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Abstract

Dietary supplementation with the n-3 polyunsaturated fatty acids (n-3 PUFA) eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) to rats preconditions the liver against ischemia-reperfusion (IR) injury, with reduction of the
enhanced nuclear factor-kB (NF-kB) functionality occurring in the early phase of IR injury, and recovery of IR-induced pro-
inflammatory cytokine response. The aim of the present study was to test the hypothesis that liver preconditioning by n-3
PUFA is exerted through peroxisone proliferator-activated receptor a (PPAR-a) activation and interference with NF-kB
activation. For this purpose we evaluated the formation of PPAR-a/NF-kBp65 complexes in relation to changes in PPAR-a
activation, IkB-a phosphorylation and serum levels and expression of interleukin (IL)-1b and tumor necrosis factor (TNF)-a in
a model of hepatic IR-injury (1 h of ischemia and 20 h of reperfusion) or sham laparotomy (controls) in male Sprague
Dawley rats. Animals were previously supplemented for 7 days with encapsulated fish oil (General Nutrition Corp., Pittsburg,
PA) or isovolumetric amounts of saline (controls). Normalization of IR-altered parameters of liver injury (serum transaminases
and liver morphology) was achieved by dietary n-3 PUFA supplementation. EPA and DHA suppression of the early IR-
induced NF-kB activation was paralleled by generation of PPAR-a/NF-kBp65 complexes, in concomitance with
normalization of the IR-induced IkB-a phosphorylation. PPAR-a activation by n-3 PUFA was evidenced by enhancement
in the expression of the PPAR-a-regulated Acyl-CoA oxidase (Acox) and Carnitine-Palmitoyl-CoA transferase I (CPT-I) genes.
Consistent with these findings, normalization of IR-induced expression and serum levels of NF-kB-controlled cytokines IL-lb
and TNF-a was observed at 20 h of reperfusion. Taken together, these findings point to an antagonistic effect of PPAR-a on
NF-kB-controlled transcription of pro-inflammatory mediators. This effect is associated with the formation of PPAR-a/NF-
kBp65 complexes and enhanced cytosolic IkB-a stability, as major preconditioning mechanisms induced by n-3 PUFA
supplementation against IR liver injury.
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Introduction

Human liver resections involving vascular occlusion to reduce

blood loss may lead to severe hepatic dysfunction, with irreversible

organ damage due to hepatocyte and endothelial cell death [1].

Taking into account that vascular occlusion of the liver or

ischemia (I), followed by its restoration during reperfusion (R)

occurs during surgical manoeuvres such as transplantation, tissue

resection under inflow occlusion (Pringle manoeuvre), and

hypoperfusion shock, several preconditioning strategies affording

resistance to liver IR injury have been evaluated [2]. In this

respect, we have established that dietary supplementation with the

n-3 polyunsaturated fatty acids (n-3 PUFA) eicosapentaenoic acid

(EPA) and docosahexaenoic acid (DHA), which are highly

concentrated in fish oils, affords significant prevention of liver

injury induced by IR in the rat, thus representing a novel

preconditioning strategy [3]. Fish oil supplementation significantly

enhanced the hepatic content of n-3 PUFAs, with diminution in

the n-6/n-3 PUFA ratio, suppression of IR-induced oxidative

stress, and recovery of IR-altered pro-inflammatory cytokine

response and nuclear factor-kB (NF-kB) functionality [3]. In the

latter case, n-3 PUFA supplementation normalized both the early

increase (3 h) and late diminution (20 h) in NF-kB DNA activity

induced by IR [3].

As a result of their incorporation into cell phospholipids, EPA

and DHA exert a significant inhibition of the metabolism of the n-

6 PUFA arachidonic acid (AA), thus decreasing the release of AA-

derived pro-inflammatory eicosanoids [4]. In addition, EPA and

DHA have been shown to generate a group of lipid mediators

called resolvins (E- and D-series) and protectins with potent anti-

inflammatory and inflammation resolution properties [4,5].

Studies in experimental models of liver injury have reported

beneficial actions of n-3 PUFA-derived resolvins and protectins,

preventing liver DNA damage and oxidative stress, with significant

reduction in necroinflammatory liver injury and hepatic steatosis

[6,7]. Although these mediators might explain many of the anti-
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inflammatory actions of n-3 fatty acids, eicosanoid-independent

actions including EPA and DHA effects on transcription factors

regulating inflammatory gene expression such as NF-kB, should be

considered. Supporting this view are the data showing the

decreasing effect of n-3 PUFAs on the production of pro-

inflammatory cytokines regulated by NF-kB [8].

NF-kB is an essential factor with dual intracellular effects,

playing a role in acute cellular stress responses by inducing

proteins affording survival [9], or acting as a pro-inflammatory

transcription factor by upregulating the expression of pro-

inflammatory cytokines and adhesion molecules [10]. Changes

in NF-kB DNA binding activity are main mediators in liver IR

injury, as pointed by its biphasic activation pattern in liver IR

injury in the rat. An early peak (0.5–3 h after reperfusion) due to

the nuclear translocation of NF-kB p50/p65 heterodimers

correlates with the acute phase of IR injury, is followed by a

second peak (9–12 h after reperfusion) [10] and a significant

diminution thereafter (18–20 h after reperfusion) [11].

On the other hand, peroxisome proliferator-activated receptor

a (PPAR-a), a ligand-activated transcription factor highly

expressed in the liver, is activated by several PUFAs [12]. EPA

and DHA are considered as PPAR-a agonists and inhibitors of

NF-kB DNA binding activity [8]. PPAR-a agonists, such as

fibrates, reduce inflammatory responses at the vascular, splenic,

and hepatic level by down-regulation of cytokine-induced genes,

an effect that was attributed to PPAR-a direct protein-protein

interaction with NF-kB subunit p65, thus diminishing NF-kB

DNA binding [13]. In addition to the antagonistic action on NF-

kB signalling, PPAR-a activators are known to induce inhibitor of

NF-kB, IkB-a, in primary smooth muscle cells and hepatocytes,

which is associated with reduced NF-kB DNA-binding triggered

by PPAR-a [14]. Furthermore, inhibition of both IkB kinase

(IKK) activity and TNF-a-induced IkB-a phosphorylation by

fenofibrate in human umbilical vein endothelial cells has been

reported, an effect leading to enhanced cytosolic IkB-a stability

and promotion of NF-kB cytoplasmic sequestering through its

tight association with IkB-a [15]. Similarly to the effects of

fibrates, n-3 PUFAs can also decrease the expression of pro-

inflammatory genes, as shown by the decreased TNF-a expression

by EPA preventing IkB phosphorylation and NF-kB translocation

into the nucleus [8].

Considering PPAR-a anti-inflammatory effect in relation to

decreased NF-kB DNA binding capacity, in the current

investigation we tested the hypothesis that liver preconditioning

by dietary n-3 PUFAs is exerted through PPAR-a activation and

interference with that of NF-kB. For this purpose, we evaluated

PPAR-a activity by the expression of PPAR-a-regulated proteins

in an experimental model of n-3 PUFA preconditioning against

liver IR injury. We also explored the antagonic action of PPAR-a

on NF-kB signalling pathway by assessing the formation of

PPARa/NF-kBp65 complexes and changes in IkB-a phosphor-

ylation, in relation to changes in the expression of pro-

inflammatory cytokines regulated by NF-kB. We revealed that

PPAR-a/NF-kBp65 complex generation and enhanced cytosolic

IkB-stability mediated the antagonistic effects of PPAR-a on NF-

kB-controlled transcription of pro-inflammatory cytokines, thus

constituting major preconditioning mechanisms against IR liver

injury induced by n-3 PUFA supplementation.

Materials and Methods

Animal preparation
Weaning male Sprague-Dawley rats (Bioterio Central, ICBM,

Faculty of Medicine, University of Chile) were allowed free access

to a specially formulated diet (20% casein, 10% n-6 PUFAs, lipo/

hydrosoluble vitamins and minerals, Department of Nutrition,

Faculty of Medicine, University of Chile). Animals received water

ad libitum and were housed on a 12-h light/dark cycle. At day 15,

the n-3 PUFA groups were supplemented for 7 days with

encapsulated fish oil (General Nutrition Corp., Pittsburg, PA)

and the control groups received isovolumetric amounts of saline,

thus comprising four experimental groups: (a) Control-Sham, (b)

Control-IR, (c) (EPA+DHA)-Sham and (d) (EPA+DHA)-IR. In

these conditions the n-3 PUFA groups received EPA (270 mg/kg)

and DHA (180 mg/kg).

Model of partial ischemia-reperfusion injury
At day 8 after EPA plus DHA supplementation, rats were

anaesthetized with intraperitoneal (1 ml/kg) zolazepam chlorhy-

drate (25 mg/ml) and tiletamine chlorhydrate (25 mg/ml) (Zoletil

50; Virbac S/A, Carros, France) and IR was induced by

temporarily occluding the blood supply to the left and median

lobes of the liver by means of a Schwartz clip (Fine Science Tools,

Vancouver, BC, Canada) for 1 h, followed by up to 20 h of

reperfusion, as previously described [11]. Control animals were

subjected to anaesthesia and sham laparotomy. To evaluate liver

preconditioning by dietary n-3 PUFAs, blood samples for serum

AST and ALT (specific diagnostic kits; Biomerieux SA, Marcy l’

Etoile, France) and the NF-kB dependent cytokines TNF-a and

IL-1b (Biosource International, Camarillo, CA, USA) assessment

were obtained by cardiac puncture at 20 h of reperfusion. Liver

samples were obtained at 3 h of reperfusion, for assessments of

NF-kB DNA binding, PPAR-a/NF-kBp65 complexes, changes in

IkBa phosphorylation, and expression of PPAR-a regulated

proteins (Acyl-CoA oxidase [Acox] and Carnitine-Palmitoyl-CoA

transferase I [CPT-I]). Liver samples obtained at 20 h of

reperfusion were used for assessments of TNF-a and IL-1b

expression and liver morphology. Liver samples were taken from

the medial lobes, and either frozen in liquid nitrogen and stored at

280uC, for cytokines assays or fixed in phosphate-buffered

formalin, embedded in paraffin, and stained with hematoxylin-

eosin for morphological assessments.

Ethics Statement
Experimental animal protocols and animal procedures com-

plied with the Guide for the Care and Use of Laboratory Animals

(National Academy of Sciences, NIH Publication 6–23, revised

1985) and were approved by the ‘‘Bioethics Committee for

Research in Animals’’, Faculty of Medicine, University of Chile

(CBA 0381 FMUCH).

Assessments of NF-kB DNA binding and
PPAR-a/NF-kBp65 complexes
For these studies nuclear protein extracts from liver samples

obtained at 3 hours of reperfusion, were prepared according to

Deryckere and Gannon [16]. NF-kB DNA binding was deter-

mined by electromobility shift assay, using the NF-kB probe 59-

GAT CTC AGA GGG GAC TTT CCG AG-39 (Invitrogen Life

Technologies, Carlsbad, CA), labelled with a-32PdCTP and the

Klenow DNA Polymerase Fragment I (Invitrogen Corp., Carls-

bad, CA), as described previously [17]. The specificity of the

reaction was determined by a competition assay using 100-fold

molar excess of unlabelled DNA probe. The sub-unit composition

of DNA binding protein was confirmed by supershift assay using

specific antibodies from goat and rabbit IgG raised against NF-kB

p50 and p65 (Santa Cruz Biotechnology, Santa Cruz, CA).

Samples were loaded on non-denaturating 6% polyacrylamide gels
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and run until the free probe reached the end of the gel; NF-kB

bands were detected by autoradiography and quantified by

densitometry using Scion Image (Scion Corp., Frederick, MD).

PPAR-a/NF-kBp65 complexes were evaluated by co-immuno-

precipitation. For this purpose 350 mg of nuclear protein extracts

[16] were homogenized in lysis buffer (1%NP-40, 0.15 mol/l

NaCl, 0.01 mol/L NaH2PO4 pH 7.2, 0.2 milimoles/L EDTA, 0.5

milimoles/L phenylmethylsulfonyl fluoride or PMSF and 5 mg/ml

pesptatine, leupeptine and aprotinine), incubated at 0uC and

clarified by centrifuging (13,000 g; 30 min). Twenty mg of rabbit

polyclonal antibodies, raised against NF-kB or PPAR-a (Abcam,

Cambrige, UK), were precleared and linked to sepharose-protein

A beads (GE, Amersham Biosciences, Uppsala, Sweden), by

incubation and rotation for 2 h at room temperature. Nuclear

lysates were separately incubated (4uC, overnight, with end-over-

end rotation) with NF-kB or PPAR-a precleared antibodies. The

immune complexes were collected by centrifugation at 1,000 g for

1 min in an Eppendorf refrigerated centrifuge, rinsed twice (200 ml

phosphate buffer), resuspended in Laemmli sample buffer (100uC

for 5 min), separated in 10% polyacrylamide gels using SDS-

PAGE [18] and immunoblotted on nitrocellulose membranes

(input corresponded to 10% of initial extract) [19]. The

membranes were hybridized with NF-kB and PPARa antibodies

(both antibodies for each membrane). The proteins were visualized

by enhanced chemiluminescent detection (Pierce Biotechnology).

Western blot analysis of IkB-a phosphorylation
Liver samples (100–500 mg) frozen in liquid nitrogen were

homogenized and suspended in a buffer solution pH 7.9,

containing 10 mM Hepes, 1 mM EDTA, 0.6% NP-40, 150 mM

NaCl, and 0.5 mM PMSF, followed by centrifugation (3,020 g for

5 min). Soluble protein fractions (50 mg) were separated on 12%

polyacrylamide gels using SDS–PAGE (18) and transferred to

nitrocellulose membranes [19] which were blocked for 1 h at room

temperature with TBS containing 4.5% bovine serum albumin.

The blots were washed with TBS containing 0.1% Tween 20,

Figure 1. Effect of EPA plus DHA supplementation on serum (A) AST and (B) ALT levels, and (C–F) liver histologies after hepatic
ischemia (1 h) – reperfusion (20 h) (IR). Values of serum transaminases (A and B) correspond to the means 6 SEM for 9 to 18 rats per
experimental group, and significance assessed by one-way ANOVA and the Newman-Keuls, 534 test (p,0.05) is shown by the letters identifying each
experimental group. Representative liver sections from a control-sham rat (C), a control-IR animal (D), a (EPA plus DHA)-sham rat (E) and a (EPA plus
DHA)-IR animal (F) (haematoxylin-eosin liver sections from a total of five animals per experimental group; original magnification6100).
doi:10.1371/journal.pone.0028502.g001

N-3 PUFA in Liver Preconditioning
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hybridized with rabbit polyclonal primary antibodies, for either

non-phosphorylated IkB-a (IkBa-OH) or phosphorylated-IkB-a

(IkBa-OP) (Dako Corp., Carpinteria, CA, USA) and incubated

(overnight at 4uC for IkBa-OH and 76 h at 4uC for IkBa-OP).

After extensive washing, the antigen–antibody complexes were

detected using horseradish peroxidase-labelled goat anti-rabbit

IgG or goat anti-mouse IgG and a SuperSignal West Pico

chemiluminescence kit detection system (Pierce, Rockford, IL,

USA). In all determinations, mouse monoclonal antibody for rat

b-actin (ICN Biomedicals, Inc., Aurora, OH) was used as internal

control.

RT-PCR assay of Acox, CPT-I, TNF-a and IL-1b mRNA
expression
PPAR-a regulated proteins (Acox and CPT-I) and NF-kB

regulated cytokines (TNF-a and IL-lb) were assessed by RT-PCR

assay. Total RNA was isolated from 15–25 mg of frozen liver

using an RNAqueousH-4PCR Kit (Ambion, Inc., Austin, Tx,

USA) according to the manufacturer’s instructions. Quantification

of total RNA was performed spectrophotometrically (A260/A280

ratio) and RNA quality was checked by electrophoresis on 0.8%

agarose gels, using a molecular size marker. The resulting DNAse-

free RNA was reverse-transcribed to cDNA with Superscript II

reverse transcriptase (Invitrogen Corp., Carlsbad, CA, USA),

according to the manufacturer’s instructions, and random

hexamer primers (pd[N]6) (Promega, Madison, WI, USA). The

resulting cDNA was amplified in a PCR reaction using PlatinumH

Taq (Invitrogen Corp., Carlsbad, CA, USA), according to the

manufacturer’s instructions, and control 18S Classic II (Quan-

tumRNATM Classic 18S). Nucleotide sequences for sense and

antisense primers used in this study were 59-GAG CCA CGA

AGC CCT CAA AC-39 and 59-GTG GCC TCA CAG ATT

CCA GG-39 for CPT-I; 59-GTT GAT CAC GCA CCAT CTT

GG-39 and 59-GCG TGA TTG GAA GTT TTC CC-39 for

Acox; 59-ACT GAA CTT CGG GGT GAT CG-39 and 59-TAC

ATG GGC TCA TAC CAG GG C-39 for TNF-a; 59-TTC TTT

GAG GCT GAC AGA CC-39 and 59-CGT CTT TCA TCA

CAC AGG AC-39 for IL-1b. For amplification a thermocycler T

personal, BiometraH was used. The amplification was initiated by

5 minutes of denaturation (94uC), followed by 32 cycles (94uC for

4 min, 37uC for 30 s, 59uC for 30 s, 72uC for 1 min, 72uC for

10 min) for CPT I; 30 cycles (94uC for 4 min, 37uC for 30 s, 55uC

for 30 s,72uC for 1 min, 72uC for 10 min) for Acox; 40 cycles

(94uC for 4 min, 37uC for 30 s, 57uC for 30 s,72uC for 1 min,

72uC for 10 min) for TNF-a; 44 cycles (94uC for 4 min, 37uC for

30 s, 55uC for 30 s,72uC for 1 min, 72uC for 10 min) for IL-1b.

All amplification products were stored at 4uC before the

electrophoretic step. All PCR products were electrophoresed on

1.2% agarose gels containing ethidium bromide, visualized by

UV-induced fluorescence, and analyzed by densitometry using

Scion Image (Scion Corp., Frederick, MD, USA).

Figure 2. Effect of EPA plus DHA supplementation on liver NF-
kB DNA binding after hepatic ischemia (1 h) - reperfusion (3 h)
(IR). (A) Autoradiographs representing lanes loaded with 8 mg nuclear
protein from an animal of each experimental group, and supershift
analysis of a sample from a control-IR rat incubated with the labeled
probe for NF-kB and with antibodies specific for NF-kB p50 (anti p50)
and NF-kB p65 (anti p65). (B) Bar graphs corresponding to densito-
metric quantification of relative NF-kB DNA binding. Values shown
correspond to the means 6 SEM for 6 to 8 rats per experimental group,
and significance assessed by one-way ANOVA and the Newman-Keuls,
test (p,0.05) is shown by the letters identifying each experimental
group.
doi:10.1371/journal.pone.0028502.g002

Figure 3. Effect of EPA plus DHA supplementation on the
interaction of liver NF-kBp65 and PPARa (PPARa/NF-kBp65
complexes) after hepatic ischemia (1 h) - reperfusion (3 h) (IR).
Nuclear protein extracts were subjected to immunoprecipitation with
anti-PPARa or anti-NF-kBp65, linked to sepharose-protein A beads.
Panel represents westernblot analysis of anti-PPARa-PPARa/NF-kBp65,
anti-NF-kBp65-NF-kBp65/PPARa immune complexes, hybridized with
NF-kB and PPARa antibodies, respectively, and the input (10% of the
initial extract). 55 KDa band corresponds to IgG heavy chain.
doi:10.1371/journal.pone.0028502.g003
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Statistical analyses
Values shown represent the mean 6 SEM for the number of

separate experiments indicated. Student’s t-test for unpaired data

or one-way ANOVA (GraphPad Prism 4.0 software, GraphPad

Software, Inc. San Diego, USA) and the Newman-Keuls test

assessed the statistical significance of differences between mean

values, as required. A p-value of less than 0.05 was considered

significant.

Results

In agreement with our previous reports [3] EPA plus DHA

supplementation led to serum AST (Figure 1A) and ALT

(Figure 1B) values comparable to those in control-sham-operated

animals. Control rats subjected to IR exhibited a 4.5- and 7.3-fold

increases (p,0.05) in serum AST and ALT at 20 h of reperfusion

in relation to control-sham-operated animals, and effect that was

suppressed by n-3 PUFA supplementation (Figures 1A and 1B,

respectively). In agreement with these data, liver histological

assessments showed normal liver morphology in control-sham and

EPA plus DHA-sham groups (Figures 2C and 2E, respectively),

whereas substantial distortion of liver architecture, degenerative

changes with extensive areas of hepatocyte necrosis and apoptosis

was observed in non-supplemented animals (control-IR group,

Figure 2D). On the contrary, the livers of the EPA plus DHA-IR

group showed normal architecture, with minimal-to moderate

necrosis (Figure 2 F).

At 3 h of reperfusion, NF-kB DNA binding activity in control

rats subjected to IR was increased by 100% (p,0.05) in relation to

that in sham-operated controls, an effect that was suppressed by

EPA plus DHA supplementation, without significant changes in

sham-operated animals (Figure 2A and 2B), thus confirming our

previous studies [3]. EMSA evaluation of NF-kB DNA binding

activity included supershift analysis which confirmed the presence

of NF-kB p50 and p65 (Figure 2A). Also, at 3 h of reperfusion

direct interaction of PPAR-a and NF-kBp65 was detected in all

liver samples from EPA plus DHA supplemented animals ([EPA

plus DHA]-Sham and [EPA+DHA]-IR), leading to the formation

of PPAR-a/NF-kBp65 complexes (Figure 3). PPAR-a/NF-kBp65

complexes were not detected in animals without EPA plus DHA

supplementation (Figure 3) and western blot bands of NF-kBp65

of less intensity were detected in EPA plus DHA supplemented

animals (Figure 3, input lower panel). In addition, significant 34%

increase (p,0.05) in IkB-a phosphorylation, expressed as IkBa-

OP/IkBa-OH ratios was observed in control animals subjected to

IR over that in sham-operated controls, an effect that was

suppressed by EPA plus DHA supplementation (Figure 4A and

4B). No changes in the total content of IkB-a (IkBa-OP+IkBa-

OH) were observed among the experimental groups (Figure 4C).

Considering that these results suggest antagonic actions of PPAR-a

on NF-kB activation at 3 h of reperfusion in n-3 PUFA

supplemented animals as a result of PPARa activation triggered

by n-3 PUFA, changes in liver expression of PPAR-a-regulated

CPT-I and Acox were assessed. Both CPT-I and Acox mRNA

expression assessed by RT-PCR were significantly increased by

24% and 66%, respectively (p,0.05) in the liver of n-3 PUFA

supplemented animals compared to saline-controls (Figure 5A and

5B). We next assessed the antagonic effects of PPAR-a on NF-kB

signalling pathway. For this purpose, changes in liver expression of

the NF-kB-regulated cytokines IL-lb and TNF-a were evaluated in

liver samples at 20 h of reperfusion. IL-lb (Figure 6A) and TNF-a

(Figure 6B) mRNA expression assessed by RT-PCR were

significantly enhanced in control rats subjected to IR by 49%

and 82%, respectively (p,0.05), compared to the saline-sham

group, an effect that was suppressed by EPA plus DHA

supplementation, without significant changes in sham-operated

animals (Figure 6A and 6B). Serum levels of these NF-kB

Figure 4. Effect of EPA plus DHA supplementation on liver IkBa
phosphorylation after hepatic ischemia (1 h) - reperfusion (3 h)
(IR). A. Liver contents of IkBa phosphorylated (IkBa-OP) and non
phosphorylated (IkBa-OH) forms evaluated by Western blotting after
hepatic ischemia-reperfusion (IR) injury in unpreconditioned and EPA
plus DHA preconditioned rats. Representative blots of IkBa-OP, IkBa-OH
and b-actin protein expression are shown, using 50 mg of soluble
protein from a different rat of each group studied. B. Bar graphs
correspond to the respective densitometric quantification expressed as
IkBa-OP/IkBa-OH ratio expressed as means 6 SEM for 6 different
animals. C. Bar graphs correspond to the respective densitometric
quantification expressed as (IkBa-OP+IkBa-OH)/b-actine ratios, ex-
pressed as means 6 SEM for 6 different animals; significance studies
(p,0.05; one-way ANOVA and the Newman-Keuls’ test) are indicated by
the letters identifying each experimental group.
doi:10.1371/journal.pone.0028502.g004
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dependent cytokines were also examined in this study. TNF-a

(saline-sham, 32.8460.28 [n= 6] pg/mL; saline-IR, 63.8168.86

[n= 8] [P,0.05 versus saline-sham, EPA+DHA-sham and EPA+

DHA-IR]; EPA+DHA-sham 34.3260.6 [n = 6]; EPA+DHA-IR

35.1260.44 [n= 6]) and IL-lb (saline-sham, 70.0862.44 [n= 4]

pg/mL; saline-IR, 88.2761.84 [n= 6] [P,0.05 versus saline-

sham, EPA+DHA-sham and EPA+DHA-IR]; EPA+DHA-sham

81.0260.66 [n= 5]; EPA+DHA-IR 80.8261.66 [n= 6]) were

drastically augmented in control rats subjected to IR and

normalized by EPA plus DHA supplementation.

Discussion

In agreement with previous reports, data presented in this study

indicate that liver IR injury induced by 1 h of warm ischemia and

up to 20 h of reperfusion is accompanied by an early (3 h)

enhancement in liver NF-kB DNA binding, with up-regulation of

the NF-kB signalling pathway and pro-inflammatory cytokine

expression (20 h) [3,11,20], and concomitant enhanced serum

levels of these NF-kB-dependent pro-inflammatory products [3].

This latter effect of IR is due to Kupffer cell activation with

increased cytokine production and release, which in turn may lead

to systemic inflammation, a major event in IR liver injury [21]. In

line with these observations, suppression of TNF-a release from

Kupffer cells and decreased liver leukocyte recruitment have been

related to the protection against IR injury afforded by the

combined administration of Kupffer cells inactivator gadolinium

chloride (GdCl3) and a-tocopherol [22].

Abrogation of liver IR injury after EPA plus DHA supplemen-

tation is evidenced by the normalization of serum AST and ALT

levels and liver histology, thus confirming our previous observa-

tions [3], and studies in a rat liver perfused model showing

improvement of the hepatic microcirculation that prevents cell

death on reperfusion [23] or in macrosteatotic mouse liver [24].

Prevention of IR liver injury in n-3 PUFA supplemented rats is

associated with recovery of NF-kB DNA binding activity, lost at

18–20 h of reperfusion [3,9,11], and with suppression of IR-

induced mRNA expression of liver TNF-a and IL-1b and

enhanced serum levels of these pro-inflamatory cytokines, in

relation to non-supplemented animals. These findings provide

further evidence for the anti-inflammatory properties of n-3 PUFA

and are consistent with studies showing successful alleviation of

hepatic IR injury after oral supplementation with n-3 PUFA-rich

oil in a model of hepatic warm IR in rats, with significant

diminution in liver leukocyte infiltration and reduction in the

serum concentrations of TNF-a and IL-6 [25]. In line with these

reports, increased n-3 PUFA tissue status in a model of

experimental hepatitis diminished inflammatory liver injury, a

response that was associated with reduced plasma TNF-a levels

and hepatic gene expression of pro-inflammatory cytokines [26].

Furthermore, DHA has been reported to inhibit the activation of

the NF-kB system in human umbilical vein endothelial cells

activated by cytokines [27]. In addition, studies using a model of

kidney IR, demonstrated partial reduction of renal disfunction in

DHA treated mice, with increased intracellular PPAR-a expres-

sion and concomitant blockage of the NF-kB-induced TNF-a

overexpression [28]. These findings point to PPAR-a-mediated

attenuation of renal IR injury via reduction of the NF-kB-induced

inflammatory pathway, a mechanism also underlying apoptosis in

a model of cultured kidney cells subjected to hypoxia-reoxygena-

tion [28]. NF-kB exerts a significant transcriptional control on

TNF-a and IL-1b expression in Kupffer cells, which are in turn

intimately involved in the response of the liver to severe stresses

such as prolonged ischemia [29–31]. In agreement with our

previous reports [3], suppression of the IR-induced enhancement

in the NF-kB DNA binding activity at 3 h of reperfusion, was

observed in the n-3 PUFA-preconditioned group. This was

observed concomitantly with increased mRNA expression of the

PPAR-a-regulated enzymes CPT-I and Acox, thus evidencing

PPAR-a activation upon n-3 PUFA-preconditioning. These effects

Figure 5. Effect of EPA plus DHA supplementation on liver Acyl-CoA oxidase (Acox) and Carnitine-Palmitoyl-CoA transferase I (CPT-
I) mRNA expression. (A) Representative agarose gel electrophoresis for the RT-PCR products for CPT-I mRNA (509 bp) and for 18S rRNA (324 bp)
after ethidium bromide staining in total hepatic RNA samples from control rats and EPA plus DHA preconditioned animals and densitometric
quantification of RT-PCR products of the mRNA of CPT-I expressed as CPT-I mRNA/18S rRNA ratios to compare lane–lane equivalents in total RNA
content. B. Representative agarose gel electrophoresis for the RT-PCR products for Acox mRNA (510 bp) and for 18S rRNA (324 bp) after ethidium
bromide staining in total hepatic RNA samples from control rats and EPA plus DHA preconditioned animals and densitometric quantification of RT-
PCR products of the mRNA of Acox expressed as Acox mRNA/18S rRNA ratios to compare lane–lane equivalents in total RNA content. Each data point
represents the mean 6 SEM for 3–8 different animals. Significance studies: *p,0.05 versus controls by Student’s t-test for unpaired data.
doi:10.1371/journal.pone.0028502.g005
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were paralleled by a direct interaction between activated PPAR-a

and NF-kBp65 as shown by the formation of PPAR-a/NF-kBp65

nuclear complexes, with parallel decreased IkB-a phosphorylation

in the cytosol. Taken together, these data provide a molecular

mechanism for n-3 PUFA-induced normalization of NF-kB DNA

binding activity increased in the early phase of liver IR injury,

which involves (i) nuclear NF-kBp65 sequestering through the

generation of PPAR-a/NF-kBp65 complexes, and (ii) cytoplasmic

NF-kB sequestering through enhanced IkB-a stability promoting

its association with NF-kBp65/p50 [15]. In agreement with this

proposal, oxidized EPA has been reported as a potent inhibitor of

cytokine-induced activation of endothelial NF-kB, via PPAR-a-

dependent pathway and cytoplasmic retention of NF-kB p50 and

p65 subunits [32]. Furthermore, studies in human endothelial cells

have shown that the anti-inflammatory effects of n-3 PUFA in this

experimental model occur via PPAR-a-dependent mechanisms

regulated by oxidized EPA [33]. In view of these observations, it

seems likely that the anti-inflammatory response elicited by n-

PUFA preconditioning against liver IR injury, could be ascribed to

inactivation of NF-kB via activation of PPAR-a exerted by

oxidized EPA and DHA, biomolecules which readily undergo

oxidation due to their polyunsaturated structure [34]. Oxidation

products of EPA and DHA include E-series and D-series of

resolvins synthesized by the cyclooxygenase and 5-lipoxygenase (5-

LOX) pathway, which exhibit anti-inflammatory effects compared

to those derived from arachidonic acid [35]. Although no direct

effects of EPA and DHA oxidized derivatives on the stability of

cytosolic IkB-a have been reported, resolvin E1 has been shown to

attenuate the pro-inflammatory action of NF-kB and leukotriene

B4 through binding to the G-protein-coupled receptors chemo-

kine-like receptor-1 (GPCR) and leukotriene B4 receptor [36]. In

this respect, at least two GPCRs are involved in transducing

resolvin E1 signals, namely, ChemR23 and BLT1. In relation to

resolvin D1 signal transduction, a lipoxin A4 receptor, and an

orphan, GPR32, specifically interact with resolvin D1, an effect

that may lead to the significant reduction of the TNF-a-stimulated

NF-kB response in HeLa cells overexpressing GPCRs triggered by

this DHA oxidation product [37]. Furthermore, DHA is

metabolized by 5-LOX to form protectins, being protectin 1 the

most potent anti-inflammatory isomer [38]. The significant

protective role of n-3 PUFAs and their oxidation products is

supported by the protection afforded against liver injury induced

by carbon tetrachloride in vivo or hydrogen peroxide in vitro

through protectin D1 and 17S-hydroxy-DHA formation [7].

Alternatively, EPA and DHA may undergo oxygenation by

cytochrome P450 NADPH-dependent epoxygenation pathway,

with formation of several epoxyeicosaquatraenoic acid and

epoxydocosapentaenoic acid isomers, respectively, which might

contribute to the anti-inflammatory effects of n-3 PUFA [35,39].

Suppression of iNOS gene expression as a result of the interaction

of IL-1b-stimulated rat hepatocytes with EPA and DHA

peroxidized products, has been recently proposed as an alternative

anti-inflammatory mechanism triggered by n-3 PUFA [40], thus

evaluation of iNOS expression in relation to n-3 PUFA-mediated

PPAR-a activation in an in vivo model of liver IR might be

relevant. In addition to the anti-inflammatory effects of n-3 PUFA,

enhancement of the hepatocellular antioxidant potential may also

play a role against IR liver injury, considering that the non-

enzymatic peroxidation of EPA and DHA leads to formation of

ciclopentenone-containing J-ring isoprostanes (J3-isoprostanes)

[41]. J3-isoprostanes react with sulfhydryl groups in Keap1

complex responsible for the ubiquitination and further degrada-

tion of transcription factor Nrf2, leading to Nrf2 nuclear

translocation and expression of several liver antioxidant enzymes,

glutathione formation, and diminution in lipid peroxidation rate

[41,42].

It is important to point that the immunosuppressive effects of n-

3 PUFAs or fish oil supplementation have also been attributed to

the elevated production of IL-10, an immunosuppressive mediator

Figure 6. Effect of EPA plus DHA supplementation on liver
interleukine (IL)-lb and tumor necrosis factor (TNF)-a mRNA
expression after hepatic ischemia (1 h) - reperfusion (20 h) (IR).
(A) Representative agarose gel electrophoresis for the RT-PCR products
for IL-lb mRNA (511 bp) and for 18S rRNA (324 bp) after ethidium
bromide staining in total hepatic RNA samples from control rats and
EPA plus DHA preconditioned animals and densitometric quantification
of RT-PCR products of the mRNA of IL-lb expressed as IL-lb mRNA/18S
rRNA ratios to compare lane–lane equivalents in total RNA content. B.
Representative agarose gel electrophoresis for the RT-PCR products for
TNF-a mRNA (441 bp) and for 18S rRNA (324 bp) after ethidium
bromide staining in total hepatic RNA samples from control rats and
EPA plus DHA preconditioned animals and densitometric quantification
of RT-PCR products of the mRNA of TNF-a expressed as TNF-a mRNA/
18S rRNA ratios to compare lane–lane equivalents in total RNA content.
Each data point represents the mean 6 SEM for 3–9 different animals.
a
p,0.05 versus control sham-operated rats. b

p,0.05 versus control
animals subjected to IR. cp,0.05 versus [EPA plus DHA]-Sham -operated
rats. dp,0.05 versus [EPA plus DHA] treated animals subjected to IR.
doi:10.1371/journal.pone.0028502.g006
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with important hepatoprotective effects [43]. Recently, chronic

DHA supplementation has been found to reduce hepatocellular

damage in a rat model of cholestatic liver injury, an effect that was

attributed to down-regulation of NF-kB and TGF-b/Smad

activities probably via interference of ERK activation [44]. Thus,

the hepatoprotective and anti-inflammatory effects of n-3 PUFAs

seem to be multifactorial, although the molecular mechanisms

responsible for n-3 PUFAs effects in hepatic inflammation are not

fully understood.

In conclusion, liver preconditioning against IR injury by n-3

PUFA supplementation is mediated by PPAR-a antagonistic effect

with NF-kB-controlled transcription of pro-inflammatory media-

tors, leading to the recovery of NF-kB signalling activity and re-

establishment of inflammatory cytokine homeostasis. Concomitant

suppression of IR-induced liver oxidative stress by n-3 PUFA

supplementation [3] may involve activation of Nrf2 signaling by

J3-isoprostanes derived from EPA and DHA, with up-regulation of

antioxidant cellular components. The results of this study support

n-3 PUFA dietary supplementation as a novel non-invasive

preconditioning strategy to protect the liver and other organs

against IR injury. In this context, n-3 PUFA have been

progressively obtaining major consideration as potential anti-

inflammatory agents that may improve the prognosis of several

chronic inflammatory diseases.
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Protection against in vivo liver ischemia-reperfusion injury by n-3 long-chain
polyunsaturated fatty acids in the rat. Free Radic Res 44: 854–863.

4. Calder PC (2006) N-3 Polyunsaturated fatty acids, inflammation, and
inflammatory diseases. Am J Clin Nutr 83: 1505S–1519S.

5. Ariel A, Serhan CN (2007) Resolvins and protectins in the termination program
of acute inflammation. Trends Immunol 28: 176–183.

6. González-Périz A, Horrillo R, Ferré N, Gronert K, Dong B, et al. (2009)
Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-
3 fatty acids: a role for resolvins and protectins. FASEB J 23: 1946–1957.
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