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The critical B for stability against ideal
hydromagnetic internal ballooning modes as a function
of toroidal mode number, n, 1is calculated for two
diffarent equilibrium sequences by nse of a finite
element technigue (n ¢ 20), and a WKB formalism
(n > 5). The agreement between the two methods is
good in the overlap region S < n < 20. The WKB
formula reduces te the "1/n correction" at very high
n, but is much mere accurate at moderate n, The
critical 8 vs n curves exhibit escillatory structure
at low n, but in both saquences the lower bound on Bc
is set by n = = modes at about 8, ~ 5%, For reactor
parameters, finite Larmor radius effects are not

expected to have a large effect on this B-limitatien.
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I. INTRODUCTION

Doubt has recently {1] been cast on
stability 1limits found by application of
ballooning mode formalism [2-«5]. This
between the critical 8 (B

stablility}) found by extrapolation of low

the relevance of n = =

the ideal hydromagnetic

arose from the discrepency

e =2 J P dT/f B2 dtr, at marginal

¢
toroidal mede number, n,

results to n = e (giving B, ~ 10%), and the strictly n = » resnlt

of the balloening mode methed (giving 8,

~ 5%). On the basis of

the 1/n correction formula (5,6] derived from balleoning mede

theory, it was argued that the mich more
resilts did not become valid until n was
high values of n, it was suggested that
stabilize tre modes. -

In <rder to clarify the role
necessary to obtain guantitative results
have dene this using two complementary
element code (PEST-II ([7]), good for n <
technique for ballooning modes, good for

The two technigues agree well in
whe}eas the 1/n correction formula [5,6]

normalization used for 6w, and can give

pessimistic balleoning
as high as 150. At such

nonideal effects might

of high n modes, it is
in the region n > 5. We
techniqgues: a2 new finite
20, and a new {6,8] WKB
n 2 5.

tleir region of overlap,

is sensitive to the

very inaccurate resa’ts.

For instance, at 8 = 10%, in the case cited in Ref. 1, we find

instability for n > 2i. wWith typical

this would give ky0; ~ 9,1 - 0.2, so fini

cannot be counted on to stabilize ballooning modes at B ~ 10%,.

and the lower limit set by n = @ stabi

reactor parameters [9],

te Larmor radius effects

lity is probably more



realistic. We have also found that the function Bc(n; has
considerable structure at low n, implying that extrapolation
based on a few integer values of n is not a valid procedure.

We now describe the choice of eguilibrium seguences, the
PEST-II and wKb calculations, and give an explanation for the

breakdown of “he 1/n férmula.
II. EQUILIBRIUM SEQUENCES

we have studied two seguences of eguilibria in which 8
varies continuously from 0% to > 20%. Sequence I was obtained by
agplying a flux conserving algorithm {10] to a D=shaped
equilibrism with an aspect ratic of 4.0, minar radius = 1.25 m,
elongstion = 1,65, and ¥deeness" of 0.5, The wvalues of the
safety factor (gq) on the magnetic axis and plasma surface were
9y = 1.0 and gg = 2.0, respectively. The pressure profile was
as described in Ref. 1.

Seguence Il was obtained by selecting the case 8 = 21% from ,
Seguence I, and from it generating a family of eqguilibria,
parameterized by a scaling parameter s, siuch that the pressure
‘and poloidal field remain invariant, while the toroicdal field
B¢(;ls) is related to that in the base case, B¢(;ll), by the
eguation

%8} (%|s) = xzaitﬁll) + % -0 r%2 (1)

which ensures that the Grad-Shafranov equation remains satisfied
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{11]. Here X is the distance from the major axis, while RB, jg
the value of XB¢ on the surface of the plasma. This seguence is

characterized by constant poloidal B8
(Bp 22 I p dt/ J BS dt = 2.5}, and higher gq and q' at lower
values of B(8)® g(l}/s2 = 21%/52. Sequence II reproduces fairly
accurately (12] the one used to produce Fig. 6 of Ref. 1, but
in order to suppress the complicating factor of surface kink
modes we treat the case of a condiucting wall on the plasma
boundary. Thus o'r low-n results are even more optimistic than

those of Ref, 1.
ITI. COORDINATE SYSTEM

We nuse a (b, 9,8) coordinate system, where 27§ is the
poloidal flux, 8 is an arbitrary poloidal angle, and ¢ is a
toroidal angle chosen so that the magretic field lines are straight

in (8,3) space. Thus,

B = Fo x Py + q(u) o x Pa , (25
so B = 57 oy + @),
where J = (Jy x Fo-9g) L .

If ¢ is the usual toreidal angle 9, then our poloidal angle
@ is that of the PEST-I stability code [13], and the Jacobian is
given by J = X2,q(y ), where a(¥} is determined by periodicity
requirements, This <choice has the undesirable feature for
numerical work at high B, that an egually spaced 8-grid becomes.

very codarse in real space near the outside region where the
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poloidal field is high. Faor integrating the ordinary
differential eguation arising in the ballooning mode formalism
[2-5], the choice J = x/Ca(y)|Vy|], which gives equal arc lengths
on the intersection of a magnetic surface with the plane
¢ = canst , has been found to be optinmal. The cuarrent PEST-I1
calculations were done with J = X2/0(y), which was found to give
adequate accuracy with the number of Fourier modes used, The

effect of other choices of Jacobian on convergence is under

investigation.
iv. PEST-II

The essential difference between PEST-I (13} and PEST-II is
the use in PEST~I1 of a model kinetic energy density
ll/2)pm2IE|2, where £ = E-?w is propertional te the
displacement «ef a £luid element in the direction normal to a
magnetic surface, This allows the two components of E within the
siurface to be eliminated analytically [14], thus reducing matrix
sizes by a factor of 3 and making calculations at n =~ 20
feasible.

At first sight, the "se of a model kinhetic energy seems
undesirable since the resulting growth rates are nonphysical.
However, the sign of w2 is independent of normalization, and for
calculating marginal stability points, our choice is actually much
nore practical because wz(B, n) is an analytic function near

w?2 = 0. In contrast, w2 = 0 is the lowest point of a continuum.
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band when the physical kinetic energy (1/2)pw2(8(2 is used,
making accurate extrapolation to marginal stability difficult.
After Binean reduction (l4), the Euler-Lagrange eguation is

2 (3)

(pw” + F}) £ =0,

where the scalar operator F is definad, for n # 0, by

(4)

where 3 is the eguilibriam current density, A;l is the Greean's

function aperator which inverts the swrface Laplacian

_ o  Tyip \ =
’s * v.(: i mlz)'v ' "
and
- - e -
g = 1.x B (B-Vn) . : (6)
Ik

+ “+ >
where n = VW VY|,

In axisymmetric geometry we assume a normal mode to go as

exp(~ing), so that A reduces to a secand order ordinary-

s

differential operator in 8 . Its inversion can, therefore, be
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done surface by surface. We solve Eg. (3} by Galerkin's method

AL L A SRELN X e e

[13], wusing a truncated Fourier representation in 8, and finite
elements in ¥, The calculations were performed on the NMFECC

CRAY-I computer using 51 Fourier mcdes and 72 radial elements. The
equilibria were calculated on a 129 x 129 rectangular X-Z grid,
and mapped onto a 145 x 256 Y~8 grid using high order spline
interpolation. The resalts for seguences [ and I1 are

represented in Fig. 1.
V. WKB FORMALISM

This is a development of the ballooning mode formalism
[2-5}, which uses €& = l/n as an expansion parameter to develop
an asymptotic solution of Eg, (3). Ordering w2 finite (so that
w? can be negative), and looking at the asymptotic limit e -» 0,
we see that E-%g must be 0(l}. The eikonal representatien

~

£ = g(8,y,a,e) exp[-iwt - iS(a,¥)/c] (6)

satisfies this, with [2] o 2 { - g so that E = ¥a x ¥y . 1In the

axisymmetric case, S is separable

S5(a,p) = a + [ kq(w) dg (y) (7)

.

where kq/E is the radial wavenumber in a - g coordinates. By our

choice 'of "straight field line" coordinates, we have aveided the-

T

need for an eikonal description of the fast f~dependence [5].
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As always in wKB theory, Ey. ({(6) applies only on a single
branch of the dispersion relation. The physical solutlon is to
ve found by linear superposition of all branches having the same
freguency, with amplitudes and phases chosen to satisfy boundary
conditions and turning point matching conditions. Thus the fact
that Eq. ({6) does not satisfy periodicity in 6 is irrelevant at
this stage.

Inserting Eq. (6) into Eg. (3), and expanding iIn powers

of ¢, we find at lowest order

( vJ_.i_ (¢’)kxi<ﬁ)g‘°)=o , (8)

where x 1is the field line curvature, p is the pressure, and K/t

is the wavevector ¥S/e. That is, for an axisymmetric system,
K="%a+k ﬁq Tz - q¥8 + (8 - k) g . (9)

Note that kB = 0, whereas I-vw increases secularly as 8 = .= .
Eguation (8) is to he galved as an eigenvalue eéguation for
w? under the condition {5) that E(O) be sgquare integrable on the
domain - = < 8 < ® , thus vyielding the dispersion relation
wl = Aly, kq). Although kq plays 2 similar role to the parameter
Ny occurring in Ref, 5, it is here <clearly a function of ¥,
since 2 = const for a normal mode. The fact that kq occars in
Eg. (8) only in the combination (8 - kq) implies [8] tnat A is a

periodic function of kq (period 2m). Thus there is an infinity-

of degenerate branches of the d.spersion relatien, which allows
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us to form a periodic normal mode by using an infinite sum of
these solutions [3-5].

Figure 2 shows typical conteurs of coastant A(g, kq) over a
half period in kgs and over the band of unstable surfaces,
9; < g(¥) < gg. As will become apparent ([see Eq. (11)], it |is
here convenient to label surfaces by q rather than ¢ . The
ocutermost contour is at marginal stability, A = 0. The inncr
contours are egually spaced in ) between 0 and the most unstable
value lmin(<0). As B increases, the area enclosed by the X = 0
contoyr increases. In fact, for sufficiently high B, the A = 0
conteour in the range -7 < kq <m coalesces with the A =0
contours in the neighboring ranges {see Fig., 3), and the value
af X at the saddle point at {94, T) becomes negative. This
topological complication will not be treated here.

Thus , we assume that the two branches in the range
-7 <L kq < T couple only with each ather, at the turning points
9 = 9y and q = gg. The € -expansion breaks down near a turning
point, but an expansion in €1/3 can be wused instead, and the
resaltant Airy function solution matched te the incident and
reflected waves. In traditional WKB fashion [(l1%] the phase
change is found to be T/2 at a turning peint, thus yielding [8]

the "quantization™ condition for the radially extended eigenmodes

n % kq dg = 2v{(¥ + 1/2} , (10}

where N = 0, 1, 2; ..+ . Although N sheuld strictly be 0{n) for.

the wWKB theory to apply, it is well knewn thac Eg. (10) is exact
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for a harmanic oscillator potential at all N, and we, therefore,
assume Eg. (l0) to be a good agproximation .even at N = 0, which
is the mode of highest growth rate. Thus we estimate the value

of n at which the most unstable mode stabilizes to be

ncan/j[kqdq, (11)

where % kq dg is the area enclosed by the A = 0 conteur in the
4 - k, plane. The result of applying Eg. (1l1) to sequences I
and II is shown in Fig. 1. The curves are continued down to

nc = 5.
This formula reduyces to the 1/1 correction formula ([5,6]

when A(q, Kg) in the range 0 > X > i, can be approximated by

Taylor expanding tu second order in (g - §.) and (kg = kg)r whare

°
{8y, kg) 1s the location of the } = dgi, point. we find

1/2

2, .2,
n_ = 1 (E_A.i_% R (12}
¢ 2|/\min 3q2 qu
o}

The fact that A = 0 contour in Fig. 2 is not elliptical
indicates that the Tayler expansion is breaking down, However,
agplication of Eq. (12) to the case shown in Fig. 2 (B = ]10.5%)
gives n, = 26, compared with Ne = 18 from application of Eq.
(1l). Thus nonellipticity of the X = 0 contour is not in itself

sufficient to explain the order of magnitude discrepancy with the.

result of Ref. 1, ng = 150.

e
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we have also calculated the A-contours with pw? in Eq. {2)
replaced by pw2l|k|2/62, which is the model normalization used in
Refs. 2 and 5. This models the physical kinetic energy better
than our model, but has the mathemutical disadvantage that it
generates a continuous spectrum for x 2 0, Thus the Taylor
expansion used teo derive Eg. (12) must Eail to converge at or
before A = ¢, and the approkimatlon of retaih@ng the first three
terms may be wildly inaccurate. This is contirmed by the fact
that this model normalization gives n, = 62 for the 10.5% B case
referred to above. Even this result {s less than that o Ref. 1
by a factor of more than 2. This discrepancy can probably be
ascribed to the use in Ref. l of an orthogonal coordinate
system, whuch gives rise to severe numerical difficulties (1€].
This is because of an accidental vanishing of the local shear v'
near the mest wunstable surface. In “straight field 1line*
coorsdinates, such as those we use, v' does not occur in Eq.

112), and no such precblem arises.
V. DISCUSSION -

The agreement between the two methods for n > 5, as shown
in Fig. 1, is gquite impressive and builds confidence 1in the
accuracy of both, However, the simple WKBE theory of sec. v
£ails to predict the oscillatory structure at low n revealed Gty
the PEST-I1 results. The oscillations can be rinderstood
4 alitatively as due to the movement of rational .surfacea

relative to the band of ballooning unstable surfaces, as

- FRMA gy
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illustrated in Figs. 4 and 5, The growth rate 1is foung
enpirically ta peak when 9, = m/n, where m is an integer and q,
is the value of g at the saddle fpoint occurring at kq = in the
A (g, kq) contonur plots (Fig. 3}. This 1is also approximately
true when Mg, 7) > 0, but if the unstable region is localized
close to kq = 0, as occurs at low B, the amplitude of the
oscillations {s very small and m/n is closer to q,, The
oscillatory structure can be explained by an extensicn of the WKB
formalism t¢ include tunneling between different branches,

Althougn fractinnal valiues of n are not physically
realizable, B8 (n) 1is an analytic function  and can be
extrapolated. However, 5ince the period of the oscillations is
4n 2 1/q, < 1, extrapolation based only on integer values of n is
not a wvalid procedure. Also, q, is a faunction of equilibrium
parameters, and the behavior of the curve at fracticnal n is a
good indicateor of the sensitivity of the results to small changes
in the eguilibrium.

Saguence II appears to have superior stability progerties
ta Sequence I at intermediate wvalnues of n, presumably due to
stronger shear, but the n = » limit on 8, is approximately the
same for both., ({In Eact,Bc(w) is somewhat lower in Seguence II.)
Even for Sequence II, when B is significantly greater than B,(«),
there is a broad band of unstable modes with k;0; < 1. The
effect of such modes on transport must be determined before the

significance of this result for high B tokamak operation can be

evaluated.



_l :1_
More details on PEST-II and on the wKe formalism will be

published elsewhere.
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FIGURE CAPTIONS

Be vs 1/n fec Sequences I and II. Solid 1line connects

PEST-II results, dashed line connects results from Eq.
(11). The large dots are additional PEST-~II points, In
Sequence Il, the values of 8 were obtained using the
approximation B8 I 21%/s2, which overestimates 8 for

the diamagnetic plasma considered here.

Caontours of constant Xi(q, kq) for the case s = 1.414
(B2 10.5%) in Sequence 1I, plotted at nine equal levels
between 0 (outermost contour, qr < g < gg) and Apjn

[most unstable point, at (q,, 0)].

Contours of constant A for the case 8 = 8.9% of Sequence
I, which is s case where the saddle point at (dy, 7) is
unstable [x(7,, 7} < 0]. This topological configuration
occurs for £ » 8% in Seguence I, and 8 > 18% in Seguence

Ir.

Pourier amplitudes of a mode with n = 6.5 for the case
B = 7.5% of Sequence I. The strongest component
(m = 7) satisfies the relation m = nq,. This case is
typical of these with maximum growth rate (minimum B.).

The locations of some rational surfaces ate shown.
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Fig. 5. Fourier amglitudes of a mode with n = 6.9 far the case
B = 7.5% of Segquence I. The strongest component
(m = 8) satisfies the relation m - 1/2 =< ng, . This case

is tyvical of those with minimum growth rate (maximum

Bcl -
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