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1 Introduction

One of the fascinating properties of string theory lies in its ability to geometrize various

deep and subtle field theory phenomena, often giving insight not available in any other

known way.

A particularly fruitful geometric context in which to study four dimensional field theo-

ries is F-theory [1]. It can be understood as a geometric rewriting of IIB string theory with

an axio-dilaton varying over a base, but crucially also as a particular limit of M-theory on

the Calabi-Yau fourfold defined by the axio-dilaton fibration. Questions about the field

theory translate into questions about the geometry of the fourfold, and can often be dealt

with using algebraic geometry methods.

A crucial point is that most of the interesting phenomena (for a field theorist using

M-theory as a computing tool) arise when the geometry develops singularities. Much of

the recent work dealing with F-theory model building (starting with [2–5]), for instance,

is concerned with the construction of appropriately singular geometries in order to model

features of the standard model, and of its supersymmetric and grand unified extensions.

While the physics of interest happens on the singular locus, we do not have much

control directly over M-theory on singular spaces, so in practice one constructs a family

of smooth Calabi-Yau spaces parameterized by some parameter t, such that when t → 0

the Calabi-Yau develops the singularity of interest, but the representatives for t 6= 0 are

all smooth. By following which cycles in the geometry vanish as we approach t = 0 we can

read off which BPS states become massless at the singular point [6], and thus reconstruct

much of the low energy physics.
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In this note we deal with singularities in the M-theory description of certain four di-

mensional theories that cannot be approached in this way: one cannot construct a family

of smooth Calabi-Yau spaces abutting the singular Calabi-Yau. Nevertheless, as we will

discuss below, examples of singularities in the M-theory fourfold that cannot be smoothed

out in a supersymmetric way are both rather common — the ordinary O3 plane gives rise

to such a structure, and the local geometry of the M-theory backgrounds that appear in

our construction is precisely the one in the ABJM construction [7, 8] — and quite inter-

esting from a field theoretic point of view. We focus on the simplest hitherto unknown

examples, which happen to preserve twelve (but not sixteen) supercharges in four dimen-

sions, which we refer to as N = 3 theories in the customary fashion. It is well known that

four dimensional supergravity Lagrangians preserving just twelve supercharges exist, but

to our knowledge this is the first time that N = 3 examples outside that class have been

constructed.

The theories under analysis here have a number of amusing properties. The most

characteristic one — and the one that allows them to evade well known results [9] stating

that perturbative N = 3 theories necessarily have N = 4 supersymmetry — is that their

associated SCFTs do not have a marginal deformation associated with taking the gauge

coupling to a perturbative regime.

This fact will in fact appear rather naturally from the construction: when formulated

in field theory terms the N = 3 theories in this paper arise as quotients of ordinary N = 4

U(N) SYM theory by a symmetry involving a non-trivial action of the SL(2,Z) duality

group, together with an action of the SU(4) R-symmetry group. (Quotients obtained by

gauging a subgroup of the SU(4) R-symmetry group can be seen to describe the theory of

D3 branes at Calabi-Yau orbifold singularities in perturbative IIB string theory [10], our

work can be thought of as a generalization of this viewpoint to F-theory, where extending

the orbifold action to the fiber is natural to consider.) For generic values of the Yang-Mills

coupling the SL(2,Z) duality group is not a symmetry of the theory, and it only becomes

so for specific self-dual values of the coupling. Deformations away from this point should

then be projected out from the quotient, and indeed we show in section 3.3 that this is

the case.

This construction is most naturally motivated from the M-theory viewpoint, where

our construction comes from orbifold actions on R3 × C3 × T 2 that only make sense for

specific values of the complex structure of the torus fiber. This was in fact our original

motivation for approaching this problem: as reviewed in section 2 the ordinary O3 plane

in IIB string theory can be understood as an orbifold of IIB theory in flat space by an

orbifold generator involving the action of the −1 ∈ SL(2,Z) element of the duality group.

It is fairly natural to ask if this can be generalized in the F-theory context to orbifolds

involving duality elements acting non-trivially on the IIB axio-dilaton, and if so what is

the physics of probe D3 branes on top of the resulting singularity. The purpose of this

note is to answer the existence question in the affirmative, and initiate the study of the

resulting field theories.

Note added. As we were finishing the contents of this note [11] appeared, giving a field

theoretical derivation of some properties of N = 3 SCFTs, under the assumption that such
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theories exist. The properties they find seem to be in agreement with those of the theories

we construct below.

2 D3 branes on the O3 plane

In order to motivate our construction, we now revisit a familiar system, the theory of D3

branes on top of an O3 plane. This system is most commonly studied from the point

of view of the worldsheet CFT, a construction which we briefly review now (for a more

exhaustive review see for instance [12]). In this context the theory on the D3 branes on

top of O3 planes is defined as the quotient of the theory of open strings moving in flat

space with D3 boundary conditions, by the orientifold action I(−1)FLΩ. Here Ω reverses

the orientation of the worldsheet, (−1)FL acts as −1 on RNS and RR states, and I acts as

reflection on the three complex directions transverse to the O3

I : (z1, z2, z3)→ (−z1,−z2,−z3) (2.1)

leaving the four real dimensions along the O3 plane invariant. Before quotienting by the

orientifold action the low energy description of the system is given by four dimensional

N = 4 U(N) theory (forgetting about the ten dimensional dynamics in the bulk, which

decouples at low energies), arising from open strings with ends on the D3 stack. The

orientifold preserves all the supersymmetry of the original D3 stack, but projects down

the gauge group to a subgroup. For concreteness we locate the D3 stack on top of the O3

plane, i.e. at z1 = z2 = z3 = 0. The nature of the preserved subgroup depends on the

choice of the representation of the orientifold action on the Chan-Paton factors. There are

two inequivalent choices for this representation: we either end up with the algebra so(N)

(we will discuss the global form of the gauge group momentarily), or usp(N). In this latter

case we need to restrict to N ∈ 2Z for consistency.

We now want to discuss this construction from two alternative viewpoints, in order to

motivate the generalization presented in the next section. Consider first the description

of the system in F-theory, obtained by taking the zero size limit of the fiber for an M-

theory compactification down to three dimensions on a torus fibered Calabi-Yau fourfold.

The basic necessary fact for describing the O3 in this language is that (−1)FLΩ lifts to an

inversion of the torus fiber, i.e. a monodromy matrix

M(−1)FLΩ =

(
−1 0

0 −1

)
. (2.2)

A simple derivation of this fact can be obtained by looking to the action of (−1)FLΩ on the

IIB spacetime fields. For instance, in the CFT language it is easy to see that both the NSNS

two-form B2 and the RR two-form C2 get an intrinsic minus sign under (−1)FLΩ, while

in the F/M-theory language they come from the reduction of C3 along two independent

one-cycles of the torus fiber. We immediately conclude that (−1)FLΩ acts as inversion of

the torus.

The F-theory lift of a stack of N D3 branes in flat space (the U(N) theory) is given

by a stack of N M2 branes on C3 × T 2. The fibration is trivial in this case, with the
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complex structure of the torus arbitrary. This arbitrariness maps to the existence of the

marginal deformation of N = 4 U(N) changing the value of the complexified coupling. The

orientifolded system can then be constructed in F-theory by taking the quotient

σ : (z1, z2, z3, u)→ (−z1,−z2,−z3,−u) (2.3)

with u the flat coordinate of the T 2. That is, T 2 is the quotient of C, parameterized by

u, by some lattice L = {ae1 + be2} with a, b ∈ Z. This involution clearly exists for any

complex structure of the torus, since a change of sign maps any integer lattice L to itself.

The resulting geometry X = (C3 × T 2)/σ has four fixed points at z1 = z2 = z3 = 0

and u = −u mod L. (For instance, if we take e1 = 1, e2 = τ , the fixed points are at

{0, 1
2 ,

1
2τ,

1
2(τ +1)}.) Close to any of these fixed points we have a C4/Z2 geometry, with the

Z2 inverting all coordinates of the C4. Notice that the C4/Z2 singularity is terminal [13, 14]:

it admits no supersymmetric resolution or deformation into a smooth fourfold. This is in

good agreement with the fact that there are no twisted sectors that could smooth out the

O3 plane.

We will come back to the F/M description momentarily, but let us first consider the

field theory description of the orientifold operation. Such a description in terms of the

low energy EFT must exist, since the N = 4 theories before and after orientifolding are

consistent truncations of the full string theory. It will be illuminating to consider the

simplest case: the theory on one mobile D3 brane on top of an O3− plane. As is well

known, this is given by the N = 4 theory with so(2) algebra. At this level the theory

is identical to the U(1) theory arising from a D3 on flat space, without considering the

orientifold. There is a difference when one considers the global structure of the gauge

group, though. This is perhaps best seen by comparing the moduli spaces. For the U(1)

theory we expect the moduli space to be simply C3, while for the so(2) theory we would

rather expect C3/Z2 (with the Z2 acting with a minus sign on all C3 coordinates). The

moduli space arises from the vevs of the scalars on the N = 4 vector multiplet, which take

values in the adjoint. A way to achieve our goal, while keeping supersymmetry, is then

to take a quotient by a Z2 acting as t → −t on the algebra generators. For the cases of

orientifolds giving rise to SO(2N + 1) and USp(2N) groups the expected Z2 quotient of

moduli space is always present as part of the Weyl group, but the Weyl group is trivial

for so(2). Rather, the sign action is precisely the Z2 outer automorphism of the SO(2)

group enhancing it to O(2), so we learn that the expected form of the gauge group is

Z2 n SO(2) = O(2).1

There is a way of understanding this Z2 automorphism that connects nicely to the F/M

description, and which immediately suggests the generalization that is the main topic of

this note. The N = 4 theory with gauge group U(1) has a global symmetry which includes

the R-symmetry group SU(4)R, that has a natural interpretation as the rotation group in

1This conclusion for the global form of the gauge group can be reached in many additional ways. For

example, upon compactification of the theory on a circle, and T-dualization, the global form must be O(2) so

that we can construct the component containing two Õ2
−

planes. Or simply by looking to the perturbative

symmetry group: as opposed to the type I case, in this case there are no finite action non-BPS instantons

spoiling the conclusion.
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the R6 orthogonal to the stack. We wish to focus on the element r ∈ SU(4)R acting as

r : (Aµ, λ
a
α, φ

I)→ (Aµ,
√
−1λaα,−φI) (2.4)

on the components of the N = 4 vector multiplet, corresponding to SO(6) rotations in

the R6 acting as an overall sign zi → −zi. Here a and I are indices in the spinor and

vector representations of SU(4)R. This action does not preserve supersymmetry by itself,

in agreement with the fact that C3/Z2 is not a Calabi-Yau space. Notice also that r2 6= 1.

There is, in addition, a subgroup of the SL(2,Z) duality group that acts nontrivially as

a symmetry of the theory for any value of the coupling τ , it is given by s = −1 ∈ SL(2,Z).

It leaves τ invariant, but it acts non-trivially on the space of states. In particular, it sends a

BPS state with electric and magnetic charges (p, q) to another state with charges (−p,−q),
so it acts with a minus sign on the gauge boson Aµ. The full action of s on the components

of the N = 4 multiplet is

s : (Aµ, λ
a
α, φ

I)→ (−Aµ,
√
−1λaα, φ

I) . (2.5)

(For a field theory derivation of the action on the gauginos see for example [15].) Notice

again that s2 6= 1. The inversion of the (p, q) charges has a natural interpretation as the

Z2 action on the F-theory torus, since light strings come from M2 branes wrapped on

one-cycles.

We now have an intrinsic definition of the Z2 orientifold action in the field theory: it

is simply given by the quotient by r · s, which acts as a global −1 on the whole vector

multiplet:

O(2)N=4 =
U(1)N=4

r · s
. (2.6)

One may worry about the self-duality of the O3− under S-duality, given that the gauge

group is O(2N) rather than SO(2N). We postpone a discussion of this point to appendix A.

Interacting theories. Consider the O(2N) theory, with N > 1. In order to construct

this theory field theoretically, starting with a theory without orientifold, we need to gener-

alize (2.6) slightly. The first way of doing this is familiar from the worldsheet description

of the orientifold. Start with the theory in the double cover of the geometry and in the

absence of orientifold, having twice the amount of mobile branes, giving rise to a gauge

group U(2N). In this doubled theory, in addition to specifying the r ·s quotient, we specify

a Chan-Paton action on the gauge bosons

A→ −At (2.7)

in such a way that only antisymmetric gauge matrices survive, giving rise to the so(2N)

gauge algebra.

Nevertheless, for the non-perturbative generalizations that we have in mind a different

description is perhaps more adequate. We work directly on the quotient geometry, where

we have N mobile branes. Away from the singularity in the geometry, the low energy

gauge group is U(N). As the stack of branes hits the singularity some light modes become
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massless, and enhance the algebra to so(2N). In the M-theory description these light

modes arise from BIon excitations on the probe M2 brane stack. More precisely, the

massless modes transform in the ⊕ representation of the U(N) group. Let us separate

slightly the M2 branes in the stack for ease of visualization, and consider the topology of

the quotient geometry, removing the origin of the base C3 for simplicity. The projection of

the orbifold to the base has topology R× (S5/Z2), which for the purposes of homology is

the same as S5/Z2 = RP5. There is a non-trivial cycle in this RP5 arising in its S5 double

cover from the path between one point and its image. The action on the T 2 fiber homology

as we go around this closed path is changing the sign of the generators: a (p, q) cycle goes

to (−p,−q). So, between any two distinct M2 branes on the stack, generating a Cartan

subgroup U(1)2, there are two non-trivial paths which differ by the non-trivial torsional

element in the base. Due to the non-trivial monodromy in the fiber, if one gives a state

with (1, 1) charges under the U(1)2 Cartan, the other gives a state with (1,−1) charges. We

recognize these states as the generators of the adjoint and antisymmetric representations

of U(N), and together they enhance U(1)N to O(2N).

We could have also considered states going from one brane on the stack to itself,

wrapping the non-trivial cycle in RP5. Whether they exist or not depends on the NSNS

charge of the O3 plane: they are absent for O3− and they are present for O3+. Had we

included them, the antisymmetric would have been replaced by a symmetric representation,

giving rise to an enhancement to USp(2N) when the stack hits the singularity. How do

we explain this distinction in the resulting projection without resorting to CFT language?

One suggestive observation is that the O3− and O3+ can be transformed into each other

by dropping a NS5 wrapped on the nontrivial (twisted) two-cycle of RP5 [16, 17]. The NS5

brane and the fundamental string are electric-magnetic duals, so this suggests that the

origin of the distinction, from the target space point of view, may come from an unsatisfied

Dirac quantization condition on the F1/M2 worldvolume if we drop an even number of

NS5/M5 branes on the O3− plane. It would be very interesting to develop this viewpoint

further as a possible tool in order to study the spectrum of BPS states in the more exotic

configurations we construct later in the paper.

Flux classification of O3 types. It is a familiar fact that there are various kinds of O3

planes, as was implicit in the discussion above. A convenient classification is in terms of the

discrete fluxes [H] and [F ] for the NSNS and RR two-forms around the O3 plane [16]. Both

kinds of torsion are H3(S5/Z2, Z̃) = Z2 valued, so we have four distinct possibilities, shown

in figure 1 together with conventional names for each orientifold type. We emphasize that

the statement that we have four different kinds of O3 planes in IIB is perturbative: once we

take the SL(2,Z) duality of the theory into account the four orientifolds organize themselves

into a singlet of SL(2,Z) (the O3−) and a triplet (the Õ3
−

, O3+ and Õ3
+

). Accordingly,

we expect that there is no distinction between the M-theory lifts of the orientifolds in the

triplet, but that they are distinct from the M-theory lift of the O3−.

The discrete fluxes [H] and [F ] lift to the M-theory description as discrete fluxes for

the C3 form. More precisely, around each C4/Z2 local singularity in the M-theory dual

of the O3 plane, we can turn on a nontrivial C3 represented by the torsional generator

of H4(S7/Z2,Z) = Z2.

– 6 –
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Figure 1. The four types of O3 planes, classified based on their discrete torsion [16]. A positive

superscript denotes non-trivial NSNS torsion, while a tilde denotes nontrivial RR torsion.

Alternatively [16, 17], we can start with the O3− plane, and generate the discrete [H]

and [F ] torsions by dropping an NS5 or D5 wrapped on the non-trivial Z2 generator of

H2(S5/Z2, Z̃). In the M-theory language, we change the flux on the C4/Z2 singularity by

dropping a M5 wrapped on the non-trivial generator of H3(S7/Z2) = Z2.

In either description, the net result is that we have 24 = 16 discrete choices for the

discrete torsion on the M-theory lift of the orientifold. (There are actually only five in-

equivalent configurations in M-theory, once we account for possible torus redefinitions.)

The fact that we have a larger number of discrete choices in M-theory than in IIB reflects

the fact that some of these configurations can become trivial or equivalent once we take

the F-theory limit [18].

This is most easily seen in the current case by performing an intermediate step in the

duality between IIB and M-theory: in IIA string theory — obtained by reducing M-theory

on one of the cycles of the T 2, or T-dualizing on the circle in which we reduce IIB — we

also have four types of O2 planes, distinguished by the flux of the NSNS three-form and

the flux of the RR four-form. We denote the different planes by O2± and Õ2
±

in analogy

with the O3 case. The lift of the different O2 planes to M-theory is given by M-theory on

(R7 × S1)/Z2, with the Z2 acting as a reflection on all directions. The reflections on the

R7 base are inherited from IIA, while the fact that the M-theory S1 gets reflected can be

understood from the fact that D0 branes transform with an intrinsic minus sign under a O2,

and D0 branes lift to momentum along the M-theory circle. Over the origin in R7 where the

O2 is located the M-theory S1 degenerates to a segment, and the local geometry around

the endpoints of the segments is C4/Z2. For future convenience we denote the C4/Z2

geometry with f = {0, 1} units of flux by OM2f2 . Thus, there should be a one-to-one map

between types of O2 planes and pairs of OM2 planes. The map can be easily worked out by

computing the charges under C3, see for instance [18], with the result displayed in table 1.

We now come back to the issue of equivalence of M-theory configurations under the

F-theory limit. Consider for example the case of one mobile D3 brane probing a O3−

plane. The low energy dynamics is described by a O(2) group. There are two components

in moduli space once we reduce on a circle, depending on the Wilson line along the circle:

in one we have (after T-duality along the circle) two O2− planes and a mobile D2, and
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O2− Õ2
−

O2+ Õ2
+

(0,0) (1,1) (1,0) (0,1)

Table 1. Lift to M-theory of the different types of O2 planes in IIA. The labels in the bottom row

denote the discrete flux on the two OM22 planes present in the lift, with 0 denoting trivial flux.

in the other we have two Õ2
−

planes with no mobile brane. The M-theory lift of these

two configurations is different, but the distinction disappears in the F-theory limit, where

the Wilson line becomes irrelevant. One can also see in this way that two of the other

orientifolds give rise to shift orientifolds in IIB acting on the compactification circle, and

thus become trivial orientifolds in the strict F-theory limit.

These remarks complete our discussion of the O3 plane. As we see, while the object was

originally introduced in CFT language, it can be described intrinsically both in M-theory

and in effective field theory (although it would be good to develop both of these viewpoints

further). Unlike the CFT viewpoint, these generalize to non-classical configurations, so we

now proceed to discuss some of these generalizations.

3 F-theory at N4d = 3 singularities

We will be interested in the F-theory limit of M-theory on abelian orbifolds of the form

R1,2 × (C3 × T 2)/Zk where k ∈ {2, 3, 4, 6}. The action of Zk on the complex coordinates

(z1, z2, z3, z4) of C3 × T 2 is given by2

zi −→ e2πivikzi (3.1)

with vk = (1,−1, 1,−1)/k and where z4 = x + τy with τ the complex structure of T 2.

These values for k are the only possibilities that are well-defined on the torus.3 The case

k = 2 corresponds to the O3 plane studied in the last section (and which preserves sixteen

supercharges) so we will focus on the other possibilities, which preserve just twelve out of

the sixteen supercharges. (A proof of this fact will be given in section 3.2.)

Notice that the Zk symmetry can only act as an involution of the torus for certain fixed

values of the complex structure τ , which we list in table 2. Since the complex structure

of the torus in M-theory corresponds to the axio-dilaton when we take the F-theory limit,

these backgrounds are intrinsically non-perturbative in ten dimensions. The situation is

similar to F-theory compactifications on certain singular limits of K3 [19]. However, in

those cases one can smoothly move in complex structure moduli space of the K3 to a

perturbative configuration. As emphasized in the introduction, this is not possible for the

orbifolds we are considering.

These orbifolds, or generalized orientifolds, can also be understood in field theory.

Recall that the R-symmetry in the worldvolume of a stack of D3 branes can be understood

2This convention is such that Zk lies in SU(4), which makes the orbifold a Calabi-Yau. The choice

zi → e2πi/kzi is physically equivalent [7] but we find our convention more convenient for our purposes.
3See [13, 14] for classifications of codimension four terminal Gorenstein quotient singularities. The cases

we consider fall into this classification so they are terminal.
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τ χ Q(OM2k,0) Q(OF3k,0)

k = 2 any 384 −1/16 −1/4

k = 3 exp(πi/3) 216 −1/9 −1/3

k = 4 i 240 −5/32 −3/8

k = 6 exp(πi/3) 240 −35/144 −5/12

Table 2. Data for the N ≥ 3 orientifolds analyzed in this paper. D3 charges for the OF3k,0 planes

are given in units of mobile D3 branes.

as rotations on the six directions transverse to the worldvolume, while SL(2,Z) duality is

associated with large diffeomorphisms of the torus fiber in the F-theory description. When

we take the (C3 × T 2)/Zk quotient in (3.1), we are taking a quotient of N = 4 by the

combined action of a R-symmetry generator rk, and an SL(2,Z) symmetry generator sk.

With the inclusion of appropriate massless sectors (which we do not describe in this paper,

but follow from the M-theory description, in analogy with the extra massless two-index

tensors in the O3 case described above), this defines a theory by the analog of formula (2.6).

Our goal in the rest of the note will be to describe some properties of this theory.

3.1 Orientifold variants

A basic quantity to compute for any BPS object in string theory is its charge. In the M-

theory formulation the contribution to the charge under C3 of a C4/Zk singularity comes

from the curvature coupling −
∫
C3 ∧ I8(R), where

∫
I8(R) = χ/24. For the M-theory

configurations of interest to us in this paper, we typically have more than one fixed point.

More precisely, the topology of the singular fiber at the origin of the C3 base is of the form

displayed in figure 2 (see for example [20, 21] for details), namely:

• T 2/Z2 is a sphere with four Z2 orbifold points.

• T 2/Z3 is a sphere with three Z3 orbifold points.

• T 2/Z4 is a sphere with two Z4 and one Z2 orbifold points.

• T 2/Z6 is a sphere with a Z6, Z3 and Z2 orbifold points.

In the F-theory limit, the D3 charge of the 4d object OF3k,0 (the limit of M-theory on

R1,2× (C3×T 2)/Zk, with no torsional flux) is given by the sum of the contribution of each

fixed point.

The charge under the M-theory three-form C3 of the orbifold C4/Zk, in turn, can be

conveniently computed by taking a compact Calabi-Yau Xk = T 8/Zk, computing χ(Xk)

and then dividing the result by the number of fixed points — taking into account that the

resulting fixed points may be of different types. This computation was done in [22], with

the result

χ(C4/Zk) = k − 1

k
(3.2)
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Figure 2. T 2/Zk for a) k = 2, b) k = 3, c) k = 4 and d) k = 6. The black, red, blue and green

dots represent the Zk fixed points for k = 2, 3, 4 and 6 respectively. The grey regions denote the

fundamental domains in each case.

or in terms of the M2 charge of the OMk,0 orbifold (the C4/Zk singularity with no torsion)

Q(OMk,0) = − 1

24

(
k − 1

k

)
. (3.3)

The results are collected in table 2. Adding up the induced charges of the fixed points

on the orbifolded T 2 fibration, according to the fixed point topology described above, we

obtain the D3 charge for the OF3k,0 fixed point, as in table 2.

Discrete torsion. In the same way that the O3 plane comes in different flavors depending

on the value of the discrete fluxes, one may expect that the generalized OF3 planes also

come in different flavors, distinguished by discrete flux data.

Consider first the neighborhood of an OM2k,0 plane. Since H4(S7/Zk,Z) = Zk, we

can add p = 0, 1, . . . , k − 1 units of discrete torsion to OM2k,0 to make an OM2k,p. The

contribution to the charge coming from the discrete torsion can be computed from the

coupling −1
6

∫
C3 ∧G4 ∧G4 appearing in the M-theory action. The charge is then [23]

Q(OM2k,p) = Q(OM2k,p) + pqk (3.4)

with

qk = −1

2

∫
S7/Zk

C3

2π
∧ G4

2π
=

1

2k
. (3.5)

This is

Q(OM2k,p) = − 1

24

(
k − 1 + 12p

k

)
. (3.6)

Let us compute the D3 charge of the OF33 for all choices of flux. Looking at figure 2

we see that the the M-theory lift is constructed out of three OM23 points. Each one has
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Orientifold Charges

OF32 −1
4 , 0,

1
4 ,

1
2 ,

3
4

OF33 −1
3 ,−

1
6 , 0,

1
6 ,

1
3 ,

1
2 ,

2
3

OF34 −3
8 ,−

1
4 ,−

1
8 , 0,

1
8 ,

1
4 ,

3
8 ,

1
2 ,

5
8

OF36 − 5
12 ,−

1
3 ,−

1
4 ,−

1
6 ,−

1
12 , 0,

1
12 ,

1
6 ,

1
4 ,

1
3 ,

5
12 ,

1
2 ,

7
12

Table 3. D3 charges (in F/M-theory conventions, i.e. counting mobile branes) for the different

OF3k planes for all possible choices of torsion, starting with the configuration with no torsion. We

have included all possibilities allowed from the M-theory perspective, even if some are known or

expected to lead to unorientifolded IIB backgrounds in the F-theory limit.

a Z3-valued flux associated to it, for a total of 27 possibilities. Out of these some are

equivalent: we can choose any of the three OM23 planes to lie at the origin of the unit cell,

and an overall reflection of the choice of unit cell does not change the M-theory geometry.

This reduces the number of possibilities to 10. The D3 charge of the different OF33 planes

depends only on the sum of the fluxes, by enumeration we find that the possible charges

in the set are given by {−1
3 ,−

1
6 , 0,

1
6 ,

1
3 ,

1
2 ,

2
3}.

The exercise can be repeated for the other OF3k planes, with the result shown in

table 3. There is a clear pattern to the result: the possible OF3k planes can be labeled

by an integer p ∈ {−k + 1,−k + 2, . . . , k − 1, k, k + 1}. The charge of the OF3pk is then

simply p
2k . Notice that contrary to the OF32 case, we do not necessarily expect that the

different OF3k planes are distinguished by their D3 charge only (up to SL(2,Z)), so there

may be more than one inequivalent OF3k plane with the same D3 charge. It would be very

interesting to clarify this point, but we keep the notation for convenience in any case.

As an example, in the perturbative case we have OF3−1
2 = O3− and OF31

2 = O3+ (or

any of its Õ3
±

SL(2,Z) duals). It is interesting to note that various special cases in the

known OF32 setting seem to persist for higher k. For instance, note that the difference

between the smallest and largest amount of charge is one unit of D3 charge for all k.

A natural conjecture is then that OF3k+1
k comes from a disconnected component of the

moduli space of a mobile D3 probing an OF3 without discrete torsion, when compactified

on a circle. Similarly, OF30
2 and OF32

2 both lift to unorientifolded IIB backgrounds in the

F-theory limit (in the presence of a D3 in the latter case), so it seems plausible that in

general OF30
k and OF3kk also become trivial in the F-theory limit.

3.2 Preserved supercharges

We have made the claim above that the OF3k planes, for k = 3, 4, 6, preserve twelve

supercharges. We now justify this claim from the point of view of the field theory (we will

reproduce the same conclusions below by analyzing the string construction directly, but it

may be interesting to give a purely field theoretical derivation). We start with N = 4 U(N)

SYM theory. The charges of the fields under the different symmetries of the theory are

shown in table 4. The subscript in the representation under SL(2,Z) denotes the charge
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SU(4)R SL(2,Z) SU(2)L × SU(2)R ∆

φI 6 10 (0, 0) 1

λaα 4 1 1
2

(
1
2 , 0
)

3
2(

Fµν
?Fµν

)
1 20 (1, 0)⊕ (0, 1) 2

Qαa 4̄ 1 1
2

(
1
2 , 0
)

1
2

Table 4. Charges of the different fields on N = 4 SYM in four dimensions.

under the U(1) bundle with transition functions [15, 24]

γ =
cτ + d

|cτ + d|
. (3.7)

As explained in section 2, an O3 plane is associated with a quotient by the product of

r and s. Under r, the supercharges transform as

r : Qαa → −
√
−1Qαa (3.8)

whereas under s they behave as

s : Qαa →
√
−1Qαa. (3.9)

Thus, under the combined action of R-symmetry and SL(2,Z) they remain invariant and

therefore the quotient preserves sixteen supercharges, as is familiar.

For higher k, we have that the R-symmetry rotation rk corresponds to a rotation of

2π/k along every 2-plane, in the spinorial representation. Concretely, it is given by (as an

element in SO(6)R)

Rk =

 R̂k 0 0

0 R̂k 0

0 0 R̂−1
k

 (3.10)

with R̂k a 2× 2 matrix corresponding to a 2π/k rotation. Thus, the action on a spinor of

negative helicity (such as Qαa) is

(−,−,−)→ e−iπ/k(−,−,−)

(−,+,+)→ e−iπ/k(−,+,+)

(+,−,+)→ e−iπ/k(+,−,+)

(+,+,−)→ e3iπ/k(+,+,−)

(3.11)

so its action on the supercharges is

rk :
QαA → e−πi/kQαA

Qα4 → e3πi/kQα4

(3.12)
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where the index A runs from 1 to 3. Furthermore, the action of the S-duality generator sk
is the same on all supercharges

sk : Qαa → eπi/kQαa. (3.13)

The product rk · sk only leaves QαA invariant, so the theory preserves twelve supercharges.

3.3 N = 3 and CPT invariance

The field theories discussed in the previous section have N = 3 supersymmetry in four

dimensions. This is surprising since there is a well known argument [9] which states that,

in the absence of gravity, perturbative four dimensional theories with twelve supercharges

are actually N = 4. We review such argument in the following stressing the fact that

it only applies to theories with a perturbative limit. Since the cases we are studying are

intrinsically non-perturbative, the argument does not apply. Furthermore, we will explicitly

show that the operator spectrum of these theories does not fall into representations of

SU(4)R, so there is no possibility for the supersymmetry to enhance to N = 4 (which

could have happened in principle, even if the standard argument for enhancement does not

apply).

Consider an N = 3 supersymmetric QFT in 4d Minkowski space. This means that

the N = 3 supersymmetry algebra has a well-defined action on the space of operators that

define the theory, so these can be arranged in irreducible representations of the supersym-

metry algebra. As usual, we want CPT to be a symmetry of the theory so it should also

act on the space of operators. Then, under CPT an irreducible representation of super-

symmetry may be mapped to itself or it can happen that two of them are mapped to each

other.

Now let us assume that the theory has a Lagrangian description. This means that

there are certain preferred operators (elementary fields) which are the ones that appear

in the Lagrangian and in the measure of the path integral. The Lagrangian may depend

on some parameters and we assume there is a point in such parameter space where the

theory becomes free (the Lagrangian is quadratic in the elementary fields). At that point,

the operator algebra can be recovered from the elementary fields and the Hilbert space

obtained from canonical quantization. There are various free theories that one can consider

at this point:

• The elementary fields include only massless vector multiplets. As it happens, there

are two kinds of N = 3 vector multiplets that get mapped into each other under CPT

and the two of them together make a vector multiplet of N = 4. All the possible

actions involving these fields turn out to be invariant under N = 4 [9]. Notice that

since the whole space of operators is built from the elementary fields (which are in an

N = 4 representation) we have that the action of the N = 4 algebra extends to all

of them. Now one can argue that since the number of supersymmetries is discrete, it

cannot change as we move continuously towards the strong coupling regime. This is

the argument that in gauge theories, N = 3 supersymmetry is actually N = 4.
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• The next option is to include a gravity multiplet (and vector multiplets possibly).

Again, there are two multiplets which get mapped into each other so we need to

include them both at the same time. However, in this case the direct sum of the

two does not admit the action of the full N = 4 algebra. Therefore, we find genuine

N = 3 (supergravity) theories.

In a non-perturbative theory, there is no argument that suggests that there is an

enhancement from N = 3 to N = 4 for non-gravitational theories which preserve CPT.

Then, if there is an operator in a representation of N = 3 which cannot combine with

others to form a representation of N = 4, the theory only has N = 3. As we argue in the

following, this can be explicitly checked for the theories we are considering and there are

indeed operators which only admit the action of N = 3.

For simplicity, we start with the free theories obtained as a Zk quotient of U(1) N = 4

SYM. The chiral primaries in the parent theory correspond to symmetric traceless products

of n scalars φI , which has conformal dimension 1 (see for instance [25]). Let us look at the

case n = 2 and check which operators survive the quotient. We have that 6×6 = 1⊕15⊕20′

where the symmetric traceless piece corresponds to the 20′. This is the only chiral primary

of conformal dimension ∆ = 2.

Since Zk (for k > 2) breaks the R-symmetry SU(4)R → S(U(3)×U(1)P ), we split the

scalar fields as follows,

6→ 31,1 ⊕ 3̄−1,−1. (3.14)

The first subindex denotes the charge under U(1)P (in some normalization) and the second

is the charge under Zk (which is an integer mod k). All we have to do now is take the 20′

we had in the original theory, decompose it as in (3.14) and keep only the states invariant

under Zk. This gives

20′ → 80,0 ⊕ 62,2 ⊕ 6̄−2,−2 , (3.15)

so the last two factors are not invariant under Zk (for k > 2) and are projected out. The

remaining representation 80,0 clearly does not admit the action of SU(4)R so we cannot

have an enhancement to N = 4.

This argument is in fact also valid for interacting theories since the conformal dimension

is protected for chiral primaries, so we conclude that there is no enhancement to N = 4

for any of the theories with k > 2.

As a final comment, notice that the fact that the marginal operator associated with

changes in the Yang-Mills coupling is projected out can also be understood from this

viewpoint. The relevant marginal operator is of the form F ∧ ?F + iF ∧ F + . . . , given

by a component with conformal dimension 4 in the n = 2 multiplet. It is a singlet of

SU(4)R, but transforms nontrivially under SL(2,Z) for k > 2 (for instance, for k = 4 we

have (F, ?F )→ (?F,−F ), so the multiplet gets an overall minus sign), so it gets projected

out in the quotient N = 3 theory.

3.4 Large N limit

One can place an arbitrary number of D3 branes on top of the OF3 planes, so a natural

question is whether the system admits a dual holographic description at large N . The

– 14 –



J
H
E
P
0
3
(
2
0
1
6
)
0
8
3

orbifold description of the theory suggests that the answer is positive: start with the

holographic dual of U(N) N = 4 SYM, and quotient by rk · sk. The rk generator becomes

a freely acting Zk action on the S5, while sk maps to the SL(2,Z) duality of IIB string

theory, as usual.

As in previous cases, the k = 2 case [16] may be illuminating. We have that the

orientifold projection maps to the Z2 involution σ : S5 → RP5. In addition to the geometric

action, it acts with (−1)FLΩ on the theory, which is encoded in a reflection of the torus

fiber, if we represent the background in F-theory.

An equivalent but perhaps clearer description is to start with the F-theory description

of the system, as AdS5 × S5 × T 2, and taking a freely acting quotient by a Zk symmetry

acting simultaneously on the S5 and T 2 factors.

Either way, it is clear that the axio-dilaton of the the holographic system will be

projected out, in accordance with the fact that the dual N = 3 theory on the boundary

has no marginal deformation associated with the complexified gauge coupling. This fact

makes the dual gravity description somewhat subtle, but it may still be approachable in

the M-theory picture.

It is also interesting to compute the amount of supersymmetry preserved by the holo-

graphic dual. We do so by first looking at N D3 branes probing an OF3k and then taking

the near horizon limit. The computation runs parallel to that in section 3.2, and it is in

fact more standard (see for example [7, 26]), so we will be brief.

Type IIB has two supercharges Q+
10 (Weyl spinors of positive helicity) in ten dimen-

sions, which are decomposed under SO(1, 9)→ SO(1, 3)× SO(6) as

Q+
10 = (Q+

4 ⊗Q
+
6 )⊕ (Q−4 ⊗Q

−
6 ), (3.16)

where the first (second) term is a positive (negative) helicity Weyl spinor in both four

and six dimensions. As explained earlier, rk corresponds to an R-symmetry rotation,

which is realized in the ten dimensional perspective as a rotation in the six dimensions

transverse to the OF3k. Thus, we have that Q−6 transforms as (3.11) and analogously for

Q+
6 . Furthermore we have that Q±6 has charge ±1

2 under the S-duality U(1) bundle (3.7)

so we find that sk is given by

sk : Q±6 → e±πi/kQ±6 , (3.17)

and under the combined action rk · sk only twelve supercharges survive for k > 2. Here we

see again that it is crucial to include a non-trivial action under SL(2,Z) to preserve any

supersymmetry.

Finally, the presence of N parallel D3 branes does not break supersymmetry further so

the full system is indeed N = 3 from a four dimensional viewpoint. This is still true once

we take the near horizon limit which gives Type IIB on AdS5× (S5/Zk) with a non-trivial

SL(2,Z) bundle over S5/Zk.

4 Conclusions

In this paper we have argued for the existence of interesting nontrivial theories arising

from D3 branes probing what are essentially non-perturbative F-theory generalizations
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of the O3 plane. For the cases that we have studied, the existence of these generalized

orientifold planes projects out the axio-dilaton, so the resulting theories have no marginal

deformations associated to the coupling.

The simplest case to study, beyond the well understood O3 plane, are the OF3k planes

with k ∈ {3, 4, 6}. We have seen that they preserve twelve supercharges, providing the first

examples (beyond supergravity) of N = 3 theories in four dimensions. These theories have

to be necessarily somewhat exotic in order to avoid well-known theorems about enhance-

ment to N = 4, and we have shown how indeed it seems to be the case that our theories

evade the assumptions of the no-go results.

The F-theory construction provides an intuitive way of understanding these field theo-

ries as exotic “S-duality orbifolds” of ordinary N = 4 theories, which explain readily some

of their most puzzling properties. When it comes to further developments, it may be easier

to study the string theory realization of the theories instead, and in this paper we have

given some concrete steps in this direction, providing an explicit M-theory realization.

Further directions. Our analysis has been focused on arguing for the existence of these

theories, and finding some of their most elementary properties. There are clearly a large

number of further avenues of study, we will highlight here a few.

A first observation is that if we compactify the system on a circle, it admits a dual

description as a stack of M2 branes moving on a background with singularities of the type

C4/Zk. So the compactified theories flow at low energies to ABJM [7, 8] at certain loci of

their moduli spaces. We should thus be able to gain quite a bit of insight into these N = 3

theories by studying their flow to the well understood (by comparison) ABJM theories.

As an example, one can hope to gain information about the four dimensional theories by

studying the superconformal index of appropriate ABJM theories. The k = 1, 2 cases

have in fact been approached in a related way [27], and it would be rather interesting to

generalize this analysis in order to learn more about the class of theories introduced in

this note.

Also, we have been strongly guided by the IIB string construction, but this comes

at the risk of missing possible consistent theories. It would be desirable to sharpen the

purely field theoretical description of our construction, in order to have a purely field

theoretical understanding of which orbifolds are allowed and which extra massless particles

one must include for each choice of field theory orbifold. For instance: we started with

U(N) theories, coming from the D3 branes, but this is certainly not the only known example

of N = 4 theories. Perhaps other N = 3 theories, beyond the ones discussed here, can

be constructed starting from N = 4 theories with other gauge groups. The harmonic

superspace formulation of N = 3 SYM may be helpful in this regard [28–34].

Conversely, the string picture clearly shows that there are other, less supersymmetric,

generalized orientifold planes that one can construct in F-theory. There are certainly a

number of less supersymmetric M-theory orbifolds we could have taken, and we could also

try to study other non-orbifold elliptic fibrations with complex codimension four singu-

larities. Often it will not be possible to deform or resolve the resulting geometries into a

neighboring smooth Calabi-Yau, so they are out of reach of conventional F-theory tech-
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niques (with possibly the remarkable exception of [35]). Nonetheless the close connection

between these generalized orientifolds and ABJM-like theories — a field in which much

progress has been achieved in the last years — gives a promising window into this inter-

esting class of constructions.
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A Self-duality of O3−

On the one hand, we claim that the theory associated to N physical D3-branes probing

an O3− has gauge group O(2N) rather than SO(2N). On the other, there are arguments

suggesting that such a theory should map to itself under S-duality (but with different

coupling generically). It is well known that the theory with gauge group SO(2N) is indeed

self-dual and we would like to show in the following that the same is true for O(2N). We

do so for the case N = 1, since it corresponds to a free theory and the duality can be

performed explicitly at the level of the path integral (see for instance [36]). However, we

expect the same to be true also for arbitrary N , we give a heuristic argument for this below.

The partition function of the theory (in Euclidean signature) is given by

Z =
∑
E

∫
DφDλDAe−SE (A.1)

where SE is the classical action for N = 4 SYM with gauge algebra so(2). The global

structure of the gauge group enters in two different places. First, in the sum over topo-

logically distinct gauge bundles E. For gauge group O(2), one must sum over all bundles

with transition functions valued in O(2) which are, in general, not in SO(2).4 Second, as

explained in the main text, the Z2 in O(2) which is not in SO(2) acts on the different fields

with a minus sign. Thus, two field configurations related by such Z2 should be considered

equivalent and only included once in the path integral.

Since the theory is free, the dynamics of the scalars, fermions and vectors decouples

and we can focus just on the duality for the vectors, which already shows the relevant

point. Thus, consider the path integral

Ẑ =
∑
E

∫
DAe−ŜE (A.2)

with

ŜE =

∫
R4

1

2e2
F ∧ ?F − iθ

8π2
F ∧ F (A.3)

4When the spacetime is simply-connected we actually have that every O(2) bundle is equivalent to

an SO(2) bundle [37]. However, we will also be interested in the theory on R3 × S1 where this becomes

important. See for instance the comment in footnote 1.

– 17 –



J
H
E
P
0
3
(
2
0
1
6
)
0
8
3

where we took spacetime to be R4 for simplicity. Notice that ŜE is invariant under the

action of Z2 which flips the sign of the field strength F . Following [36] we can rewrite this

integral as

Ẑ =

∫
DF DB e−ŜE+i

∫
B∧dF (A.4)

where the integration over the one-form B is included so that once we integrate over it

we effectively restrict ourselves to closed field strengths. For the case in which spacetime

in R4, this is indeed equivalent to (A.2). If, on the other hand, we integrate over F , we

end up with the dual description of the theory in which B is the gauge potential and the

gauge coupling is −1/τ . The crucial point is that in order to make the extra term B ∧ dF
invariant under Z2, we must declare that B is odd under it. Thus, we see that that the

Z2 that acts on the electric variables must act at the same time on the magnetic ones. In

other words, the dual theory is again given by an O(2) theory rather than SO(2). This can

also be seen from the realization of the Z2 as the product of R-symmetry and SL(2,Z), as

explained in section 2.

There is a slightly different way to see this which applies to O(2N) for any N . One

can regard the O(2N) theory as arising from a Z2 quotient of SO(2N), where the Z2 acts

on both the electric and magnetic descriptions in the same way. Thus, since the original

SO(2N) theory is self-dual, we expect the same is true for O(2N).
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