n-CuInS₂/polysulfide photoelectrochemical solar cells prepared by spray pyrolysis

Y D TEMBHURKAR

Department of Physics, S. K. Porwal College, Kamptee 441 002, Distt. Nagpur, India

MS received 26 September 1996

Abstract. n-CuInS₂ photoanode has been prepared by spray pyrolysis onto SnO₂ deposited glass substrate at 350°C. The conductivity type of the photoanode was tested by hot-probe method and was of n type. The conductivity of the photoanode was of the order of $2-4\Omega^{-1}$ cm⁻¹ and was measured by using four-probe method. The effect of etching (HCl:HNO₃ = 5:1 by volume) on photoanode properties has been studied. The best cell had the following parameters: $V_{ce} = 0.29$ V, $I_{sc} = 5:33$ mA/cm², ff = 0.571 and $\eta = 1.275\%$.

Keywords. I-III-VI compounds; CuInS₂.

1. Introduction

CuInS₂ is a ternary group compound related to that of zinc-blende. CuInS₂ possesses several exceptional material properties for photovoltaic specially homojunction. CuInS₂ thin films have been grown as *n* type or *p* type majority-carrier concentration (Kazmerski *et al* 1975, 1976; Kazmerski and Shieh 1997) by adjusting the ratio of Cu and In in the films. Masse *et al* (1975) reported the theoretical efficiency of CuInS₂ homojunction to be 28%.

The photoelectrochemical cells based on semiconductors form an important class of solar energy conversion system. They have the advantage of being used for both photovoltaic and chemical energy conversion (Gerischer 1977; Kung *et al* 1977; Veh and Hackerman 1977; Shoonman 1982), CuInS₂ has a direct band gap of about 1.43 eV (Tembhurkar and Hirde 1992), a value which is close to optimal for terrestrial photovoltaics.

A PEC is a device in which one or both the electrodes is a photoresponsive semiconductor (SC) such that irradiation of the SC with light of $hv \ge E_g$, the band gap of the semiconductor, which produces a flow of current in the external circuit. The flow of current occurs at the semiconductor/electrotype interface in which light absorption takes place in the semiconductor to produce excess charge carriers (Aruchamy *et al* 1982).

In the present work the characteristics of $CuInS_2/polysulfide$ electrochemical solar cell having photoanode were studied in the form of thin films.

2. Preparation of photoanode

CuInS₂ photoanode in the form of thin film was deposited on SnO_2 deposited glass substrates so as to cover half the area. The detailed preparation of CuInS₂ thin films was discussed elsewhere (Tembhurkar and Hirde 1992). The aqueous solutions of cupric chloride, indium trichloride and thio-urea of 0.02 M were mixed in the proportion of 1:1.2:3.2 by volume for spraying the films on hot glass substrates. The temperature of the substrate was maintained at 350°C and was measured by pre-calibrated copper-constantan thermocouple. The conductivity of the films as tested by hot-probe method was of

1012 Y D Tembhurkar

n-type. To get a contact lead, a copper wire was placed on the SnO₂ and indium metal was diffused by hot soldering rod on the copper wire and SnO₂. Thus the ohmic contact on the SnO₂ was prepared. The SnO₂ layer works as back contact for CuInS₂ thin films. Epoxy (araldite) was used to seal the copper wire contact and all portions of SnO₂ layer on which film was not deposited and to insulate all but the exposed face of the film. The electrode, thus prepared was used as photoanode. The conductivity of the films was measured using four-probe method and was found to be of the order of $2\cdot4\Omega^{-1}$ cm⁻¹. Thickness of the photoanode was of the order $2-3\mu$ m measured using weighing method by taking density of the film as $4\cdot71$ g/cm² (Tembhurkar and Hirde 1992).

3. Study of photoresponse

In order to select the proper light intensity, the photoresponse versus light intensity study was carried out for illumination of photoanodes. When the surface is illuminated by the light of energy greater than the semiconductor band gap, the light is absorbed and excess charge carriers are produced. The photogenerated electron-hole pairs in the space charge region are separated. For n-type material the photogenerated electrons move deep into the bulk and the holes move to the surface of the semiconductor which are responsible for the redox reaction (Oshcherin 1976). The electrolytic solution was a mixture of 2 M Na₂S 5H₂O, 2M KOH, 3 M S. The electrode was stable in this electrolytic solution. The face of the photoanode was brought to 0.5 cm² of the window to minimize solution light absorption. Platinum electrode of area 1 cm² was used as a counter electrode. Provision was made for a calomel reference electrode. Short circuit current (I_{sc}) and open circuit voltage (V_{oc}) were measured as a function of light intensity. Potential difference of photoanode was between photoanode and saturated calomel electrode (SCE). V_{oc} is obtained by subtracting 0-244 V (potential of SCE) from the voltage measured between photoanode and calomel electrode. Graph is plotted between short circuit current/open circuit voltage and illumination intensity (figure 1a, b).

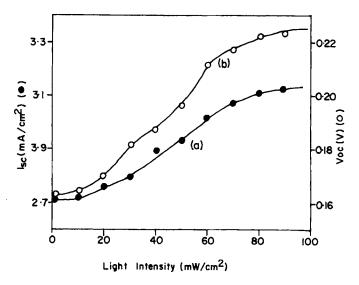


Figure 1. Illumination intensity vs (a) short circuit current and (b) open circuit voltage of as deposited n-CuInS₂ in a solution 2 M in Na₂S-5H₂O, 2 M in KOH and 3 M in S.

It was observed that, the open circuit voltage and close circuit current increases with light intensity and approach the saturation value beyond 70 mW/cm^2 light intensity. This behaviour is similar to the case of p-n or SC/metal junction is solid-state photoanode (Aruchamy *et al* 1982).

4. *I–V* characteristics

A PEC cell is characterized by its current-voltage output with load resistance. To obtain the conversion efficiency, after $2-3 \min$ of illumination of constant light intensity, the corresponding values of photocurrent $(I_{\rm ph})$ and photovoltage $(V_{\rm ph})$ are recorded under variable load resistance.

Figure 2a shows the I-V characteristics for constant light intensity at 70 mW/cm² of as deposited CuInS₂ photoanode. Of special importance in obtaining good photoactive electrodes is their surface preparation. For this the film was etched in 5:1HCl:HNO₃ for 20 sec and rinsed quickly in distilled water. This process was repeated 2-3 times. Figure 2b shows the current voltage characteristics of etched photoanode at light intensity 70 mW/cm².

The fill factor (ff) can be calculated using the relation,

$$ff = \frac{I_{\rm m} V_{\rm m}}{V_{\rm oc} I_{\rm sc}},\tag{1}$$

 $V_{\rm m}$ and $I_{\rm m}$ can be determined by computing the product at various points along the curve and selecting the point where the product is maximum. The fill factor indicates the extent of departure from the ideal behaviour of semiconductor electrode (Robbins *et al* 1978). The ideal *I-V* relationship for a PEC cell should yield 'rectangular' shape. Thus the fill factor is a measure of the rectangularity of the output of photovoltage – photocurrent plot. The fill factor value close to unity is desired for a good quality PEC solar cell.

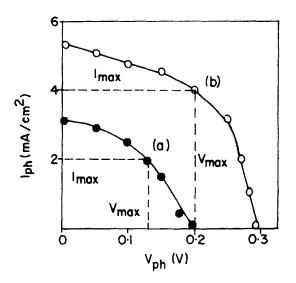


Figure 2. Output power characteristic of n-CulnS₂ in a solution 2 M in Na₂S – 5H₂O, 2 M in KOH and S at room temperature: (a) as deposited and (b) etched.

Thin film	Fill factor ff	Efficiency η
CulnS ₂		
a) as-deposited	0.396	0.385
b) etched	0.571	1.275

 Table 1.
 Parameters of CuInS₂ photoanodes.

The optical to electrical energy conversion efficiency in a semiconductor/liquid junction solar cell given by,

$$\eta = \frac{V_{\rm oc} I_{\rm sc} ff}{P_{\rm in}} \times 100, \tag{2}$$

where P_{in} is the light (optical power) input. From the plots (figure 2), the fill factor (ff) and efficiency were calculated using relations (1) and (2) of CuInS₂ photoanode. These results are listed in table 1. The similar result was published (Tembhurkar and Hirde 1994) for CuInS₂ photoanode.

5. Results and discussion

It was observed that the short-circuit current, open circuit voltage and fill factor increases after etching the photoanode and thus overall power conversion efficiency. Robbins *et al* (1978) reported the fill factor and efficiency for etched single crystal and pressure sintered polycrystalline electrode of n-CuInS₂ liquid junction solar cells as 0.23-0.31 and 3.5-4.5% respectively. Our calculated value of fill factor was greater than this while efficiency was less. Our calculated efficiency was less due to the polycrystalline thin films and difference in preparation method.

For good limiting open circuit and short circuit parameters, the fill factor can be increased, the n-CuInS₂ based cell may be useful in the field of liquid junction solar cell system.

References

Aruchamy A, Aravamudan G and Subba Rao G V 1982 Bull. Mater. Sci. 4 483
Gerischer H 1977 Special topics in electrochemistry (Amsterdam, The Netherlands: Elsevier)
Kazmerski L L and Shieh C C 1997 Thin Solid Films (to be published)
Kazmerski L L, Ayyagari M S and Sanborn G A 1975 J. Appl. Phys. 46 4865
Kazmerski L L, Ayyagari M S, Sanborn G A, White F R and Merrill A J 1976 Thin Solid Films 37 323
Kung H K, Jerrett H S, Sleight A W and Ferreti A 1977 J. Appl. Phys. (USA) 48 2463
Masse G, Manthuruthil J C and Locker D R 1975 Bull. Am. Phys. Soc. 20 696
Oshcherin B N 1976 Phys. Status Solidi (a)35 K35
Robbins M et al 1978 J. Electrochem. Soc. 831
Shoonmann J 1982 Ber. Bunsenges Phys. Chem. (Germany) 86 660
Tembhurkar Y D and Hirde J P 1992 Bull. Mater. Sci. 15 143
Tembhurkar Y D and Hirde J P 1994 Bull. Mater. Sci. (USA) 124 833