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Abstract: Protein acetylation, which is catalyzed by acetyltransferases, is a type of post-translational modification

and crucial to numerous essential biological processes, including transcriptional regulation, apoptosis, and cytokine

signaling. As the experimental identification of protein acetylation sites is time consuming and laboratory intensive,

several computational approaches have been developed for identifying the candidates of experimental validation. In

this work, solvent accessibility and the physicochemical properties of proteins are utilized to identify acetylated ala-

nine, glycine, lysine, methionine, serine, and threonine. A two-stage support vector machine was applied to learn the

computational models with combinations of amino acid sequences, and the accessible surface area and physicochem-

ical properties of proteins. The predictive accuracy thus achieved is 5% to 14% higher than that of models trained

using only amino acid sequences. Additionally, the substrate specificity of the acetylated site was investigated in

detail with reference to the subcellular colocalization of acetyltransferases and acetylated proteins. The proposed

method, N-Ace, is evaluated using independent test sets in various acetylated residues and predictive accuracies of

90% were achieved, indicating that the performance of N-Ace is comparable with that of other acetylation prediction

methods. N-Ace not only provides a user-friendly input/output interface but also is a creative method for predicting

protein acetylation sites. This novel analytical resource is now freely available at http://N-Ace.mbc.NCTU.edu.tw/.

q 2010 Wiley Periodicals, Inc. J Comput Chem 31: 2759–2771, 2010
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Introduction

Protein acetylation is a widely studied covalent modification that

affects gene regulation in eukaryotic cells. Around 50% of yeast

proteins and up to 80–90% of higher eukaryotic proteins are modi-

fied by enzymatic acetylation.1,2 Less acetylated proteins are iden-

tified in prokaryotes.3 The two types of protein acetylation are ir-

reversible and reversible. Na-terminus acetylation is an irreversi-

ble modification that occurs cotranslationally in a-amino group,

which designates the position of the central carbon atom of amino

acids (AAs) and is located only on the N-terminus of the protein.

However, the biological mechanism of Na-terminal acetylation in

eukaryotic proteins is unclear. Unlike Na-terminal acetylation, Ne-

terminus acetylation proceeding in the e-amino group of lysine

residues designates the position of a carbon atom in the side chain.

The post-translational e-amino lysine acetylation of proteins is
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highly reversible and catalyzed by many lysine acetyltransferases

(KATs).2,4 In an earlier work, the occurrence of Ne-acetylation has

been extensively characterized for core histones and over 60 tran-

scription factors.5–7 Histone acetylation has important roles in the

regulation of gene expression and stabilization of the chromatin

structure. Additionally, acetylation of the e-NH2 in lysine residues

is critical to various cellular processes, such as regulation of DNA

repair,5,8,9 DNA replication and recombination,10 and apopto-

sis.11–14 Signal transduction,5 nuclear import,15 protein–protein

interaction,16 DNA binding,5,10,11 and enzyme targeting16 also

involve Ne-acetylation.

Various experimental methods have been used to identify N-

acetylated proteins. They include mass spectrometry,17 the radioac-

tive chemical method,18 and chromatin immunoprecipitation

(ChIP).19 However, most of them are time consuming and demand

extensive resources. The in silico identification of protein acetyla-

tion sites has potential for characterizing acetylated sites before

experiments are performed. This identification can support an effec-

tive analysis and efficiently reduce the number of potential targets

of acetylation that require further in vivo and in vitro confirmation.

Previous methods predict either irreversibly (Na-terminal) or rever-

sibly (Ne-terminal) acetylated sites. Kiemer et al.20 developed a

method for predicting N-terminal acetylated alanine (A), glycine

(G), serine (S), and threonine (T) residues based on a neural net-

work. Its performance in serine acetylation prediction using data on

yeast is similar to that achieved using data on mammals, but was

worse when other substrates were used. Improving on Kiemer’s

method, Liu et al. employed the same datasets and a support vector

machine (SVM) method to predict N-terminal acetylated sites, with

a sensitivity and specificity as high as 86% and 97%, respectively.21

A system named PAIL was developed for predicting Ne-terminal

acetylated sites in lysine using the Bayesian discriminant method

(BDM).22 The proposed accuracies of PAIL are 85.13%, 87.97%,

and 89.21% at low, medium, and high thresholds, respectively.

Recently, Basu et al. combined experimental methods with the clus-

tering analysis of protein sequences to determine the local amino

acid composition.23 Their method predicts potential acetylation sites

and reveals that composition of the sequence can be used to predict

two independent experimental sets of data on acetylation marks. A

novel method called LysAcet24 involves protein sequence coupling

patterns to improve the prediction of acetylated lysine.

Although protein acetylation is a common protein post-trans-

lational modification (PTM), the prediction of which is exceed-

ingly difficult because of a lack of data and a clear consensus

motif. Several researches have been performed on the prediction

of acetylation sites in protein. However, most previous works in

this field have investigated amino acid sequences that surround

the acetylation sites, and their predictive performance is usually

disappointing. To identify effectively various acetylation sites,

this study proposes a method named N-Ace to recognize acety-

lated sites on alanine, glycine, lysine, methionine, serine, and

threonine. Several important features, such as solvent accessibil-

ity and physicochemical properties, are considered to identify

acetylated sites. A two-stage SVM is utilized to learn the com-

putational models: the first stage of SVM is used to calculate

the feature-specific probability and the second stage of SVM is

used to construct the predictive models. Based on k-fold cross-

validation, the model with the highest predictive accuracy is

chosen to implement an effective web-based prediction system.

An independent test demonstrated that the high performance of

the chosen model is not the result of overfitting the training

data. The performance of N-Ace is comparable with that of

other methods. A user-friendly web interface is now freely avail-

able at http://N-Ace.mbc.NCTU.edu.tw/.

Materials and Methods

Supporting Information Figure S1 presents the system flow of the

proposed method, N-Ace. It comprises four major analytical steps:

data collection and preprocessing, feature extraction and coding

(first stage of SVM), model learning (second stage of SVM) and

evaluation, and independent testing. Notably, this work applies

two-stage SVM to learn the models for predicting acetylation sites:

the first stage of SVM calculates the feature-specific probability for

each training feature and the second stage of SVM constructs the

predictive model. The details of each process are as follows.

Data Collection and Preprocessing

A comprehensive PTM resource dbPTM,25 which includes release 53

of UniProtKB/Swiss-Prot,26,27 comprises 2062 experimentally verified

acetylation sites in 1524 protein entries. Supporting Information Table

S1 presented detailed statistics concerning each acetylated amino acid.

After the nonexperimental sites, annotated ‘‘by similarity,’’

‘‘potential,’’ and ‘‘probable,’’ have been removed, the remaining acety-

lated residues for which sufficient experimentally verified data are

available concerning over 50 sites were used to investigate the charac-

teristics of substrate sites. This work focuses on acetylated alanine (A),

glycine (G), lysine (K), methionine (M), serine (S), and threonine (T)

residues, the numbers of which are 424, 60, 792, 240, 431, and 63,

respectively. The experimental data on acetylated residues (A, G, K,

M, S, or T) constitute the positive data set. The data on alanine, gly-

cine, lysine, methionine, serine, and threonine, which are not annotated

as acetylated sites in the experimentally validated acetylated proteins,

constitute the negative data set. However, the positive dataset includes

data on several homologous sites in orthologous proteins. To prevent

any overestimation of predictive performance, homologous sequences

were removed from the nonredundant positive data set using a window

size of 2n 1 1 and n 1 1 for Na-terminal acetylation site and Ne-ter-

minal acetylation, respectively. With reference to the reduction of the

homology of the training set in NBA-Palm,28 as shown in Supporting

Information Figure S2, two acetylated protein sequences with more

than 30% identity were defined as homologous sequences. Then, two

homologous sequences were specified to realign the fragment sequen-

ces using a window length of 2n 1 1, centered on the acetylated sites

using BL2SEQ.29 For two fragment sequences with 100% identity,

when the acetylated sites in the two proteins are in the same positions,

only one site was kept while the other was discarded. The nonhomolo-

gous positive dataset is comprised of 365 acetylalanine sites, 30 acetyl-

glycine sites, 471 acetyllysine sites, 184 acetylmethionine sites, 343

acetylserine sites, and 57 acetylthreonine sites.

The nonhomologous negative data were generated using the

same approach as positive one. To perform fivefold cross-valida-

tion, four-fifths of the nonhomologous positive data were

selected as the positive training set. The balanced negative train-
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ing set was extracted from the nonhomologous negative dataset.

To prevent skewing the selection of the training set, given that

was a nonhomologous set of N data, the N data were clustered

into N/5 clusters by the K-mean clustering method. The test set

was composed of one datum from each cluster, and the remain-

ing data were defined as the training set. However, the negative

training set, randomly selected, may be not be sufficiently ran-

domly sampled. Therefore, 30 negative training sets are obtained

by randomly extraction from the nonhomologous negative data-

sets. The mean predictive performance obtained using the 30

sets of training data is calculated following fivefold cross-valida-

tion. The negative test set is also randomly sampled from the

nonhomologous negative datasets, which is balanced with the

positive test set.

Feature Extraction and Coding

Unlike previous studies,30,31 this work not only regards the

flanking AAs as the training feature but also considers the ASA

and physicochemical properties around the acetylated sites. The

physicochemical properties, including absolute entropy,32 non-

bonded energy,33 size,34 amino acid composition,35 steric param-

eter,36 hydrophobicity,37,38 volume,39 mean polarity,40 electric

charge,41 heat capacity,32 and isoelectric point,42 are extracted

from Amino Acid index database43 (AAindex). Fragments of

AAs are extracted from positive and negative training sets using

a window of length 2n 1 1 varying from 4 to 10 that is centered

on Na-terminal acetylation sites and a window of n 1 1 varying

from 8 to 20 for Ne-terminal acetylation sites. Different values

of n are used to determine the optimal window length. The posi-

tional weighted matrix (PWM) of AAs around the acetylated

sites is determined for six acetylated residues (A, G, K, M, S, or

T) using nonhomologous training data. The PWM specifies the

relative frequency of AAs that surround the acetylated sites and

is utilized in encoding the fragment sequences.

The solvent-ASA was also considered to evaluate the cha-

racteristics of acetylated residues. As most of the experimental

acetylated proteins do not have corresponding protein tertiary

structures in PDB, an effective tool, RVP-Net,44,45 is applied to

compute the ASA value from the protein sequence. RVP-net

applied a neural network to predict the real ASA of residues

based on information about their neighborhood, with a mean

absolute error of 18.0–19.5%, defined as the absolute difference

between the predicted and experimental values of relative ASA

per residue.45 The computed ASA is the percentage of the sol-

vent-accessible area of each amino acid on the protein. The

full-length protein sequences with experimentally identified

acetylated sites are inputted to RVP-Net to compute the ASA

value of all of the residues. The ASA values of AAs around the

acetylated site are extracted and normalized to be between zero

and one.

Version 9.1 of AAindex43 has a total of 544 amino acid indi-

ces. It includes many published indices that specify the physico-

chemical properties of AAs. After the amino acid indices with

the value ‘‘NA" are eliminated, the remaining 531 physicochem-

ical properties are examined to determine the ability to distin-

guish the acetylation sites from the nonacetylation sites. As each

physicochemical property of the AAs is specified by a set of 20

numerical values, the AAs around the acetylated sites can be

encoded according to the values associated with each physico-

chemical property. The predictive performances obtained using

the physicochemical properties are first evaluated, and the prop-

erties that are associated with a predictive accuracy of over 60%

are defined as useful features for identifying acetylation sites.

The AAs, accessible surface area, and useful physicochemical

properties are then used to calculate feature-specific probabilities

of the training data to generate an input vector use in the second

stage of SVM, as displayed in Figure 1.

Model Learning and Evaluation

The SVM is applied to generate computational models that

incorporate the encoded AAs, ASA, and physicochemical prop-

erties. Based on binary classification, the concept of SVM is to

map the input samples into a higher dimensional space using a

kernel function and then to find a hyper-plane that discriminates

between the two classes with maximal margin and minimal

error. A public SVM library, LibSVM,46 is used to train the pre-

dictive model with positive and negative training sets, which are

encoded with reference to various training features. The radial

basis function (RBF) KðSi; SjÞ ¼ expð�ckSi � Sjk2Þ is selected

as the kernel function of SVM. Cross-validation is important for

the application of the predictor.47 To evaluate the predictive per-

formance of the trained models, k-fold cross-validation is per-

formed on acetylated alanine, lysine, methionine, serine, and

threonine. The training data were divided into k groups by split-

ting each dataset into k approximately equally sized subgroups.

In previous works, Jackknife has been demonstrated to be the

most objective validation method.47,48 Therefore, Jackknife

cross-validation is adapted to acetylated glycine, for which fewer

than 50 data are available. During Jackknife process, both train-

ing and testing datasets were generated, and proteins are moved

sequentially from one dataset to the other.48 The following

measures of predictive performance of the trained models are

defined. Precision (Pr) 5 TP/(TP 1 FP), Sensitivity (Sn) 5 TP/

(TP 1 FN), Specificity (Sp) 5 TN/(TN 1 FP), Accuracy (Acc)

5 (TP 1 TN)/(TP 1 FP 1 TN 1 FN), and Matthews Correla-

tion Coefficient (MCC) 5
ðTP3TNÞ�ðFN3FPÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþFNÞ3ðTNþFPÞ3ðTPþFPÞ3ðTNþFNÞ
p ,

where TP, TN, FP, and FN represent the numbers of true

positives, true negatives, false positives, and false negatives,

respectively. As 30 negative training sets are used, the mean

precision, sensitivity, specificity, accuracy, and MCC are de-

termined for each model that is trained using a particular win-

dow length and features. Additionally, the parameters of the pre-

dictive models, window length, cost, and gamma value of the

SVM models are optimized to maximize predictive accuracy.

Finally, the window size and features that yield the highest

accuracy are employed to construct predictive models for inde-

pendent test.

Independent Test

The prediction performance of the trained models may be over-

estimated because of the overfitting of a training set. To estimate

the real prediction performance, the experimental acetylation

sites of UniProtKB/Swiss-Prot release 55, which were not
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included in dbPTM, are chosen as the independent test set.

Based on the cross-validation, the trained model with the highest

accuracy was used to evaluate the independent test set. As Uni-

ProtKB/Swiss-Prot release 55 has no newly identified acetylgly-

cine or acetylmethionine, the independent test set is constructed

only for lysine, alanine, serine, and threonine, which are associ-

ated with 43, 21, 8, and 2 sites, respectively. The numbers of

positive samples and negative samples are equal. These negative

samples are randomly selected from the nonacetylation sites.

The independent test sets of data for lysine, alanine, serine, and

threonine are utilized not only to test the proposed method but

also to test other previously proposed protein acetylation predic-

tion tools.

Results and Discussion

Characterization of Acetylation Sites

This study focuses on the analysis of acetylated alanine, glycine,

lysine, methionine, serine, and threonine. After homologous

acetylation sites have been removed, as in Table 1, the flanking

AAs (26 � 16) of the nonhomologous acetylated lysine resi-

dues (acetyllysine centered on position 0) and the downstream

AAs (0 � 112) of other N-terminal acetylated residues (which

are located at position 0) are graphically visualized as sequence

logos. The conservation of AAs that surround the acetylation

sites can then be easily explored. WebLogo49,50 is adopted to

generate the graphical sequence logo for the relative frequency

of the corresponding amino acid at each position around the ace-

tylated sites. Based on the sequence logo representation, no AAs

around the modified sites is obviously conserved, but the acety-

lated alanine, glycine, methionine, and threonine are somewhat

conserved at downstream position 11. However, the conserva-

tion of AAs in the flanking regions may be temporary because

of the low abundance of experimentally confirmed data of ace-

tylglycine and acetylthreonine.

Determination of Best Window Size Based on Sequence of

Amino Acid

To determine what window lengths can be utilized to construct

the model that best predicts the sites of acetylation of alanine,

glycine, lysine, methionine, serine, and threonine, models that

were trained with amino acid sequence are evaluated by cross-

validation. Figure 2 presents the predictive performance of the

validation based on various window sizes, 2n 1 1, where n is

varied from 4 to 10. As different window sizes from 9 to 21 are

applied to acetylated lysine, the predictive accuracy does not

significantly vary. Nevertheless, the predictive specificity was

improved as the window size increased from 9 to 21, while the

sensitivity declined. For acetylalanine, the model that was

trained with a window size of 13 or 15 was more accurate than

the others. The best performance was obtained for acetylglycine

and acetylmethionine using models that were trained with a win-

dow size of 13. For acetylserine and acetylthreonine, the predic-

tive accuracies slightly improved as the window length

increased. Based on computational efficiency and overall per-

formance of the trained models, 13-mer is selected as the win-

dow length in the following implementation. Supporting Infor-

mation Table S3 presents the precision (Pr), sensitivity (Sn),

specificity (Sp), accuracy (Acc), and Mathew correlation coeffi-

cient (MCC) of the models that were trained with an amino acid

Figure 1. The conceptual diagram of two-stage Support Vector Machine.
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sequence using a window size of 13-mer. Based on fivefold

cross-validation, the predictive accuracies of alanine, glycine, ly-

sine, methionine, serine, and threonine are 69.6%, 72.4%,

68.4%, 83.1%, 70.4%, and 73.3%, respectively, indicating that

the predictive performance based only on an amino acid

sequence is unsatisfactory.

Predictive Performance of Using Various Training Features

in Cross-Validation

Most predictive models are based on the features of amino acid

sequences. To determine what features can be utilized to con-

struct models that differentiate between acetylation sites and

nonacetylation sites, various features, including the sequence of

AAs, the accessible surface area, and physicochemical properties

are evaluated by cross-validation. The AAs and ASA around the

acetylated sites are encoded using a PWM and the RVP-Net-

computed ASA values, respectively. The physicochemical prop-

erties that were extracted from AAindex are used to encode the

AAs that surround the acetylated sites. Table 2 shows the pre-

dictive performance achieved using the AAs, the accessible sur-

face area (ASA) and selected physicochemical properties when

the accuracy exceeds 60%, based on the fivefold cross-valida-

tion. Of the models trained using individual features, that trained

with amino acid sequences slightly outperforms that trained

using ASA or physicochemical properties when applied to acety-

lalanine, acetylglycine, acetylmethionine, and acetylthreonine, in

which the AAs around the acetylated site are more conserved

than are those in aceltylysine and acetylserine. In acetyllysine,

the model that is trained using the ASA or hydrophobicity

Table 1. The Statistics and Sequence Logos of Nonhomologous Acetylated Sites [Color Table can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Acetylated

residues

Number of

nonhomologous sites

Number of

proteins

Window

lengths

Sequence

logos

Alanine (A) 356 356 0 � 112

Glycine (G) 30 30 0 � 112

Lysine (K) 471 239 26 � 16

Methionine (M) 184 184 0 � 112

Serine (S) 343 343 0 � 112

Threonine (T) 57 57 0 � 112

2763N-Ace: Identify Protein N-Acetylation Sites
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(AAindex: CIDH920105) outperform that trained using the

sequence of AAs. For acetylserine, the model trained with

hydrophobicity (AAindex: CIDH920105) is more accurate than

that trained with an amino acid sequence. Although some of the

selected physicochemical properties provide predictive accura-

cies that are less than 60% when applied to several acetylated

residues, their overall performance is satisfactory. The 10 physi-

cochemical properties are absolute entropy, nonbonded energy,

Figure 2. The predictive performance of models that are trained with various windows sizes (based on

amino acid sequence). Abbreviations: Pr, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy;

MCC, Mathew correlation coefficient.
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size, amino acid composition, steric parameter, hydrophobicity,

volume, mean polarity, electric charge, heat capacity, and iso-

electric point.

Effects of Including Accessible Surface Area and

Physicochemical Properties

To improve the predictive performance of protein acetylation

sites, the ASA and the selected physicochemical properties were

combined with the sequence of AAs to learn the predictive mod-

els. Generally, all of the extracted features are combined as a

large vector to learn a SVM classifier. As presented in Support-

ing Information Table S4, the predictive performances of single-

stage SVM models that were trained with all features are not

clearly enhanced relative to that were trained only with sequence

of AAs. The performance is mostly dominated by the sequence

of AAs and ASA, so that the performance is only slightly

improved by the amount of information given to the SVM. This

work utilizes two-stage SVM: the features of the AAs, accessi-

ble surface area, and the selected physicochemical properties are

input individually to the first stage of SVM to calculate feature-

specific probabilities; then, 12 feature-specific probabilities form

a vector that is inputted to the second stage of SVM for learning

a binary classifier. Table 3 shows that the accuracies of predic-

tion of acetylated alanine, glycine, lysine, methionine, serine,

and threonine are 84.9%, 85.1%, 74.9%, 94.0%, 81.5%, and

77.8%, respectively. Figure 3 compares the predictive perform-

ance of the models that were trained using only amino acid

sequences, those that were trained using all features based on

single-stage SVM, and those that were trained using two-stage

SVM. The figure reveals that the performance of the prediction

of acetylation sites was improved by incorporating the ASA and

physicochemical properties into the model. The predictive accu-

racy of the models that were trained with all features based on

two-stage SVM increased from 5% to 14% over those of the

models that were trained with only amino acid sequences.

Accordingly, the two-stage SVM models that were trained using

a combination of amino acid sequences, ASA and physicochemi-

cal properties are chosen to construct the classifiers of protein

acetylation sites for alanine, glycine, lysine, methionine, serine,

and threonine.

Predictive Performance of Independent Test

To evaluate whether the models are overfitted to their training

data, independent sets of data concerning acetyllysine, acetylala-

nine, acetylserine, and acetylthreonine are constructed and used

to test the two-stage SVM models, which have the highest pre-

Table 3. The Cross-Validation Performance of Two-Stage SVM Models Trained with the Combination of

Amino Acid Sequences, Accessible Surface Area and the Selected Physicochemical Properties

Acetylation

residue

No. of nonhomologous

positive training set Window length Pr (%) Sn (%) Sp (%) Acc (%) MCC

Alanine 356 0 � 112 91.1 76.6 93.2 84.9 0.69

Glycine 30 0 � 112 93.0 80.0 90.1 85.1 0.74

Lysine 471 26 � 16 84.6 63.5 86.0 74.9 0.51

Methionine 184 0 � 112 99.0 89.0 99.0 94.0 0.89

Serine 343 0 � 112 97.2 65.6 98.4 81.5 0.66

Threonine 57 0 � 112 78.7 76.0 79.6 77.8 0.56

Abbreviations: Pr, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy; MCC, Mathew correlation coefficient.

Table 2. The Predictive Powers of Amino Acid, Accessible Surface Area, and the Selected Physicochemical

Properties Which Contain More Than 60% Accuracies

Features AAindex ID References

Predictive accuracy (%)

Ala Gly Lys Met Ser Thr

Amino acid sequence – – 69.6 72.4 68.4 83.1 70.4 73.3

Accessible surface area – Ahmad et al.44,45 68.2 66.7 70.1 69.6 70.2 71.6

Absolute entropy HUTJ700102 Hutchens32 59.1 64.3 64.6 73.5 61.8 62.0

Nonbonded energy OOBM770104 Oobatake and Ooi33 65.6 63.8 58.9 69.9 63.2 67.0

Size DAWD720101 Dawson34 63.2 69.7 64.3 76.9 61.3 56.2

Amino acid composition DAYM780101 Dayhoff et al.35 67.6 67.1 66.2 74.9 67.5 71.3

Steric parameter CHAM810101 Charton36 60.0 56.7 63.2 69.3 62.3 57.1

Hydrophobicity CIDH920105 Jones38 and Cid et al.37 69.2 64.2 69.6 72.1 71.2 67.4

Mean polarity RADA880108 Radzicka and Wolfenden40 58.9 63.2 62.3 69.2 64.5 63.2

Electric charge FAUJ880111 Fauchere et al.41 64.4 62.1 60.6 70.6 61.6 61.9

Heat capacity HUTJ700101 Hutchens32 67.2 71.2 65.5 78.3 60.3 61.1

Isoelectric point ZIMJ680104 Zimmerman et al.42 60.9 57.7 59.6 66.5 60.3 61.1
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dictive accuracy. As given in Table 4, the predictive accuracies

of the proposed method are 91.5%, 89.6%, 81.3%, and 100%

when it is applied to alanine, lysine, serine, and threonine,

respectively. Generally, the performance in an independent test

approaches that of cross-validation. Although cross-validation

outperforms independent testing, performance of the trained

Figure 3. Effects of including accessible surface area and physicochemical properties. Abbrevia-

tions: AA, the models trained only with Amino Acid sequence; One-stage SVM, the models

trained with all features based on One-stage SVM; Two-stage SVM, the models trained with all

features based on Two-stage SVM. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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model may be overestimated. The independent test reveals that

the constructed two-stage SVM models do not overfit the train-

ing data. The independent test sets were used to test other acety-

lation predictors. It indicates that PAIL22 has high predictive

sensitivity in identifying acetylated lysine but has low predictive

specificity when applied to independent test sets. NetAcet20 has

poor sensitivity in identifying acetylated alanine and threonine,

but has high specificity. For acetylated serine, NetAcet has satis-

factory predictive sensitivity but insufficient specificity. On the

prediction page of LysAcet,24 the kernel function of SVM and

feature coding scheme are chosen as polynomial and combined

sequence and couple, respectively, and it can reach a good pre-

dictive accuracy, 76.7%. The independent test reveals that the

two-stage SVM that was conducted herein predicted acetylated

sites of both Na-terminal and Ne-terminal proteins significantly

better than the others methods. This method specifying degree

of significance outperforms previous approaches for predicting

acetylation sites. Notably, however, the acetylated serine and

threonine that were composed of only eight and two elements,

respectively, did not suffice to evaluate the predictive perform-

ance.

Subcellular Localization of Acetyltransferases and

Acetylated Proteins

High-throughput mass spectrometry-based proteomics have led

to a rapid increase in the number of experimentally verified ace-

tylated sites, motivating an investigation of the substrates (acety-

lated proteins) for specific acetyltransferases that are associated

with subcellular localization. Based on the annotations of Uni-

ProtKB/Swiss-Prot, a total of 317 collected acetyltransferases

are categorized according to the localization of nucleus, cyto-

plasm, membrane, mitochondrion, and others. As presented in

Table 5, the subcellular localization of acetyltransferases is

mostly in the nucleus, where they are involved in DNA replica-

tion, DNA repair, and transcriptional regulation. However, some

acetylated proteins are located in various cellular components

and participate in different functions. The acetylated proteins

may be supposed to be catalyzed by specific acetyltransferases,

as determined by the cellular colocalization. Hence, the subcel-

lular localization of acetylated proteins can be used to elucidate

the specificity of the substrate for acetylated sites. Supporting

Information Table S5 shows various sequence logos of acety-

lated sites associated with the subcellular localization of acety-

lated proteins. Figure 4 presents the concept of various acetylly-

sine site specificities among the acetylated proteins that are

localized in different cellular components. The sequence logo of

nonhomologous acetylated lysine that is localized in the nucleus

has more conserved motifs than the acetylated proteins that are

localized in other cellular components.

Table 6 shows the sequence logos of nonhomologous acetyla-

lanine, acetyllysine, acetylmethionine, and acetylserine sites,

categorized by the subcellular localization of acetylated proteins.

The sequences that flank the acetylation site are clustered into

several subgroups, according to the subcellular localization of

acetylated proteins. The clustered acetylation sites are separately

regarded as training sets to construct the localization-specific

SVM models for evaluating the ability to differentiate between

acetylated sites and nonacetylated sites. As given in Table 7, the

models that are learned from localization-clustered data sets are

more sensitive than those to which localization-specific cluster-

ing is not applied for both acetyllysine and, acetylated proteins

that are localized in the nucleus. However, the specificity of

localization-specific models in predicting the sites of the acetyla-

tion of lysine is slightly decreased. Additionally, the models that

were learned from localization-specific data sets do not outper-

Table 5. Subcellular Localizations of Acetyltransferases Based on the

Annotations of UniProtKB/Swiss-Prot Release 53

Subcellular localization Number of acetyltransferase

Nucleus 145

Cytoplasm 74

Membrane 27

Mitochondrion 0

Others 26

Without annotation 45

Table 4. The Comparison of Predictive Performance Between N-Ace and Other Tools Based on Independent Test Sets

Tools

Acetylated

residue References Method

Window

length

No. of

positive

test set

No. of

negative

test set Pr (%) Sn (%) Sp (%) Acc (%) MCC

LysAcet Lysine Li et al.24 Support vector machine 26 � 16 43 43 81.1 69.7 83.7 76.7 0.54

PAIL Lysine Li et al.22 Bayesian discriminant

method

26 � 16 43 43 55.3 83.8 33.4 58.1 0.19

NetAcet Alanine Kiemer et al.20 Neural network 0 � 112 21 21 0.0 0.0 100.0 50.0 N/A

Serine 0 � 112 8 8 60.0 75.0 50.0 62.5 0.26

Threonine 0 � 112 2 2 0.0 0.0 100.0 50.0 N/A

N-Ace Lysine – Two-stage support

vector machine

26 � 16 43 43 84.2 97.9 81.3 89.6 0.80

Alanine 0 � 112 21 21 88.7 94.2 88.7 91.5 0.83

Serine 0 � 112 8 8 86.4 75.0 87.5 81.3 0.63

Threonine 0 � 112 2 2 100.0 100.0 100.0 100.0 1.00

Abbreviations: Pr, precision; Sn, sensitivity; Sp, specificity; Acc, accuracy; MCC, Mathew correlation coefficient.
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form those without localization-specific clustering for acetylala-

nine, acetylmethionine, and acetylserine.

Determination of Data Size for Implementing Web-Based

Prediction Models

In the construction of web-based prediction models, the negative

set can be argued to be much larger than the positive set in pub-

lic databases; the negative set may be an unfair sample for train-

ing models. This problem also exists for other methods. In this

work, the positive and negative training sets were balanced dur-

ing cross-validation. Thus, 30 sets of negative training data are

randomly extracted and used to evaluate predictive performance.

However, extracting 30 negative sets to construct 30 predictive

models is impossible when a web server is being implemented.

Therefore, a larger negative set should be constructed. Unfortu-

nately, using a larger negative set will cause the trained model

to prefer to classify negative data correctly, to maximize accu-

racy. Supporting Information Figure S3 shows the performance

of the acetyllysine models, which are trained using different

ratios of positive to negative sets. Comprehensively considering

the sensitivity, specificity, accuracy, and size of a negative set

yields a preferred ratio of the numbers of positive to negative

sets of 1:2. This ratio is proposed for use in the model for pre-

dicting protein acetylation on the authors’ web server.

Implementation of Web-Based Tool for Identifying Protein

Acetylation Sites

In the time consuming and laboratory-intensive experimental

identification of protein acetylation sites, even though a protein

can be acetylated, precisely identifying the acetylated sites on

the substrate is difficult. Therefore, an effective prediction tool

should be developed to efficiently identify potential acetylation

sites. Following evaluation by cross-validation and an independ-

ent test, amino acid sequences, the ASA, and 10 useful physico-

chemical properties are utilized in the construction of two-stage

SVM models for predicting the acetylation of alanine, glycine,

lysine, methionine, serine, and threonine. As presented in Sup-

porting Information Figure S4, users can submit their uncharac-

terized protein sequences and select the specific residue whose

characteristics are to be predicted. The system efficiently returns

the predictions, including acetylated position and the flanking

AAs. In particular, users can select various localization-specific

models for predicting the acetylation of lysine.

To demonstrate the performance of N-Ace, a case study was

presented. Lysine-acetylated proteins are well known to have criti-

cal roles in regulating transcription and other DNA-dependent nu-

clear processes. The FK506 binding protein 4 (FKBP52 protein) is

known as a steroid receptor-associated protein. Previous studies

have suggested that N6-acetylated Lys274 of FKBP52 is associ-

ated with the motor protein dynein and with the cytoskeleton dur-

ing mitosis.51 The acetylated Lys274 on FKBP52 is easily

retrieved by N-Ace (Supporting Information Fig. S5).

Conclusion

Acetylation prediction methods in previous studies, such as

NetAcet20 and PAIL,22 have focused only on protein sequence

characteristics. However, the scheme in this work incorporates

more critical protein features to improve the prediction of pro-

Figure 4. The sequence logos of acetyllysine sites among the acetylated proteins that are localized in

different cellular components. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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tein acetylation sites. These features include the amino acid

sequence, accessible surface area, absolute entropy, non-(bonded

TRY bonding) energy, size, amino acid composition, steric pa-

rameter, hydrophobicity, volume, mean polarity, electric charge,

heat capacity, and isoelectric point. Based on two-stage SVM,

the predictive accuracies of acetyllysine, acetylalanine, acetyl-

glycine, acetylmethionine, acetylserine, and acetylthreonine are

84.9%, 85.1%, 74.9%, 94.0%, 81.5%, and 77.8%, respectively.

A comparison of the performance of our approach and previous

methods20,22 reveals that N-Ace has a much higher predictive

accuracy than the other methods according to independent test-

ing. Additionally, the models for predicting the acetyllysine,

which learn from localization-specific datasets, outperform those

in which localization-specific clustering is not applied, especially

for acetylated proteins that are localized in the nucleus.

Although the proposed method can perform accurately and

robustly, according to independent tests, some issues must still be

addressed in future work. First, the structural preferences of acety-

lated sites should be investigated in greater detail, especially in

acetylated lysine and serine, whose flanking residues are not con-

served. As well as the solvent accessible surface area, secondary

structure, B-factor, intrinsic disordered region, protein linker

region, and other factors at experimental acetylation sites that are

located in the protein regions with PDB entries, should be studied.

Second, the independent test sets that are proposed herein are

really blind to the trained model during cross-validation, but may

not be to previously proposed predictors. Hence, a benchmark for

constructing test sets that are truly independent of each predictor

is important. Finally, about 100 acetylated lysine sites were anno-

tated as methylation sites, based on the statistics in UniProtKB/

SwissProt release 53.0. Therefore, N-Ace might not effectively

distinguish the acetylated lysine from the methylated lysine

because the methyllysine and acetyllysine alternate in many loca-

tions of acetylated proteins. Acetyllysine and methyllysine should

be examined in detail, not only with reference to AAs.
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