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-Channel Hidden Markov Models for Combined
Stressed Speech Classification and Recognition

Brian David Womack and John H. L. Hansen,Senior Member, IEEE

Abstract—Robust speech recognition systems must address
variations due to perceptually induced stress in order to maintain
acceptable levels of performance in adverse conditions. One
approach for addressing these variations is to utilize front-end
stress classification to direct a stress dependent recognition algo-
rithm which separately models each speech production domain.
This study proposes a new approach which combines stress
classification and speech recognition functions into one algorithm.
This is accomplished by generalizing the one-dimensional (1-D)
hidden Markov model to an N -channel hidden Markov model
(N -channel HMM). Here, each stressed speech production style
under consideration is allocated a dimension in theN -Channel
HMM to model each perceptually induced stress condition. It
is shown that this formulation better integrates perceptually
induced stress effects for stress independent recognition. This
is due to the sub-phoneme (state level) stress classification that
is implicitly performed by the algorithm. The proposed N -
channel stress independent HMM method is compared to a
previously established one-channel stress dependent isolated word
recognition system yielding a 73.8% reduction in error rate. In
addition, an 82.7% reduction in error rate is observed com-
pared to the common one-channel neutral trained recognition
approach.

Index Terms— Lombard effect, N -channel Markov model,
speech recognition, stress classification.

I. INTRODUCTION

I N THE formulation of algorithms for classification and
recognition of speech under stress, it may first be useful to

distinctly define stress in our context. Stress can be defined as
any condition that causes a speaker to vary speech production
from neutral conditions. If a speaker is in a “quiet room” with
no task obligations, then the speech produced is considered
neutral. With this definition, two stress effect areas emerge:
perceptual and physiological. Perceptually induced stress re-
sults when a speakerperceiveshis environment to be different
from “normal” such that hisintention to produce speech
varies from neutral conditions. The causes of perceptually
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induced stress include emotion, environmental noise (i.e.,
the Lombard effect1), and actual task workload (e.g., a pilot
in an aircraft cockpit). Physiologically induced stress is the
result of aphysical impacton the human body that results in
deviations from neutral speech productiondespite intentions.
Causes of physiological stress can include vibration, G-force,
drug interactions, sickness, and air density. In this study, the
following four perceptually induced stress conditions from the
SUSAS database [10] (see the evaluations in Section III) are
considered:angry, clear, Lombard,and neutral.

Stress classification is an automatic means of detecting the
presence of perceptually induced speaker stress in an utterance.
Stress directed recognition relies upon a stress classifier to
detect the type of stress in an unknown utterance and to
direct a codebook of stress dependent recognizers. Such a
recognition system employs a stress dependent recognizer that
is trained with data spoken under only one stress class. Hence,
such an approach is better able to model the unique set of
characteristics common to that stress condition. Until recently,
the problems of stress classification [3], [12], [24], [25] and
recognition of speech under stress [7], [11], [13] were never
considered simultaneously.

For the problem of stress classification, there are two major
application areas: 1) objective stress detection/assessment and
2) improved speech processing. Objective stress assessment
is applicable to stressed speech token generation and stress
detection applications. For example, a stress detector could
direct highly emotional telephone calls to a priority operator
at a metropolitan emergency service. Speaker stress assess-
ment is therefore useful for applications such as emergency
telephone message sorting and aircraft voice communications
monitoring. A stress classification system could also provide
meaningful information to speech algorithms for recognition,
speaker verification, synthesis, and coding.

The main problem we address in this study is to achieve
simultaneous stress classification and speech recognition of
speech produced under perceptually induced stress. The sub-
stantial degradation in speech processing performance due to
speaker stress has been well documented in a number of stud-
ies [8], [11], [14], [24], [26], [27], [30]. The motivation here
is to formulate an algorithm that can detect the type of speaker
stress and address this effect in the speech recognition task.

1The Lombard effect is the manner in which a speaker attempts to modify
speech characteristics in an effort to improve human voice communication
intelligibility in a noisy environment [7], [14], [18].
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This study considers the problem of stress independent
speech recognition using a multichannel hidden Markov model
( -channel HMM). The motivation for this study is to im-
prove the robustness of speech recognition systems for speech
under perceptually induced stress. The formulation and appli-
cation of the -channel HMM is presented in Section II; and,
in Section III, evaluations of two potential applications of the

-channel HMM are considered for stress classification and
improved stressed speech recognition. Finally, a summary of
findings and recommendations for future studies are presented
in Section IV.

A. Past Research Studies on Stress

A number of studies have been conducted on the analysis
of speech under stress in an effort to identify meaningful
relayers of stress [22], [23]. Unfortunately, many research
findings at times disagree, due in part to the variation in
the experimental design protocol employed to induce stressed
speech and also due to differences in how speakers impart
stress in their speech production. Past research experience
suggests that no simple relationship exists to describe these
changes [6], [8], [12]. Studies directed specifically at robust
speech recognition have addressed intraspeaker variations via
speaker adaptation [5], [15], front-end stress compensation
[7], [8], [11], or wider domain training or token generation
training sets [2], [9], [17]. While speaker adaptation techniques
can address the variation across speaker groups under neutral
conditions, they are not in general capable of addressing
the variations exhibited by a given speaker under stressed
conditions. Front-end stress compensation techniques such as
morphological constrained feature enhancement with adap-
tive cepstral compensation (MCE-ACC) [7] employ adaptive
cepstral compensation to address stress, and, morphologi-
cally constrained feature enhancement to address noise for
improved recognition performance in noisy stressful envi-
ronments. Finally, larger training sets have been considered
for stressed speech in the training phase. Most notably, the
multistyle training algorithm [17] has shown performance
improvement for speakerdependentsystems. An extension
of multistyle training based on stress token generation from
neutral training data has also shown improvement in stressed
speech recognition [9]. However, for multispeaker systems,
it has been shown that multistyle training results in a loss
of performance over a neutral trained system [24], [26].
The cause of this is believed to be the additional stress-
related interspeaker feature variations that the recognition
models must now represent, resulting in a decrease in the
discrimination ability across the vocabulary set. Additionally, a
previous study did employ a stress directed speech recognition
approach using neural networks, which was shown to provide
a 10.1% improvement over conventionally trained neutral
speech models [26].

The effects of stress have been indirectly addressed by
formulating a more accurate speech production representation
of intraspeaker variability for the speech recognition problem
[16]. Stressed speech analysis has yielded better modeling
approaches for speech production which have been success-

Fig. 1. Stress independentN -channel HMM recognition algorithm.

fully applied to improve speech recognition performance [6],
[8], [11], [17], [19], [25], [26]. Stress conditions considered
in these studies include perceptually induced stress such as
the Lombard effect or task workload (e.g., computer response
tasks, aircraft fighter pilot stressed speech) as well as stressed
speaking styles such asfast, slow, clear, angry, loud, soft,
etc. The modeling framework for the present study is based
upon asource generator framework, which allows for direct
modeling of stress perturbation within a multidimensional
feature space [7], [13]. In order to reveal the underlying nature
of speech production under stress, an extensive evaluation
of five speech production feature domains—including glottal
spectrum, pitch, duration, intensity, and vocal tract spectral
structure—was previously conducted [6]. Extensive statistical
assessment of over 200 parameters for simulated and actual
speech under stress suggests that stress classification based
upon the separability of feature distribution characteristics is
possible.

The idea to formulate a multidimensional HMM has
been explored for speech recognition in noise using a two-
dimensional (2-D) HMM similar in concept to the-channel
HMM presented in this study [28]. Another study considered
a multichannel HMM [29] that had multiple one-channel
HMM’s in its formulation. This approach differs from the

-channel HMM presented in this study since, here, we
allow the individual dimensions to reflect differences in how
thespeakerproduces speech, versus dimensions used to reflect
noise/distortionswhich corrupt an input speech signal.

II. -CHANNEL HMM

In this study, we formulate a speech model for robust speech
recognition capable of representing sub-phoneme trajectories
across stressed speech production domains as illustrated in
Fig. 1. The variation in sub-phoneme trajectories is motivated
by the observation that a stress style is not uniformly observed
over a word or sentence. Consider the word “help” under the
Lombard effect condition. Here, the and phonemes2

would reflect different stress attributes than the or
due to voicing and phone class type. As such, Fig. 1 suggests

2In this study, we employ the single letter versions of the ARPAbet in [4,
p. 118].
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that the new -channel hidden Markov model (-channel
HMM) would be better able to combine the benefits of a stress
classification system with a traditional one-channel HMM for
speech recognition. The key idea is to address the effects of
both intraspeaker and interspeaker variability in one algorithm
instead of separately as with tandem stress classification and
stress dependent recognition algorithms. This gives the added
benefit of a sub-phoneme speech model at the state level
instead of the phoneme level that was used in a previous
stress directed approach [26].

The fundamental idea of the -channel HMM is to gen-
eralize the one-channel HMM to enable fast computation of
multidimensional Markov speech processes. For example, a
two-channel HMM could be formulated to model speech from
male and female speakers with one dimension allocated for
each gender. This would facilitate the integration of separate
sub-phoneme statistics in addition to enabling state to state
transitions across dimensions for gender. Consider a male
speaker who temporarily produces female-like speech within
a multisyllable word or phrase. A two-channel HMM would
model this by placing the optimal state sequence in the female
dimension during that portion of the utterance. Hence, the
overall flexibility of the model is improved by allowing a
combined model where the integrity of each dimension is
preserved. It is suggested that this is better than two sepa-
rate one-channel HMM models with two Gaussian mixtures
because it provides greater separation in the model statistics.

Fig. 1 illustrates an -channel HMM for the case when
, which is designed to model the effects of three

additional speaker stress effects. Suppose that this four-
dimensional HMM is used to model a phoneme under the
four perceptual stress conditionsneutral, angry, clearand
Lombard effect. Note that the four discs portrayed in the
figure model portions of the phoneme across time from left
to right. As each observation (or speech frame) is presented
to the -Channel HMM, a decision is made as to which
stress dimension provides the highest score. This example
shows a phoneme that is closer to theneutral statistics at
the beginning and ending of the utterance, andangry for the
second and third states (or discs).

A. Formulation

The -channel HMM can be thought of as single
dimensional (one-channel) HMM’s [20], [21] that allow state
transitions across models.

1) Notation: Consider a Markov process that is modeled
with states (or sites) where each state

has a neighborhood of states . Given a sequence of
observation vectors , with a parameter
observation at time , a sequence
of states will be generated assuming an
initial state distribution vector .
This model depends upon the state transition probabilities

and observation
probabilities , both
forming matrices. The resulting parameters
therefore define an HMM. The goal here is to maintain a

notation for -channel HMM’s that is compatible with the
accepted notation for one-channel HMM’s in the literature.
This is illustrated next by relating -channel to one-channel
HMM’s.

2) Relationship to One-Channel HMM’s:Let be a set of
sites with a prior which is the probability of the

state sequence given the HMM parameters . This prior
depends upon the state transition probabilities as,

(1)

such that . The likelihood
of a given observation sequence therefore depends

upon the observation probabilities as follows:

(2)

Finally, the probability of an observation sequencegiven
the model parameters is

(3)

For convenience, we suggest an inner product notation on
the characteristics of the hidden state variable, where is
the observation parameter, is the mixture [see (17)], and
and are state indices

(4)

(5)

(6)

3) Reestimation Equations:In the reestimation, one must
find the best set of model parameters such
that the observation probability is maximized. The
well known forward-backward variables and are used to
reestimate the joint probability of being in state
at time , and state at time as

(7)
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which implies that

(8)

With this, the following are the reestimation equations for the
HMM model :

(9)

(10)

(11)

where for the continuous observation densities , there
are Gaussian mixtures with gains

(12)

(13)

that form an matrix. The mean and variance
vectors in each row of the matrices and are given
by

(14)

(15)

where

(16)

The multidimensional mixture Gaussian distribution

(17)

is normalized with the term , which is the length of the
observation vector . Having presented the relations for
iterative estimation of the -channel HMM parameters, higher
level training issues are discussed next.

4) Training Phases:There are three distinct phases re-
quired to train an -channel HMM, as follows:

1) one-channel stress dependent training;
2) -channel state transition training;
3) -channel model refinement.

The first phase requires training a codebook of stress depen-
dent one-channel HMM’s in the usual manner. In this study,

-means clustering, frame energy weighting, and selective
token training [31] are employed. The-means clustering
modification to HMM initialization is simply a better means of
obtaining initial state estimates and is well established in the
literature. Frame energy weighting is a training enhancement
that reduces the impact of low-energy speech frames on pa-
rameter reestimation. Finally, selective token training removes
tokens from the training process that are clearly outliers.
This idea is based on a selective training procedure originally
described in [1] and [31]. A training token is considered an
outlier after the second iteration of training if it produces a log
score that is more than two times smaller than the last average
mean score. This prevents outliers from overly modifying the
Gaussian mixture models.

The second phase of training requires combining the stress
dependent one-channel models into an-channel model
which is trained without -means clustering, mean updating,
or variance updating. Speech data from all of the stress
classes are used to train only the state transitions of the-
channel HMM at one time. Regular left-to-right transitions
within one dimension are allowed in a manner similar to that
in the original separate one-channel models. In Fig. 1, these
are the transitions from disc to disc along one dimension
(i.e., neutral). For a given state, transitions are also allowed
within the same disc or, equivalently, across dimensions.
Furthermore, transitions are allowed to any state in the next
disc, which is not only a transition across time, but also
from one stress class to another. If the-channel HMM
is to be employed for stress classification, then training is
completed at this point. However, if the -channel HMM
is to be also used for speech recognition, then the third
phase of training is employed. It requires training the-
channel HMM using the output model from the second phase
of training; however, mean, variance, and state transition
updating is enabled. Essentially, this phase takes a very good
initial model and refines it slightly. It will be shown in the
evaluations that this phase does not significantly affect the
correlation of each of the dimensions with each corresponding
stress condition in the -channel model. It is suggested
that this is due to the local convergence property of the EM
(expectation-maximization) algorithm used here. The resulting
initial model from the second phase can be said to be already
in the “valley” of the cost function; hence, the third phase
simply moves the model parameters to the minimum of that
cost “valley.”

B. Relationship to One-Channel HMM

The basic strength of the -channel HMM compared to the
one-channel HMM is that it provides a more flexible model.
Alternatively, one could suggest that-channel HMM’s bear
a similarity to an mixture one-channel HMM, and therefore
ask why are -channel HMM’s necessary? The reason is that
an mixture one-channel model does indeed haveseparate
means and variances for each state. However, it does not
have the separate state transition probabilities available in the
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-channel HMM. Furthermore, the allowable state transitions
and training method for the -channel HMM is such that
each speech production domain is clustered into each of the
dimensions of the -channel model; hence, making the model
more flexible. It should also be noted that there is no reason
why each state of the -channel HMM could not also have
multiple mixtures. For example, if it is desired to train an

-channel HMM for ten stress conditions for both male and
female speakers, one could employ a ten-channel HMM with
two mixtures per state.

Another strength of the -channel HMM formulation be-
comes apparent when the problem of stress independent recog-
nition is considered. In two previous studies [25], [26], a
phoneme class-based stress classifier using neural networks
was employed to direct a codebook of stress dependent one-
channel HMM recognizers. Though these were isolated word
recognizers, they could easily have been phoneme-based rec-
ognizers. In the case where the stress dependent speech
recognizers are phone-based, the phone-based stress classi-
fier would direct each phone to the appropriate recognizer.
It is suggested that this would further improve the stress
directed recognition performance. Such an experiment was
not performed because we opted to take the next step to
an -channel HMM instead. An -channel HMM works in
a similar manner with the exception that the basic speech
unit is of sub-phoneme or state duration. From our under-
standing of how speaker stress affects speech production,
we suggest that this is a more appropriate way to address
the effects of stress. This is due to the differing impact of
stress on each phone class. For example, the perception of
speaker stress for unvoiced consonant stops
may be little due to limited temporal information, whereas
vowels ( [4]) are significantly af-
fected. Furthermore, within a given phoneme class, the feature
trajectories will differ for each stress condition across time.
Hence, the -channel HMM makes a stress class decision
on a state (sub-phoneme) basis resulting in a better segmen-
tation of the speech utterance. The results in the evaluations
will show that this does indeed improve recognition perfor-
mance.

C. Application to Stress Classification

As mentioned previously, the -channel HMM integrates
the stress classification decision into each state transition.
Hence, a readily apparent means of generating a stress proba-
bility vector is to calculate the ratio of times the state trajectory
passes through each stress dimension versus the total number
of states. The neural network approach used in a previous study
on stress classification [26] requires a dedicated structure for
the speech processing units, whereas the-channel HMM
offers the opportunity to do stress classification in a variety
of recognition scenarios. The structure of the neural network
is more dependent upon the accuracy of a required front-end
phoneme parser than an HMM would be for this task. The
previous neural network approach also requires features that
are both fixed in relative positions throughout a phoneme as
well as features that summarize the statistical distribution of
the phoneme.

III. EVALUATIONS

The two applications of the -channel HMM evaluated in
this study are 1) stress classification and 2) stress resistant
speech recognition. The performance of the-channel HMM
employed as a stress classifier will be compared to the neural
network based stress classification system considered in a
previous study [26]. Next, in order to assess the application
of the -channel HMM to stress independent recognition, a
comparison to previously developed [24]–[26] stress depen-
dent one-channel HMM’s is investigated. Additionally, the
performance of the one-channel stress dependent HMM will
be compared to aneutral trained model for speech under stress
to illustrate the need to model speaker stress effects.

A. Stressed Speech Data

It is important to establish the domain of the speech data em-
ployed in this study to understand the difficulties of conducting
research on speech under stress. The evaluations conducted
in this study employ data previously collected for analysis
and algorithm formulation of speech under stress and noise.
This database, called SUSAS [7], [6], [10] refers tospeech
under simulated and actual stress, and has been employed
extensively in the study of how speech production varies
when speaking during stressed conditions. SUSAS consists of
five domains, encompassing a wide variety of stresses and
emotions. A total of 44 speakers (14 female, 30 male), with
ages ranging from 22 to 76, were employed to generate in
excess of 16,000 utterances. The five stress domains include:

1) psychiatric analysis data (speech under depression, fear,
anxiety);

2) talking styles3 (angry, clear, fast, loud, slow, soft);
3) single tracking task (mild taskCond50, high task

Cond70 computer response workload) or speech
produced in noise (Lombardeffect);

4) dual tracking computer response task;
5) subject motion-fear tasks (G-force,Lombard effect,

noise, fear).

Lombard effect was simulated by having speakers listen to
85 dB SPL of pink noise through headphones while producing
speeh (i.e., speech tokens were noise free). The database offers
a unique advantage for analysis and design of speech pro-
cessing algorithms in that bothsimulatedand actual stressed
speech are available. A common vocabulary set of 35 aircraft
communication words make up over 95% of the database.
These words consist of mono- and multisyllabic words which
are highly confusable. Examples include “go”—“oh”—“no;”
“wide”—“white;” and “six”—“fix.” A more complete discus-
sion of SUSAS can be found in the literature [6]–[8], [10].

Four stress conditions make up the domain of the evalua-
tions considered here; hence, a four-channel HMM
with a total of sixty states is partitioned into 15 states
per dimension. The stress conditions includeneutral, angry,
clear, and Lombard which are allocated to each dimension
(e.g., states 0–14 forneutral, 15–29 for angry, 30–44 for
clear, and 45–59 forLombardas shown in Fig. 2). The speech

3Approximately half of SUSAS consists of simulated style data donated by
Lincoln Laboratory [17].
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Fig. 2. N -channel HMM optimal state sequence of the word “destination” forneutral, angry, clear, and Lombard.

waveform is segmented into frames sampled at 8 kHz with a
30 ms window length and 10 ms skip rate. From the SUSAS
database, six speakers are used for training and three for open
testing of both the one-channel and-channel HMM models.
There are two tokens available for each stress condition in
the 35 isolated word vocabulary employed. In the second and
third phases of -channel HMM training, the tokens for all
four stress conditions are used.

B. Stress Classification

For stress classification, the -channel HMM model is
trained using the first two phases of training: 1) stress depen-
dent one-channel HMM model generation, and 2)-channel
HMM state transition training. Fig. 2 illustrates the Viterbi
decoded best state path through the-channel HMM for the

word “destination” under the four stressed speaking conditions.
Each of the parts of Fig. 2 (i.e.,neutral, angry, clear, Lombard)
is generated using one of the three test speakers to find the best
path through the single -channel word model. It is apparent
from this figure that stress classification occurs for the stress
conditions of neutral, angry, and Lombard effect, since the
clear majority of the observations belong to state transitions
within those particular stress classes. We see that for the
word “destination” under an angry stress condition, only three
observation frames in the first 97 observations are associated
with stress conditions other than angry; the remaining nine
observation frames from the final portion of the nasal
where associated with states from the neutral portion of the-
channel HMM. For the word “destination” spoken underclear,
the observations occur from states associated with theclear
dimension during the initial long voiced section (i.e., frames
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TABLE I
ONE-CHANNEL AND N -CHANNEL HMM V ERSUSNEURAL NETWORK STRESSCLASSIFICATION USING NINE SPEAKERS, 35 ISOLATED WORDS, AND AN OPEN

THREE-SPEAKER TEST SET. THE SPEECH FEATURE VECTORIS COMPOSED OFFIVE C-MEL, THREE DC-MEL, THREE D2C-MEL, AND THREE AC-MEL PARAMETERS

18–55), but move to theneutral dimension for the majority of
the ending portion of the utterance (i.e., frames 56–97, except
for frame 88); resulting in an incorrectneutral classification.
This is a reasonable transition across dimensions, sinceclear
andneutralspeech have similar characteristics for some phone
classes. Forneutral, angry, andLombardutterances, there are
several momentary transitions but the correct stress class is
consistently identified in the optimal state path sequence. It
is important to note that speakers may not always exhibit the
same type/level of stress throughout an utterance or phrase;
and, therefore, momentary transitions into other stress states
may be possible. Therefore, this example supports the assertion
that each class of phonemes and subphonemes is affected
to varying degrees by stress relative to location and local
phoneme content.

In a previous study on stressed speech detection, the Teager
nonlinear energy operator was used for stress detection on
extracted vowels on apairwise basis to yield performance of
97.5%, 99.1%, 64.8%, and 86.1% forneutral, angry, clear,and
Lombardeffect stress conditions, respectively [3]. It should be
noted these are stressdetectionresults (pairwise decision), are
not stressclassificationresults (one of four decision); hence,
the results are not directly comparable to those with higher
stress dimensions [12], [24], [26].

For purposes of comparison, a neural network stress classi-
fier is employed here, which is a nontargeted feature triphone
based algorithm. This is different than a targeted feature
system (employed in [26]) and has been chosen for the purpose
of comparison since the -channel HMM stress classifier
uses nontargeted features (e.g., the same features are used
for all classification decisions). The feature vector employed
is based upon the duration, five C-Mel, three DC-Mel, three
D2C-Mel, and three AC-Mel coefficients (C-Mel stands for
Mel-cepstral, DC-Mel is delta C-Mel, D2C-Mel is delta-
delta C-Mel, and AC-Mel is the autocorrelation C-Mel. A
more complete discussion of these parameters is presented in
[12]). The mean, variance, and slope of these parameters are
calculated across each phoneme. All features are based on the
center phoneme in every triphone; however, the two adjacent
phonemes are used in obtaining the mean and variance of
the features. This nontargeted feature neural network stress
classifier achieves a performance of 31.9%, 11.4%, 81.9%,
and 11.9% forneutral, angry, clear,and Lombard effect
respectively for an average rate of 34.28% (see Table I).
The classification performance for theangry and Lombard
stress conditions are very low, which we determined was
due to confusion between theclear andLombardeffect stress
classes. It is also apparent that theclear condition is selected

significantly more often thanangry or Lombard conditions
in these simulations. Since we might assume that all stress
conditions have equal a priori probabilities, we have previously
shown that for this reason, targeted feature stress classification
is better able to differentiate confusable stress classes [26].

In Table I, stress classification rates for the-channel
HMM (with the second phase of -channel training) are
46.7%, 78.6%, 54.3%, and 51.0% forneutral, angry, clear,and
Lombardeffect, respectively, for an average rate of 57.62%.
Hence, the -channel HMM stress classifier has a 23.34%
higher performance than the neural network stress classi-
fier. Note that the stress classification performance degrades
slightly for the third phase of -channel HMM training (model
refinement) by 4.29% on average. This is an important obser-
vation because it shows that the integrity of the dimensions in
the -channel HMM have not been overly corrupted by the
third phase of training. Hence, allowing mean and variance
updating in the third phase of training simply refines the
model without significantly reducing the correlation of each
dimension to the stress condition with which it is associated
from the first two phases of training.

Another useful comparison of the performance of the
-channel HMM as a stress classifier is to assess the ability

of a codebook of stress dependent one-channel HMM’s to
classify speech under stress. The codebook in this case consists
of four stress dependent one-channel HMM’s. The stress
class decision is based upon the model with the highest log
score. The one-channel HMM yielded classification rates of
53.8%, 84.8%, 51.4%, and 44.3% forneutral, angry, clear,
andLombardeffect respectively for an average rate of 58.57%.
This is slightly higher on average than the-channel HMM
stress classifier. However, with the size of the training and test
set, it is not known with statistical certainty which HMM will
outperform the other. We suspect that the-channel HMM
will outperform the one-channel HMM because of the greater
score separation seen in the recognition experiments in the
next section. It is suggested that the-channel HMM could
improve stress classification performance with larger speaker
sets, larger vocabularies, or in a phoneme based system. Next,
the -channel HMM is applied to recognition of speech
under stress.

C. Stress Independent Recognition

In order to employ the -channel HMM for stress indepen-
dent speech recognition, the third phase of-channel model
refinement is performed after the same two phases required for
stress classification. The two speech recognition evaluations in
this study compare: 1) neutral versus stress dependent trained
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TABLE II
HMM RECOGNITION RATES FOR ONE-CHANNEL AND N -CHANNEL MODELS USING NINE SPEAKERS, 35 ISOLATED WORDS, AND AN OPEN THREE SPEAKER TEST SET.

TRAINING IS PERFORMED WITH 15 STATES, ONE MIXTURE, 12 C-MEL, FIVE DC-MEL, FIVE D2C-MEL, FIVE AC-MEL, AND LOG ENERGY PARAMETERS

TABLE III
HMM SCORE SEPARATION FOR ONE-CHANNEL AND N -CHANNEL MODELS USING NINE SPEAKERS, 35 ISOLATED WORDS, AND AN OPEN THREE SPEAKER TEST SET.

TRAINING IS PERFORMED WITH 15 STATES, ONE MIXTURE, 12 C-MEL, FIVE DC-MEL, FIVE D2C-MEL, FIVE AC-MEL, AND LOG ENERGY PARAMETERS

1-Channel HMM’s and 2) the stress independent-channel
HMM versus stress dependent one-channel HMM’s.

First, the performance of a codebook of one-channel single
continuous Gaussian mixture density, fifteen state HMM’s
are evaluated. In a previous study [26], the one-channel
stress dependent HMM showed an improvement of10.1%
over conventionally trained neutral, and15.4% improvement
over multistyle trained recognizers, respectively. In this study,
the HMM training algorithm described in Section II-A4 is
employed. The recognition rate for both neutral and stress
dependent trained one-channel HMM’s increased due to these
training options; however, the improvement was still10.95%
as shown in Table II. These training techniques also increase
the separation between the correct target word log score
and the subsequent second highest log score as detailed
in Table III. The separability measure is normalized by the
number of training tokens and provides a measure of the
size of the difference between the correct word score and the
next highest score. Therefore, even when recognition rates are
similar, it is possible to assess how “close” a given model is
to making an error.

It is typical practice in the speech processing field to neglect
the effects of speaker stress by training neutral speech models
for speech recognition in adverse environments. The cost
of this decision is made clear by studying the performance
of the neutral one-channel HMM models applied to speech
under stress. The degradation in recognition performance is

31.42%, a reduction from 71.90% for the stress dependent
model to 40.48% whenangry speech was presented to a
neutral speech model. However, the recognition rate forclear
speech only dropped 0.95% from 82.38% to 81.43% which
is not statistically significant. Finally, forLombard speech,
performance dropped by 11.43% from 80.48% to 69.05%.
Hence, an average loss of10.95% in recognition perfor-
mance occurs when using aneutral trained versus a stress
dependent one-channel HMM recognizer.

The results show that (see Table II) the-channel HMM
considerably outperforms the one-channel stress dependent
HMM by an average of 15.72%. Another interesting feature

of the -channel HMM is that it normally provides greater
separation between output HMM log scores based upon the
separability measure shown in Table III. This implies that,
with a larger positive separability score, the separation between
the correct token score and the second highest token score
summarizes how well a model accepts the correct and rejects
the incorrect tokens. For the-channel HMM, the separability
measure is 7.07 which is consistently greater than the 4.10
separation measure for the one-channel stress dependent HMM
as shown in Table III. This property of greater separability in
output HMM log scores for the -channel HMM could lead
to more robust models for speech under stress.

IV. SUMMARY OF FINDINGS AND CONCLUSIONS

The problem of stressed speech classification and stress
independent recognition has been considered using a modified
Markov process model. This new multidimensional hidden
Markov model ( -channel HMM) has been formulated to gen-
eralize a set of single dimensional (one-channel) HMM’s
to allow transitions across individual models. By employing a
more general Markov model, it has been shown that reliable
stress classification and improved speech recognition perfor-
mance of speech under stress can be achieved simultaneously.
While stress classification rates increased by 23.34% over
an approach similar in structure to a previously formulated
nontargeted feature neural network classifier [26], the stress
classification performance was comparable to the one-channel
HMM stress classifier (i.e., training separate HMM recognizers
on speech from known stress conditions, and selecting the
highest probable model). However,-channel HMM stressed
speech recognition rates did increase by 15.72% over a previ-
ously tested stress dependent one-channel HMM approach [26]
(i.e., an overall recognition rate of 94.41% versus 78.69%).
We must emphasize here that both stress classification and
speech recognition evaluations were conducted on a small
vocabulary set (35 words), and a small speaker set (speaker
sets of less than ten speakers). However, the difficulty in
collecting, organizing and calibrating a large speech under
stress database has prevented evaluations by any group on
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larger data sets. At the present time, SUSAS [10] represents
the largest speech under stress database available to the speech
research community.4 Understanding the limitations of the
present database, versus much larger corpora available for
large vocabulary continuous speech recognition, we can make
some concluding remarks. The formulation and evaluations
presented here have suggested that the-channel HMM is
able to achieve higher levels of speech processing performance
by integrating intraspeaker stress and inter-speaker nonstress
characteristics into a single model. Previously, this task would
normally be modeled separately with a stress classifier and a
codebook of stress dependent recognition systems.

In the future, it would be useful to determine if such a
formulation could be scaled up to address large vocabulary
speech recognition under stress.5 Such an evaluation for the -
channel HMM would require collecting a tremendously large
speech corpus which would be labeled based on stress content
across speakers. In addition, other speech problems could be
considered such as applying the-channel HMM to problems
such as gender identification, phone recognition, parsing, and
speaker identification. Performance could be compared to mul-
tiple Gaussian mixture models or separate model templates.
It would also be interesting to assess the performance of
both monophone and triphone based-channel HMM speech
recognizers and stress classifiers for speech produced under
adverse conditions.

In a manner similar to the problem of stress classification,
speaker verification could be approached using a-Channel
HMM formulation. For example, in a speaker verification
application, each dimension of the-channel HMM could be
allocated for each of speakers. The identity of the speaker
could then be confirmed by monitoring state transitions within
the target speaker’s dimension.
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