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The critical 6 for stability against ideal 
hydromagnetic internal ballooning modes as a function 
of toroidal mode number, n, is calculated for two 
different equilibrium sequences by rise of a finite 
element technique fn < 20), and a WKB formalism 
(n > 5). The agreement between the two methods is 
good in the overlap region 5 < n < 20. The W'KB 
formula reduces to the "1/n correction" at very high 
n, but is much more accurate at moderate n. The 
critical 6 vs_ n curves exhibit oscillatory structure 
at low n, but in both sequences the lower bound on 8 
is set by n - » modes at about 8 C - 5%, For reactor 
parameters, finite Larmor radius efEects are not 
expected to have a large effect on this S-limitation. 
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I. INTRODUCTION 

Doubt has recently [1] been, cast on the relevance of n • » 
stability limits found by application of the ideal hydromagnetic 
ballooning mode formalism [2-5]. This arose from the discrepency 
between the critical 8 ( 6C = 2 J p dT/j B^ dx , at marginal 
stability) found by extrapolation of low toroidal mode number, n, 
results to n « » (giving Bc ~ 10%), and the strictly n « » result 
of the ballooning mode method (giving 8 C - 5 % ) . 0n the basis of 
the 1/n correction formula (5,6! derived from ballooning mode 
theory, it was argued that the much more pessimistic ballooning 
results did not become valid until n was as high as 150. At such 
high values of n, it was suggested that nonideal effects might 
stabilise t::e modes. 

In .-.rder to clarify the role of high n modes, it is 
necessary to obtain quantitative results in the region n > 5. We 
have done this using two complementary techniques: a new finite 
element code (PEST-II [7]), good for n < 20, and a new (6,6] WKfl 
technique for ballooning modes, good for n > 5. 

The two techniques agree well in tleir region of overlap, 
whereas the 1/n correction formula 15,6] is sensitive to the 
normalization used for 6to, and can give very inaccurate results. 
For instance, at S » 10%, in the case, cited in Ref. 1, we find 
instability for n > 21. With typical reactor parameters [9] , 

this would give kxpt - 0 > ? _ 0 , 2 ( s 0 finite Larmar radius effects 
cannot be counted on to stabilize ballooning modes at S ~ 10%,. 
and the lower limit set by n = » stability is probably more 

i 
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realistic. we have also found that the function 8 (nj has 

considerable structure at low n, implying that extrapolation 

based on a few integer values of n is not a valid procedure. 

We now describe the choice of equilibrium sequences, the 

PfiKT-.II and WKJS calculations, and give an explanation for the 

breakdown of ";he 1/n formula. 

II. EQUILIBRIUM SEQUENCES 

we have studied two sequences of equilibria in which 6 

varies continuously from 0* to > 20%. Sequence I was obtained by 

applying a flux conserving algorithm [10] to a D-shaped 

equilibrium with an aspect ratio of 4.0, minor radius = 1.25 m, 

elongation =* 1.65, and »deeness" of 0.5. The values of the 

safety factor tq) on the magnetic axis and plasma surface were 

q 0 = 1.0 and q s = 2.0, respectively. The pressure profile was 

as described in Ref. 1. 

Sequence II was obtained by selecting the case 8 = 21% from 

Sequence I, and from it generating a family of equilibria, 

parameterized by a scaling parameter s, such that the pressure 

and poloidal field remain invariant, while the toroidal field 

B,{xls) is related to that in the base case, B^(xll), by the 

equation 

X 2B^(x|s) = X 2B^(x|l) + (g 2 - 1) R 2 B 2 , (1) 

which ensures that the Grad-Shafranov equation remains satisfied 

http://PfiKT-.II
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[11]. Here X is the distance from the major axis, while RB 0 i s 

the value of XB, on the surface of the plasma. This sequence is 
characterized by constant poloidal B 
(@p - 2 J p dt/ J B^ di = 2.5), and higher q and q' at lower 

values of eCs)* e(l)/s2 = 21%/s2. Sequence II reproduces fairly 
accurately [12] the one used to produce Fig. 6 of Ref. 1, but 
in order to suppress the complicating factor of surface kink 
modes we treat the case of a conducting wall on the plasma 
boundary. Thus our low-n results are even more optimistic than 
those of Ref. 1. 

III. COOKDINATE SYSTEM 

We use a <<K 6, 5) coordinate system, where 2T* is the 
poloidJl flux, 9 is an arbitrary poloidal angle, and Q is a 

toroidal angle chosen so that the raagrtetic field lines are straight 
iu (a,;) space. Thus, 

B = ?£ x jfy + qf«>; ?# * ̂ e , f2j 
so S-$ = J " 1 o e + qs^), 
where J = (7IJJ x ^9*^0 

If ? is the usual toroidal angle <f, then our poloidal angle 
6 is that of the PEST-I stability code [13] , and the Jacobian is 
given by J = X2/a ( I(J ) , where a(ip) is determined by periodicity 
requirements. This choice has the undesirable feature for 
numerical work at high P, that an equally spaced 6-grid becomes-
very coarse in real space lear" the outside region where the 
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poloidal field is high. For integrating the ordinary 
differential equation arising in the ballooning mode formalism 
[2-5], the choice J s> X/[a (i(j) |$I|J | ], which gives equal arc lengths 
on the intersection of a magnetic surface with the plane 
$ « const , fas been found to be optimal. The current PEST-II 
calculations were done with J * x2/a(i|j), which was found to give 
adequate accuracy with the number of Fourier modes used. The 
effect of other choices of Jacobian on convergence is under 
investigation. 

IV. PEST-II 

The e s s e n t i a l d i f f e r e n c e between PEST-I [13] and PE'ST-II i s 

the ose in PEST-II of a model kinetic energy density 
(l/2)pu'! 15\*, where £ = £-v> is proportional to the 
displacement of a fluid element in the direction normal to a 

- * • magnetic surface. This allows the two components of ? within tha 
surface to be eliminated analytically [14], thus reducing matrix 
sizes by a factor of 3 and making calculations at n " 20 
feasible. 

At first sight, the use of a model kinetic energy seems 
undesirable since the resulting growth rates are nonphysical. 
However, the sign of OJ2 is independent of normalization, and for 
calculating marginal stability points, our choice is actually much 

2 more practical because u (S, n) is an analytic function near 
u 2 = 0. In contrast, u 2 = 0 is the lowest point of a continuum. 
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band when the physical kinetic energy (I/2)pw2 |f |2 j s used, 
making accurate extrapolation to marginal stability difficult. 

After Bineau reduction [14], the Euler-Lagrange equation is 

(pu2 + F) £ = 0 / ( 3 ) 

where the scalar operator F is definad, tor n ¥ 0, by 

{4] 

•+ — i 

where j is the equilibrium current density, A is the Green's 
s 

function operator which inver ts the surface Laplacian 

4 s 
$.[T _ Mt\.? , (5 ) 

and 

K = j j j S; (3-ft) , ( 6 ) 

•+• - + •*• 

where n = Vi|/|Vi|>| . 

In axisymmetric geometry we assume a normal mode to go as 
exp(-inO. so that A ? reduces to a second order ordinary-
differential operator in 9 . Its inversion can, therefore, be 



done surface by surface. We solve Eq. (3) by Galerkin's method 
[13], using a truncated Fourier representation in Q, and finite 
elements in 41. The calculations were performed on the NMPECC 
CRAY-I computer using 51 Fourier modes and 72 radial elsments. Tht 
equilibria were calculated on a 129 * 129 rectangular X-Z grid, 
and mapped onto a 145 x 256 tC-8 grid using high order spline 
interpolation. The results for sequences I and II are 

represented in Fig. 1. 

V. WKS FORMALISM 

This is a development of the ballooning mode formalism 
[2-SJ, which uses e = i/ n as an expansion parameter to develop 
an asymptotic solution of Eq. [i] . Ordering <i)2 finite (so that 
OJ2 c a n t,e negative), and looking at the asymptotic limit e —> 0, 
we see that B-V£ must be 0(1). The eikonal representation 

5 = 5(9,v,a,e) expC-iwt - iS(a,<Ji)/e] (6) 

satisfies this, with [2J a = r, - q6 so that B s ?a * ?( . In the 
axisymmetric case, S is separable 

S (a,i|0 = a + k W dq (*) (7) 

where k̂ /e i s the radial wavenumber in a - q coordinates, Ey our 
choice of "straight field line" coordinates, we have avoided the-
need for an eikonal description of the fast 9-depe.ndence [5]. 
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As always in fcKB theory, Eq. (6) applies only on a single 

branch of the dispersion relation. The physical solution is to 
oe found by linear superposition of all branches having the same 
frequency, with amplitudes and phases chosen to satisfy boundary 
conditions and turning point matching conditions. Thus the fact 
that Eq. (6) does not satisfy periodicity in 6 is irrelevant at 
this stage. 

Inserting Eq. (6) into Eq. (3), and expanding in powers 
of E, w© find at lowest order 

( D u 2 + j . e Jjsj! g.$ + 2 s q s i % x J . i ) e<°> = o , (8) 

where ic i s the f ie ld l ine curvature , p i s the pressure , and It/e 

is the wvevector $ S / E . That i s , for an axisymmetric system, 

jc = Va + k vq = v"c - q?9 + (6 - k ) $q . <9) 

Mote that £•£ = 0, whereas K'^ty i ncreases secularly as 6 —^ -<*> • 
Equation <8) is to be solved as an eigenvalue equation for 

w^ under the condition [5] that £ be square integrable on the 
domain - •» < 8 < <° , thus yielding the dispersion relation 
u)2 = A(i/>r kg) , Although k„ plays a similar role to the parameter 
1 0 occurring in Ref. 5, it is here clearly a function of # , 
since u2 _ corigt for a normal mode. The fact that k occurs in 
Eq. (8) only in the combination (9 - k q ) implies [8] tnat X is £ 
periodic function of k (period 2TT) . Thus there is an infinity-
of degenerate branches of the dispersion relation, which allows 
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us to form a periodic normal mode by using an infinite sum of 
these solutions [3-5]. 

Figure 2 shows typical contours of constant Mq, k q) over a 
half period in k and over the band of unstable surfaces, 
^L < <3t^) < <3R« A S will become apparent [see Eq. (11) ], it is 
here convenient to label surfaces by q rather than ij> . The 
outermost contour is at marginal stability, X * 0. The inner 
contours are equally spaced in A between 0 and the most unstable 
value ^ m i n ( < 0 ) . As $ increases, the area enclosed by the A = 0 
contour increases. In fact, for sufficiently high &, the A = 0 
contour in the range -IT < k < ir coalesces with the A = 0 
contours in the neighboring ranges <see Fig. 3), and the value 
of A at the saddle point at (qx, IT ) becomes negative. This 
topological complication will not be treated here. 

Thus , we assume that the two branches in the range 
~" * kq < "" couple only with each other, at the turning points 
q 3 q L and q = q R. The £-expansion breaks down near a turning 
point, but an expansion in e V 3 c a r [ t,e . J s e c: instead, and the 
resultant Airy function solution matched to the incident and 
reflected waves. In traditional WKB fashion [15] the phase 
change is found to be TT/2 at a turning point, thus yielding [8] 
the "quantization" condition for the radially extended eigenmodes 

k dq =» 2TT<N + V2) , (10) 

where N = 0, 1, 2, .... Although N should strictly be 0{n) for-
the KKS theory to apply, it is well known that Eq. (101 is exact 
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for a harmonic oscillator potential at all N, and we, therefore, 
assume Eq. (10) to be a good approximation -even at N = 0, which 
is the mode of highest growth rate. Thus we estimate the value 
of n at which the most unstable mode stabilizes to be 

n o = * / " *q dq (11) 

where A k q dq is the area enclosed by the X a o contour in the 
^ ~ ^q plane. The result of applying Eq. (11) to sequences I 
and II is shown in Fig. 1. The curves are continued down to 
n c = 5. 

This formula r educes to the 1/t c o r r e c t i o n formula [5 ,5 ) 

when X(q, K^) i n the range 0 > X > X m i n can be approximated by 

Taylor expanding tc second o rder in (q - ;.;„,) and ( k q - kq) , where 

(%, ti„) is the l o c a t i o n of the X = X ( n^ p ) ^ 0 i n t . We f ind 

i / 3

2 x ; M 1 / 2 

• i O 

(12! 

The fact that X = o contour in Fig. 2 is not elliptical 
indicates that the Taylor expansion is breaking down. However, 
application of £q. (12) to the case shown in Fig. 2 (6 Z 10.5*] 
gives n c - 26, compared with n c = 18 from application of Eq. 
(11). Thus nonellipticity of the X = 0 contour is not in itself 
sufficient to explain the order of magnitude discrepancy with the. 
result of Ref. 1, n c = 150. 
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We have also calculated the X-contours with pu^ i n Ed. (2) 

replaced by o<u2 I k I 2 / b 2 , which Is the model normalization used In 

Refs. 2 and 5. This models the physical kinetic energy better 

than our model, b\it has the mathematical disadvantage that it 

generates a continuous spectrum for \ > 0, Thus the Taylor 

expansion used to derive Eq. (12) must fail to converge at or 

before X => Q, and the approximation of retailing the first three 

terms may be wildly inaccurate. This Is confi'rmed by the fact 

that this model normalization gi"es n c s 62 L'or che 10.5% 6 case 

referred to above. Even this result Is less than that oi ReE. 1 

by a factor of more than 2. This discrepancy can probably be 

ascribed to the use in Ref. I of an orthogonal coordinate 

system, which givas rise to severe numerical difficulties £l£|. 

This is because of an accidental vanishing of the local shear v 

near the most unstable surface. In "straight field line" 

coordinates, such as those we use, \> does not occir in Eq. 

'12), and no such problem arises. 

VI. DISCUSSION-

The agreement between the two methods for n > 5, as shown 

in Fig. 1, is quite impressive and builds confidence in the 

accuracy of both, Kowtver, the simple WKB theory of Sec. V 

fails to predict the oscillatory structure at low n revealsd by 

the PEST-II results. The oscillations .;an be understood 

c, alitatively as due to the movement of rational surfaces-

relative to the band of ballooning unstable surfaces, as 
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illustrated in figs. 4 and 5. The growth rate is found 
empirically to peak when q x = m / n , where m is an integer and q x 

is the value of q at the saddle point occurring at k = ir in the 
-Wq, kq) contour plots (Fig. 3). This is also approximately 
true when M q x , TT) > 0, but if the 'instable region is localized 
close to k q = o, as occurs at low 6, the amplitude of the 
oscillations is very small and m/n is closer to q c. The 
oscillatory structure can be explained by an extension of the WKB 
formalism to include tunneling between different branches. 

Although fractional values of n are not physically 
realizable, 8c(n) is an analytic function and can be 
extrapolated. However, since the period of the oscillations is 
An Z l/qx < 1, extrapolation based only on integer values of n is 
not a valid procedure. Also, q x is a function of equilibrium 
parameters, and the behavior of the curve at fractional n is a 
good indicator of the sensitivity of the results to small changes 
in the equilibrium. 

Ŝ quer.ce II appears to have superior stability properties 
to Sequence I at intermediate values of n, presumably due to 
stronger shear, but the n = » limit on G c is approximately the 
same for both. (In fact,8c(«) is somewhat lower in Sequence II.) 
Even for Sequence II, when 6 is significantly greater than &c(a>) , 

there is a broad band of unstable modes with k^p^ < i. The 
effect of such modes on transport must be determined before the 
significance of this result for high 3 tokamak operation can be 
evaluated. 



t 

-13-

More details on PEST-II and on the INKB formalism will be 
published elsewhere. 
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FIGURE CAPTIONS 

B c vs 1/n tct Sequences I and II. Solid line connects 
PEST-II results, dashed line connects results from Eq. 
(11). The large dots are additional PEST-II points. In 
Sequence II, the values oC 3 were obtained using the 
approximation B : 21%/s2, which overestimates 8 for 
the diamagnetic plasma considered here. 

Contours of constant X(q, k„) for the case s =* 1.414 
< 3 " 10.5%) in Sequence II, plotted at nine equal levels 
between 0 (outermost contour, q L < q < q R) and Xmin 
[most unstable point, at (q0, o)]. 

Contours of constant A for the case 6 = 8.9% of Sequence 
I, which is a case where the saddle point at (qx, *) is 
unstable [X<qx, IT) < 0] . This topological configuration 
occurs for 6 > S% in Sequence I, and 6 > 16% in Sequence 
II. 

Fourier amplitudes of a mode with n = 6.5 for the case 
S = 7.5% of Sequence I. The strongest component 
(ro • 7) satisfies the relation m - nq x. This case is 
typical of those with maximum growth rate (minimum &c). 

The locations of some rational surfaces are shown. 
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fr'ig. 5. Fourier amplitudes of a mode with n » G.9 for the case 

6 = 7 . 5 % of Sequence I. The strongest component 
(m = 8) satisfies the relation m - 1/2 Z nq . This case 
is typical of those with minimum growth rate (maximum 
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