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Abstract. We study the collective behavior of inclusions inducing local anisotropic curvatures in a flexible
fluid membrane. The N-body interaction energy for general anisotropic inclusions is calculated explicitly,
including multi-body interactions. Long-range attractive interactions between inclusions are found to be
sufficiently strong to induce aggregation. Monte Carlo simulations show a transition from compact clusters
to aggregation on lines or circles. These results might be relevant to proteins in biological membranes or
colloidal particles bound to surfactant membranes.

PACS. 87.15.Kg Molecular interactions; membrane-protein interactions – 64.60.Cn Order-disorder
transformations; statistical mechanics of model systems – 24.10.Cn Many-body theory

The interplay between structural features and N -body in-
teractions is a general physical problem arising in many
different contexts, e.g., crystals structure [1], magnetic
atom clusters [2,3], colloids in charged fluids [4], poly-
electrolyte condensation [5,6], and protein aggregation in
biological membranes [7]. N -body interactions can some-
times yield spectacular effects: non-pairwise summabil-
ity of charge fluctuation forces can dramatically affect
the stability of polyelectrolyte bundles [5]; three-body
elastic interactions may induce aggregation of membrane
inclusions, although two-body elastic interactions are
repulsive [7]. In a system able to kinetically achieve equi-
librium, the clusters formed are usually compact, however
certain interactions may favor tenuous clusters. For in-
stance, a recent N -body study has shown that above a
critical strength of three-body interactions, the state of
minimum energy is one in which all the particles are on
a line [8]. It has also been observed recently that mem-
brane mediated interactions can induce one-dimensional
ring-like aggregates of colloidal particles bound to fluid
vesicle membranes [9].

Manifolds embedded in a correlated elastic medium
can impose boundary conditions, or modify the elastic
constants. This usually gives rise to mean-field forces,
which are due to the elastic deformation of the medium,
and to Casimir forces, which are due to the modification
of its thermal fluctuations. Such interactions are gener-
ally non pairwise additive [10]. The elastic interactions be-
tween defects in solids [11] or in liquid crystals [12] are well
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known examples of mean-field forces. Casimir forces exist
between manifolds embedded in correlated fluids, such as
liquid crystals and superfluids [10,13,14], or critical mix-
tures [15]. Another interesting example is the interaction
between inclusions in flexible membranes [16]: it has been
shown that cone shaped membrane inclusions experience
both long range attractive Casimir interactions and repul-
sive elastic interactions falling of as R−4 with separation
R [17].

In this Rapid Note, following Netz [18], we give exact
results concerning the long range multi-body interactions
among membrane inclusions that break the bilayer’s up-
down symmetry. However, rather than supposing that the
inclusions simply induce a local spontaneous curvature,
we assume that the inclusions set a preferred curvature
tensor [17,19]. This model is more realistic: the “prefer-
ence” of a conically shaped inclusion is c1 = c2 = c0,
where c1 and c2 are the membrane principal curvatures,
rather than the weaker condition c1 +c2 = 2c0 assumed in
reference [18]. In addition, the imposed curvature tensor
can be anisotropic, thus describing inclusions that break
the in-plane symmetry. In a first part we calculate the
exact Casimir and mean-field two- and three-body in-
teractions between such anisotropic inclusions. Then, the
collective behavior of identical inclusions is investigated
by means of a Monte Carlo (MC) simulation, using the
full N -body interaction energy plus a hard-core repul-
sion modeling the simplest repulsive short-range interac-
tions [20]. Our results could be relevant to understanding
the aggregation and organization of proteins in biological
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membranes, or colloidal particles bound to surfactant
membranes [9].

Let us consider a system of N anisotropic inclusions
embedded in a flexible fluid membrane, in which they are
free to diffuse laterally. In many situations, the surface
tension is negligible and the membrane shape is governed
by the Helfrich curvature energy h0 = 1

2κ (c1 + c2)2 +
κ̄ c1c2 [21], where κ is the bending rigidity, and κ̄ the Gaus-
sian modulus. For biological membranes, κ ∼ 30T , while
for surfactant membranes it can be as small as a few T (T
will denote throughout the temperature in energy units).
We model the membrane shape by a simple parametric
surface (r, u(r)), where r is a vector in the (x, y) plane and
u(r) the normal displacement field along z. To quadratic
order in u, the Helfrich Hamiltonian takes the form

H0 =
∫

dr
[

1
2
κ
(
∇2u

)2
+ κ̄ det (∇∇u)

]
. (1)

Its correlation function, 〈u(0)u(r)〉 = (T/κ)G(r) is given
by the Green function

G(r) =
(
∇4
)−1

δ(r) = G(0)− 1
8π

r2 ln
(
L

r

)
, (2)

where L is a long wavelength cut-off, which is comparable
with the size of the membrane.

Typical membrane inclusions have a central hydropho-
bic region spanning the hydrophobic core of the mem-
brane, and two polar extremities protruding outside [22].
Assuming a strong coupling between the lipids and the
inclusion’s boundary [20,23], which in general is not cylin-
drical, we model membrane inclusions as curvature sour-
ces [17], point-like as in [19]. Indeed, the size of the pro-
teins is comparable with the short wavelength cut-off,
i.e., the membrane thickness. Even large particles can be
treated as point-like inclusions, provided one uses the cur-
vature energy coarse-grained to the size of inclusions with
its corresponding renormalized bending rigidity [24,25].
Hence, for an inclusion located at rn, we enforce the local
condition

∇∇u|rn = Qn ≡
(
Kn − Jn

0
0

Kn + Jn

)
, (3)

where ∇∇u is the curvature tensor of the membrane,
formed by the second derivatives of u, and Qn is the cur-
vature tensor locally imposed by the inclusion. Here, Qn is
written in the frame of reference where it is diagonal, Kn

being the mean-curvature and Jn the anisotropic curva-
ture of the inclusion. While isotropic inclusions correspond
to Jn= 0, “hyperbolic” and wedge-shaped inclusions cor-
respond to Kn = 0 and Kn = Jn, respectively. In the fol-
lowing, we may assume Jn ≥ 0 without loss of generality.
We define the orientation of inclusion n by the direction
of the lowest principal curvature, i.e., Kn−Jn. The latter
is defined modulo a rotation of angle π. Indeed, even if the
inclusion bears an in-plane polarity, its coupling with the
membrane curvature is apolar by symmetry.

Within this model, we can calculate the free energy F
of a membrane with N inclusions in a non perturbative

way. Introducing an external field h(r), eventually set to
zero, the free energy is given by

exp [−F
T

] =
∫
D̃[u] exp

[
− 1
T

∫
dr u

(
κ∇4

)
u+ hu

]
, (4)

in which the constraints are implemented by delta
functions in the measure

D̃[u] = D[u]
N∏
n=1

δ (∇∇u|rn −Qn) . (5)

This integral will be regularized by introducing a micro-
scopic cutoff a of the size of the membrane thickness. The
Gaussian curvature energy, which yields a constant contri-
bution depending on the boundary conditions at the edge
of the membrane and a constant self-energy per inclusion
'−πa2κ̄(K2

n − J2
n) (consistent with Ref. [17]), has been

discarded.
Replacing the delta functions by their Fourier repre-

sentation (for details on this method, see, e.g., Ref. [10]),
and integrating out the field u(r), we obtain

F [h] =
T

2
ln (det M) +

1
2
κb′M−1 b′t, (6)

b′ = b +
∫

drh(r) c(r). (7)

M is a 3N × 3N matrix formed by the blocks Mnp =
DtDG(rn − rp), where D = (∂2

x, ∂x∂y, ∂
2
y); b and c(r)

are 3N vectors with blocks bn = [(Qn)11, (Qn)12, (Qn)22]
and cn = DG(r − rn), respectively.

The average shape of the membrane is given by

〈u(r)〉 =
δF [h]
δh(r)

∣∣∣∣
h=0

= c(r) M−1 bt. (8)

Although not in explicit form, equation (6) allows to cal-
culate exactly the N -body interaction, by inverting the
matrix M whose elements are simple functions of the dis-
tances between particles. M and b do not depend on T ,
therefore the first term in (6) corresponds to the fluctu-
ation induced Casimir interaction, while the second term
represents the mean-field elastic interaction.

Expanding the Casimir interaction FC = 1
2T ln(det M)

to fourth order in 1/rnp, where rnp = |rn − rp|, yields

FC
4 = −3T

∑
n,p

′ a4

r4
np

, (9)

in which the prime indicates restriction of the sum to dif-
ferent inclusions. This fourth-order Casimir interaction is
pairwise additive and corresponds exactly to the sum of
the two-body interactions obtained in references [17,19]
for isotropic inclusions. It does not depend on the locally
imposed curvature nor on the orientation of the inclusions
(unlike the Casimir interaction between two rod-like inclu-
sions [26]). This interaction is quite weak, since for r > 2a
it is only a fraction of T and thus it is overwhelmed by
diffusion.
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Fig. 1. Definition of the mutual orientations of three inclu-
sions labeled n,m, and l. The angle θnl is the orientation of
inclusion n with respect to the line joining inclusions n and l,
etc. All angles are defined modulo π, since any orientation and
its reverse are equivalent.

Setting h = 0 in the second term of (6) yields the
mean-field elastic energy Fmf = 1

2κb M−1bt, which arises
from the bending deformation of the membrane. To second
order in 1/rnp, we obtain (see Fig. 1 for the definition of
the angles)

Fmf
2 = −4πκ

∑
n,p

′ a4

r2
np

[
2JnJp cos(2θpn−2θnp)

+KnJp cos 2θpn +KpJn cos 2θnp
]
. (10)

At this order, the mean-field interaction is pairwise ad-
ditive. It depends on the imposed curvature tensors and
on the orientations of the principal curvatures. To fourth
order, the mean-field interaction includes both two-body
interactions:

Fmf
42 =2πκ

∑
n,p

′ a6

r4
np

[
(5 + cos 4θnp)J2

n + (5 + cos 4θpn)J2
p

+ K2
n+K2

p+4KnJn cos 2θnp+4KpJp cos 2θpn
]
, (11)

and three-body interactions:

Fmf
43 =

4π
3
κ
∑
n,p,`

′ a6

r2
n`r

2
`p

{
JnJp

[
4 cos(2θn`+2θp`+2α`np)

+ 2 cos 2θn` cos 2θp`
]

+ 2KnJp cos(2θp`+2α`np)

+ 2KpJn cos(2θn`+2α`np)+KnKp cos 2α`np
}

+ perm.

(12)

These terms can be attractive or repulsive, depending on
the curvatures and orientations of the inclusions. Setting
Jn = Jp = 0 in (11), we recover the result of references
[17,19] for two isotropic inclusions; however, we also notice
that the three-body interactions are in general of the same
order as the two-body interactions.

Let us study the lowest-order mean-field interaction
Fmf

2 between two identical anisotropic inclusions. Setting
K1 =K2 =K and J1 =J2 =J , we may assume K ≥ 0 and
J ≥ 0 without loss of generality. If K 6= 0, the energy is
minimal when θ12 = θ21 = 0. The inclusions therefore tend

to align their axis of smallest principal curvature (smallest
in modulus) parallel to their separation vector. If K =
0, the energy is minimal whenever θ12 = θ21. In both
cases the interaction is attractive, contrary to the repulsive
interaction found between two isotropic inclusions [17,19].
If θ12 = 0 and θ21 ≡ θ is arbitrary, the interaction is
repulsive for θ? < |θ| < π− θ?, where cos 2θ? = −K/(K+
2J), and otherwise attractive; the relation π/4 < θ? <
π/2 holds, where the lower limit corresponds to K = 0,
and the upper limit to J → 0. When θ12 = θ21 ≡ θ,
the interaction is also repulsive for θc < |θ| < π − θc

and attractive otherwise, with cos 2θc = −J/K. Again, we
have π/4 < θc < π/2, where the lower limit corresponds
to J → 0 and the upper limit to J = K (wedge-shaped
inclusions). If J > K the interaction is always attractive
when θ12 = θ21.

As seen above, the lowest-order interaction between
two identical anisotropic inclusions is already quite com-
plex, however it is essentially attractive. Hence, one ex-
pects aggregation of the particles when the interaction
energy overcomes the entropy of mixing. We noticed that
the case K = 0 is special, since the minimum energy is de-
generate. Thus, one might expect compact clusters in this
case, but for larger values of K it should become increas-
ingly favorable to orient the inclusions along a common
line joining them. To check these ideas, we have performed
MC simulations on finite samples of N = 20 identical in-
clusions. The positions and directions of principal curva-
tures were varied continuously, in order to avoid lattice
artifacts. The energy was calculated from the N -body in-
teraction (6), with h = 0, by numerically inverting the
3N×3N matrix M. When inclusions are close to contact,
additional short-range interactions should be taken into
account [16,20,23,27]. To mimic them, we have added a
repulsive hard-core potential (diameter 4a), in agreement
with the results of reference [20] in which a short-range
energy barrier was obtained from a microscopic model.
Obviously, in the case of attractive short-range interac-
tions, we cannot predict the aggregate shapes within the
present model. The results of our MC studies merely give
the aggregation tendencies resulting from the long-range
interactions.

We started the simulations with a low-density distri-
bution of inclusions having both random positions and
orientations, then we let the system equilibrate using
∼ 107 MC steps. The relevant dimensionless parameters
are K̄ = (κ/T )1/2Ka and J̄ = (κ/T )1/2Ja. For weak
anisotropy, i.e., J̄ <∼ 1, the interaction was either repulsive
or too weakly attractive to induce aggregation; for J̄ >∼ 1,
the interaction was sufficiently attractive for the inclusions
to aggregate. For small K̄, we obtained compact clusters of
inclusions, inducing some kind of decorated “egg-carton”
structure of the membrane (Fig. 2a). As K̄ increased, we
found a transition from compact aggregates to polymer-
like ones (Fig. 2d). Remarkably, we also found ring-like
aggregates, featuring a budding mechanism (Figs. 2b, 2c).
The boundaries between the different aggregates shapes
are depicted in the phase diagram of Figure 3. Perform-
ing simulations with N = 60, we observed relatively weak
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Fig. 2. Typical equilibrium aggregates obtained from MC sim-
ulation of N = 20 identical inclusions. The corresponding val-
ues of (K̄, J̄) are indicated in the phase diagram of Figure 3.
The mesh size corresponds to the microscopic cut-off a. The
bars indicate the orientations of the inclusions.

fluctuations of the linear aggregates, indicating a persis-
tence length of several hundred of inclusions or more.
This suggest that “polymers” made of wedge-shaped in-
clusions can acquire a persistence length in the micron
range. Long-range order might exist in the form of paral-
lel inclusion lines, since for a two dimensional object, the
1/r2 interaction is marginally long-range. In all these ag-
gregates, the multi-body interactions are of the same order
as the pairwise interactions, but the Casimir interaction
is not determinant for the types of aggregates obtained.

Our MC simulations concerned only systems of identi-
cal inclusions, however they may easily be extended to the
case of inclusions inducing different curvatures. It would
also be interesting to study the effect of the long-range
anisotropic interactions in the situation of kinetically con-
strained aggregation. In the case of a film with surface
tension, we found similar anisotropic interactions, but of
shorter range ∼1/r4 at lowest order [28].

We thank R. Bruinsma and J. Prost for useful discussions.
P.G.D. was supported by the Research Council of Norway.
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9. I. Koltover, J.O. Rädler, C.R. Safinya, Phys. Rev. Lett.

82, 1991 (1999).
10. H. Li, M. Kardar, Phys. Rev. A. 46, 6490 (1992).
11. L.D. Landau, E.M. Lifshitz, Theory of Elasticity

(Pergamon Press, New York, 1987).
12. P.G. de Gennes, J. Prost, The Physics of Liquid Crystals

(Academic, New York, 1993).
13. A. Ajdari, L. Peliti, J. Prost, Phys. Rev. Lett. 66, 1481

(1991).
14. H. Li, M. Kardar, Phys. Rev. Lett. 67, 3275 (1991).
15. M.E. Fisher, P.G. de Gennes, C.R. Acad. Sci. Ser. B 287,

207 (1978).
16. T. Gil, J.H. Ipsen, O.G. Mouritsen, M.C. Sabra, M.M.

Sperotto, M.J. Zuckermann, Biochim. Biophys. Acta
1376, 245 (1998).

17. M. Goulian, R. Bruinsma, P. Pincus, Europhys. Lett. 22,
145 (1993); Comment: J.-B. Fournier, P.G. Dommersnes,
Europhys. Lett. 39, 681 (1997).

18. R.R. Netz, J. Phys. I France 7, 833 (1997).
19. J.M. Park, T.C. Lubensky, J. Phys. I France 6, 1217

(1996).
20. N. Dan, A. Berman, P. Pincus, S.A. Safran, J. Phys. II

France 4, 1713 (1994).
21. W. Helfrich, Z. Naturforsch. C 28, 693 (1973).
22. H. Lodish et al., Molecular Cell Biology (Scientific

American Books, New York, 1995).
23. J.C. Owicki, H.M. McConnel, Proc. Natl. Acad. Sci. (USA)

76, 4750 (1979).
24. W. Helfrich, J. Phys. (Paris), 46, 1263 (1985).
25. L. Peliti, S. Leibler, Phys. Rev. Lett. 54, 1690 (1985).
26. R. Golestanian, M. Goulian, M. Kardar, Europhys. Lett.

33, 241 (1996); Phys. Rev. E 54, 6725 (1996).
27. J.-B. Fournier, Europhys. Lett. 43, 725 (1998); S. May, A.

Ben-Shaul, Biophys. J. 76, 751 (1999).
28. P.G. Dommersnes, J.-B. Fournier (to be published).


