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Abstract

Aims
Given the importance of resorption in nutrient conservations, nu-
trient resorption should change with leaf age if resorption depends 
on nutrient content, and if nutrient content changes with leaf age. 
However, no study has addressed this issue.

Methods
Here, we measured N and P concentrations of needles of different 
ages in two woody evergreen conifer species—white spruce (Picea 
glauca Voss.) and balsam fir (Abies balsamea Mill.)—to determine 
the effects of needle aging on nutrient resorption.

Important Findings
For both species, N and P concentrations were higher in newer 
needles than in older needles. Nutrient resorption efficiency, 

i.e. percentage of nutrients resorbed during senescence, also 
declined significantly with needle age from 73 to 22% in these 
two evergreen conifer species. The difference in nutrient resorp-
tion between old and young needles may be attributed to the 
size of N and P sink tissues, which is likely to decrease with 
needle age. These results suggest that needle age affects the 
extent of N and P resorption in these two evergreen conifer 
species.
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INTRODUCTION
Leaf traits play an important role in ecological processes and 
the variations in different leaf traits tend to be highly corre-
lated (Fajardo and Siefert 2016; Fortunel et al. 2009; Poorter 
and Bongers 2006; Wright et al. 2004). Nutrient resorption, 
a process in which nutrients are withdrawn from senescing 
leaves and thus conserved, is generally considered to be an 
essential mechanism of nutrient conservation (Blanco et al. 
2009; Milla et al. 2005; Sabate et al. 1995; Scalon et al. 2017; 
Yuan and Chen 2010, 2015) and known to be related to 
other leaf traits, such as specific leaf mass (mass per unit area 
of leaf surface) (Killingbeck and Costigan 1988), leaf nutrient 
concentrations (Yuan et al. 2005), leaf position in the canopy 
(Yasumura et al. 2005), leaf longevity (Escudero et al. 1992) 

and leaf size (i.e. surface area) (Killingbeck and Tainsh 2002). 
However, we do not know whether nutrient resorption from 
senescing leaves is related to leaf age (or node position), a 
fundamental property of leaves for evergreen conifer species. 
As leaves age, they experience major structural, chemical 
and functional changes (Field 1983; Niinemets 2016; Warren 
2006). These changes are expected to alter nutrient alloca-
tion and resorption process. If nutrient content changes with 
age, the ability of nutrient resorption by plant leaves should 
also be expected to change over time. For coniferous trees, 
a green needle retranslocates its nutrients into other plant 
parts throughout its life and the entire nutrients resorbed 
from a needle are the sum of its yearly nutrients retrans-
located. The nutrients retranslocated from green needles 
at a specified year, therefore, shall be lower than the total 
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amount of nutrients retranslocated during the whole life of a 
needle. The yearly nutrient resorption efficiency indeed shall 
change at different year, i.e. with needle ages. A pattern of 
age-related nutrient resorption is thus expected to exist in 
terms of needle age class. In that sense, the yearly nutrient 
resorption efficiency for different age class needles reflects 
the ability to transfer nutrients through the xylem or phloem 
by live tissues of plants and this ability is expected to decline 
with needle aging in coniferous trees. A  better knowledge 
of how resorption may change with leaf age is essential for 
the understanding of plant nutrient conservation strategies. 
Albeit there are some studies to address how nutrient con-
centrations in soils and plants change with stand age (Duran 
et al. 2008; Simard et al. 2001; Yuan and Chen 2010) or leaf 
age (Anten et al. 1998; Sobardo 1994), and how nutrient re-
sorption changes with nutrient concentrations (Kobe et  al. 
2005; Yuan et al. 2005), we still do not know how leaf age 
affects nutrient resorption.

The purpose of this study was to better understand how nu-
trient resorption changes with needle age for evergreen conifer 
trees. We measured N and P content and resorption in needles 
of different age classes in two evergreen species: white spruce 
(Picea glauca Voss.) and balsam fir (Abies balsamea Mill.). During 

leaf senescence, nutrients translocation is normally driven by 
sink activity, such as new leaf growth (Chapin and Moilanen 
1991; Hevia et  al. 1999). Nutrients are translocated not only 
for simultaneous plant growth, but also for nutrient storage. 
In some boreal coniferous, evergreen species, such as Scots 
pine, needles senesce occurs mainly in the autumn after the 
aboveground growth has ceased. Nutrients are stored mostly in 
green needles over the dormant winter period and used for new 
shoot and needle growth the following spring (Proe et al. 2000). 
Given that nutrient resorption is related to nutrient content that 
changes with age (Ågren 2008; Anten et al. 1998; Kuang et al. 
2007; Yuan et al. 2005), we hypothesized that foliar nutrient 
concentrations and resorption efficiency would decline with 
increased needle age of these evergreen conifer trees.

MATERIALS AND METHODS
Study species and area

The species selected for the study were white spruce (P. glauca 
Voss.) and balsam fir (A. balsamea Mill.), both of which are 
widely distributed, evergreen coniferous species in the North 
American boreal forest (Bergeron and Dubuc 1989). Both 
species retain their needles within a wide range of needle 

Figure 1: green-needle N and P concentrations. Evergreen conifer species Picea glauca (black circles and solid lines) and Abies balsamea (white 
circles and dashed lines). Data are means of three trees. Bars represent 1 SE. The coefficients of determination (r2) and P are shown in each 
panel for P. glauca (the first line) and A. balsamea (the second line).
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ages, ranging from one to several years, when growing in 
natural environments.

Both species were sampled in a natural mixed stand, about 
5 ha, on the campus of Lakehead University, Ontario, Canada 
(89°16′W, 48°25′N). We chose to sample these two species in 
a mixed stand to minimize the differences in microclimate and 
nutrient availability to which individual trees were exposed. 
The climate is moderately dry, cool with mean annual tem-
perature and mean annual precipitation being 2.6°C and 
710 mm, respectively.

Field methods

Three trees of each species, both about 20-year old, were ran-
domly selected from the even-aged stand, tagged and sam-
pled in 2006. Ten branches with green needle samples were 
removed from five lateral shoots in the top half of each sam-
pled tree and composited into one sample per tree for each 
age class. All needles born in one particular year were con-
sidered to belong to the same age class. Brown needles in the 
selected species had been staying on the branches a long time 
after senescence, and thus brown and finished the resorption 
processes. Naturally senesced needles were able to be col-
lected from the same branches as green needles in September 

2006. Current-year young needles also senesced and turned 
brown from their tips. It was difficult to collect brown young 
needles that were much few in branches. Green needles were 
paired with naturally senesced needles of the same age in cal-
culating resorption efficiency.

Laboratory methods

Needle samples were immediately taken to the laboratory and 
the branches were separated into annual segments (shoots) 
of different age classes. After surface areas were measured 
with a leaf area meter (Li-COR model LI-3000), leaves were 
dried in oven at 60°C to constant mass, weighed and ground 
in a Wiley mill to pass a 40-mesh screen to assure adequate 
sample homogeneity. N and P were extracted from ≈0.20 g 
samples with a sulfuric acid–hydrogen peroxide wet digestion 
technique and measured with a Technicon Auto Analyzer II 
(Technicon Industrial Systems, Tarrytown, NY, USA). Only N 
and P were measured because these two nutrients are consid-
ered the most limiting in terrestrial ecosystems.

Nutrient conservation was characterized by measured nutri-
ent resorption efficiency, which was calculated as the differ-
ence in area-based nutrient concentrations between senesced 
needles and green needles from the same age class (Bothwell 

Figure 2: senesced-needle N and P concentrations. Evergreen conifer species Picea glauca (black circles and solid lines) and Abies balsamea (white 
circles and dashed lines). Data are means of three trees. Bars represent 1 SE. The coefficients of determination (r2) and P are shown in each panel 
for P. glauca (the first line) and A. balsamea (the second line).
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et al. 2001) and expressed as a percentage. Resorption profi-
ciency was expressed as the concentration of either N or P in 
senesced needles (Killingbeck 1996).

Needle nutrient concentrations were log-transformed and 
resorption efficiency data were arcsine-transformed prior to 
statistical analyses to meet normality and homogeneous vari-
ance assumptions, all of which were performed in SYSTAT 12 
(SYSTAT, Evanston, IL, USA). Simple linear regression was 
used to test the relationships between measured variables 
(nutrient concentrations, resorption and needle age classes).

RESULTS
For the two studied species, N and P concentrations based on 
both needle mass and needle area in green needles decreased 
with increasing needle age (Fig.  1). The area-based N con-
centrations in green needles ranged from 2.9 to 4.1 g m−2 for 
P. glauca and 1.9 to 3.1 g m−2 for A. balsamea. The area-based 
P concentrations ranged from 0.24 to 0.48 g m−2 and 0.15 to 
0.32 g m−2 for P. glauca and A. balsamea, respectively. N and P 
concentrations, although gradually declining with needle age, 
remained at 50–70% of the maximum values in the oldest 

needle age classes. Picea glauca had higher N and P concen-
trations in green needles (on average, 3.4 and 0.33 g m−2 for 
N and P, respectively) than A.  balsamea (on average, 2.4  g 
m−2 and 0.22 g m−2 for N and P, respectively) (P < 0.001). N 
and P proficiencies, the concentrations in senesced needles, 
also decreased with increasing needle age for the two spe-
cies (Fig.  2). Both grand mean N and P concentrations in 
senesced needles were higher in P. glauca than in A. balsamea 
(P < 0.001).

The resorption of N and P for both species also gradually 
declined with needle age (Fig. 3). Picea glauca retranslocated 
33–54% of N and 22–63% of P from green needles during 
senescence. Abies balsamea retranslocated 29–48% of N and 
26–61% of P from green needles prior to senescence. Picea 
glauca had higher average N resorption efficiency (42%) 
than A.  balsamea (36%) (P  <  0.05). However, P resorption 
efficiency did not significantly differ between two species 
(P = 0.804). For both species, resorption efficiency increased 
with the N and P concentrations in green needles (Fig. 4) and 
those in senesced needles (Fig. 5). Both N and P concentra-
tions in green needles were positively associated with those in 
senesced needles (Fig. 6).

Figure 3: N and P resorption efficiencies. Evergreen conifer species Picea glauca (black circles and solid lines) and Abies balsamea (white circles 
and dashed lines). Data are means of three trees. Bars represent 1 SE. NRE = N resorption efficiency (%); PRE = P resorption efficiency (%). The 
coefficients of determination (r2) and P are shown in each panel for P. glauca (the first line) and A. balsamea (the second line).
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DISCUSSION
In this study, we found that both N and P concentrations 
based on needle mass were lower in older needles than 
those in younger needles of both species (Figs 1 and 2). This 
reduction with needle age was not simply due to the dilution 
of N and P in a larger needle mass per area, as the area-based 
N and P concentration changed significantly with leaf age. 
Thus, this result indicated that N and P could be retranslo-
cated from needles with low productivity and allocated to 
new needles of high productivity. The high N and P concen-
trations in young needles may be due to the higher meta-
bolic levels found in the young tissues where there is active 
synthesis and growth (Chapin and Kedrowski 1983; Hom 
and Oechel 1983; Kitajima et al. 2002). Also, higher P lev-
els in young tissues may be related to phospholipids, which 
increase frost tolerance in non-hardened tissues (Chapin 

and Kedrowski 1983). These results suggested that nutrient 
retranslocation may occur from all needle age classes in our 
two studied species. In fact, previous studies have shown 
that evergreen conifer tree species can retranslocate nutri-
ents from 1-year-old needles to current-year needles (age 
class 0)  (Nambiar and Fife 1987; Wyka et  al. 2016). Pensa 
et al. (2007) found that Scots pine (Pinus sylvestris) had higher 
concentrations of N and P in current-year needles than older 
needles. All needle cohorts, including non-senescing needles 
in two species, are likely to be involved in resorption pro-
cesses. However, Pasche et al. (2002) found that there was 
no net nutrient translocation from old to new developing 
needles in Rhododendron species, suggesting that the pro-
cess of nutrient remobilization from senescing needles to 
new needles and shoots might vary between species and this 
process is not necessarily a general characteristic of all ever-
green species.

Figure 4: N and P resorption efficiencies in relation to green-needle nutrient concentrations. Evergreen conifer species Picea glauca (black cir-
cles and solid lines) and Abies balsamea (white circles and dashed lines). Data are means of three trees. Bars represent 1 SE. NRE = N resorption 
efficiency (%); PRE = P resorption efficiency (%). The coefficients of determination (r2) and P are shown in each panel for P. glauca (the first 
line) and A. balsamea (the second line).
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For both species, average resorption efficiency was around 
37% for N and 43% for P. There are no other studies of the 
same species to allow for comparison of results. Salifu and 
Timmer (2001) reported that the seedlings of black spruce 
(Picea mariana) can retranslocate 50% of N.  The values of 
nutrient resorption for our studied species were lower than 
Chinese fir seedlings (Cunninghamia lanceolata) (Xu and 
Timmer 1999), radiata pine (Pinus radiata) (Nambiar and 
Fife 1987), white pine (Pinus strobus) (Munson et  al. 1995) 
and other evergreen conifer species in the view of a global 
dataset presented by Yuan and Chen (2009). In this study, 
white spruce had higher N but similar P resorption efficiency 
as balsam fir, both of which changes with needle age. N and 
P resorption proficiency also differed between our two stud-
ied species. Both N and P resorption proficiencies were lower 
than reported in other studies for these species (Ferrari 1999; 

Gordon et al. 2000; Taylor et al. 1989). These differences seem 
to support that nutrient resorption capacity may differ within 
and between species (Keenan et  al. 1995; Yuan et  al. 2005, 
2007, 2011).

In agreement with our expectations, nutrient resorption 
decreased with aging in needles older than 1 year (Fig. 3). A 
reduced resorption efficiency implies that a higher percentage 
of nutrients will be lost when the needles are shed. The rea-
son for this reduction could be due to the change in the size of 
nutrient sink associated with needle age. Because nutrients in 
plant tissues are distributed in either the mobile or structur-
ally bound forms, the actively growing new leaves are strong 
nutrient sink in plants and these plants generally have high 
resorption efficiency at the time of leaf senescence (Lambers 
et al. 2008). Nutrients in the old leaves tend to be more struc-
turally bound (Chapin and Moilanen 1991). Therefore, young 

Figure 5: N and P resorption efficiencies in relation to senesced-needle nutrient concentrations. Evergreen conifer species Picea glauca (black 
circles and solid lines) and Abies balsamea (white circles and dashed lines). Data are means of three trees. Bars represent 1 SE. NRE, N resorption 
efficiency (%); PRE, P resorption efficiency (%). The coefficients of determination (r2) and P are shown in each panel for P. glauca (the first line) 
and A. balsamea (the second line).
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needles tend to have more nutrients than old needles due to 
the fact that nutrients are higher in functional than in struc-
tural materials.

Active growth of young needles could result in a strong sink 
for carbohydrates and nutrients in plants, and consequently 
high resorption efficiencies. Previous studies have shown that 
nutrient resorption from old needles increased with the size 
of new sink (new shoots) in radiata pine (Nambiar and Fife 
1987), and that the removal of catkins reduced resorption in 
Alaskan birch (Betula papyrifera) (Chapin and Moilanen 1991). 
Similarly, reducing the source of photosynthate by shad-
ing senescing leaves has been found to lower the amount of 
nutrients recovered from these leaves (Chapin and Moilanen 
1991). Therefore, delaying needle abscission could be advan-
tageous to enhance production as it retains more nutrients in 
the canopy. Since photosynthetic capacity is generally pro-
portional to leaf nutrients, especially N (Evans 1989; Field 
and Mooney 1986; Hikosaka 2004) and leaf aging reduces 

photosynthetic N use efficiency (Kitajima et al. 2002; Sobardo 
1994), nutrients resorbed from old leaves may be used to 
increase the photosynthetic rate and biomass, thus enhanc-
ing the nutrient use efficiency of young leaves. Then the loss 
of nutrients in senesced needles and the energy costs of new 
needle construction would be offset by this mechanism.

Another reason for the decreasing resorption with aging 
could be due to the cause of needle senescence, which could 
influence resorption. Furthermore, greater proportion of 
N and P are bound in structural components in older nee-
dles and this would contribute to the decreasing resorption 
efficiency with age. Young needles with greater dry weight 
contain a greater portion of mobile carbohydrates that can be 
retranslocated, whereas in old needles more of the substances 
is tightly bound in the needle structure (Helmisaari 1992). 
Although both N and P resorption efficiencies were low in 
old needles in our study, this did not mean that old needles 
were not useful for the tree growth. In fact, old needles are 

Figure 6: the relationships of N and P concentrations between green and senesced needles. Evergreen conifer species Picea glauca (black circles 
and solid lines) and Abies balsamea (white circles and dashed lines). Data are means of three trees. Bars represent 1 SE. NRE, N resorption effi-
ciency (%); PRE, P resorption efficiency (%). The coefficients of determination (r2) and P are shown in each panel for P. glauca (the first line) 
and A. balsamea (the second line).
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still likely making a contribution to photosynthesis and nutri-
ent residence time which influence nutrient use efficiency 
(Wendler et al. 1995; Zude and Ludders 1997).

In our study, nutrient resorption efficiency showed a posi-
tive correlation with nutrient concentration in green needles 
(Fig. 4), suggesting that green needles with higher nutrient 
concentrations are capable of withdrawing a higher per-
centage of nutrients. The significantly positive correlation 
between nutrient resorption efficiency and nutrient concen-
tration in green needles observed in our study was consistent 
with those reported in previous studies (Bollmark et al. 1999; 
Yuan et al. 2006) and our study extends previous findings on 
different plants to different needles with varying ages.

In conclusion, needle age did influence N and P resorption in 
the two woody evergreen conifer species. Young needles were 
more efficient in resorbing N and P than old needles. We can 
attribute the difference to changed nutrient sink size, which 
likely decreases with needle age. For young needles, many 
nutrients are required for construction of new tissues, which 
accelerates senescence in old leaves (Nambiar and Fife 1987). 
The absence of a strong nutrient sink prior to needle abscission 
may further reduce nutrient resorption in evergreen conifer 
trees. These results support the idea that the demand for nutri-
ents from growing tissues may drive nutrient resorption and 
senescence of older leaves (Grubb et al. 2014; Killingbeck and 
Whitford 2001). Our findings indicate that the ability to resorb 
nutrients by leaves changes over time albeit the total amount 
of nutrients resorbed for a leaf during its life may be the same 
as other leaves. Further studies need to consider the time scale 
governing the mechanism of nutrient resorption.
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