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Here, we analyze the transcriptomic response of Streptococcus pneumoniae D39 to

N-acetylgalactosamine (NAGa). Transcriptome comparison of S. pneumoniaeD39 grown

in NAGaM17 (0.5% NAGa + M17) to that grown in GM17 (0.5% Glucose + M17)

revealed the elevated expression of various carbon metabolic genes/operons, including

a PTS operon (denoted here as the aga operon), which is putatively involved in NAGa

transport and utilization, in the presence of NAGa. We further studied the role of

a GntR-family transcriptional regulator (denoted here as AgaR) in the regulation of

aga operon. Our transcriptome and RT-PCR data suggest the role of AgaR as a

transcriptional repressor of the aga operon. We predicted a 20-bp operator site of AagR

(5′-ATAATTAATATAACAACAAA-3′) in the promoter region of the aga operon (PbgaC),

which was further verified by mutating the AgaR operator site in the respective promoter.

The role of CcpA in the additional regulation of the aga operon was elucidated by further

transcriptome analyses and confirmed by quantitative RT-PCR.

Keywords: N-acetylgalactosamine, AgaR, BgaC, aga, CcpA, pneumococcus

INTRODUCTION

The human pathogen Streptococcus pneumoniae causes a number of infections like pneumonia,
sepsis, meningitis, otitis media, and conjunctivitis, and results in over a million of deaths each year
worldwide (Ispahani et al., 2004; O’Brien et al., 2009). The genomic abundance of sugar transport
genes suggests the importance of carbohydrates in the lifestyle of S. pneumoniae. The ability to
utilize different nutrient sources plays a vital role in the life-style of the pneumococcus in addition
to the virulence factors it possesses (Phillips et al., 1990; Titgemeyer and Hillen, 2002; Carvalho
et al., 2011). The prediction of the involvement of over 30% of the transporters in the S. pneumoniae
genome in the transport of carbohydrates has been authenticated by a recent functional genomic
approach targeting carbohydrate transport (Tettelin et al., 2001; Bidossi et al., 2012).

Free carbohydrates are scarce in the human airway, which makes modification and import of
complex glycans much more critical for pneumococci (Buckwalter and King, 2012). The human
pathogen S. pneumoniae encounters glycoconjugates in the nasopharynx, which are composed of
a number of monosaccharides and can be used as nutrients after having been depolymerized by
glycosidases. The presence of at least nine surface-associated glycosidases to modify host glycans
in pneumococcus enhances the chances of its survival in hosts (King et al., 2006; Burnaugh et al.,
2008; Dalia et al., 2010). Amino sugars including NAGa (N-acetylgalactosamine) are part of various
cell structures in many biological environments. NAGa is a prominent component of the cell wall
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in bacteria (Freymond et al., 2006), being present in
lipopolysaccharides (Bernatchez et al., 2005). Furthermore,
NAGa links carbohydrate chains inmucins in humans (Carraway
and Hull, 1991). These amino sugars are also generally present
in the carbohydrate chains of glycosylated proteins, both in
prokaryotes and eukaryotes (Barr and Nordin, 1980; Abu-
Qarn et al., 2008). Regulatory mechanisms of a number of
carbohydrate and amino acid systems that are vital for the
life-style and virulence of S. pneumoniae, have been studied
(Kloosterman et al., 2006a; Carvalho et al., 2011; Afzal et al.,
2015a,b). Successful survival and virulence of S. pneumoniae
depend on its ability to utilize complex glycans existing at
the site of its colonization (Buckwalter and King, 2012; Linke
et al., 2013). Its cell envelope is comprised of several layers of
peptidoglycan with bound teichoic acids and lipoteichoic acids
(LTAs), which are anchored in the cell membrane (Stool and
Field, 1989). Pneumococcal LTAs contain phosphocholine and
NAGa (Behr et al., 1992). The presence of NAGa in the cell
wall of S. pneumoniae may indicate its importance as a carbon
source for the cell as pneumococcus possesses both secreted and
surface-associated glycosidases that may modify glycoconjugates
present in the host environment.

The current study demonstrates the impact of NAGa on the
transcriptome of S. pneumoniaeD39 and points to the regulatory
mechanism of the aga operon. Our transcriptome analysis with
D39 1agaR suggests the role of AgaR as a transcriptional
repressor of the aga operon. The transcriptome date was further
confirmed by RT-PCR analysis. A putative operator site of AgaR
in the promoter region of the aga operon (PbgaC) is predicted
and further verified by promoter-mutation studies. Moreover, we
demonstrate by transcriptome analysis that the regulation of the
aga operon is also CcpA-dependent in S. pneumoniae D39.

MATERIALS AND METHODS

Bacterial Strains, Growth Conditions, and
DNA Isolation and Manipulation
Bacterial strains and plasmids used in this study are listed
in Table 1. S. pneumoniae D39 was grown as described
previously (Kloosterman et al., 2006b; Afzal et al., 2014). For
selection on antibiotics, the medium was supplemented with
the following concentrations of antibiotics: 2.5µg/ml tetracycline
for S. pneumoniae; and 100µg/ml ampicillin for Escherichia
coli. All bacterial strains used in this study were stored in 10%
(v/v) glycerol at −80◦C. All DNA manipulations in this study
were done as described before (Shafeeq et al., 2013). For PCR
amplification, chromosomal DNA of S. pneumoniae D39 (Lanie
et al., 2007) was used. Primers used in this study are based on the
sequence of the S. pneumoniaeD39 genome and listed in Table 2.

Construction of the agaR Mutant
A marker-less agaR mutant (1agaR: MA900) was constructed
in S. pneumoniae D39 using the pORI280 plasmid, as described
before (Kloosterman et al., 2006b). The primer pairs, agaR-
1/agaR-2 and agaR-3/agaR-4, were used to generate PCR
fragments of the left and right flanking regions of agaR
(each of nearly 600 bp), respectively. The left and right

TABLE 1 | List of strains and plasmids used in this study.

Strain/

Plasmid

Description Source

S. PNEUMONIAE

D39 Serotype 2 strain. cps 2 Laboratory of

P. hermans

MA900 D39 1agaR, containing unmarked

chromosomal deletion of agaR

This study

1ccpA D39 1ccpA; SpecR Carvalho et al., 2011

MA901 D39 1bgaA::PbgaC-lacZ; TetR This study

MA902 D39 1bgaA::PbgaC-M-lacZ; TetR This study

MA903 D39 1bgaA::PbgaC-cre-M-lacZ; TetR This study

MA904 MA900 1bgaA::PbgaC-cre-M-lacZ; TetR This study

E. COLI

EC1000 Laboratory collection

PLASMIDS

pPP2 AmpR TetR; promoter-less lacZ. For

replacement of bgaA with promoter lacZ

fusion. Derivative of pPP1

Halfmann et al., 2007

pORI280 ErmR; ori+ repA−; deletion derivative of

pWV01; constitutive lacZ expression from

P32 promoter

Leenhouts et al.,

1998

pMA901 pPP2 PbgaC-lacZ This study

pMA902 pPP2 PbgaC-M-lacZ This study

pMA903 pPP2 PbgaC-cre-M-lacZ This study

pMA904 pORI280 carrying agaR deletion This study

flanking regions contain BamHI and EcoRI restriction sites
as have the pORI280. These PCR fragments were inserted
into pORI280 using these restriction sites, and the construct
(pMA904) was used to transform S. pneumoniae D39 with
selection for erythromycin resistance. The transformation leads
to single cross-over integration of the construct into the
chromosome, as pORI280 depends on RepA for replication.
Several erythromycin-resistant, LacZ-positive integrants, as
separate cultures for 30–50 generations (culturing two to four
times until stationary phase) without antibiotic selection were
plated on X-Gal medium. Due to this, we could screen for clones
that had lost the integration due to a second recombination event.
0.5% of the colonies were both white and erythromycin sensitive,
signifying excision of the plasmid from the chromosome. Eighty
percent of these white erythromycin-sensitive colonies had the
desired mutation, as verified by PCR and DNA sequencing.

Construction of Promoter lacZ-Fusions
and β-Galactosidase Assays
The chromosomal transcriptional lacZ-fusion to the bgaC
promoter was constructed in the integration plasmid pPP2
(Halfmann et al., 2007) via double crossover in the bgaA locus of
S. pneumoniae D39 with the primer pairs mentioned in Table 2

(bgaC-R and bgaC-F), resulting in pMA901. PbgaC-M-lacZ
(mutation in AgaR operator site) was constructed in pPP2
(Halfmann et al., 2007), using the primer pairs mentioned
in Table 2 (bgaC-M-F and bgaC-R), resulting in plasmid
pMA902. These constructs were further introduced into the
S. pneumoniae D39 wild-type resulting in strains MA901 and
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TABLE 2 | List of primers used in this study.

Name Nucleotide sequence (5′3′)a Restriction

site

bgaC-R CATGGGATCCCTGTGATAGAGCTGACATCG BamHI

bgaC-F CATGGAATTCGATACCAATCCTCTGGAGG EcoRI

bgaC-M-F CATGGAATTCTTCTATTGACAATTCAAACAGA

TTGGTTTATAATTAAGCGCACAACAAATG

EcoRI

bgaC-M-ccpA-F CATGGAATTCCAGATTGGTTTATAATTAAT

ATAACAACAAATGACCGCGCAAACTTTCG

EcoRI

agaR_KO_1 CATGGGATCCGATACCAATCCTCTGGAGG BamHI

agaR_KO_2 CTGTGATAGAGCTGACATCG –

agaR_KO_3 GTCAGCTCTATCACAGCATCTCATGTGA

CCGTGATC

–

agaR_KO_4 CATGGAATTCGTAGGAGTAACTCCATCGG EcoRI

QUANTITATIVE RT-PCR PRIMERS

63-q1 GCCTTCCAAGCACAGAC –

63-q2 GGTGTTTCCTCAGTCCG –

65-q1 CGAGCCTCGTGAAGGTGAG –

65-q2 GCTGGGTCGGATGAGCG –

66-q1 GGATGCCGTATTGATGGAC –

66-q2 GGTGGTGTCGCAAGTTTC –

67-q1 GGGAGATGTGACTACTGG –

67-q2 GCTGTCGCAAGAACCGCACC –

68-q1 GGTTGGAACTACGAACG –

68-q2 CCAGCGATAATGGTATGG –

69-q1 CACAGTAGCTCTTCTTCC –

69-q2 CCATTGGAAGATTCATCCC –

71-q1 GGCGAGGATGTCTTGGC –

71-q2 CCTACACTTGCTCCATGC –

RT PCR PRIMERS

IR-I-1 GGAAGGTGCCAACCGTATC –

IR-I-2 CGTCGTCTACAACCATAATGC –

IR-II-1 CGTTCTATCAACGTAGTAG –

IR-II-2 CCTGCAGATGAAACGATCG –

IR-III-1 GCTGTAGCAGCACCTTCTAC –

IR-III-2 CCAGAAGCTTGCATACGTTCG –

IR-IV-1 GCTATCGGTATTATTATCG –

IR-IV-2 CAGCTTCAAATTTAGCAG –

IR-V-1 GCGGGCTTCGATGATGACG –

IR-V-2 GCACCCAATTCGAGCAAGTC –

IR-V-1 CCGTGTAGTACAAGGTGTC –

IR-V-2 GCCAAGACATCCTCGCCCTC –

aRestriction enzyme sites are underlined.

MA902, respectively. Similarly, PbgaC-M-ccpA-lacZ (mutation
in cre site) was constructed in pPP2 (Halfmann et al., 2007),
using the primer pairs mentioned in Table 2, resulting in plasmid
pMA903. These constructs were further introduced into the S.
pneumoniaeD39wild-type andD391agaR (MA900) resulting in
strains MA903 and MA904, respectively. All plasmid constructs
were checked by PCR and DNA sequencing.

β-galactosidase assays were performed as described before
(Israelsen et al., 1995; Kloosterman et al., 2006b) using cells that
were harvested in the mid-exponential phase of growth, grown

in M17 medium with appropriate sugars mentioned in Results
Section. M17 medium is composed of pancreatic digest of casein,
soy peptone, beef extract, yeast extract, and minerals.

RNA Extraction, Reverse Transcription
(RT)-PCR, and Purification for Quantitative
RT-PCR
Total RNA was isolated from S. pneumoniae D39 wild-type and
D39 1agaR (MA900) grown in GM17 (0.5% Glucose + M17)
as described (Shafeeq et al., 2011a). Similarly, total RNA was
isolated from S. pneumoniae D39 wild-type and D39 1ccpA
grown in NAGaM17 (0.5% NAGa +M17) as described (Shafeeq
et al., 2011a). The RNA sample was treated with 2U of RNase
free Dnase I (Invitrogen, Paisley, UK) to remove any DNA
contamination. First, strand cDNA synthesis was performed on
RNA (Shafeeq et al., 2011a). cDNA (2µl) was amplified in a
20µl reaction volume that contained 3 pmol of each primer
and the reactions were performed in triplicate (Shafeeq et al.,
2011a). The transcription level of specific genes was normalized
to gyrA transcription, and amplified in parallel with the gyrA-
F and gyrA-R primers. The results were interpreted using the
comparative CT method (Schmittgen and Livak, 2008).

To confirm that the aga operon is transcribed as a single
transcriptional unit, S. pneumoniae D39 wild-type was grown in
NAGaM17 (0.5% NAGa + M17) and total RNA was isolated as
described (Shafeeq et al., 2011a). RT-PCR (reverse transcription
PCR) was performed as described before (Afzal et al., 2014) on
all possible intergenic regions of the aga operon with primer pairs
mentioned inTable 2. For a fair comparison of the PCR products,
100 ng of RNA and 20 ng of DNA were used.

Microarray Analysis
For DNA microarray analysis in the presence of NAGa, the
transcriptome of S. pneumoniae D39 wild-type, grown in
biological replicates in GM17 (0.5% Glucose + M17) and NAGa
(0.5% NAGa + M17) were compared. For DNA microarray
analysis of D39 1agaR (MA900), the transcriptome of S.
pneumoniae D39 wild-type and D39 1agaR, grown in biological
replicates in GM17 (0.5% Glucose + M17) was compared.
Similarly, for DNA microarray analysis of D39 1ccpA, the
transcriptome of S. pneumoniae D39 wild-type and D39 1ccpA,
grown in biological replicates in NAGaM17 (0.5%NAGa+M17)
was compared. The cells were harvested at their respective mid-
exponential growth phases. All other procedures regarding the
DNA microarray experiment and data analysis were performed
as previously described (Afzal et al., 2015a; Shafeeq et al., 2015).
Briefly, microarray slide images were scanned using GenPix Pro
6.1 (MSD analytical technologies). Processing and normalization
(LOWESS spotpin-based) of slides were performed with the in-
house developedMicroPrep software. DNAmicroarray data were
obtained from independent biological replicates hybridized to
glass slides, of which one was a dye swap. Expression ratios
were calculated from the measurements of at least five spots.
Differential expression tests were performed on expression ratios
with a local copy of the Cyber-T implementation of a variant of
the t-test. For the identification of differentially expressed genes
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a Bayesian p-value of <0.001 and a fold change cut-off 2 was
applied. Microarray data have been submitted to GEO under
accession number GSE86008.

RESULTS

NAGa-Dependent Gene Expression in
S. pneumoniae
To study the response of S. pneumoniae D39 to NAGa, we
preformed transcriptome comparison of S. pneumoniae D39
wild-type grown in NAGaM17 (0.5% NAGa + M17) to that
in glucose (0.5% Glucose + M17). Table 3 summarizes the
transcriptome changes incurred on S. pneumoniae in the
presence of NAGa. The presence of NAGa in the medium
resulted in the upregulation of a number of carbon metabolic
genes/operons after applying the criteria of ≥2-fold difference
and a p-value of <0.001.

A system for sialic acid transport and utilization is upregulated
in the presence of NAGa. This system consists of a neuraminidase
(nanA) and nan operon-I (Afzal et al., 2015c). nanA has been
demonstrated to be involved in virulence of S. pneumoniae
(Dalia et al., 2010). Another important gene coding for an
N-acetylglucosamine-6-phosphate deacetylase (NagA) is also
upregulated in the presence of NAGa. N-acetylglucosamine
(NAG) is phosphorylated by the PTS and this phosphorylated N-
acetylglucosamine is deacetylated to glucosamine-6-P by NagA
(Kanehisa et al., 2014). Another putative operon spd_1969-72 is
highly upregulated in our microarray analysis in the presence
of NAGa. This putative operon is supposedly involved in the
utilization of amino sugars and in the conversion of chitobiose
into NAG (Kanehisa et al., 2014). Further experiments are
needed to explore the role of this operon in the utilization of
amino sugars.

An ABC transporter (encoded by spd-0088-90) putatively
involved in galactose transport (Bidossi et al., 2012) is among
the ones upregulated in our NAGa transcriptome analysis.
Furthermore, Leloir pathway genes (galKT) (Afzal et al., 2015d)
are highly upregulated in the presence of NAGa. Galactose can
also be utilized through the Tagatose pathway and we could
observe significant upregulation of the Tagatose pathway genes
(lacABCD) in the presence of NAGa. The Tagatose pathway genes
are present in an operon (lac operon-I) and are involved in
the utilization of lactose and galactose (Afzal et al., 2014). The
expression of a number of other genes putatively involved in the
transport and utilization of carbohydrates are also altered in the
presence of NAGa. The altered expression of these genes might
be due to the absence of CCR (carbon catabolite repression) in
the presence of NAGa.We have analyzed the promoter regions of
these genes and we could find putative cre boxes in the promoter
regions of these genes.

glnAR genes that are part of the glutamine regulon were
downregulated in the presence of NAGa. This regulon consists
of genes involved in glutamine synthesis and uptake (glnA and
glnPQ), glutamate synthesis (gdhA), and the gene coding for
the pentose phosphate pathway enzyme Zwf, which forms an
operon with glnPQ (Kloosterman et al., 2006a). The glutamine
regulon is shown to be repressed in the presence of a nitrogen

TABLE 3 | Summary of transcriptome comparison of S. pneumoniae D39

wild-type grown in NAGaM17 (0.5% NAGa + M17) to that grown in GM17

(0.5% Glucose + M17).

D39 taga Functionb Ratioc

spd_0030 Hypothetical protein −7.6

spd_0031 Hypothetical protein −4.1

spd_0032 Hypothetical protein −3.1

spd_0065 Beta-galactosidase, BgaC 2.0

spd_0066 PTS system, IIB component, GadV 3.6

spd_0067 PTS system, IIC component, GadW 3.5

spd_0068 PTS system, IID component, GadE 3.7

spd_0069 PTS system, IIA component, GadF 3.3

spd_0070 Sugar isomerase domain protein, AgaS 6.4

spd_0071 Aldose 1-epimerase, GalM 2.0

spd_0088 ABC transporter, permease protein 5.9

spd_0089 ABC transporter, permease protein 6.4

spd_0090 ABC transporter, substrate-binding protein 76.8

spd_0091 Hypothetical protein −5.4

spd_0092 Hypothetical protein −6.5

spd_0447 Transcriptional regulator, MerR family protein, GlnR −4.1

spd_0448 Glutamine synthetase, type I, GlnA −2.0

spd_0490 Hypothetical protein −4.3

spd_0553 Hypothetical protein −7.1

spd_0559 PTS system IIA component, putative 5.0

spd_0560 PTS system, IIB component, putative 5.7

spd_0561 PTS system, IIC component, putative 5.4

spd_0608 Orotidine 5’-phosphate decarboxylase, PyrF −48.0

spd_0609 Orotate phosphoribosyltransferase, PyrE −39.5

spd_0675 Hypothetical protein −5.5

spd_0731 DNA topology modulation protein FlaR, putative −31.3

spd_0850 Lactoylglutathione lyase −19.0

spd_0851 Dihydroorotate dehydrogenase electron transfer subunit,

PyrK

−66.2

spd_0852 Dihydroorotate dehydrogenase, catalytic subunit, PyrDb −32.5

spd_1050 Tagatose 1,6-diphosphate aldolase, LacD 29.6

spd_1051 Tagatose-6-phosphate kinase, LacC 15.3

spd_1052 Galactose-6-phosphate isomerase, LacB subunit 20.2

spd_1053 Galactose-6-phosphate isomerase, LacA subunit 19.4

spd_1133 Aspartate carbamoyltransferase, PyrB −18.2

spd_1134 Pyrimidine operon regulatory protein/uracil

phosphoribosyltransferase, PyrR

−26.0

spd_1427 PhnA protein −11.4

spd_1489 N-acetylneuraminate lyase, NanA2 3.7

spd_1490 Hypothetical protein 3.5

spd_1491 Hypothetical protein 7.4

spd_1492 Hypothetical protein 3.9

spd_1493 Sugar ABC transporter, permease protein, NanW 4.8

spd_1494 Sugar ABC transporter, permease protein, NanV 2.5

spd_1495 Sugar ABC transporter, sugar-binding protein, NanU 6.4

spd_1496 PTS system, IIBC components, NanP 3.2

spd_1497 N-acetylmannosamine-6-phosphate 2-epimerase 2, NanE 3.1

spd_1504 Sialidase A, NanA 16.6

spd_1633 Galactose-1-phosphate uridylyltransferase, GalT2 21.6

spd_1634 Galactokinase, GalK 27.6

(Continued)
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TABLE 3 | Continued

D39 taga Functionb Ratioc

spd_1635 Galactose operon repressor, GalR 5.5

spd_1726 Pneumolysin, Ply −4.0

spd_1866 N-acetylglucosamine-6-phosphate deacetylase, NagA 3.7

spd_1898 Hypothetical protein −3.0

spd_1899 Glutamine amidotransferase, class 1, YvdE −3.4

spd_1969 Glycosyl hydrolase-related protein 12.3

spd_1970 ROK family protein 31.2

spd_1971 Glycosyl hydrolase-related protein 5.1

spd_1972 Hypothetical protein 6.8

spd_1973 Alpha-1,2-mannosidase, putative 2.7

spd_1974 Hypothetical protein 4.0

aGene numbers refer to D39 locus tags.
bD39 annotation (Lanie et al., 2007).
cRatio represents the fold increase/decrease in the expression of genes in NAGa

compared to glucose. All p-values were <0.001.

source (Kloosterman et al., 2006a). The down-regulation of the
glutamine regulon might be due to the presence of nitrogen in
NAGa.

The expression of genes that are putatively involved in NAGa
transport and utilization (the putative aga gene cluster) was also
altered in our transcriptome analysis. The upregulation of the aga
gene cluster might indicate that the system for putative transport
and utilization of NAGa is functional and responds to NAGa in
S. pneumoniae. Therefore, we decided to further characterize the
aga gene cluster in S. pneumoniae D39.

Organization of the aga Gene Cluster in
S. pneumoniae
The putative aga gene cluster consists of seven genes encoding
a beta-galactosidase (bgaC), a predicted galactosamine
disaccharide-specific PTS system (IIBCDA components:
gadVWEF), a gene coding for a sugar isomerase (agaS) and a
gene coding for an aldose 1-epimerase (galM) (Figure 1A). To
confirm whether the putative aga gene cluster transcribes as a
single transcriptional unit, we performed RT-PCR on all possible
intergenic regions present in the aga gene cluster with the primer
pairs mentioned in Table 2. RT-PCR data revealed that the
putative aga gene cluster transcribes as a single transcriptional
unit (Figure 1B) and from here on, we call it the aga operon.

NAGa Induces the Expression of the aga

Operon
To further confirm our microarray results and study the role
of NAGa in the regulation of the aga operon, we grew the S.
pneumoniae D39 wild-type in GM17 (0.5% Glucose +M17) and
NAGaM17 (0.5%NAGa+M17) and performed quantitative RT-
PCR on the genes of the aga operon. The results of quantitative
RT-PCR showed that the expression of the aga operon increased
significantly when grown in the presence of NAGa (Figure 2A).
These results further confirm our microarray data mentioned
above and demonstrate that the aga operon is functional and
responds to NAGa in S. pneumoniae D39.

Microarray Analysis of D39 1agaR
AgaR, a GntR-family transcriptional regulator, is encoded by
the gene present upstream of the aga operon (Figure 1). The
presence of the agaR gene next to the aga operon might
indicate its role in the regulation of the aga operon. To study
whether AgaR is involved in the regulation of the aga operon,
we constructed a marker-less mutant of agaR and performed
microarray analysis of D39 1agaR against D39 wild-type grown
in GM17 (0.5% Glucose + M17). GM17 was used as a growth
medium as we got repression of the aga operon in the presence
of glucose. Table 4 summarizes the results of the transcriptomic
changes induced in S. pneumoniae due to the deletion of
agaR. agaR was downregulated 26-fold in our transcriptome
analysis, confirming agaR deletion in 1agaR. After choosing the
criterion of ≥2-fold difference as the threshold change and a
p-value <0.001, the aga operon was upregulated significantly
in 1agaR and no other larger responses were observed in the
transcriptome. This data further suggests that AgaR is a negative
transcriptional regulator of the aga operon in the absence of
NAGa.

AgaR Acts As a Transcriptional Repressor
of the aga Operon
To confirm our microarray results of D39 1agaR, we grew
S. pneumoniae D39 wild-type and D39 1agaR in GM17 (0.5%
Glucose + M17) and performed quantitative RT-PCR on the
genes belonging to the aga operon. The results of quantitative
RT-PCR showed that the expression of the aga operon increased
significantly in D39 1agaR even in the presence of glucose
(Figure 2B). These quantitative RT-PCR results further confirm
that AgaR represses the expression of the aga operon and that this
repression is relieved in the absence of agaR.

Prediction and Confirmation of the AgaR
Operator Site in the Promoter Region of
the aga Operon (bgaC)
AgaR, a putative GntR-family transcriptional regulator, is present
next to the aga operon in S. pneumoniae D39. Using Genome2D
tool (Baerends et al., 2004) and a MEME motif sampler search
(Bailey and Elkan, 1994), a 20-bp palindromic sequence was
found upstream of bgaC (5′-ATAATTAATATAACAACAAA-3′)
in S. pneumoniae D39 wild-type (SP) (Figure 3A). This DNA
stretch may serve as an AgaR operator site in S. pneumoniae.
NAGa genes promoters of other streptococcal species were
studied to check if the AgaR operator site is also conserved in
those streptococci. The outcome of this analysis was the finding
that the AgaR operator sequence is highly conserved in these
streptococci as well (Figure 3B). A genome-wide search with
the pneumococcal AgaR operator site was conducted to locate
more putative AgaR targets in the S. pneumoniae D39 genome.
We could not find any other DNA stretch similar to the AgaR
operator site, which suggests that the aga operon is the only target
of AgaR.

To determine whether the located stretch of DNA mediates
the AgaR-dependent transcriptional control of the aga operon,
we made a lacZ-fusion, where conserved bases in the putative
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FIGURE 1 | (A) Organization of the aga operon in S. pneumoniae D39. A lollipop structure represents a putative transcriptional terminator, while black arrows indicate

the promoter regions. See text for further details. (B) Reverse transcriptase (RT)-PCR analysis to confirm the polycistronic nature of the aga operon in S. pneumoniae

D39. RT-PCR was performed on total RNA isolated from S. pneumoniae D39 wild-type grown in NAGaM17 (0.5% NAGa + M17) medium with (RT) and without (RNA)

reverse transcriptase treatment using the intergenic region primer pairs. DNA was used as a positive control. The size of the RT-PCR products ranges from 100 to

300bp.

FIGURE 2 | The relative increase in the expression of the genes belonging to the aga operon. (A) S. pneumoniae D39 wild-type was grown in GM17 (0.5%

Glucose + M17) and NAGaM17 (0.5% NAGa + M17). Ratio represents an increase in the expression of the aga operon genes in S. pneumoniae D39 wild-type grown

in NAGaM17 to the one grown in GM17. (B) S. pneumoniae D39 wild-type and D39 1agaR both grown in GM17 (0.5% Glucose + M17). Ratio represents an increase

in the expression of the aga operon genes in S. pneumoniae D39 1agaR compared to D39 wild-type. (C) S. pneumoniae D39 wild-type and D39 1ccpA both grown

in NAGaM17 (0.5% NAGa + M17). Ratio represents an increase in the expression of the aga operon genes in S. pneumoniae D39 1ccpA compared to D39 wild-type.

The expression of the aga genes was normalized with housekeeping gene gyrA. Results represent the mean and standard deviation of three independent replications.

AgaR site were mutated in PbgaC (5′-ATAATTAATATA
ACAACAAA-3′ to 5′-ATAATTAAGCGCACAACAAA-3′) and
performed β-galactosidase assays (Figure 4). The expression of
the promoter increased significantly when we mutated a few of
the conserved bases of the putative AgaR operator site. These
data suggest that the putative AgaR operator site is active and
performs the role of AgaR operator site in S. pneumoniae. This

operator site might also be active in other streptococcal species as
it is highly conserved in those species as well.

The Role of CcpA in the Regulation of the
aga Operon
The aga operon was only around 3-fold upregulated in our
transcriptome in the presence of NAGa. The possible reason
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could be the involvement of another transcriptional regulator
that is repressing the aga operon in the presence of NAGa. The
other transcriptional regulator could be CcpA. CcpA (Carbon
catabolite protein A) is the principal transcriptional regulator in

TABLE 4 | Summary of transcriptome comparison of S. pneumoniae D39

wild-type with D39 1agaR grown in GM17 (0.5% Glucose + M17) and

S. pneumoniae strain D39 wild-type with 1ccpA grown in NAGaM17 (0.5%

NAGa + M17).

D39 taga Functionb Ratioc Ratiod

spd_0064 GntR-family transcriptional regulator, AgaR −26.0 −

spd_0065 Beta-galactosidase, BgaC 10.9 20.5

spd_0066 PTS system, IIB component, GadV 10.8 13.9

spd_0067 PTS system, IIC component, GadW 5.9 −

spd_0068 PTS system, IID component, GadE 8.0 25.2

spd_0069 PTS system, IIA component, GadF 8.5 13.5

spd_0070 Sugar isomerase domain protein, AgaS 20.5 5.6

spd_0071 Aldose 1-epimerase, GalM 3.4 21.8

aGene numbers refer to D39 locus tags.
bD39 annotation (Lanie et al., 2007).
cRatio represents the fold increase/decrease in the expression of genes in D39 1agaR

compared to the D39 wild-type.
dRatio represents the fold increase/decrease in the expression of genes in D39 1ccpA

compared to the D39 wild-type. The ratios are obtained through microarrays analysis.

S. pneumoniae that represses the expression of genes involved in
the consumption of non-preferred sugars in the presence of a
favored one and has a role in virulence as well (Carvalho et al.,
2011). CcpA represses the transcription of genes involved in the
utilization non-preferred sugars in the presence of a preferred
one by binding to specific DNA sequences called cre (Catabolite
Repression Element) boxes. To study the role of CcpA in the
regulation of the aga operon, we analyzed the PbgaC for the
presence of a putative cre box. We could find a cre box in
the promoter region of bgaC (5′-ATGAAAGCGCAAACTT-3′),
which might suggest a role of CcpA in the regulation of the aga
operon.

To determine the role of CcpA in the regulation the aga
operon, we performed microarray analysis of D39 1ccpA against
the D39 wild-type grown in NAGaM17 (0.5% NAGa + M17).
A number of genes were significantly affected in D39 1ccpA
compared to the D39 wild-type in the presence of NAGa. We
could observe a significant upregulation in the expression of
the aga operon in our transcriptome analysis (Table 4), which
suggests that CcpA represses the expression of the aga operon
in the presence of NAGa. These results are in accordance with
the data presented in a previous study, where they performed
microarray analysis of D39 1ccpA in the presence of glucose
and galactose (Carvalho et al., 2011). There were also a number
of other genes/operons that were differentially expressed in D39
1ccpA in the presence of NAGa. These genes have been grouped

FIGURE 3 | Identification of the AgaR operator site in PbgaC. (A) Position of the AgaR operator site in PbgaC of different streptococci. Translational start sites

are italicized and putative AgaR operator sites are bold-underlined. (B) Weight matrix of the identified AgaR operator site in the PbgaC of different streptococci. SD, S.

dysgalactiae; SE, S. equi; SG, S. gordonii; SP, S. pneumonia; SB, S. uberis; SU, S. suis; SS, S. sanguis; and SM, S. mitis.
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FIGURE 4 | Expression levels (in Miller units) of PbgaC-lacZ and

PbgaC-M-lacZ in D39 wild-type grown in M17 (with no added sugar)

and GM17 (0.5% Glucose + M17). Standard deviations of three

independent experiments are indicated in bars. Wild-type and mutated AgaR

operator sites in PbgaC are given below.

into COG functional categories according to the putative
function of respective proteins (Table 5). Genes belonging to the
category G are mostly carbohydrate transport and metabolism
genes and the repression on genes caused by CcpA is relieved in
the absence of CcpA.

To further confirm our microarray results, we performed
quantitative RT-PCR on the genes of the aga operon in D39
1ccpA in NAGaM17 (0.5% NAGa + M17). The results of
quantitative RT-PCR show that the expression of the aga operon
increased significantly in D391ccpAwhen grown in the presence
of NAGa (Figure 2C). These results further confirm that the aga
operon is repressed by CcpA in S. pneumoniae D39.

To check the functionality of the cre site present in promoter
region of the aga operon, we made a promoter lacZ-fusion
of bgaC (PbgaC-cre-M-lacZ) with mutations in the conserved
bases of the putative cre box (5′-ATGAAAGCGCAAACTT-
3′ to 5′-ATGACCGCGCAAACTT-3′) and transformed it into
D39 wild-type and D39 1agaR, and performed β-galactosidase
assays (Figure 5). The expression of the mutated promoter was
significantly higher in the agaR mutant, which also confirms the
functionality of the predicted cre box in the promoter region of
bgaC and the role of CcpA in regulation of aga operon.

DISCUSSION AND CONCLUSIONS

Extensive studies regarding regulatory mechanisms of different
dedicated systems for carbon sources in S. pneumoniae
emphasize the importance of carbohydrates in the life style
of pneumococcus, which confers an extra advantage in its
survival in ever changing nutritional environment (Tettelin et al.,
2001; Iyer and Camilli, 2007; Afzal et al., 2014, 2015c,d,e). In
bacteria, NAGa is a vital constituent of the cell wall as it is
present in lipopolysaccharides (Bernatchez et al., 2005; Freymond

TABLE 5 | Number of genes significantly affected in D39 1ccpA compared

to the D39 wild-type grown in NAGaM17 (0.5% NAGa + M17).

Functional categories Total Up Down

C: Energy production and conversion 21 5 16

E: Amino acid transport and metabolism 25 3 22

F: Nucleotide transport and metabolism 13 3 10

G: Carbohydrate transport and metabolism 45 34 11

H: Coenzyme transport and metabolism 6 1 5

I: Lipid transport and metabolism 4 0 4

J: Translation, ribosomal structure and biogenesis 41 3 38

K: Transcription 10 6 4

L: Replication, recombination and repair 7 0 7

M: Cell wall/membrane/envelope biogenesis 12 5 7

O: Posttranslational modification, protein turnover,

chaperones

7 2 5

P: Inorganic ion transport and metabolism 9 1 8

Q: Secondary metabolites biosynthesis, transport

and catabolism

2 1 1

R: General function prediction only 25 6 19

S: Function unknown 22 14 8

T: Signal transduction mechanisms 12 5 7

U: Intracellular trafficking, secretion, and vesicular

transport

2 0 2

V: Defense mechanisms 6 2 4

Others 45 20 25

Total number of genes 314 111 203

Genes affected more than 2-fold in D39 1ccpA as compared to the D39 wild-type are

shown in COG functional categories.

et al., 2006). NAGa links carbohydrate chains in mucins in
humans (Carraway and Hull, 1991). An important aspect of the
interaction between the pneumococcus and its human host is
the ability of this bacterium to process host glycans. The current
study demonstrates the NAGa-dependent gene expression and
regulatory mechanism of the aga operon in S. pneumoniae.

NAGa can support growth of different bacteria, including
E. coli, acting as a carbon and nitrogen source (Reizer et al.,
1996). A NAGa utilization system (AgaBCD and AgaVWEF) was
identified in E. coli (Reizer et al., 1996). agaBCD and agaVWEF
encode two PTSs that mediate the transport and phosphorylation
of galactosamine and NAGa, respectively, in E. coli (Brinkkötter
et al., 2000). The proposed catabolic pathway of NAGa in E. coli
involves the transport and subsequent phosphorylation of NAGa,
the deacetylation of NAGa-6-P, the deamination/isomerization
of GalN-6-P, the phosphorylation of Tag-6-P, and the cleavage
of Tag-1,6-PP to produce glyceraldehyde 3-phosphate and
glycerone phosphate (Brinkkötter et al., 2000). Moreover, a
wide-ranging diversity in galactosamine/NAGa utilization
pathways in Proteobacteria such as Shewanella has been
proposed (Leyn et al., 2012). Particularly, there is a lot of
variability among the first steps of the pathway, whereas the
concluding three steps are mostly conserved (Leyn et al., 2012).
In E. coli, AgaR belonging to the DeoR family of transcriptional
factors negatively regulates the expression of agaZ and agaS
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FIGURE 5 | Expression levels (in Miller units) of PbgaC-lacZ and

PbgaC-cre-M-lacZ in D39 wild-type grown in M17 (with no added

sugar) and GM17 (0.5% Glucose + M17). Standard deviations of three

independent experiments are indicated in bars. Wild-type and mutated cre

sites in PbgaC are given below.

involved in the galactosamine/NAGa catabolism pathways
(Ray and Larson, 2004; Leyn et al., 2012). The genes encoding
galactosamine/NAGa pathways were recognized in 16 genomes
signifying four families; Streptococcaceae, Lactobacillaceae,
Enterobacteraceae, and Carnobacteriaceae. Lactobacillus
helveticus and Streptococcus pyogenes possess the minimal
number of genes in the reconstructed regulons (Zhang et al.,
2015). It is very likely that these organisms cannot utilize NAGa
as only one or two genes from the NAGa utilization pathway
were found in these organisms. Streptococcus gordonii and
Streptococcus mitis have the minimal gene set that allows them
to utilize NAGa. These genes include transcriptional regulator
(agaR), galactosamine-6-phosphate deaminase/isomerase (agaS),
glycoside hydrolase (bgaC) and PTS (gadVWEF) (Zhang et al.,
2015). The gene for the tagatose-1,6-diphosphate aldolase (agaY)
is present in some other well-studied Streptococcal genomes.
On the contrary, all the investigated Lactobacilli lack agaY, but
have the gene for N-acetylgalactosamine-phosphate deacetylase
(agaA) (Zhang et al., 2015). agaA was recognized only in the
Streptococcus suis genome among Streptococcaceae. The gene
for tagatose-6-phosphate kinase (agaZ) was found only in
Enterococcus faecalis and Carnobacterium (Zhang et al., 2015).
The aga operon is also annotated as part of the amino sugar
metabolism pathways in S. pneumoniae (Kanehisa et al., 2014).
The aga operon consists of a gene encoding a beta-galactosidase
(bgaC), a predicted galactosamine disaccharide-specific PTS
system (agaVWEF), a gene coding for a sugar isomerase (agaS)
and a gene coding for an aldose 1-epimerase (galM). agaVWEF
is the annotated PTS for the transport of NAGa, whereas the
deacetylation of NAGa-6-P and deamination/isomerization of
GalN-6-P may be performed by NagA and NagB, respectively.
Most of the genes involved in amino sugar metabolism are
regulated in our transcriptome analysis in the presence of NAGa,

suggesting that the growth conditions used in our studies are
adequate and that the NAGa pathway is functional.

One of the important enzymes regulated in our study
is BgaC, which is a novel surface-exposed glycohydrolase,
which has been shown to have an effect on S. pneumoniae
adhesion and virulence (Jeong et al., 2009; Terra et al.,
2010). A classic β-galactosidase (EC 3.2.1.23) BgaC displays
explicit hydrolysis activity toward the terminal Galβ (1,3) NAG
moiety of oligosaccharides (Jeong et al., 2009; Terra et al.,
2010). Sequence comparison puts BgaC into the glycosidase
family 35 (GH-35), which mainly occurs in higher eukaryotes
(Henrissat and Davies, 1997). BgaC receives a sequence and
structural organization arrangement similar to β-galactosidases
from higher eukaryotes and microbial pathogens instead of
typical prokaryotic β-galactosidases (Henrissat and Davies,
1997). Several crystal structures of β-galactosidases have been
submitted in the Protein Data Bank (PDB) database. These
include E. coli β-gal (Jacobson et al., 1994), Arthrobacter sp. C2-
2 C221 β-gal (Skálová et al., 2005), Kluyveromyces lactis β-gal
(Pereira-Rodríguez et al., 2012), Thermus thermophilus A4 β-
gal (Hidaka et al., 2002), Bacillus circulans sp. alkalophilus β-gal
(Maksimainen et al., 2012), Sulfolobus solfataricus β-gal (Aguilar
et al., 1997), Penicillium sp. β-gal (Rojas et al., 2004), Bacteroides
thetaiotaomicron β-gal, 5 Trichoderma reesei β-gal (Maksimainen
et al., 2011), and Homo sapiens β-gal (Ohto et al., 2012). Most of
these enzymes possess specific hydrolysis activity toward β (1,4)-
galactosyl bond, whereas H. sapiens β-gal exhibits hydrolysis
activity toward both β(1,3)- and β(1,4)-galactosyl bonds (Alpers,
1969; Asp and Dahlqvist, 1972; Distler and Jourdian, 1973), and
the substrate specificity of B. thetaiotaomicron β-gal remains
unknown. E. coli β-gal, as a member of GH-2, is one of the most
extensively studied β-galactosidases. The presence of BgaC in S.
pneumoniae suggests that pneumococcus has the ability to make
use of the galactose moieties present in its environment.

In E. coli, the aga genes are regulated by the transcriptional
regulator AgaR, which is a DeoR family transcriptional repressor
(Ray and Larson, 2004). AgaR binds in tandem to several
repeat sequences in the intergenic regions of agaZ, agaR, and
agaS to repress the transcription (Leyn et al., 2012). In S.
pneumoniae, the aga operon is also regulated by transcriptional
factor AgaR. The AgaR present in S. pneumoniae belongs
to the GntR family of transcriptional repressor. It has a
winged helix-turn-helix (WHTH) DNA-binding domain and
an UbiC transcription regulator-associated (UTRA) domain.
Several bacterial and archaeal genomes possess representatives of
GntR family of transcriptional regulators. Numerous biological
processes, including antibiotic production, sensing of nutritional
status, growth, proliferation, development, diverse metabolic
processes (fatty acidmetabolism, amino acidmetabolism, acetoin
utilization, etc.) are controlled by the GntR family regulators
(Wiethaus et al., 2008; Resch et al., 2010). In this study, we have
identified an AgaR operator site in the PbgaC, which was further
verified by promotor mutational analyses. To explore more
putative AgaR operator sites in the D39 genome, we conducted
a genome-wide search with the putative pneumococcal AgaR
operator site. AgaR operator site was only found in the promoter
region of bgaC suggesting the aga operon as the only target
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of AgaR in S. pneumoniae D39. This predicted AgaR operator
site is also found highly conserved in other streptococci as well
(Novichkov et al., 2010), suggesting a similar function of AgaR in
other streptococci as well.

The master regulator, CcpA, is involved in the regulation
of genes involved in sugar metabolism and has a role in the
pathogenesis (Lulko et al., 2007; Zomer et al., 2007; Carvalho
et al., 2011). A number of other non-preferred sugar systems are
also regulated independently of CcpA like CelR in S. pneumoniae
(Shafeeq et al., 2011b). The expression of the aga operon did
not go very high in our transcriptome in the presence of NAGa
(Table 3). The moderate upregulation of the aga operon in
the presence of NAGa suggested the involvement of another
transcriptional regulator in the regulation of the aga operon.
The presence of a cre box in the PbgaC indicates that CcpA
could have a role in the regulation of the aga operon, which is

further confirmed by our microarray analysis of S. pneumoniae
D39 1ccpA against the D39 wild-type. These results are also
consistent with the study performed by Carvalho et al. (2011).
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