this presumably defines the line of marginal perturbations identified

in [36].

The constancy of the dilaton and axion is not so surprising from the supergravity per-

spective: The product structure of (2.4) means that the running fermion mass does not mix
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with the five-dimensional dilaton/axion SL(2, IR) to produce a non-trivial ten-dimensional

dilaton and axion. This fact simplifies considerably the ten-dimensional equations of mo-

tion.

Having exhausted the consistent truncation ansatz, our strategy is to use the field

equations and the underlying symmetry to construct the remaining fields. As in [34,21], we

start with the Einstein equations which should yield information about the field strengths

of the antisymmetric tensor fields given that the left hand side, i.e. the Ricci tensor, is

computable. The crucial observation here is that the Ricci tensor depends on the deriva-

tives of A(r) only, and thus by using repeatedly the flow equations (2.2) and (3.2), one can

eliminate all derivatives with respect to the flow parameter, r, and be left with rational

expressions in ρ and the hyperbolic functions of χ. It is also reasonable to expect that an

explicit solution for trajectories (cf. (3.3)) will involve transcendental functions of coshχ

and sinhχ and thus we should attempt to solve the ten-dimensional equations by matching

various ρ and χ terms independently. This is how the lift worked for the N = 2 flow in [21],

where the explicit solution to the flow equations was not needed: the equations themselves

were sufficient.

The resulting Ricci tensor is rather complicated to the extent that we will not attempt

reproducing it here. Nevertheless we find two simple linear combinations that will become

important in the following:

R77 = R88 = R11 , (3.11)

and

R99 +R10 10 − 2R11 = 2g2 ρ
3 sinhχ tanhχ

X
1/2
1

. (3.12)

We also find that the only nontrivial off-diagonal components are R56 and R9 10.

The 5-index antisymmetric tensor field, F(5), is taken to be of the similar form as for

the N = 2 flow [21], namely

F(5) = F + ∗F , (3.13)

where

F = dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ (wrdr + wθdθ) , (3.14)

with arbitrary functions wi(r, θ). The self-duality equation is then satisfied by construction.

The structure of the energy-momentum tensor, T
(5)
MN , is the same as in [21], namely

T
(5)
11 = −T (5)

22 = . . . = −T (5)
33 = T

(5)
77 = . . . = T

(5)
10 10 = A2 + B2 , (3.15)

T
(5)
55 = −T (5)

66 = A2 − B2 , (3.16)
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and

T
(5)
56 = T

(5)
65 = 2AB , (3.17)

where

A = g e−4A ρ7/2(sechχ)3/2

X
5/4
1

wθ ,

B = −2 e−4A ρ5/2(sechχ)5/2

X
5/4
1

wr .

(3.18)

The most general SU(2) × U(1) symmetric Ansatz for the potential A(2) of the anti-

symmetric tensor field is

A(2) = e−iφ (a1 dθ − a2σ3 − a3 dφ) ∧ (σ1 − iσ2) , (3.19)

where ai(r, θ) are some arbitrary functions. This generalizes the result in [34], except for

the a3 term which, unlike in [34], cannot be gauged away because of the r dependence.

Also the the U(1) charge −1 is different than in [34] because of the different φ-dependence

of the spherical coordinates (3.7).

In the absence of the dilaton/axion field, the 3-index antisymmetric tensor field G(3)

is simply G(3) = dA(2). Since d(σ1 − iσ2) = i(σ1 − iσ2) ∧ σ3, we find that (σ1 − iσ2) is

a factor in G(3) so that GMNPG
MNP = 0, as required by the dilaton equation. It also

implies that the energy-momentum tensor, T
(3)
MN , satisfies T

(3)
77 = T

(3)
88 = T

(3)
11 . Then, given

(3.15), the Einstein equations imply (3.11), which provides us with the first nontrivial test

of the vanishing of the dilaton/axion.

Next we consider the solution to the linearized Einstein and Maxwell equations at the

UV end of the flow. From the diagonal Einstein equations we recover, up to a sign, the

usual Freund-Rubin Ansatz for the 5-index tensor,

F12345 = F678910 = −g
2
. (3.20)

Substituting this into the Maxwell equations together with

ai(r, θ) = e−r/L ãi(θ) +O(e−2(r/L)) , (3.21)

we look for a regular solution that also satisfies the (9,10) Einstein equation. The latter

does not involve the 5-index tensor and thus has the lowest order contribution from the

11



3-index tensor. It turns out that a required solution exists only for the choice of sign as in

(3.20), and we we find

ã1(θ) =
2

g2
cos θ , ã2(θ) =

1

g2
cos2 θ sin θ , ã3(θ) = − 2

g2
cos2 θ sin θ . (3.22)

Turning to the general case we examine the combination

T
(3)
99 +T

(3)
10 10−2T

(3)
11 = −g

4

4

ρ coshχ

X
1/2
1 cos2 θ

(
∂a1

∂r

)2

+
g6

4

X
3/2
1 coshχ

ρ3 cos4 θ sin2 θ
(a2−a3)

2 , (3.23)

corresponding to (3.12). The θ-dependence on the right hand side suggests that the func-

tions ai(r, θ) should be a simple modification of their linearized conterparts, ãi(θ). In

particular,
∂a1

∂r
=

1

g

(ρ6 − 2) tanhχ

ρ2
cos θ , (3.24)

and

a2 − a3 =
1

g2

(ρ6 + 2) tanhχ

X1
cos2 θ sin θ . (3.25)

The first equation is simply integrated as

a1(r, θ) =
2

g2
tanhχ cos θ . (3.26)

Substituting (3.25) and (3.26) into the (9,10) Einstein equation we finally determine that

a2(r, θ) =
1

g2

ρ6 tanhχ

X1
cos2 θ sin θ ,

a3(r, θ) = − 2

g2

tanhχ

X1
cos2 θ sin θ ,

(3.27)

and thus solve all the Einstein equations that do not involve the 5-index tensor.

The solution for the 5-index tensor is easily obtained from, for example, the (1,1),

(5,5) and (5,6) Einstein equations, with any sign ambiguities resolved by comparing the

result with the linearized limit. We find

wr =
g

8
e4A cosh2 χ

ρ4

(
(cosh(2χ) − 3) cos2 θ + ρ6 (2ρ6 sinh2 χ sin2 θ + cos(2θ) − 3)

)
,

wθ =
e4A

8ρ2

(
2 cosh2 χ+ ρ6 (cosh(2χ) − 3)

)
sin(2θ) ,

(3.28)

and verify that
∂wr

∂θ
=

∂wθ

∂r
, (3.29)

which shows that wrdr + wθdθ = dw for some function w(r, θ).

At this point all the fields have been determined and we verify that all the remaning

Einstein equations, the Maxwell equations and the Bianchi identities are satisfied.

12



4. N = 2 supergravity with hypermultiplets

The truncations that we consider here are motivated by the flow considered in [13].

The idea was to consider an N = 1 supersymmetric flow in which all the chiral multiplets

are given a mass, leaving only the massless vector multiplet. For simplicity, all the masses

are set equal and so the flow has an SO(3) symmetry rotating the three chiral multiplets

into one another. As we will discuss below, the truncation of the supergravity to the

SO(3) invariant sector leaves eight scalar fields. However, in [13] only two of these scalars

were considered, and while these were the scalars of physical interest, it was unclear as to

whether they represented a consistent truncation of the full set of eight. It turns out that

it is indeed consistent to truncate to these scalars, and one way to establish this is to show

that they are the invariants under an additional discrete symmetry. We will also discuss

this in some detail below since this discrete symmetry has some interesting consequences

for the physics.

4.1. The SO(3) invariant sector

The fermion mass matrix, and the corresponding supergravity scalars can be repre-

sented as a complex, symmetric matrix mij , i, j = 1, . . . , 4. The flow described in [13]

involves setting mij = diag(m,m,m, 0). The SO(3) invariance is thus the orthogonal ro-

tations on a, b = 1, 2, 3. In particular it is the real subgroup of SU(3) ⊂ SU(4) = SO(6).

The 4 of SO(6) therefore decomposes as 4 → 3 + 1 and 6 decomposes as 6 → 3 + 3 of

SO(3). As mentioned earlier, the truncation to the space of SO(3) singlets reduces the

N = 8 supergravity theory to N = 2 supergravity coupled to two hypermultiplets, and

the scalar manifold is given by (2.5).

In terms of the Yang-Mills theory on the branes, the eight scalars are dual the gauge

coupling, the theta-angle, the scalar operators:

O1 =

3∑

j=1

(
Tr

(
XjXj

)
− Tr

(
Xj+3Xj+3)

)
, O2 =

3∑

j=1

(
Tr

(
XjXj+3

)
, (4.1)

and the two complex fermion bilinears:

O3 =

3∑

a=1

Tr
(
λaλa

)
, O4 = Tr

(
λ4λ4

)
. (4.2)
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The coefficients of O3 and O4 are two complex, or four real parameters. One should also

remember that the supergravity magically adjusts the proper amount of

O0 ≡
6∑

j=1

Tr
(
XjXj

)
.

4.2. Much ado about G2(2)

Our first task is to find an effective way to parametrize the manifold (2.5). Recall that

E6(6) has a maximal subgroup SL(6, IR) × SL(2, IR)5d. Here we have put a subscript 5d

on this SL(2, IR) to distinguish it as that of the dilaton and axion of the ten-dimensional

IIB theory. The SO(3) is the compact subgroup of the diagonal SL(3, IR) ⊂ SL(3, IR) ×
SL(3, IR) ⊂ SL(6, IR). The G2(2) subgroup of E6(6) that we seek in fact commutes with

the diagonal SL(3, IR). Thus we have:

E6(6) ⊃ SL(3, IR) ×G2(2) ⊃ SO(3) ×G2(2) , (4.3)

for which

27 → (6, 1) + (3, 7) → (1, 1) + (5, 1) + (3, 7) . (4.4)

We now need to see how the invariances of the supergravity potential act on this manifold.

First note that the diagonal SL(3, IR) commutes with SL(2, IR)X in SL(6, IR), where

the subscript X is to distinguish from SL(2, IR)5d. Hence, the G2(2) contains SL(2, IR)X ×
SL(2, IR)5d. The non-compact generators of SL(2, IR)X are dual to the operators O1 and

O2 of (4.1).

Of the original SO(6) invariance of the scalar potential, only the SO(2) subgroup of

SL(2, IR)X survives. In addition, the potential is invariant under SL(2, IR)5d. This four

parameter family of invariances reduces the eight-manifold to four independent parameters.

There are, of course, many ways to parametrize the manifold, but the simplest form

that we have found is discovered by using the SU(2) that is diagonal5 in the denominator

SU(2)’s of (2.5). Under this SU(2) the eight non-compact generators decompose as a

5+ 3. It turns out that the O(2) subgroup of SL(2, IR)X and the non-compact generators

of SL(2, IR)5d can be used to set the non-compact generators of the 3 to zero, leaving the

5. Remarkably enough, this 5 extends the SU(2) = SO(3) to another SL(3, IR). Thus we

5 Care is needed here since there is also an anti-diagonal embedding, but this does not have

the invariance structure that we need.
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will parametrize the scalar potential using this SL(3, IR)/SO(3). There is still the residual

invariance of the compact generator of SL(2, IR)5d. This acts on SL(3, IR) as a rotation in

the first and second entries. Explicit details of how this particular gauge choice is made

in G2(2) may be found in Appendix A. (For another explicit parametrization of the coset,

see [45].)

Finally, to parametrize S ∈ SL(3, IR)/SO(3), we will write it as

S = O(θ1, θ2, θ3)
−1 D O(θ1, θ2, θ3) , where D = diag(ρ1 , ρ2 , (ρ1ρ2)

−1) , (4.5)

and where O(θ1, θ2, θ3) is a general SO(3) rotation matrix. It is usually convenient to

parametrize such a rotation matrix using Euler angles, i.e. by fundamental rotations,

Rij(θ), through an angle θ in the i-j-plane:

O(θ1, θ2, θ3) = R12(θ1) R23(θ2) R12(θ3) . (4.6)

If one uses this form of O then the residual invariance will mean that the potential is

independent of the angle θ3.

4.3. The scalar sector of the N = 2 theory

Using the parametrization described above, we find the following expression for the

scalar potential of the SO(3)-invariant subsector:

P = − 3g2

8
− 3

128

(
ρ2
1 − ρ−2

1

) (
ρ2
2 − ρ−2

2

)
− 3

32

(
ρ2
1 + ρ−2

1 + ρ2
2 + ρ−2

2

)

+
3

128

(
ρ1 − ρ−1

1

)3 (
ρ1 ρ

2
2 − ρ−1

1 ρ−2
2

)
sin2(θ2)

− 3

128

(
ρ1 ρ

−1
2 − ρ−1

1 ρ2

) (
ρ1 ρ2 − ρ−1

1 ρ−1
2

)3
sin2(θ1) sin2(θ2) .

(4.7)

One can easily check that this potential yields no other critical points other than the

ones discovered in [3].

One of the key elements of five-dimensional supergravity is the matrix, Wab, that

appears in the supersymmetry transformation of the gravitino [26]. It is the eigenvalues of

this matrix that generically provides a superpotential in N = 1 supersymmetric sub-sectors

[7]. On the SO(3) invariant G2(2) sector, we find that Wab consists of four two-by-two

blocks, three of which are identical. (This structure is required by SO(3) invariance.) The

multiplicity-one block corresponds to the indices (3, 7) and will be denoted M1, while the
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multiplicity-three block corresponds to the index pairs: (1, 5), (2, 6), (4, 8), and will be

denoted M2. Writing

Mj =

(
αj + iβj −iγj

−iγj αj − iβj

)
, j = 1, 2 , (4.8)

one has

α1 = − 3

8 ρ2
1ρ

2
2

[
ρ1ρ2

(
1 + ρ2

1

) (
1 + ρ2

2

)
+ ρ2

(
1 − ρ1

) (
1 + ρ2

1

) (
1 − ρ1ρ

2
2

)
sin2(θ2)

+
(
ρ1 − ρ2

) (
1 − ρ1ρ2

) (
1 + ρ2

1ρ
2
2

)
sin2(θ1) sin2(θ2)

]
,

α2 = − 1

8 ρ2
1ρ

2
2

[
ρ1

(
1 + 5ρ2

2 + 5ρ2
1ρ

2
2 + ρ2

1ρ
4
2

)
sin2(θ1) sin2(θ2)

+ ρ2

(
1 + 5ρ2

1 + 5ρ2
1ρ

2
2 + ρ4

1ρ
2
2

)
cos2(θ1) sin2(θ2)

+ ρ1ρ2

(
5 + ρ2

1 + ρ2
2 + 5ρ2

1ρ
2
2

)
cos2(θ2)

]
,

β1 =
3

8 ρ2
1ρ

2
2

(
ρ1 − ρ2

) (
1 − ρ1ρ2

) (
1 + ρ2

1ρ
2
2

)
sin(θ1) cos(θ1) sin(θ2) ,

β2 = − 1

8 ρ2
1ρ

2
2

(
ρ1 − ρ2

) (
1 − ρ1ρ2

) (
1 − 4ρ1ρ2 + ρ2

1ρ
2
2

)
sin(θ1) cos(θ1) sin(θ2) ,

γ1 =
3

8 ρ2
1ρ

2
2

[
ρ2

(
1 − ρ1

) (
1 + ρ2

1

) (
1 − ρ1ρ

2
2

)
+

(
ρ1 − ρ2

) (
1 − ρ1ρ2

) (
1 + ρ2

1ρ
2
2

)
sin2(θ1)

]
sin(θ2) cos(θ2) ,

γ2 =
1

8 ρ2
1ρ

2
2

[
ρ2

(
1 − ρ1

) (
1 − 4ρ1 + ρ2

1

) (
1 − ρ1ρ

2
2

)
+

(
ρ1 − ρ2

) (
1 − ρ1ρ2

) (
1 − 4ρ1ρ2 + ρ2

1ρ
2
2

)
sin2(θ1)

]
sin(θ2) cos(θ2) .

(4.9)

The eigenvalues of Wab thus come in complex conjugate pairs with degeneracies 3 and

1, and are given by:

λj = αj ± i
√
β2

j + γ2
j , j = 1, 2 . (4.10)

From previous experience, it is these eigenvalues that can give rise to superpotentials, and

in particular it is λ1 that could potentially be the superpotential for an N = 1 theory.

The kinetic term of the subsector parametrized by ρ1, ρ2 and θj, j = 1, 2, 3 is given
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by:

−1
2

(
(∂ϕ1)

2 + (∂ϕ2)
2 + (∂ϕ1)(∂ϕ2)

)
− 2 sinh2(ϕ1 − ϕ2) (∂θ1)

2

− 4 sinh2(ϕ1 − ϕ2) cos θ2 (∂θ1) (∂θ3)

− 2
(
sinh2(ϕ1 + 2ϕ2) + sinh(ϕ1 − ϕ2) sinh 3(ϕ1 + ϕ2) sin2 θ1

)
(∂θ2)

2

+ 4 sinh(ϕ1 − ϕ2) sinh 3(ϕ1 + ϕ2) sin θ1 cos θ1 sin θ2 (∂θ2) (∂θ3)

− 2
(
sinh2(ϕ1 − ϕ2) + sinh(3ϕ1) sinh(ϕ1 + 2ϕ2) sin2 θ2

− sinh(ϕ1 − ϕ2) sinh 3(ϕ1 + ϕ2) sin2 θ1 sin2 θ2
)
(∂θ3)

2 ,

(4.11)

where ρ1 = eϕ1 and ρ2 = eϕ2 .

The complexity, both literal and figurative, of the eigenvalues (4.10) makes the iso-

lation of N = 1 superpotentials very difficult. To facilitate this process, it is instructive

to consider the field theory duals of the supergravity scalars, and see how to reduce the

problem further.

5. Further truncations of the N = 2 theory

Finding flows in the full set of scalars of the N = 2 theory is still rather difficult, and

so we simplify the problem further and reduce the number of scalars by imposing discrete

symmetries.

5.1. The self-dual truncation

The route taken in [13] was to keep only O3 and O4 (and implicitly O0). The cor-

responding supergravity scalars were denoted by m and σ respectively, and the residual

U(1) invariances can be used to take m and σ to be real. While the results of [13] are

certainly correct, there were a few omissions of detail, and as we will see at least one of

these details reveals some significant physics.

Setting θj = 0 and ρ1 = e
m
√

3
+σ

, ρ2 = e
m
√

3
−σ

in the paramtrization above yields a

diagonal Wab with one (multiplicity two) eigenvalue:

W = −3
4

(
cosh(2 σ) + cosh

(
2 m√

3

))
. (5.1)

The other eigenvalue is −1
4

(
cosh(2σ) + 5 cosh

(
2m√

3

))
. The potential (4.7) reduces to:

P = −3g2

16

[
2− 1

4 cosh(4σ)+ 1
4 cosh

(
4√
3
m

)
+cosh

(
2σ+ 2√

3
m

)
+cosh

(
2σ− 2√

3
m

)]
, (5.2)
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and the kinetic term takes the standard form:

−1
2 (∂m)2 − 1

2 (∂σ)2 . (5.3)

One can easily check that:

P =
g2

8

(∂W
∂σ

)2

+
g2

8

(∂W
∂m

)2

− g2

3
W 2 ,

and that there is no such equality for the other eigenvalue of W .

From this it is tempting to postulate [13] that, as in [7], N = 1 supersymmetric flows

are given by taking:
dϕj

dr
=

g

2

∂W

∂ϕj
, A′ = −g

3
W , (5.4)

with ϕ1 = m and ϕ2 = σ. However, to verify this one really needs to check the vanishing

of the supersymmetry variations of the spin-1
2 fields: this we have confirmed in detail.

One other detail that is not immediately apparent in [13] is the consistency of truncat-

ing to the m and σ fields. In supergravity one might be concerned that the other fields of

the G2(2) coset do not decouple, while in field theory one might be concerned that turning

on m and σ may cause other fields to flow. Fortunately, explicit computation reveals that

[13] is correct, and that this is a consistent truncation, however it would be more satisfying

if this fact were understood as a result of a symmetry condition. This is indeed possible.

Consider the following matrices:

(
0 I3×3

−I3×3 0

)
,

(
0 1
−1 0

)
, (5.5)

where these are to be viewed as elements of SL(6, IR) and SL(2, IR)5d in SL(6, IR) ×
SL(2, IR)5d ⊂ E6(6). These are invariances of the supergravity potential: indeed they are

elements of the invariance group SO(6) × SL(2, IR)5d. The simultaneous action of these

two matrices negates the non-compact generators of SL(2, IR)X and SL(2, IR)5d, and leaves

invariant precisely the (complex) parameters m and σ. Thus this discrete symmetry effects

the desired consistent truncation, and shows exactly why the other fields do not run in

these models.

More significant is the fact that this symmetry uses the modular inversion of

SL(2,ZZ) ⊂ SL(2, IR)5d, combined with an SO(6) rotation. This should therefore be a

symmetry of the underlying string theory as well, and the invariance under (5.5) forces the

UV string coupling, and hence the Yang-Mills coupling on the brane to its self-dual value.

18



It is thus hard to see, from the field theory why the super-QCD flow of [13] should provide

a model for electric and magnetic confinement.

To understand [13] more completely, one should note that the modular inversion is

combined with a spatial inversion of S5 in which the first three cartesian coordinates,

x1, x2, x3, are exchanged with the second three, x4, x5, x6. This means that if one sees

a characteristic “electric behavior” by approaching on the (1, 2, 3)-axes then one must

be able to see the dual “magnetic behavior” by approaching on the (4, 5, 6)-axes. As a

result one sees that the confining behavior observed in [13] must be a pathology induced in

Wilson and ’t Hooft loops by approaching the S5 from a very special direction. In reality

an apparently confining loop can lower its energy by slightly modifying its direction of

approach, and thereby become screened. Thus the confining behavior of [13] is no more

physical than that of [46]: it is simply an artefact of an unstable symmetry axis. This

interpretation is consistent with the analysis of [13] in which the string tensions were read

off as eigenvalues of the B-field kinetic terms. The selection of an eigenvalue is tantamount

to selecting a direction on S5, and so the confining eigenvalues should be wiped out by

screening effects unless the S5 is approached from very special directions 6.

5.2. The parity-invariant sub-sector

Before we leave the subject of consistent truncations, it is worthwhile cataloging an-

other potentially interesting subsector. As we have seen, the flows of [13] are self-dual,

and it would be nice to have a “tame” sector in which the five-dimensional dilaton could

possibly flow. One way to get such a sector is to require the parity symmetry:

(
I3×3 0

0 −I3×3

)
,

(
−1 0
0 1

)
. (5.6)

The former matrix lies in O(6), and the latter is in GL(2, IR). While the usual stated

symmetry of the supergravity theory is SO(6) × SL(2, IR)5d, it is actually symmetric

under (O(6) × SL±(2, IR)5d)/ZZ2, where SL±(2, IR) denotes the subset of GL(2, IR) with

determinant ±1, and the division by ZZ2 requires that the determinants are equal in each

factor. The parity symmetry (5.6) projects out the operator O2, the five-dimensional axion,

and enforces a reality condition on m and σ. This symmetry commutes with the SO(3)

symmetry, but it removes the U(1) × U(1) symmetries of SL(2, IR)X × SL(2, IR)5d. We

are thus left with four supergravity scalars, one of which is the five-dimensional dilaton.

6 This last observation was made in discussions with Joe Minahan.
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These four scalars turn out to be the non-compact directions of yet another SL(2, IR)×
SL(2, IR) in G2(2). In terms of the generators of Appendix A, these SL(2, IR)’s are given by

L
(1)
1 = −1

2 (X4+X8), L
(1)
2 = 1

2 (X1+X5), L
(1)
3 = 1

2(J3+K3), and L
(2)
1 = 1

2 (X4−X8), L
(2)
2 =

1
2 (X1 −X5), L

(2)
3 = −1

2 (3J3 −K3), with L
(j)
1 being compact. We could proceed as above

to get at the scalar structure, but the previous parametrization did not handle the dilaton

cleanly: while it does not appear in the potential, the dilaton kinetic term will mix in a

complicated manner with the other scalars. Here we use a different gauge where the kinetic

term is simple, but the potential appears to depend upon all four scalars. Each SL(2, IR)

is parametrized using:

exp
(
− φjL

(j)
1

)
exp

(
αjL

(j)
3

)
exp

(
φjL

(j)
1

)
, j = 1, 2 . (5.7)

Define

W = − 3

2
cosh(α1) cosh(α2)

(
cosh2(α2) − e4i φ2 sinh2(α2)

)

− 3

8
sinh(α1) sinh(α2)

(
e2i (φ1+φ2) + 3 e2i (φ1+3φ2)

)

+
3

4
i sinh(α1) sinh(3α2) sin(2φ2) e

2i (φ1+2φ2) ,

(5.8)

then one has

P =
1

8

∣∣∣∣
∂W

∂α1

∣∣∣∣
2

+
1

24

∣∣∣∣
∂W

∂α2

∣∣∣∣
2

− 1

3

∣∣W
∣∣2 . (5.9)

Note that there are no derivatives of W with respect to φj on the right-hand side of

this equation. There is also an asymmetry between α1 and α2 in (5.8) because the two

SL(2, IR)’s are different: the non-compact generators of G2(2) form a (2, 4) of these two

groups.

In this parametrization the kinetic term takes the form:

−1
2 (∂α1)

2 − 3
2 (∂α2)

2 − 2 sinh2(2α1) (∂φ1)
2 − 6 sinh2(2α2) (∂φ2)

2 . (5.10)

6. The metric and dilaton background

6.1. The metric

As desribed in the introduction, the ten-dimensional background metric is given by

the warped product (1.2), with an internal metric on the deformed S5 given by (1.1). It is

natural to use the SO(3) in describing the internal geometry, and indeed we will describe

the deformed S5 in terms of a degenerate fibration of SO(3) over the space of its orbits.
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We will also only consider the metric corresponding to the two scalar subspace of section

5.1 and [13].

We start by thinking of the “round” S5 as the unit sphere in IR6, but with the cartesian

coordinates split into two groups of three: (ui, vj), i, j = 1, 2, 3. The SO(3) symmetry acts

upon these simultaneously in the vector representation. The internal 5-manifold is still the

unit sphere:

u2 + v2 = 1 , (6.1)

but the general metric on this deformed S5 is given by:

ds25 = ξ−
3

2 dŝ25 ,

where
dŝ25 = a1 du

idui + 2 a2 du
idvi + a3 dv

idvi

+ a4

(
d(u · v)

)2
+ 2 a5 (vidui)(vjduj) + 2 a6 (uidui)(vjdvj) .

(6.2)

The coefficient functions are then given by:

a1 =
1

4µ2 ν4
(1 + µ2 ν2)

(
(1 + µ2 ν2) ν2 u2 + (µ2 + ν6) v2

)
,

a2 = − 1

4µ2 ν4
(1 − ν4) (1 − µ2 ν2) (µ2 + ν2) u · v ,

a3 =
1

4µ2 ν4
(1 + µ2 ν2)

(
(µ2 + ν6) u2 + (1 + µ2 ν2) ν2 v2

)
,

a4 =
1

16µ4 ν6
(1 − µ2 ν2)2 (1 + µ2ν2) (µ2 + ν6) ,

a5 =
1

8µ4 ν4
(1 − µ4 ν4) (µ4 − ν4) ,

a6 = − 1

8µ2 ν6
(1 − ν8) (µ4 − ν4) ,

(6.3)

where

µ ≡ eσ , ν ≡ e
m
√

3 . (6.4)

The warp-factor, ξ, is given by:

ξ2 =
1

16µ4 ν8

[
ν2 (1 + µ2 ν2)3 (µ2 + ν6) + (1 − ν4)2 (µ2 − ν2)2 (1 + µ2 ν2)2 u2 v2

− (1 − µ2 ν2)2 (1 − ν4)2 (µ2 + ν2)2 (u · v)2
]
.

(6.5)
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Note that at µ = ν = 1 the internal metric given by (6.2) and (6.3), on the surface

(6.1), collapses to that of the round sphere of unit radius. Moreover, at µ = ν = 1 one has

ξ = 1. As usual, we define ∆ by ∆2 ≡ det (gmp

◦
g pq), where gmp is the internal metric on

S5 given by (6.2) and
◦
g pq is the inverse of the “round” internal metric at µ = ν = 1. We

then have

ξ ≡ ∆− 4

3 , (6.6)

and the complete ten-dimensional metric is:

ds210 = ξ
1

2 ds21,4 + ξ−
3

2 dŝ25 . (6.7)

The foregoing metric on S5 is far from elementary, but a natural way to think of it is

as an IRIP3 fibered over IP1/(ZZ2 ×ZZ2). The IRIP3 fiber is, of course, SO(3) ≡ S3/ZZ2, and

the base is the the orbit space of this SO(3) on S5. This base has the topology of a disk.

To see this explicitly one can use the SO(3) action to reduce u and v to:

u =




0
0
u3



 =




0
0

cos θ



 , v =




0
v2
v3



 =




0

sin θ sinφ
sin θ cosφ



 . (6.8)

The remaining non-zero elements satisfy (u3)
2 +(v2)

2 +(v3)
2 = 1, and so naively describe

an S2. However, any two coordinates can be negated by an SO(3) rotation and so we divide

by the inversions: v2 → −v2 and u3 → −u3, v3 → −v3. Thus we can make the restrictions

v2 ≥ 0, u3 ≥ 0. In terms of the polar coordinates, one has: 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ π. It

should also be noted that for θ = π/2 the coordinate φ becomes redundant. Given the ZZ2

identifications for general θ and φ, the base may be thought of as a quarter sphere, which

has the topology of a disk. We can parametrize it in terms of the coordinates:

w1 = 2 u · u− 1 = cos(2θ) , w2 = 2 u · v = sin(2θ) cosφ , 0 ≤ w2
1 + w2

2 ≤ 1 . (6.9)

The fiber is regular except at the edges of the disk, i.e. at points where

w2
1 + w2

2 = 1 ⇔ sin θ cos θ sinφ = 0 . (6.10)

At these points either u or v vanishes, or u and v are colinear. At such points the fiber

degenerates to a IP1. We should stress that even though this description as an IRIP3

fibration is singular, the overall manifold at generic values of µ and ν is still a perfectly

smooth, but deformed, S5.

22



6.2. The dilaton

Using the scalar fields of section 5.1, we computed the right-hand side of (1.3) with

xI = (ui, vj). There is an important consistency check in that taking the determinant on

both sides of (1.3) must give the same expression for ∆ as that given by (6.6) and (6.5).

This does indeed work. Furthermore, we obtain the following components for M = S ST :

M11 =
1

4 ξ µ2 ν4
(1 + µ2 ν2)

(
(µ2 + ν6) cos2 θ + ν2(1 + µ2ν2) sin2 θ

)
,

M12 = M21 =
1

4 ξ µ2 ν4
(1 − ν4) (1 − µ2 ν2) (µ2 + ν2) sin θ cos θ cosφ

M22 =
1

4 ξ µ2 ν4
(1 + µ2 ν2)

(
ν2(1 + µ2ν2) cos2 θ + (µ2 + ν6) sin2 θ

)
.

(6.11)

Thus we have an extremely non-trivial dilaton/axion background. Intriguingly

enough, the matrix elements of M are, up to a factor of ξ, exactly the same as the

metric coefficients a1, a2 and a3. Thus the dilaton is controlling the relative sizes of the

u-sphere and v-sphere, while the axion controls the fibering of one over the other.

7. The flows and their infra-red asymptotics

The mathematics of the flows were thoroughly described in [13], and we first sum-

marize these results in our conventions. The solution to (5.4) for µ = eσ and ν = e
2

√

3
m

is:

µ =

√
1 + λt3

1 − λt3
, ν =

√
1 + t

1 − t
, (7.1)

and

A(r) = 1
6 log

(
t−3 − λ2 t3

)
+ 1

2 log
(
t−1 − t

)
+ C1 , (7.2)

where

t = exp
[
−

( r
L

− C1

)]
, λ = exp

[
3
(
C2 − C1

)]
, (7.3)

and where the Cj are constants of integration for the flows of m and σ. Indeed, near the

UV limit one has:

m ∼ m0e
− r

L , σ ∼ σ0 e
−3 r

L ,

m0 ≡
√

3
2 eC1 , σ0 ≡ 1

3 e
3C2 , λ = 9

√
3

8

σ0

m3
0

.
(7.4)

Thus the constants of integration therefore represent the values of the mass and gaugino

consensate introduced in the UV theory. The constant of integration in A(r) has been

chosen so that A(r) ∼ r
L + O(e−r/L) as r → ∞. It was argued in [13] that the physical

flows have λ ≤ 1, and thus have the fermion mass scale greater that the gaugino condensate

scale.
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7.1. Asymptotics for λ < 1

For λ < 1 the five-dimensional metric becomes singular at r = C1L, or at t = 1 [13].

The ten-dimensional metric is, however, much less singular, and indeed resolves into a ring

distribution of what appear to be 7-branes. To see this we start by parametrizing the

vectors u, v by:

u = R




0
0

cos θ



 , v = R




0

sin θ sinφ
sin θ cosφ



 , 0 ≤ θ ≤ π/2 , 0 ≤ φ ≤ π , (7.5)

where R is a generic SO(3) rotation matrix. One then decomposes R−1dR into the left

invariant 1-forms, σi, i = 1, 2, 3, normalized according to dσi = 1
2 ǫijk σj ∧ σk.

In the limit t→ 1 the warp factor, ξ, diverges according to:

ξ ∼ 1

(1 − t)2
(sin θ cos θ cosφ)

1

2 . (7.6)

The factor of ξ1/2 in (6.7) makes two important modifications to the five-dimensional

metric. First, it exactly cancels the vanishing of e2A as t → 1, and leaves a finite coeffi-

cient. Secondly, it suggests the change of variable χ ≡ 2(1 − t)1/2 to regularize the radial

behaviour.

The net result of this is that the ten-dimensional metric has the following leading

behaviour in χ as χ→ 0.

ds2 = L2

√
2
(1 − w2

1 − w2
2)

1

4

[
2

L2 (1 − λ2)1/3 e2C1

(
ηµνdx

µdxν
)
− dχ2 − 1

4 χ
2 (σ2

1 + σ2
2 + σ2

3)

]

− L2

√
2

(1 − w2
1 − w2

2)
− 3

4

[
2(1 − λ)

(1 + λ)
dw2

1 +
(1 + λ)

2(1 − λ)
dw2

2

]
.

(7.7)

Observe that the metric in the first square bracket is locally that of a flat Lorentzian 7-

brane, while the metric in the second square bracket is that of a flat Euclidean metric on

the disk. The warp factor:

ζ ≡ 1 − w2
1 − w2

2 = 4 sin2 θ cos2 θ sin2 φ , (7.8)

is only singular on the ring at the edge of the disk. Moreover the powers of ζ that appear in

(7.7) are precisely those appropriate to a dimensional reduction of ten dimensional physics

to (7+1)-dimensional physics on the brane. Thus we see that in the IR limit the D3-brane

physics appears to be oxidizing to 7-brane physics.
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To be more explicit, far from the brane one sees the usual D3-brane throat, but as

one approaches t = 1, or r = C1L, the throat rounds out into a seven-brane world. Now

recall that e2C1 = 4
3
m2

0 (see (7.4)), where m0 is the mass of the chiral multiplets. Thus the

distance that one descends down the throat before encountering the 7-brane is set by the

UV mass, m0. Also note that the scale in front of the D3-brane metric is (1− λ2)1/3 e2C1 ,

and so the supergravity description of this flow terminates at a D3-brane scale determined

by the chiral multiplet mass and by the gaugino condensate. The larger the chiral multiplet

mass, the closer to the UV it terminates, but the nearer λ is to 1, the nearer the IR the

flow goes.

The seven-brane form of the metric is precisely consistent with the infra-red limit of

the dilaton. As t→ 1 the matrix M in (6.11) limits to:

M =
1

sinφ

(
cot θ cosφ
cosφ tan θ

)
. (7.9)

This dilaton/axion configuration is regular everywhere except exactly where (7.8) vanishes.

There is also an interesting topological issue: while the first metric factor in (7.7) is

locally flat, it is actually IR3,1×IR4/ZZ2 where the ZZ2 negates four of the spatial coordinates.

It thus has an A1 singularity. The reason for this is that the apparently spherical section of

the metric (7.7) represented by the left invariant one-forms, σj , is the metric on SO(3) =

S3/ZZ2 and not the metric on SU(2) = S3. This is the origin of the modding by ZZ2.

This suggests that the string theory will see new massless states associated with branes

wrapping this vanishing 2-cycle.

7.2. Asymptotics for λ = 1

If one looks at (7.7) one sees that various coefficients either vanish or diverge as λ→ 1.

In a more careful treatment of the asymptotics these coefficients are, respectively, replaced

by positive or negative powers of the radial coordinate χ. To be more explicit, first note

that the five-dimensional metric (2.1) now behaves according to:

ds21,4 = (1 − t)4/3 e2C1 2
4

3 3
1

3 ηµνdx
µdxν − dr2 . (7.10)

The warp factor is now asymptotic to:

ξ ∼ 1

(1 − t)
Ω̂ , where Ω̂ ≡ 1

3

(
3 cos2(2θ) + 4 sin2(2θ) sin2(φ)

)1/2
. (7.11)
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Once again one introduces the change of variables: χ ≡ 2(1 − t)1/2, and one then finds

that the ten-dimensional metric takes the form:

ds2 ∼ Ω̂
1

2

[
2

2

3 3
1

3 e2C1 χ
2

3

(
ηµνdx

µdxν
)
−L2 dχ2

]
− L2 Ω̂− 3

2

[ 1

3χ2
dw2

2 + ds̃24

]
, (7.12)

where ds̃24 is a complicated, but regular metric on IRIP3 and in the θ direction.

The dilaton matrix, M, takes the form

M ∼ 1
3 Ω̂−1

(
1 + 2 cos2(θ) 2 sin(2θ) cosφ

2 sin(2θ) cosφ 1 + 2 sin2(θ)

)
. (7.13)

The metric and the dilaton no longer have a ring singularity, but only have a singularity

at the points θ = ±π
4
, φ = 0. On the other hand, the metric now has a singularity at χ = 0.

It is not so simple to give this metric a geometric interpretation, particularly since one of

the internal directions is blowing up as χ→ 0. On the other hand, in contradistinction to

the λ < 1 flows, the D3-brane coefficient vanishes as χ → 0, which, in principle, suggests

that the flow might be able to probe further into the infra-red.

Interestingly enough, the metric and dilaton becomes a little more regular near the

apparently singular region θ = ±π/4, φ = 0. Setting θ = π
4 +ψ, t = 1− 1

2χ
2 and expanding

in small χ, ψ and φ we find:

ds2 ∼ 2 Ω̃
1

2

[
3

1

3 e2C1 χ
2

3

(
ηµνdx

µdxν
)
− L2 dχ2

]

− 1
2
√

3
L2 Ω̃− 3

2 χ2
[

16
3 dψ2 + dφ2 + φ2 (σ2

1 + σ2
2 + σ2

3)
]
,

(7.14)

where

Ω̃ ≡ 2
3

(
3ψ2 + φ2 + χ4

)1/2
. (7.15)

Note that the metric (7.14) has round IRIP3 fibers, but there is a conical singularity at

φ = 0 7. The dilaton matrix becomes:

M ∼ 2
3

Ω̃−1 Q
(

2 −ψ
−ψ 2ψ2 + 1

2 φ
2 + 1

2 χ
4

)
QT , (7.16)

where Q is a rotation by θ = π/4.

7 In our conventions the non-conical metric would be: dφ2 + 1

4
φ2 (σ2

1 + σ2

2 + σ2

3)
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8. The ring singularity: Looking for 5-branes

One of the motivations of [40] was to relate the supergravity flows to the non-

commutative geometry suggested by the Yang-Mills superpotential. In particular, it was

shown in [47,48] that the chiral superfields of the supersymmetric vacuum must obey:

[
Φi ,Φj

]
= − m√

2
ǫijk Φk . (8.1)

Since these are the commutation relations of SU(2), the possible vacua are classified by the

maps of SU(2) into the gauge group SU(N). Indeed, if the mass parameter, m, is real then

the only solution to (8.1) is to take Φj to be some real combination of the anti-hermitian

generators of SU(N). It was thus argued in [39,40] that to find a ground state of the N = 1

theory, only the real part of Φi can develop a vev, and then given that
∑

j Tr(|Φj|2) ∼ m2,

it follows that the vacuum state of the N = 1 theory should correspond to the D3-branes

becoming dielectric 5-branes that wrap a non-commutative S2.

To connect this with the results here, recall that for finite N and for commuting vevs,

the Φj may be thought of as the cartesian coordinates transverse to the D3-branes. More

generally, the solutions here have an SO(3)-invariance: in (8.1) the (real) SO(3) acts the

indices i, j, k, with the real and imaginary parts of Φi transforming separately, each as a

triplet of SO(3). Thus the real and imaginary parts of Φi correspond to the coordinates ui

and vi on S5. If we were to obtain precisely the solution of [40] then the 5-branes should

emerge in the limit in which vj ≡ 0: Instead we find a ring singularity when ~u and ~v are

parallel.

The key to understanding this apparent discrepancy comes from looking at the flows

with λ = 0. In supergravity these flows have an additional U(1) symmetry that is gen-

erated by the simultaneous action of the matrices (5.5) considered as SO(2) generators

in SL(6, IR) × SL(2, IR). This symmetry rotates ~u into ~v while performing an “S-duality

rotation” in the SL(2, IR). Because this symmetry is embedded partially in the SL(2, IR),

this U(1) will not be a symmetry of the field theory at finite N : at best it will reduce

to some discrete subgroup of the SL(2,ZZ), S-duality symmetry of the finite N , N = 4

Yang-Mills theory.

Returning to our ring singularity, one sees that it is essentially given by φ = 0, and

−π/2 ≤ θ ≤ π/2. Note that we have doubled the range of θ used in (7.5): This is enables

us to set φ = 0 and still cover the region with u and v anti-parallel (φ = π). This range

of θ thus covers the whole ring singularity. On this locus, the SO(2) action is represented

by a rotation in θ, and hence the symmetry sweeps out the ring. It follows that as we go
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around the ring, the singularity must be undergoing a continuous “S-duality rotation” in

SL(2, IR).

This picture is confirmed by a more careful analysis of the behaviour of the dilaton

near the singularity. In the previous section we took the limit in which (1−w2
1 −w2

2) was

finite, and (1− t) was becoming vanishingly small, that is, we considered a generic interior

point of the disk defined by w1 and w2. The asymptotic behaviour of the metric and

dilaton depend upon the order of these limits, and we now consider them in the opposite

order. We will also restore λ, but keep λ < 1. The dilaton matrix now has the asymptotic

form:

M = Q ·
(U 1√

1−t
0

0 U−1
√

1 − t

)
·Q−1 , (8.2)

where

U ≡
( 2(1 − λ2)

1 + 2λ cos(4 θ) + λ2

) 1

2

, Q ≡
(

cos θ − sin θ
sin θ cos θ

)
. (8.3)

Note that for θ = 0 (v = 0) and θ = ±π/2 (u = 0) this dilaton configuration is precisely that

which is appropriate for NS 5-branes and D5-branes, and that these limits are exchanged

by the π/2 rotation corresponding to τ → −1/τ . In between we have a continuous rotation

Q ∈ SO(2) ⊂ SL(2, IR), and this is precisely the same as the rotation between ~u and ~v

that takes us around the ring.

It is also instructive to parametrize the SL(2, IR) matrix in terms of the coupling, τ .

One then finds:

τ =
iU cos θ −

√
1 − t sin θ√

1 − t cos θ + iU sin θ
∼ cot θ as t→ 1 . (8.4)

As one goes around the ring one finds that the coupling runs from infinity down to zero

along the positive real axis. At finite N , a singularity at Im(τ) = 0 can be interpreted in

terms (p, q)-branes provided that τ approaches a rational point on the real axis. It is only

in the limit N → ∞ that we can get a smooth distribution (p, q)-branes.

One can also analyse the metric in the limit in which (1−w2
1−w2

2) vanishes faster than

(1 − t), and one sees qualitatively different behaviour from (7.7). There is also a hint of

the 5-branes wrapping an S2 [39,40]. Indeed, it should be recalled that in our description

of the S5 geometry, the IRIP3 fiber degenerates to an S2 on the ring singularity, and this

is the S2 upon which the 5-branes must wrap. Again we focus upon the flows with λ < 1.
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We consider the metric near t = 1 but with φ = 0 in (7.5). The residual directions are

thus the radial, or t direction, the D3-branes, the S2 fiber, and the angle, θ. We find:

ds28 ∼
(1 + 2λ cos(4 θ) + λ2

2(1 − λ2)

) 1

4

(
− (1 − t)−

3

4 (dr2 + dθ2) − (1 − t)+
5

4 dΩ2
2

+ 2 (1 − λ2)1/3 (1 − t)+
1

4 e2C1

(
ηµνdx

µdxν
))
.

(8.5)

One can regularize the radial metric by setting t ∼ 1 + χ8/5, in which case the radial and

S2 part of the metric become dχ2 +χ2dΩ2
2. Thus the 2-spheres are collapsing in a natural

manner. The metric in the θ direction is blowing up, which is reminiscent of approaching

the ring singularity of a rotating Kerr-Newman black-hole. The scale factor in front of

the D3-branes is now vanishing, which suggests that one can now access the far infra-red

limit.

The foregoing limits of the dilaton and metric only depend in a rather mild way upon

λ for λ < 1, and indeed are structurally identical to configurations with λ = 0. This

means that the physical interpretation of the ring singularity should be the same for all

λ < 1, and suggests that if λ < 1 then the gaugino vev is becoming irrelevant to the

infra-red structure, which is then dominated by the flow in the mass, m. In this limit, the

additional U(1) symmetry is restored, and the ring singularity is a duality averaged family

of 5-branes.

It is natural to wonder if the 5-brane identification becomes clearer for λ = 1 since

the “ring of 5-branes” collapses into two singularities at θ = ±π
4 . Indeed, at these points

one has τ = ±1, which are not only rational, but are consistent with (1,±1) 5-branes. As

we have already noted, the five-dimensional flows considered here are self S-dual, and so

finding such a pair of branes is the simplest possible solution we could have found. This

solution no longer has the “unphysical” U(1) symmetry, and therefore makes sense at finite

N , and is also a good candidate for a string background. The asymptotic analysis of the

metric in (7.14) does not, however, appear to be consistent with the 5-brane interpretation.

In particular, the IRIP3 remains round rather than collapsing to an S2.

Thus, if one approaches the core of the supergravity solution from a generic direction

one sees a 7-brane, and the scale of the D3-brane world goes to a finite value. If one

approaches the core from a direction that is consistent with having an infra-red vacuum

in the field theory, then one encounters some lower dimensional “branes,” and the scale

in front of the D3-branes can now run to the far infra-red. If gaugino vev is too small

then one finds a duality averaged ring of 5-branes in the core. If the gaugino vev is tuned

to its maximum possible, and indeed critical, value then the “duality” symmetry is not

restored in the infra-red, and core contains two discrete singularities with dilaton/axion

(p, q) charges of (1,±1). The structure of the metric in this limit appears rather different

from that of 5-branes wrapping an S2.
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9. The SU(3) invariant flow

The complexity of the metric (6.2) makes it extremly difficult to study the full lift of

the GPPZ-flow to ten dimensions. We can, however, consider a further truncation of this

flow to a SU(3) invariant subspace of the scalar manifold (2.5), obtained by considering

the flow of the σ field only, i.e. with m set to zero. This yields an N = 1 flow with the

superpotential, cf. (5.1),

W (σ) = −3

2
cosh2 σ , (9.1)

and an explicit solution given by [13] (cf. (7.1))

σ(r) =
1

2
log

(
1 + λt3

1 − λt3

)
, A(r) =

1

6
log

(
t−6 − λ2

)
+ log(

ℓ

L
) , (9.2)

where

t = e−r/L , λ = eC , (9.3)

and where C and ℓ are integration constants.

One should note that the SU(3) invariant scalar submanifold of this flow is the same

as the submanifold parametrized by the χ field of the non-supersymmetric SU(3) flow in

[1,2] and also the χ field of the LS-flow in section 3. However, the latter involves a different

superpotential and the fields, χ and ρ, form a coupled system in which a truncation to the

χ field alone is inconsistent. Indeed, if we set ρ = 1 in (3.2), the only solution is χ = 0.

Nevertheless, we may still use those results from the lift of the LS-flow that do not depend

explicitly on the flow equations.

The potential (2.3) is, of course the same for the superpotentials (3.1), with ρ = 1,

and (5.1), with m = 0, when we identify χ = σ. There is a critical point of the potential

at σ ≡ χ = 1
2 log(2−

√
3) [26], which corresponds to the compactification of the chiral IIB

supergravity for which the internal manifold is a U(1) bundle over CIP2 [41].8 The present

flow turns out to be a simple deformation of that solution.

This is rather easy to see if we work with the metric (3.4). Consider the complex

coordinates (3.6) and set

ui = u3ζi , i = 1, 2 , u3 = (1 + ζ1ζ̄1 + ζ2ζ̄2)
−1/2eiφ , (9.4)

8 See, [49] for a recent discussion of U(1) bundles over CIPn’s.
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where ζi, i = 1, 2 are the standard complex coordinates on CIP2 and φ is the coordinate

along the U(1) fiber of the projection S5 →CIP2. Convenient real coordinates are, see e.g.

[50], (
ζ1

ζ2

)
= tan θ g(α1, α2, α3)

(
1
0

)
, (9.5)

where, as usual, αi are the SU(2) Euler angles. The ten-dimensional metric (6.7) can now

be recast into the following form:

ds210 = coshσ
(
e2Adxµdx

µ − dr2
)
− L2

(
coshσ(dφ− AFS)2 +

1

coshσ
ds2FS

)
, (9.6)

where ds2FS is the Fubini-Study metric on CIP2,

ds2FS = dθ2 +
1

4
sin2 θ

(
(σ1)

2 + (σ2)
2 + cos2 θ (σ3)

2
)
, (9.7)

and

AFS =
1

2
sin2 θ σ3 , (9.8)

is the U(1) potential. We choose the 10-beins eM , M = 1, . . . , 10, as follows

eµ+1 ∝ dxµ , e5 ∝ dr , e6 ∝ dθ , e6+i ∝ σi , e10 ∝ dφ+ . . . . (9.9)

Recall that for the compactification in [41], the antisymmetric tensor field is simply

given by G(3) ∝ du1 ∧ du2 ∧ du3 with the potential

AR =
1

12
e3iφ sin θ

(
2i dθ ∧ (σ1 + σ2) +

1

2
sin(2θ)(σ1 + iσ2) ∧ σ3

)
. (9.10)

It has also been argued in [41] (see, also [50]) that the SU(3) symmetry essentially de-

termines this potential up to an overall scale. Thus, rather than starting with the result

of section 3, which would require passing to the other spherical coordinates, we simply

consider the following Ansatz:

G(3) = dA(2) , A(2) = f(3)AR . (9.11)

Similarly, we take

F(5) = F + ∗F , F = dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ df(5) . (9.12)

Finally, the same calculation as in section 3 implies that the dilaton/axion field vanishes

and its field equation is satisfied because of the chiral factor σ1 + iσ2 in G(3).
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To determine the two unknown functions f(3)(r) and f(5)(r), we start with Einstein

equations. The Ricci tensor is diagonal

RMN = f1 diag ( 1, −1, −1, −1, −1, 1, 1, 1, 1, 1 )

+f2 diag ( 0, 0, 0, 0, −1, 0, 0, 0, 0, 0 ) ,
(9.13)

where

f1 =
1

2L2
cosh(σ)(7 + cosh(2σ)) , f2 = − 18

L2
sinh σ tanhσ , (9.14)

as are the energy momentum tensors,

T
(3)
11 = −T (3)

22 = . . . = −T (3)
44 = T

(3)
66 = . . . = T

(3)
99

=
coshσ

18L6
(9f2

(3) + L2(f ′
(3))

2) ,
(9.15)

T
(3)
55 =

coshσ

6L6
(−3f2

(3) + L2(f ′
(3))

2) ,

T
(3)
10 10 =

coshσ

18L6
(27f2

(3) − L2(f ′
(3))

2) ,

(9.16)

and

T
(5)
11 = −T (5)

22 = . . .− T
(5)
55 = T

(5)
66 = . . . = T

(5)
10 10 =

4e−4A (f ′
(5))

2

cosh5 σ
. (9.17)

where the ′ denotes the derivative with respect to the flow coordinate r.

Clearly, we should have T
(3)
66 = . . . = T

(3)
10 10, which yields

f ′
(3) = ± 3

L
f(3) . (9.18)

with the boundary conditions, f(3)(∞) = f ′
(3)(∞) = 0. The solution is f3(r) = C3 e

−3r/L.

Substituting this back into the Einstein equations we get, a priori three equations for f ′
(5)

and the integration constant C3, but it turns out that they are solved by

(f ′
(5))

2 =
ℓ8

L10

e12r/L
(
2e6r/L − 3e2C

)2

4
(
e6r/L − e2C

)8/3
, (9.19)

and C3 = 3L2 eC .

Next we use the Maxwell equations which determine the sign of f ′
(5). We also ver-

ify that the required Bianchi identities are satisfied. Finally, integrating (9.19) and re-

expressing the result as a function of σ we obtain the following solution for the antisym-

metric tensor fields:

f(3) = 3L2 tanhσ , f(5) =
ℓ4

4L4
λ4/3 cosh2/3 σ coth4/3 σ . (9.20)
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We conclude with some comments about the formal properties of this solution, in

particular of the metric (9.6). We can recast it in the form

ds210 =
1√
F

(dxµdx
µ) −

√
F ds26 , (9.21)

where the function F is the analogue of the harmonic functions in the “brane-type” solu-

tions, and consider the metric ds26 on the six-dimensional manifold comprised of the flow

coordinate, r, and the internal manifold. It is easy to check that

ds26 = a(ρ)2(dy)2 + b(ρ)2(yJdy)2 , (9.22)

where yi are unrestricted cartesian coordinates in R6 and ρ2 = y · y is the radial variable

related to the original flow by

ρ = ρ0

(
coth

σ

2

)1/3

. (9.23)

The relation to the previous coordinates on the sphere is yI = ρxI . Setting ρ0 = λ = 1,

the functions a(ρ) and b(ρ) are given by

a(ρ) =
ℓ

21/3

(
1 − 1

ρ6

)1/3

, b(ρ) = 22/3ℓ
1

(ρ6 − 1)2/3
, (9.24)

and

F = 24/3L
4

ℓ4
ρ4(ρ6 − 1)2/3

(ρ6 + 1)2
. (9.25)

As expected, we find that F is not harmonic with respect to the six-dimensional metric

(9.22) nor is the latter a flat metric. However, ds26 turns out to be Ricci flat – a fact that

certainly should have some significance.

10. Conclusions

We now have several non-trivial lifts of five-dimensional supergravity solutions to

their ten-dimensional counterparts. As was evident in [8], and in the “super-QCD” flow

presented here, it is essential to work with the ten-dimensional solutions if one is to under-

stand properly the infra-red asymptotics of the supergravity descriptions of these flows.

The five-dimensional solutions simply do not suffice.

An integral ingredient in understanding how to construct the lifts to ten dimensions is

the relationship between the ten-dimensional dilaton and its five-dimensional counterpart.
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As was remarked in [21], the expression (1.3), in principle, provides us with an analytic

relation between the running gauge coupling, the N = 4 coupling, the scale of the theory,

and the running of the fermion and boson masses. In practice, the detailed interpretation

of (1.3), and its connection with an NSVZ beta function, is more vexatious. The problem

is the precise relationship of supergravity and field theory quantities, for example, the

field theory scale and the supergravity radius, or the invariants of the Higgs vevs, and the

angular behaviour of the supergravity solution. There is also the possibility of operator

mixing, as we saw in the LS-flow. In addition to this, it should also be remembered that

the supergravity solution is a strong coupling result, and so it may not actually be possible

to track the details all the way to weak coupling results like the NSVZ beta-function. Thus

the supergravity description exhibits all the proper structure, and general behaviour, but

detailed connections with the weak coupling results remain elusive.

This raises the further question as to the extent that one should expect to be able

to probe the infra-red limit using the supergravity solution. The answer to this question

seems to depend upon the example. For the LS flow the solution runs all the way to the

new critical point, and approaches a conformal theory. Thus the supergravity solution

can “integrate out” the massive chiral multiplet and access the region of the field theory

at mass scales far below the mass of the chiral multiplet. For “Flows to Hades” the

supergravity approximation will break down near the singularity and so from the naive,

five-dimensional perspective one would expect that the supergravity approximation will

fail at some scale short of the infra-red. As was seen in [21], and in most of the solutions

here, the ten-dimensional solution can resolve structure in the singularity and sometimes

allow us to interpret the phase.

In this paper we saw how the ten-dimensional solution can also throw up a new

infra-red obstacle: the oxidation of the D3-branes into 5-branes and 7-branes. We saw

in section 7 that for the “super-QCD” flow in which all the chiral multiplets are given

the same mass, m0, the D3-brane throat generically “rounds out” into a 7-brane at a

radial coordinate value of r ∼ m0L. However, for special directions on the S5, the flow

approaches a singularity that may be interpreted as a ring distribution of 5-branes. This

meshes well with expectations from field theory in that there is only a ground state in

the infra-red if the vevs of the complex scalar fields, Φj , are real. If this condition is not

met, then the flow runs into a “brick wall,” and the scale in front of the D3-brane part of

the 7-brane metric goes to a finite limit: The infra-red limit in which the chiral multiplets

decouple is inaccessible. On the other hand, if the vevs of the the Φj are indeed real,

then the flow runs to the ring of 5-branes, and as has been argued in [39,40], the field
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theory superpotential naturally leads to such dielectric 5-branes. Our results show some

new elements of this 5-brane story: First, if the gaugino condensate is too small, we find

the 5-branes smeared out into a ring. This is because of a restoration of a U(1) duality

symmetry in the infra-red, and the ring is a “duality” smeared family of 5-branes. If the

gaugino condensate runs with its critical initial value (i.e. maximum possible physical

value) the flow does not “round out” into the 7-brane solution, but limits to some form of

(1, 1) and (1,−1) “branes.”

We are thus brought back to the issue of how to get the “correct” flow in that it

properly describes the phases of N = 1 QCD. Perhaps the most compelling features of

the the dielectric 5-brane story of [39,40] is that it very naturally distinguishes between

electric and magnetic confinement in terms of the kinds of strings that can end upon

different species of 5-brane. In the five-dimensional supergravity theory, this behaviour is

still only visible as the result of some fine tuning. This was apparent in [13] where it was

argued that Wilson loops exhibited confinement and ’t Hooft loops exhibited screening. In

the light of (5.5) we see that if there is indeed such behaviour for some Wilson loops, then

Wilson loops that approach the core of the solution from duality flipped (u↔ v) direction

will exhibit the dual behaviour. As a result, a real physical Wilson loop will always be

screened as it is lowered into the core of the solution: if it approaches from the “confining”

direction, it will always be energetically favorable to change its orientation slightly, and

thereby screen the quarks. In short, confining behaviour in the solution of [13] must be an

artefact of fine tuning the direction of approach, much like the confining behaviour found

in [46]. This very general argument, based on (5.5), shows that the “super-QCD” flow of

[13] cannot result in purely an NS5 or D5 brane in the core. Indeed the best we could do

is find a (1, 1) brane paired with a (1,−1) brane.

From the detailed analysis of the vev of the gaugino condensate we have learnt that the

structure of the infra-red limit is a discontinuous function of the initial conditions of vevs.

In the ten-dimensional solution this means that the infra-red physics will depend upon

precisely what, and how, normalizable modes are running. Physically, given an infra-red

vacuum, one expects an exactly fixed relationships between the mass of the chiral multiplet

and the vevs of various operators. For the flows considered here, the natural choice is to

take λ = 1: Our computations suggest that such flows appear to run to a solution that

makes sense for finite N . Therefore, in seeking out the IR limit of the field theory it is

tempting to take the Holmesian approach of eliminating the impossible, and concluding

that whatever remains, however improbable, must be the truth: Namely that the physical

flow to the N = 1 theory in the far infra-red must be the one with λ = 1. Indeed, a similar
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conclusion was reached in [19], but for rather different reasons. What we are missing is the

possibility of running other non-trivial vevs that, in ten-dimensions, correspond to higher

supergravity modes. It is presumably the running of these normalizable modes that makes

the difference between a ring of duality averaged 5-branes, a pair of (1,±1) branes, and a

pure D5-brane, or pure NS5-brane.
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Appendix A. Explicit G2(2) Matrices

The G2(2) Matrix

The following matrices generate G2(2) in its seven-dimensional representation.

J1 =




0 1
2 0 0 0 0 0

−1
2

0 0 0 0 0 0
0 0 0 −1

2 0 0 0
0 0 1

2
0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




, J2 =




0 0 1
2 0 0 0 0

0 0 0 1
2

0 0 0
1
2 0 0 0 0 0 0
0 1

2
0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




,

J3 =




0 0 0 1
2 0 0 0

0 0 −1
2 0 0 0 0

0 −1
2

0 0 0 0 0
1
2 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




,

K1 =




0 1
2 0 0 0 0 0

−1
2

0 0 0 0 0 0
0 0 0 1

2 0 0 0
0 0 −1

2
0 0 0 0

0 0 0 0 0 1 0
0 0 0 0 −1 0 0
0 0 0 0 0 0 0




, K2 =




0 0 −1
2 0 0 0 0

0 0 0 1
2

0 0 0
−1

2 0 0 0 0 0 0
0 1

2
0 0 0 0 0

0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 1 0 0




,
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K3 =




0 0 0 1
2 0 0 0

0 0 1
2

0 0 0 0
0 1

2 0 0 0 0 0
1
2

0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −1
0 0 0 0 0 −1 0




,

X1 =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 0
0 0 1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 0 0 0 0




, X2 =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0




,

X3 =




0 0 0 0 −1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 0 0 0 0 0




, X4 =




0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 0
−1 0 0 0 0 0 0
0 0 0 0 0 0 0




,

X5 =




0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
1 0 0 0 0 0 0




, X6 =




0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0




,

X7 =




0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 −1 0 0 0 0




, X8 =




0 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −1 0 0 0




.
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The subgroups SL(2, IR)5d and SL(2, IR)X are generated by Ji and Ki respectively.

The compact generators are J1, K1, X3, X4, X7 and X8, while J1, J2, J3, K1 generate the

invariances of the potential. The full scalar manifold can be parametrized by matrices of

the form:
M = exp(a1X1 + a2X2 + a5(X5 − 1

2X1) + a6(X6 − 1
2X2)

+ a7J2 + a8J3 − a3K2 + a4K3) .
(A.1)

Now observe that:

[
K1, (X5 − 1

2X1)
]

= − (X6 − 1
2X2) ,

[
K1, (X6 − 1

2X2)
]

= (X5 − 1
2X1) .

We can therefore use the K1 invariance to take a6 = 0. We can then use the SL(2, IR)5d

to set a7 = −a3 and a8 = a4. Doing this we get a five-parameter family of matrices, with

an unused J1 invariance. Introduce the following change of basis matrix:

B =




0 0 1 0 1 0 0
0 0 0 1 0 1 0
1 0 0 0 0 0 −1
0 0 1 0 −1 0 0
0 0 0 1 0 −1 0
1 0 0 0 0 0 1
0 1 0 0 0 0 0




,

then

B M B−1 =



P 0 0
0 −P 0
0 0 1


 , where P =



a1 + 1

2a5 a2 a3

a2 −a1 + 1
2
a5 a4

a3 a4 −a5


 .

This explicitly defines the embedding of the non-compact part of SL(3, IR) into G2(2).

Finally, let H1 = −(J1 − K1), H2 = (X3 − X7) and H3 = (X4 + X8). Then these

matrices define the SO(3) subgroup of the foregoing SL(3, IR) into G2(2), and indeed,

B exp

( 3∑

j=1

cj Hj

)
B−1 =




A 0 0
0 −A 0
0 0 1



 , where A =




0 c1 c2

−c1 0 c3
−c2 −c3 0



 .
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