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N-Channel Hidden Markov Models for Combined
Stressed Speech Classification and Recognition

Brian David Womack and John H. L. Hanse®enior Member, IEEE

Abstract—Robust speech recognition systems must addressinduced stress include emotion, environmental noise (i.e.,
variations due to perceptually induced stress in order to maintain - the Lombard effed), and actual task workload (e.g., a pilot
acceptable levels of performance in adverse conditions. One;, an aircraft cockpit). Physiologically induced stress is the

approach for addressing these variations is to utilize front-end . . .
stress classification to direct a stress dependent recognition algo- result of aphysical impacon the human body that results in

rithm which separately models each speech production domain. deviations from neutral speech productidespite intentions

This study proposes a new approach which combines stressCauses of physiological stress can include vibration, G-force,
classification and speech recognition functions into one algorithm. drug interactions, sickness, and air density. In this study, the
This is accomplished by generalizing the one-dimensional (1-D) {4 10wing four perceptually induced stress conditions from the

hidden Markov model to an N-channel hidden Markov model . . .
(N-channel HMM). Here, each stressed speech production style SUSAS database [10] (see the evaluations in Section Ill) are

under consideration is allocated a dimension in theV-Channel ~consideredangry, clear, Lombardand neutral
HMM to model each perceptually induced stress condition. It Stress classification is an automatic means of detecting the
is shown that this formulation better integrates perceptually presence of perceptually induced speaker stress in an utterance.
induced stress effects for stress independent recognition. This gyess directed recognition relies upon a stress classifier to
is due to the sub-phoneme (state level) stress classification thatd tect the t f st . K tt dt
is implicitly performed by the algorithm. The proposed N- eec € lype Or stress in an unxnown u er.ance ana 1o
channel stress independent HMM method is compared to a direct a codebook of stress dependent recognizers. Such a
previously established one-channel stress dependent isolated wordrecognition system employs a stress dependent recognizer that
recognition system yielding a 73.8% reduction in error rate. In  js trained with data spoken under only one stress class. Hence,
addition, an 82.7% reduction in error rate is observed com- ¢,k an approach is better able to model the unique set of
pared to the common one-channel neutral trained recognition S iy .
approach. characteristics common to that stress condition. Until recently,
the problems of stress classification [3], [12], [24], [25] and
recognition of speech under stress [7], [11], [13] were never
considered simultaneously.
For the problem of stress classification, there are two major
application areas: 1) objective stress detection/assessment and
. INTRODUCTION 2) improved speech processing. Objective stress assessment
N THE formulation of algorithms for classification andis app_licable t_O sFressed speech token generation and stress
recognition of speech under stress, it may first be useful @gtection applications. For example, a stress detector could
distinctly define stress in our context. Stress can be definedd#&ct highly emotional telephone calls to a priority operator
any condition that causes a speaker to vary speech producférd r_netropohtan emergency service. Speaker stress assess-
from neutral conditions. If a speaker is in a “quiet room” witfnent is therefore useful for applications such as emergency
no task obligations, then the speech produced is consideF@@P_hODe message 50”'”9_3”(}' aircraft voice communlcat!ons
neutral With this definition, two stress effect areas emergaonitoring. A stress classification system could also provide
perceptual and physiological. Perceptually induced stress feeaningful information to speech algorithms for recognition,
sults when a speakeerceiveshis environment to be different Speaker verification, synthesis, and coding. _
from “normal” such that hisintention to produce speech The main problem we address in this study is to achieve
varies from neutral conditions. The causes of perceptuallpimultaneous stress classification and speech recognition of
speech produced under perceptually induced stress. The sub-
stantial degradation in speech processing performance due to
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This study considers the problem of stress independe ONE DIMENSION PER

speech recognition using a multichannel hidden Markov moc  SpgecH ProbucTion DomaIN NEUTRAL 1 Yoo,
(N-channel HMM). The motivation for this study is to im- N=4 e B
prove the robustness of speech recognition systems for speNEUTRAL, ANGRY, CLEAR, LoMBARD Q)’- N | -
under perceptually induced stress. The formulation and apy -4 . % 5 %
cation of theN-channel HMM is presented in Section II; and _BY < DISC 4

in Section Ill, evaluations of two potential applications of th
N-channel HMM are considered for stress classification al NEUTRAL
improved stressed speech recognition. Finally, a summary

findings and recommendations for future studies are presen x

in Section IV. S N ).~
wor L DISCT | <2

N / _ -
A. Past Research Studies on Stress - 9)’”

LOME.;ﬁD
A number of studies ha}ve been Condu.Cted F’” the anaIySiSFig. 1. Stress independenf-channel HMM recognition algorithm.
of speech under stress in an effort to identify meaningful
relayers of stress [22], [23]. Unfortunately, many resear};}

findings at times disagree, due in part to the variation 111 1171 1191, [25]. 1261 S diti idered
the experimental design protocol employed to induce stres ]d [11]. [ ]’.[ .]’ [25], [26]. Stress con ltions considere
Ithese studies include perceptually induced stress such as

speech and also due to differences in how speakers imd‘?éi

]
s
4 _ o /
P fosc 3 LOMBARD .
N ) - -
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lly applied to improve speech recognition performance [6],

stress in their speech production. Past research experie Lombard effect or task workload (e.g., computer response

suggests that no simple relationship exists to describe thi@E s,_aircraft fighter pilot stressed speech) as well as stressed
gpeakmg styles such dsast, slow, clear, angry, loud, soft

changes [6], [8], [12]. Studies directed specifically at robu h deling f K for th dv is based
speech recognition have addressed intraspeaker variations fa The modeling framework for t e_present study IS base
on asource generator framewarkvhich allows for direct

speaker adaptation [5], [15], front-end stress compensati'dPl ; . s - .
[7], [8], [11], or wider domain training or token generatioH“Odel'ng of stress perturbation within a muIt|d|menS|onaI
training sets [2], [9], [17]. While speaker adaptation techniqué ature spr)]ace [g]’ [;3]' In (()jrder o reveal the undt_arlymg nlatu_re
can address the variation across speaker groups under ne peech production unaer stress, an exte_nswe_ evaluation
conditions, they are not in general capable of addressifiy"Ve spee<_:h product_|on f_eature_ domains—including glottal
the variations exhibited by a given speaker under stres ctrum, pitch, duranon, intensity, and vocal t_ract sp.ec_tral
conditions. Front-end stress compensation techniques sucipdcture—was previously conducted [6]. E_xtenswe statistical
morphological constrained feature enhancement with ad ssessment of over 200 parameters for simulated and actual

tive cepstral compensation (MCE-ACC) [7] employ adaptiv peech under strg;s suggests th.at §tre;s classificatjon bgsed
cepstral compensation to address stress, and, morphol on the separability of feature distribution characteristics is
cally constrained feature enhancement to address noise §5|ble_. - .
improved recognition performance in noisy stressful envj- The idea to formulate a mullt|.d|m(.an3|o.nal HMM has
ronments. Finally, larger training sets have been conside N explored for speech rgcogmtlon In noise using a two-
for stressed speech in the training phase. Most notably, ensional (Z'D_) HMM similar in concept to thzaf-chan_nel
multistyle training algorithm [17] has shown performancyMM presented in this study [28]. Another_ study considered
improvement for speakerdependensystems. An extension & mu,ltlc_ha_nnel HMM _[29] th_at had mu|t|p_le one-channel
of multistyle training based on stress token generation fro'ﬁWM S in its formulation. Th!s ap.proach d|ffers from the
neutral training data has also shown improvement in stress]%PChanne.l HMM pre:sentqd i this study. since, he_re, we
speech recognition [9]. However, for multispeaker syste low the individual dimensions to ref!ect dlﬁerences in how
it has been shown that multistyle training results in a lod gspez_;\kelp_roduce_s speech,vers_us dimensions _used to reflect
of performance over a neutral trained system [24], [26T0|se/d|stort|on3Nh|ch corrupt an input speech signal.
The cause of this is believed to be the additional stress-
related interspeaker feature variations that the recognition Il N-CHANNEL HMM
models must now represent, resulting in a decrease in then this study, we formulate a speech model for robust speech
discrimination ability across the vocabulary set. Additionally, eecognition capable of representing sub-phoneme trajectories
previous study did employ a stress directed speech recognitamross stressed speech production domains as illustrated in
approach using neural networks, which was shown to proviéigg. 1. The variation in sub-phoneme trajectories is motivated
a +10.1% improvement over conventionally trained neutrdly the observation that a stress style is not uniformly observed
speech models [26]. over a word or sentence. Consider the word “help” under the
The effects of stress have been indirectly addressed bymbard effect condition. Here, th&/ and / P/ phoneme%
formulating a more accurate speech production representateould reflect different stress attributes than the/ or /L/
of intraspeaker variability for the speech recognition probledue to voicing and phone class type. As such, Fig. 1 suggests

[16]' Stressed speech analySiS' has Yielded better mOde”ngn this study, we employ the single letter versions of the ARPAbet in [4,
approaches for speech production which have been successis).
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that the new/N-channel hidden Markov modelM-channel notation for N-channel HMM’s that is compatible with the
HMM) would be better able to combine the benefits of a streascepted notation for one-channel HMM’s in the literature.
classification system with a traditional one-channel HMM fofhis is illustrated next by relatingv-channel to one-channel
speech recognition. The key idea is to address the effectsHiIM'’s.
both intraspeaker and interspeaker variability in one algorithm?2) Relationship to One-Channel HMM’d:et S be a set of
instead of separately as with tandem stress classification aidsites with a priorP(z | A) which is the probability of the
stress dependent recognition algorithms. This gives the addtate sequence given the HMM parameters. This prior
benefit of a sub-phoneme speech model at the state lestlepends upon the state transition probabilities as,
instead of the phoneme level that was used in a previous .
stress directed approach [26]. o

The fundamenfaﬁ idea o[f tamf—channel HMM is to gen- P(Z|A) = exp [Z In P(z | Zt—l’)‘)]
eralize the one-channel HMM to enable fast computation of —ra tgl Ca (1)
multidimensional Markov speech processes. For example, a 1012023 r=Lr
two-channel HMM could be for_mulated to mod_el speech froycp thatP(z; | z0,\) = P(z; | A). The likelihood P(3 |
male and female speakers with one dimension allocated g»)r)\) of a given observation sequenge therefore depends

each gender. This would facilitate the integration of separq;’ﬁon the observation probabilities as follows:
sub-phoneme statistics in addition to enabling state to state

transitions across dimensions for gender. Consider a male £

speaker who temporarily produces female-like speech within Py | 2N =[P | 2 2-1, )

a multisyllable word or phrase. A two-channel HMM would t=1

model this by placing the optimal state sequence in the female L(§1)b2(52) - - - br (). (2)
dimension during that portion of the utterance. Hence, the - ) )
overall flexibility of the model is improved by allowing aFinally, the probability of an observation sequerncegiven
combined model where the integrity of each dimension 1§€¢ model parameters is

preserved. It is suggested that this is better than two sepa- , _ _

rate one-channel HMM models with two Gaussian mixtures? Y | %) = Z Py | 2ty 261, VP2t 21 [ A)

because it provides greater separation in the model statistics. Vau,zi-1

Fig. 1 illustrates anv-channel HMM for the case when = Z m101(91)a12b2(G2) - . . ar_1 Tbr (Fr).
N = 4, which is designed to model the effects of three Vey,2 1
additional speaker stress effects. Suppose that this four- (3)

dimensional HMM is used to model a phoneme under the
four perceptual stress conditiomgeutral, angry, clearand For convenience, we suggest an inner product notation on
Lombard effect. Note that the four discs portrayed in théhe characteristics of the hidden state variablevherek is
figure model portions of the phoneme across time from Igfte observation parameter, is the mixture [see (17)], and

to right. As each observation (or speech frame) is presentwd ; are state indices

to the N-Channel HMM, a decision is made as to which

stress dimension provides the highest score. This example (#t,5,m) = (4, m)

shows a phoneme that is closer to theutral statistics at =P(zn=5;k¥y,X (4)

the beginning and ending of the utterance, andry for the ;
second and third states (or discs).

=Sz =715\ (5)
<th | ¥, A) = 7(4)
A. Formulation M
The N-channel HMM can be thought of a®& single = Z%(J’m)' (6)
dimensional (one-channel) HMM'’s [20], [21] that allow state m=1
transitions across models. 3) Reestimation Equationsin the reestimation, one must
1) Notation: Consider a Markov process that is modelefind the best set of model parameters= (A,B,n) such
with I states (or sitesp = {S1,---, 57} where each state that the observation probabilit’(y | A) is maximized. The
S; has a neighborhood of state¥;. Given a sequence of well known forward-backward variables and 3 are used to
observation vectory = {1, -, r}, with a K parameter reestimate the joint probabilityz: ;2.1 ;) of being in state
observationyj, = {y: | k € [1,---, K]} at timet, a sequence at timet, and statej at time¢ + 1 as
of states? = {z,---,2r} will be generated assuming an
initial state distribution! x 1 vector m; = P(z; = S;). (zrizq15) = P(zy = S, z401 = 55 | 9, M)
This model depends upon the state transition probabilities o (1)aib; (Fre1)Brr1(d)
A ={a;; = Plzgr = S; | 2 = Si, A)} and observation = Py [N
probabilitiesB = {b;(t) = P(y:x | 2+ = S;,A)} Vk, both N (o ;
forming I x I matrices. The resulting paramejte\r& (A, B, ) = Q1(1)aijb; (Gi41) 41 () 7)

I I . N .
therefore define an HMM. The goal here is to maintain a 2 izt 2=t (0)aijb; (G 1) i1 ()
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which implies that The first phase requires training a codebook of stress depen-
dent one-channel HMM'’s in the usual manner. In this study,
! k-means clustering, frame energy weighting, and selective
(2 | ¥, A Z Zt,i%41,5) - (8)  token training [31] are employed. The-means clustering
J=t modification to HMM initialization is simply a better means of

obtaining initial state estimates and is well established in the
With this, the following are the reestimation equations for thl'ﬁerature. Frame energy weighting is a training enhancement

HMM model A: that reduces the impact of low-energy speech frames on pa-
. N 9 rameter reestimation. Finally, selective token training removes
i = {2 | 9,4 ©) tokens from the training process that are clearly outliers.
T—1 .. . . .. ..
b — Yot (i) (10) This idea is based on a selective training procedure originally
E f__11<zti | 7, 0) described in [1] and [31]. A training token is considered an
v ’ outlier after the second iteration of training if it produces a log
b (i) = Z CimN (s ttim: Om)s € [1,---,1] (11) Score that is more than two times smaller than the Ia'st.average
m=1 mean score. This prevents outliers from overly modifying the

Gaussian mixture models.
where for the continuous observation densitie§y;), there The second phase of training requires combining the stress

are M Gaussian mixtures with gains dependent one-channel models into ahchannel model
which is trained withoutt-means clustering, mean updating,
. Et 1(7t717m> or variance updating. Speech data from &Allof the stress
Cim = E E i) (12)  ¢lasses are used to train only the state transitions ofMhe
t=1 Lem=11"hsm channel HMM at one time. Regular left-to-right transitions
_ Et=1<7‘m}m> (13) within one dimension are allowed in a manner similar to that
Zil(zm» | ¥, A) in the original separate one-channel models. In Fig. 1, these

are the transitions from disc to disc along one dimension
that form an/ x A matrix. The mearyi; and variances; (i.e., neutra). For a given state, transitions are also allowed
vectors in each row of thé x M matricesi; andé& are given within the same disc or, equivalently, across dimensions.
by Furthermore, transitions are allowed to any state in the next
disc, which is not only a transition across time, but also
S mgm) T 14 from one stress class to another. If thé-channel HMM
Hgm = EfT (e gm) (14) is to be employed for stress classification, then training is
T ’ T completed at this point. However, if th&-channel HMM
Gim = 2ot {ztgm) (G =t ) (Gt = pjm) (15) is to be also used for speech recognition, then the third
S (zm) phase of training is employed. It requires training the
channel HMM using the output model from the second phase
where of training; however, mean, variance, and state transition
updating is enabled. Essentially, this phase takes a very good
o (5)B(4) initial model and refines it slightly. It will be shown in the
Eile o () B (4) evaluations that this phase does not significantly affect the
EomN (T s 7m) correlation qf .each of the dimensions with each corresponding
X l MJ""A t jm’ Jm ] (16) stress condition in theV-channel model. It is suggested
2 omet Cim N (G, trjm;s Tjm) that this is due to the local convergence property of the EM
(expectation-maximization) algorithm used here. The resulting

(#1,5,m) ~

The multidimensionat: mixture Gaussian distribution initial model from the second phase can be said to be already
1 1o in the “valley” of the cost function; hence, the third phase
N(Gry tjms Tjm) = P[5 (@ — mym) T (G~ ttjm)] simply moves the model parameters to the minimum of that
(2m)K/4\/la| cost “valley.”
7

is normalized with the termi, which is the length of the B. Relationship to One-Channel HMM

observation vectorj;. Having presented the relations for The basic strength of th&-channel HMM compared to the
iterative estimation of théV-channel HMM parameters, higherone-channel HMM is that it provides a more flexible model.

level training issues are discussed next. Alternatively, one could suggest that-channel HMM’s bear
4) Training Phases:There are three distinct phases rea similarity to anN mixture one-channel HMM, and therefore
quired to train anV-channel HMM, as follows: ask why areV-channel HMM’s necessary? The reason is that
1) one-channel stress dependent training; an N mixture one-channel model does indeed haveeparate
2) N-channel state transition training; means and variances for each state. However, it does not

3) N-channel model refinement. have the separate state transition probabilities available in the
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N-channel HMM. Furthermore, the allowable state transitions I1l. EVALUATIONS
and training method for theV-channel HMM is such that e two applications of th&V-channel HMM evaluated in

each speech production domain is clustered into each of g sdy are 1) stress classification and 2) stress resistant
dlmenS|or_ls of théV-channel model; hence, maklng the mOd%peech recognition. The performance of fliechannel HMM
more flexible. It should also be noted that there is no reas@ﬂ\ployed as a stress classifier will be compared to the neural
why each state of thev-channel HMM could not also have nenyork based stress classification system considered in a
multiple mixtures. For example, if |t' is desired to train a’brevious study [26]. Next, in order to assess the application
N-channel HMM for ten stress conditions for both male angs the A-channel HMM to stress independent recognition, a
female_ speakers, one could employ a ten-channel HMM W'E%mparison to previously developed [24]-[26] stress depen-
two mixiures per state. _ dent one-channel HMM's is investigated. Additionally, the
Another strength of theV-channel HMM formulation be-  yo tormance of the one-channel stress dependent HMM will
comes apparent when the problem of stress independent re¢agzompared to meutraltrained model for speech under stress

nition is considered. In two previous studies [25], [26], & jjiustrate the need to model speaker stress effects.
phoneme class-based stress classifier using neural networks

was employed to direct a codebook of stress dependent oRe-g

channel HMM recognizers. Though these were isolated word ~— ) )
recognizersy they could eas”y have been phoneme_based reétls |mp0rtant to establish the domain of the SpeeCh data em-

ognizers. In the case where the stress dependent Spégeued in this study to understand the difficulties of conducting
recognizers are phone-based, the phone-based stress clEgggarch on speech under stress. The evaluations conducted
fier would direct each phone to the appropriate recognizé?. this study employ data previously collected for analysis
It is suggested that this would further improve the stregéfd algorithm formulation of speech under stress and noise.
directed recognition performance. Such an experiment whgis database, called SUSAS [7], [6], [10] refers speech

not performed because we opted to take the next stepUfder simulated and actual stresand has been employed
an N-channel HMM instead. AnV-channel HMM works in  €xtensively in the study of how speech production varies
a similar manner with the exception that the basic spee@‘r’i‘e” speaking during stressed conditions. SUSAS consists of
unit is of sub-phoneme or state duration. From our unddfveé domains, encompassing a wide variety of stresses and
standing of how speaker stress affects speech producti8fiotions. A total of 44 speakers (14 female, 30 male), with
we suggest that this is a more appropriate way to addréd€s ranging from 22 to 76, were employed to generate in
the effects of stress. This is due to the differing impact GXCe€SS of 16,000 utterances. The five stress domains include:
stress on each phone class. For example, the perception of) psychiatric analysis data (speech under depression, fear,
speaker stress for unvoiced consonant stoh¥, /k/, /t/) anxiety);

may be little due to limited temporal information, whereas 2) talking styles (angry, clear, fast, loud, slow, sft

vowels (@/,/E/,/1/,/R/,/U/ [4]) are significantly af- 3) single tracking task (mild taskCond5Q high task
fected. Furthermore, within a given phoneme class, the feature Cond70 computer response workload) or speech
trajectories will differ for each stress condition across time.  produced in noiseLiombard effect);

Hence, theN-channel HMM makes a stress class decision 4) dual tracking computer response task;

on a state (sub-phoneme) basis resulting in a better segmerb) subject motion-fear tasks (G-forcé,ombard effect,
tation of the speech utterance. The results in the evaluations noise, fear).

will show that this does indeed improve recognition perfor- Lombard effect was simulated by having speakers listen to

tressed Speech Data

mance. 85 dB SPL of pink noise through headphones while producing
o - speeh (i.e., speech tokens were noise free). The database offers
C. Application to Stress Classification a unique advantage for analysis and design of speech pro-

As mentioned previously, thé’-channel HMM integrates cessing algorithms in that bosimulatedand actual stressed
the stress classification decision into each state transitispeech are available. A common vocabulary set of 35 aircraft
Hence, a readily apparent means of generating a stress praisgmmunication words make up over 95% of the database.
bility vector is to calculate the ratio of times the state trajectorjhese words consist of mono- and multisyllabic words which
passes through each stress dimension versus the total nunaiserhighly confusable. Examples include “go™—*“oh"—*no;”
of states. The neural network approach used in a previous stiigyde™—“white;” and “six’—*fix.” A more complete discus-
on stress classification [26] requires a dedicated structure &®n of SUSAS can be found in the literature [6]-[8], [10].
the speech processing units, whereas Mehannel HMM Four stress conditions make up the domain of the evalua-
offers the opportunity to do stress classification in a varietions considered here; hence, a four-channel HVIM = 4)
of recognition scenarios. The structure of the neural netwowkth a total of sixty state¢/ = 60) is partitioned into 15 states
is more dependent upon the accuracy of a required front-gp@r dimension. The stress conditions inclutkutral, angry,
phoneme parser than an HMM would be for this task. Thelear, and Lombard which are allocated to each dimension
previous neural network approach also requires features tfg., states 0-14 foneutral 15-29 forangry, 30-44 for
are both fixed in relative positions throughout a phoneme alear, and 45-59 fot. ombardas shown in Fig. 2). The speech
well as features that summarize the statistical distribution c)f3Approximater half of SUSAS consists of simulated style data donated by
the phoneme. Lincoln Laboratory [17].
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Fig. 2. N-channel HMM optimal state sequence of the word “destination’rfeutral, angry, clear and Lombard

waveform is segmented into frames sampled at 8 kHz withwaord “destination” under the four stressed speaking conditions.
30 ms window length and 10 ms skip rate. From the SUSASach of the parts of Fig. 2 (i.eagutral, angry, clear, Lombajd
database, six speakers are used for training and three for oegenerated using one of the three test speakers to find the best
testing of both the one-channel andchannel HMM models. path through the singléV-channel word model. It is apparent
There are two tokens available for each stress condition fimm this figure that stress classification occurs for the stress
the 35 isolated word vocabulary employed. In the second aodnditions of neutral, angry, and Lombard effect, since the
third phases ofV-channel HMM training, the tokens for all clear majority of the observations belong to state transitions
four stress conditions are used. within those particular stress classes. We see that for the
word “destination” under an angry stress condition, only three
o observation frames in the first 97 observations are associated
B. Stress Classification with stress conditions other than angry; the remaining nine
For stress classification, th&'-channel HMM model is observation frames from the final portion of the nagal/
trained using the first two phases of training: 1) stress depevhere associated with states from the neutral portion of\he
dent one-channel HMM model generation, and\>channel channel HMM. For the word “destination” spoken undégar,
HMM state transition training. Fig. 2 illustrates the Viterbthe observations occur from states associated withctbéar
decoded best state path through ffiechannel HMM for the dimension during the initial long voiced section (i.e., frames



674 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 7, NO. 6, NOVEMBER 1999

TABLE |
ONE-CHANNEL AND N -CHANNEL HMM V ERsUS NEURAL NETWORK STRESS CLASSIFICATION USING NINE SPEAKERS 35 ISOLATED WORDS, AND AN OPEN
THREE-SPEAKER TEST SET. THE SPEECH FEATURE VECTORI|S ComPOSED OFFIVE C-MEL, THREE DC-MEL, THREE D2C-MEL, AND THREE AC-MEL PARAMETERS

CLASSIFICATION STRESS CLASSIFICATION RATE (%)
ALGORITHM Neutral l Angry | Clear | Lombard || AVERAGE
Neural Network 31.90 11.43 | 81.90 11.90 34.28
1-Channel HMM 53.81 | 84.76 | 51.43 44.29 58.57
N-Channel HMM (3rd Phase) | 45.71 | 72.86 | 50.95 43.81 53.33
N-Channel HMM (2nd Phase) | 46.67 | 78.57 | 54.29 50.95 57.62

18-55), but move to theeutral dimension for the majority of significantly more often tharangry or Lombard conditions
the ending portion of the utterance (i.e., frames 5697, excéptthese simulations. Since we might assume that all stress
for frame 88); resulting in an incorrecieutral classification. conditions have equal a priori probabilities, we have previously
This is a reasonable transition across dimensions, sile@@ shown that for this reason, targeted feature stress classification
andneutralspeech have similar characteristics for some phoigebetter able to differentiate confusable stress classes [26].
classes. Foneutral, angry andLombardutterances, there are In Table |, stress classification rates for thé-channel
several momentary transitions but the correct stress clas$1¥M (with the second phase oiV-channel training) are
consistently identified in the optimal state path sequence.48.7%, 78.6%, 54.3%, and 51.0% fogutral, angry, clearand
is important to note that speakers may not always exhibit thembardeffect, respectively, for an average rate of 57.62%.
same type/level of stress throughout an utterance or phradence, theN-channel HMM stress classifier has a 23.34%
and, therefore, momentary transitions into other stress stdégher performance than the neural network stress classi-
may be possible. Therefore, this example supports the asserfien Note that the stress classification performance degrades
that each class of phonemes and subphonemes is affecghtly for the third phase aV-channel HMM training (model
to varying degrees by stress relative to location and lodg#&finement) by-4.29% on average. This is an important obser-
phoneme content. vation because it shows that the integrity of the dimensions in
In a previous study on stressed speech detection, the Tedfer/N-channel HMM have not been overly corrupted by the
nonlinear energy operator was used for stress detection tbifd phase of training. Hence, allowing mean and variance
extracted vowels on pairwise basis to yield performance of updating in the third phase of training simply refines the
97.5%, 99.1%, 64.8%, and 86.1% fueutral, angry, clearand model without significantly reducing the correlation of each
Lombardeffect stress conditions, respectively [3]. It should pdimension to the stress condition with which it is associated
noted these are stredstectionresults (pairwise decision), arefrom the first two phases of training.
not stres<lassificationresults (one of four decision); hence, Another useful comparison of the performance of the
the results are not directly comparable to those with highéf-channel HVIM as a stress classifier is to assess the ability
stress dimensions [12], [24], [26]. of a codebook of stress dependent one-channel HMM's to
For purposes of comparison, a neural network stress clasdassify speech under stress. The codebook in this case consists
fier is employed here, which is a nontargeted feature triphofik four stress dependent one-channel HMM's. The stress
based algorithm. This is different than a targeted featufSS decision is based upon the model with the highest log
system (employed in [26]) and has been chosen for the purp§§€Te- The one-channel HMM vyielded classification rates of
of comparison since theV-channel HMM stress classifier 23:8%, 84.8%, 51.4%, and 44.3% foeutral, angry, clear,
uses nontargeted features (e.g., the same features are 8¢ _omb_ardeffe(_:t respectively for an average rate of 58.57%.
for all classification decisions). The feature vector employed"is 1S slightly higher on average than the-channel HMM
is based upon the duration, five C-Mel, three DC-Mel, thredress classifier. However, with the size of the training and test

D2C-Mel, and three AC-Mel coefficients (C-Mel stands foP&l it is not known with statistical certainty which HMM will
Mel-cepstral, DC-Mel is delta C-Mel, D2C-Mel is deltg-outperform the other. We suspect that tNechannel HMM

delta C-Mel. and AC-Mel is the autocorrelation C-Mel. awill outperform the one-channel HMM because of the greater

more complete discussion of these parameters is presente§GA'® Separation seen in the recognition experiments in the
[12]). The mean, variance, and slope of these parameters Af§t Section. It is suggested that thechannel HMM could
calculated across each phoneme. All features are based onfHy©Ve stress classification performance with larger speaker
center phoneme in every triphone; however, the two adjac s, larger vocabularle_s, orin a phoneme br_:l_sed system. Next,
phonemes are used in obtaining the mean and variance! N-channel HMM s applied to recognition of speech
the features. This nontargeted feature neural network streggier stress.

classifier achieves a performance of 31.9%, 11.4%, 81.9%, N

and 11.9% forneutral, angry, clear,and Lombard effect C- Stress Independent Recognition

respectively for an average rate of 34.28% (see Table I).In order to employ théV-channel HMM for stress indepen-
The classification performance for trengry and Lombard dent speech recognition, the third phaseMdichannel model
stress conditions are very low, which we determined wasfinement is performed after the same two phases required for
due to confusion between tlodear and Lombardeffect stress stress classification. The two speech recognition evaluations in
classes. It is also apparent that ttlear condition is selected this study compare: 1) neutral versus stress dependent trained
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TABLE I
HMM RECOGNITION RATES FOR ONE-CHANNEL AND NV -CHANNEL MODELS USING NINE SPEAKERS 35 ISOLATED WORDS, AND AN OPEN THREE SPEAKER TEST SET.
TRAINING |s PERFORMED WITH 15 STaTES, ONE MIXTURE, 12 C-MEeL, Five DC-MEL, Five D2C-MEL, FivE AC-MEL, AND LOG ENERGY PARAMETERS

HMM TRAINING REecoGNITION RATE (%)
TYPE Neutral | Angry | Clear | Lombard || AVERAGE
1-Channel Neutral Trained 80.00 40.48 | 81.43 69.05 67.74
1-Channel Stress Dependent 80.00 71.90 | 82.38 80.48 78.69
N-Channel Stress Independent | 96.19 89.52 | 96.67 95.24 94.41
TABLE Il

HMM ScoRrE SEPARATION FOR ONE-CHANNEL AND /N -CHANNEL MODELS USING NINE SPEAKERS 35 ISOLATED WORDS, AND AN OPEN THREE SPEAKER TEST SET.
TRAINING |s PERFORMED WITH 15 SraTeEs, ONE MIXTURE, 12 C-MeL, Five DC-MEL, Five D2C-MEL, Five AC-MEL, AND LOG ENERGY PARAMETERS

HMM TRAINING RECOGNITION LOGSCORE SEPARATION
TYPE Neutral | Angry | Clear | Lombard || AVERAGE
1-Channel Neutral Trained 4.21 -0.48 | 4.08 2.94 2.69
1-Channel Stress Dependent 4.21 2.49 5.08 4.64 4.10
N-Channel Stress Independent 6.87 5.97 8.13 7.32 7.07

1-Channel HMM’s and 2) the stress independdhthannel of the N-channel HMM is that it normally provides greater
HMM versus stress dependent one-channel HMM's. separation between output HMM log scores based upon the
First, the performance of a codebook of one-channel singleparability measure shown in Table lll. This implies that,
continuous Gaussian mixture density, fifteen state HMMWith a larger positive separability score, the separation between
are evaluated. In a previous study [26], the one-chanribe correct token score and the second highest token score
stress dependent HMM showed an improvement-0.1% summarizes how well a model accepts the correct and rejects
over conventionally trained neutral, ard.5.4% improvement the incorrect tokens. For thE-channel HMM, the separability
over multistyle trained recognizers, respectively. In this studjieasure is 7.07 which is consistently greater than the 4.10
the HMM training algorithm described in Section 1I-A4 isSeparation measure for the one-channel stress dependent HMM
employed. The recognition rate for both neutral and stred88 shown in Table Ill. This property of greater separability in
dependent trained one-channel HMM's increased due to th@#put HMM log scores for theV-channel HMM could lead
training options; however, the improvement was still0.95% 0 more robust models for speech under stress.
as shown in Table Il. These training techniques also increase
the separation between the correct target word log score |V. SUMMARY OF FINDINGS AND CONCLUSIONS
and the subsequent second highest log score as detaileﬂ:l
in Table Ill. The separability measure is normalized by th%

nymber of tralnlng tokens and provides a measure of t arkov process model. This new multidimensional hidden
size of the difference between the correct word score and Wl%‘lrkov model (V-channel HMM) has been formulated to gen-
n_ex_t hig_hgst score. Therefore, even when recog_nition rates 818lize a set ofV single dimensional (one-channel) HMM's

similar, it is possible to assess how “close” a given model {§ 516\ transitions across individual models. By employing a

to ”?ak'”g, an errqr. . . . more general Markov model, it has been shown that reliable
Itis typical practice in the speech processing field to negleghass classification and improved speech recognition perfor-

the effects of speaker stress by training neutral speech moqggls,ce of speech under stress can be achieved simultaneously.
for speech recognition in adverse environments. The CGghile stress classification rates increased by 23.34% over
of this decision is made clear by studying the performangg approach similar in structure to a previously formulated
of the neutral one-channel HMM models applied to speecfipntargeted feature neural network classifier [26], the stress
under stress. The degradation in recognition performancecigssification performance was comparable to the one-channel
—31.42%, a reduction from 71.90% for the stress dependefim stress classifier (i.e., training separate HMM recognizers
model to 40.48% wherangry speech was presented to &n speech from known stress conditions, and selecting the
neutral speech model. However, the recognition ratediear highest probable model). Howeve¥,-channel HMM stressed
speech only droppee0.95% from 82.38% to 81.43% whichspeech recognition rates did increase by 15.72% over a previ-
is not statistically significant. Finally, fotombard speech, ously tested stress dependent one-channel HMM approach [26]
performance dropped by 11.43% from 80.48% to 69.05%.(i.e., an overall recognition rate of 94.41% versus 78.69%).
Hence, an average loss 6f10.95% in recognition perfor- We must emphasize here that both stress classification and
mance occurs when using reeutral trained versus a stressspeech recognition evaluations were conducted on a small
dependent one-channel HMM recognizer. vocabulary set (35 words), and a small speaker set (speaker
The results show that (see Table 1) théchannel HMM sets of less than ten speakers). However, the difficulty in
considerably outperforms the one-channel stress dependmilecting, organizing and calibrating a large speech under
HMM by an average of 15.72%. Another interesting featurgtress database has prevented evaluations by any group on

he problem of stressed speech classification and stress
dependent recognition has been considered using a modified
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larger data sets. At the present time, SUSAS [10] representy J. H. L. Hansen, “Morphological constrained feature enhancement with
the largest speech under stress database available to the speecljdaptive cepstral compensation (MCE-ACC) for speech recognition in

research community.Understanding the limitations of the

noise and Lombard effectfEEE Trans. Speech Audio Processingl.
2, pp. 598-614, Oct. 1994.

present database, versus much larger corpora available figr J. H. L. Hansen, “Analysis and compensation of speech under stress

large vocabulary continuous speech recognition, we can make
some concluding remarks. The formulation and evaluations
presented here have suggested that Akehannel HMM is

able to achieve higher levels of speech processing performanié
by integrating intraspeaker stress and inter-speaker nonstress
characteristics into a single model. Previously, this task woultb;
normally be modeled separately with a stress classifier and a
codebook of stress dependent recognition systems.

In the future, it would be useful to determine if such gqu1)
formulation could be scaled up to address large vocabulary
speech recognition under strésSuch an evaluation for thi-
channel HMM would require collecting a tremendously largg2j
speech corpus which would be labeled based on stress content
across speakers. In addition, other speech problems could[gﬁ:
considered such as applying thechannel HMM to problems
such as gender identification, phone recognition, parsing, and
speaker identification. Performance could be compared to mHIA]
tiple Gaussian mixture models or separate model templates.
It would also be interesting to assess the performance of
both monophone and triphone bas¥dchannel HMM speech (15]
recognizers and stress classifiers for speech produced under
adverse conditions. [16]

In a manner similar to the problem of stress classification,
speaker verification could be approached usiny-&£hannel [17)
HMM formulation. For example, in a speaker verification
application, each dimension of tlé-channel HMM could be (18]
allocated for each ofV speakers. The identity of the speaker
could then be confirmed by monitoring state transitions withiia9]
the target speaker’s dimension.
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