

MAY
n-DEPENDENCE OF BALLOONING INSTABILITIES

R. L. DEWAR, J, MANICKAM, RoC. GRIMM, AND M, S, CHANCE

PLASMA PHYSICS LABORATORY

SLAMMING
R. E. Dewar, J. Manickam, R. C. Grimm, and M. S.Chance Plasma Physies Laboratory, Princeton University Princeton, New Jersey 08544

The eritical β for stability against ideal hydromagnetic internal ballooning modes as a function of toroidal mode number, n, is calerlated for two different equilibrium sequences by ise of afinite element technique $(n \leqslant 20)$, and a WKB formalism (n) 5). The agreement between the two methods is good in the overlap region $5 \leq n \leq 20$. The wke Eormula reduces to the "l/n correction" at very high n. but is much more accurate at moderate 7. The critical β ys n curves exhibit oscillatory structure at low π. but in both sequences the lower bound on ${ }_{8}{ }_{c}$ is set by $n=\infty$ modes at about $B_{c}-5 \%$. For reactor parameters, finite Larmor radius effects are mot expected to have a large effect on this B-limitation.

I. INTRODUCTION

Dorbt has recently [1] been cast on the relevance of $n=\infty$ stability limits forind by application of the ideal hydromagnetic ballooning mode formalism [2-5]. This arose from the discrepency between the critical $B \sum_{C} \equiv 2 \int p d t / \int B_{\phi}^{2} d t$, at marginal stability) found by extrapolation of low toroidal mode number, n, resists to $n=\infty$ (giving $B_{C} * 10 \%$), and the strictly n on resilt of the ballooning mode method (giving $\beta_{c}-5 \%$). On the basis of the $1 / \mathrm{n}$ correction formula $(5,6)$ derived from ballooning mode theory, it was arg'sed that the m'ach more pessimistic ballooning resilts did not become valid until n was as high as 150. At sich high values of 2 . it was suggested that nonideal effects might stabilize $\mathrm{f}::$ e modes.

In reder to clarify the role of high modes, it is necessary to obtain grantitative results in the region $n \geq 5$. We have cone this ising two complementary techniques: a new finite Element code (PEST-II [7]), good for $n \leq 20$, and a new \{6, E$]$ whi technique for ballooning modes, good for $n \geq 5$.

The two techniques agree well in tleir region of overlap, whereas the $1 / n$ correction formala [5,6] is sensitive to the normalization \quad used for δW, and can give very inaccurate resints. For instance, at $B=10 \%$, in the case cited in Ref. 1 , we find instability for $n \geq 21$. With typical reactor parameters [9], this would give $k_{\perp} \rho_{i} \sim 0.1-0.2$, so finite Larmor radius effects cannot be counted on to stabilize ballooning modes at $B-10 \%$, and the lower limit set by $n=\infty$ stability is probably more
realistic. We have also found that the function $\beta_{c}(n)$ has consioerable structire at low n, implying that extrapolation based on a few integer values of n is not a valid procedrare.

We now describe the choice of equilibrium segrences, the PEST-II and whi calculations, and give an explanation for the breakiown of the $1 / 7$ formula.

II. EQUILIBRIUM SEQUENCES

We have strdied two sequences of equilibria in which B varies contindously from of to $>20 \%$. Seq'sence I was obtained by affiying a flidx conserving algorithm $\{10\}$ to a D-shaped equilibri'm with an aspect ratio of 4.0 , minor radius $=1.25 \mathrm{~m}$, elongation $=1.65$, and deeness" of 0.5 . The values of the safetif factor (q) on the magnetic axis and plasma surface were $q_{0}=1.0$ and $G_{5}=2.0$, respectively. The pressure profile was as described in Ref. 1.

Sequence II was obtained by selecting the case $3=21 \%$ from Sequence I, and from it generatirg a family of equilibria, parameterized by a scaling parameter s, s'jch that the pressire and poloidal field remain invariant, while the coroical field $B_{\phi}(\vec{x} \mid s)$ is related to that in the base case, $E_{\phi}(\vec{x} \mid i)$, by the equation

$$
\begin{equation*}
\mathrm{X}^{2} \mathrm{~B}_{\phi}^{2}(\overrightarrow{\mathrm{x}} \mid \mathrm{s})=\mathrm{X}^{2} \mathrm{~B}_{\phi}^{2}(\overrightarrow{\mathrm{x}} \mid 1)+\left(\mathrm{s}^{2}-1\right) \mathrm{R}^{2} \mathrm{~B}_{\circ}^{2}, \tag{1}
\end{equation*}
$$

which ens'res that the Grad-Shafranov equacion remains satisfied
[11]. Here X is the distance from the major axis, while RB is the value of XB_{ϕ} on the surface of the flasma. This segrence is characterized by constant poloidal B
$\left(\beta_{p} \equiv 2 \int p d \tau / \int B_{p}^{2} d \tau=2.5\right)$, and higher q and q^{\prime} at lower valijes of $B(s) \approx B\left(1 / / s^{2}=21 \% / s^{2}\right.$. Sequence II reprodices Eairly accirately [12] the one used to prodice fig. 6 of Ref. 1 p but in order to sippress the complicating factor of sirface kink modes we treat the case of a condicting wall on the plasma boundary. This ond low-n resilits are even more optimistic than those of Ref. 1 .

III. COORDINATE SYSTEM

We 'use a $(\psi, \theta, 5)$ coordinate system, where $2 \pi \psi$ is the poloidul flyx, θ is an arbitrary poloidal angle, and ζ is a toroidal angle chosen so that the majnetic field lines are straight $i_{1}(\theta, \zeta)$ space. Thus,

$$
\begin{equation*}
\vec{B}=\vec{\nabla} \zeta \times \vec{\nabla} \psi+q(\psi) \vec{\nabla} \phi \times \vec{\nabla} \theta, \tag{2}
\end{equation*}
$$

so 吉.古 $=J^{-1}\left(\partial_{\theta}+q^{2}{ }_{\zeta}\right)$.

If ζ is the \quad sisal toroidal angle ϕ, then our foloidal angle θ is that of the PeST-I stability code [13], and the Jacobian is given by $J=x^{2} / \alpha(\psi)$, where $\alpha(\psi)$ is determined by periodicity requirements. This choice has the randesirable feature for n'merical work at high β, that an equally spaced θ-grid becomes. very coarse in real space near the outside region where the
pololdal field is high. For integrating the ordinary difEerential eçation arising in the ballooning mode formalism [2-5], the choice $J=x /[\alpha(\psi)|\vec{\nabla} \psi|]$, which gives equal arc lengths on the intersection of a magnetic surface with the plane $\phi=$ const, has been found to be optimal. The current PEST-II calculations were done with $J=x^{2} / \alpha(\psi)$, which was fornd to give adequate accuracy with the number of fourier modes used. The effect of ofher choices of Jacobian on convergence is under investigation.

IV. PEST-II

Abstract

The essential difference between PEST-I [13] and PEST-II is the use in PEST-II of a model kizetic energy density ($1 / 2$) $\rho \omega^{2}|\xi|^{2}$, where $\xi \equiv \vec{\xi} \cdot \vec{\nabla} \psi$ is proportional to the displacement of a fluid element in the direction normal to a magnetic surface. This allows the two components of $\vec{\xi}$ within the surface to be eliminated analytically [14], thus reducing matrix sizes by a factor of 3 and making calcilations at $n \sim 20$ feasible.

At first sight, the ise of a model kinetic energy seems undesirable since the resilting growth rates are nonphysical. However, the sign of w^{2} is independent of mormalization, and for calculating marginal stability points, our choice is actually much more practical becarse $\omega^{2}(\beta, n)$ is an analytic finction near $\omega^{2}=0$. In contrast, $\omega^{2}=0$ is the lowest point of a continumm.

band when the physical kinetic energy (1/2)pou2/E/2 is ased, making accirate extrapolation to marginal stability difficilt.

After Einear rediction [14], the E'sler-Lagrange equation is

$$
\begin{equation*}
\left(\rho \omega^{2}+F\right) E=0 \tag{3}
\end{equation*}
$$

where the scalar operator F is defined, for $n \neq 0$ by
$E=\left(\vec{B} \cdot \vec{\nabla} \frac{\vec{\nabla} \psi}{|\vec{\nabla} \psi|^{2}}+\frac{\vec{j} \times \vec{\nabla} \psi}{|\vec{\nabla} \psi|^{2}}\right) \cdot \vec{\nabla} \Delta_{s}^{-1} \vec{\nabla} \cdot\left(\frac{\vec{\nabla} \psi}{|\vec{\nabla} \psi|^{2}} \overrightarrow{\mathbf{B}} \cdot \vec{\nabla}-\frac{\vec{j} \times \vec{\nabla} \psi}{|\vec{\nabla} \psi|^{2}}\right)$

$$
\begin{equation*}
+\vec{B} \cdot \vec{\nabla} \frac{1}{|\vec{\nabla} \psi|^{2}} \vec{B} \cdot \vec{\nabla}+2 \mathrm{~K} \tag{4}
\end{equation*}
$$

where ${ }_{j}$ is the equilibrium current density, Δ_{s}^{-1} is the Grean's function operator which inverts the surface Laplacian

$$
\begin{equation*}
\Delta_{s} \equiv \vec{\nabla} \cdot\left(\overrightarrow{\Psi^{\prime}}-\frac{\vec{\nabla} \psi \vec{\nabla} \psi}{|\vec{\nabla} \psi|^{2}}\right) \cdot \vec{\nabla} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
K \equiv \frac{\vec{j} \times \vec{n} \cdot(\vec{B} \cdot \vec{\nabla} \vec{n})}{|\vec{\nabla} \psi|^{2}} \tag{6}
\end{equation*}
$$

where $\stackrel{+}{n} \equiv \stackrel{+}{\nabla} \psi \mid \stackrel{+}{\nabla} \psi 1$.
In axisymmetric geometry we assume a normal mode to go as exp(-inh), so that Δ_{s} reduces to a second order ordinary differential operator in θ. Its inversion can, therefore, be
done surface by surface. we sotve Eq. (3) by Galerkin's method [13], using a truncated Fourier representation in e, and Einite elements in ψ. The calcilations were performed on the NMFECC CRAY-I computer using 51 Fourier modes and 72 radial elements. The equilibria were calcılated on a 229×129 rectangular $X-Z \quad$ grid. and mapped onto a $145 \times 256 \quad \psi-\theta$ grid using high order spline interpolation. The resilts for sequences I and II are represented in Fig. 1.

V. WKB EORMALISM

Ihis is a development of the ballooning mode formalism [2-5], which uses $E \equiv 1 / \eta$ as an expansion parameter to develop an asymptotic solution of Eq. (3). Ordering w2 finite (so that ω^{2} can be negative), and looking at the asymptatic limit $E \rightarrow 0$, we see that $\vec{B} \cdot \vec{\nabla} \xi$ must be $0\{1\}$. The eikonal representation

$$
\begin{equation*}
\xi=\hat{\xi}(\theta, \dot{r}, \alpha, \varepsilon) \exp [-i \omega t-i S(\alpha, \psi) / \varepsilon] \tag{6}
\end{equation*}
$$

satisfies this, with [2] $\alpha \equiv \zeta-q^{\theta}$ so that $\vec{E}=\vec{\nabla} \alpha \times \vec{\nabla} \psi$. In the axisymmetric case, S is separable

$$
\begin{equation*}
S(\alpha, \psi)=\alpha+\int k_{q}(\psi) d q(\psi) \tag{7}
\end{equation*}
$$

where k_{q} / ε is the radial wavenimber in $\alpha-q$ coordinates. Ey our choice of "straight field line" coordinates, we have avoided theneed for an eikonal description of the East θ-dependence [5].

As always in nKB theory, Eq. (6) applies only on a single branch of the dispersion relation. The physical solution is to ve foind by linear superposition of all branches having the same Erequency, with amplitudes and phases chosen to satisfy boundary conditions and turning point matching conditions. thus the fact that Eq. (G) does not satisfy periodicity in θ is irrelevant at this stage.

Inserting Eq. (6) into Eq. (3), and expanding in powers of ε, we find at lowest order

$$
\begin{equation*}
\left(D \omega^{2}+\vec{B} \cdot \vec{\nabla} \frac{|\vec{k}|^{2}}{\mathrm{~B}^{2}} \overrightarrow{\mathrm{~B}} \cdot \vec{\nabla}+\frac{2 \mathrm{p}^{\prime}(\psi)}{\mathrm{B}^{2}} \vec{k} \times \overrightarrow{\mathrm{K}} \cdot \overrightarrow{\mathrm{~B}}\right) \hat{\xi}(0)=0, \tag{8}
\end{equation*}
$$

where \vec{k} is the field line curvature, p is the pressure, and ${ }^{2} / E$ is the wavevector $\vec{\nabla} S / E$. That is, for an axisymmetric system,

$$
\begin{equation*}
\vec{k}=\vec{\nabla} q+k_{q} \vec{\nabla} q=\vec{\nabla} \zeta-q \vec{\nabla} \theta+\left(\theta-k_{q}\right) \text { 古 } q . \tag{9}
\end{equation*}
$$

Note that $\vec{k} \cdot \vec{B}=0$, whereas $\vec{k} \cdot \vec{\nabla} \neq$ increases secialarly as $\theta \rightarrow-\infty$.
Equation $\{8$) is to be solved as an eigenvalue equation for ω^{2} under the condition $[5]$ that $\hat{\xi}^{(0)}$ be square integrable on the domain $-\infty<e<\infty$, thes Yielding the dispersion relation $\omega^{2}=\lambda\left\{\psi_{r} k_{q}\right\rangle$. Although k_{q} plays a similar role to the parameter η_{0} occurring in Ref. 5, it is here slearly a figction of ψ, since $\omega^{2}=$ const for a normal mode. The fact that k_{q} occirs in Eq. (8) only in the combination ($\theta=k_{q}$) implies [8] tnat λ is a periodic function of k_{q} (period 2π). Thus there is an infinityof degenerate branches of the d:spersion relation, which allows
us to form a periodic normal mode by using an infinite sum of these soldtions [3-5].

Figure 2 shows typical contoars of constant $\lambda\left(G, k_{q}\right)$ over a half period in k_{q}, and over the band of rinstable surfaces, $q_{L}<q(\psi)<g_{R}$. As will become apparent [see Eq. (ll)], it is here convenient to label surfaces by q rather than ψ. The outermost contour is at marginal stability, $\lambda=0$. The inner contours are equally spaced in λ between 0 and the most unstable value $\lambda_{\min }(<0)$. As B increases, the area enclosed by the $\lambda=0$ contour increases. In fact, for sufficiently high B, the $\lambda=0$ contour in the range $-\pi<k_{q}<\pi$ coalesces with the $\lambda=0$ contours in the neighboring ranges (see Fig. 3), and the value af λ at the sadde point at $\left(q_{X}, \pi\right)$ becomes negative. This topological complication will not be treated here.

Thus, we assume that the two branches in the range $-\pi<k_{q}<\pi$ couple only with each other, at the turning points $q=q_{L}$ and $q=q_{R}$. The ε-expansion breaks down near a turning poinc, but an expansion in $E 1 / 3$ can be used instead, and the resultant Airy finction solytion matched to the incident and reflected waves. In traditional wKB fashion [15] the phase change is found to be $\pi / 2$ at a turning point, thus yielding [8] the "quantization" condition for the radially extended eigenmodes

$$
\begin{equation*}
n \quad \oint \quad k_{q} d q=2 \pi(N+1 / 2) \tag{10}
\end{equation*}
$$

where $N=0,1,2, \ldots$. Although N shorld strictily be o\{i) for. the wKB theory to apply, it is well known that Eg. $\{101$ is exact
for a harmonic oscillator potential at all N, and we, therefore, assime Eg. (l0) to be a good approximation even at $N=0$, which is the mode of highest growth rate. Thus we estimate the valde of n at which the most instable mode stabilizes to be

$$
\begin{equation*}
n_{c}=\pi / \oint k_{q} d q, \tag{11}
\end{equation*}
$$

where $\oint k_{q} d q$ is the area enclosed by the $\lambda=0$ contarar in the c - k_{4} plane. The result of applying Eq. (11) to sequences I and II is shown ifl Fig. 1 . The curves are contin'red down to $\mathrm{n}_{c}=5$.

This Eormula reduces to the $1 / 7$ correction Eorm'sla [5.6] when $\lambda\left(q, k_{q}\right)$ in the range $0 \geq \lambda \geq \lambda_{\text {min }}$ can be approximated by Taylor expanding $t w$ second order in $\left(q-g_{\rho}\right)$ and $\left(k_{q}-k_{q}^{0}\right)$, where (g_{0}, k_{q}^{0}) is the location of the $\lambda=\lambda_{\text {min point. }}$. We find

$$
\begin{equation*}
n_{c}=\frac{1}{2\left\lceil\lambda_{\min }\right.}\left(\frac{\partial^{2} \lambda}{\partial q^{2}} \frac{\tilde{v}^{2} \lambda}{\partial k_{q}^{2}}\right)_{0}^{1 / 2} \tag{12}
\end{equation*}
$$

The fact that $\lambda=0$ contour in Fig, 2 is not elliptical indicates that the Taylor expansion is breaking down. However, applicacion of Eq. (12) to the case shown in Fig. 2 ($8=10.5 \%$) gives $n_{c}=26$, compared with $n_{c}=18$ from application of EG. (11). Thus nonellipticity of the $\lambda=0$ conto'ur is not in itself sufficient to explain the order of magnitude discrepancy with the. result of Ref. $1, n_{c}=150$.

We have also calculated the λ-co:ı"ors with pwitin Eq. (2) replaced by ow ${ }^{2}|\vec{k}| 2 / b^{2}$, which is the model normalization used in Refs. 2 and 5. This models the physical kinetic energy better than our model, but has the mathemutical disadvantage that it generates a continsous spectrum for $\lambda \geq 0$. Thus the Taylor expansion used to derive Eg. (12) must Eall to converge at or before $\lambda=0$, and the approximation of retaining the first three terms may be wildly inaccurate. This is confirmed by the fact that this model normalization gives $n_{c}=62$ Lor the 10.58 gease referred to above, Even this result ls less than that of Ref. 1 by a factor of more than 2. This discrepancy can probably be ascribed to the use in Ref. 1 of an orthogonal coordinate system, whach gives rise to severe numerical difficidities (le). This is becanse of an accidencal vanishing of the local shear v^{\prime} near the most unstable surface, In "straight field line" coo: "dinates, such as those we use, v " does not occir in Eq. 112), and no such freblem arises.

VI. DISCUSSION

The agreement between the two methods for $n \geq 5$, as shown in Fig. l, is quite impressi*e and builds confidence in the acciracy of both. However, the simple whi theory of sec. V Eails to eredict the oscillatory structure at low n revealed by the PEST-II results. The oscillations ran be inclerstood y alitatively as die to the movement of rational sirfaces. relative to the band of ballooning instable surfaces, as
illustrated in figs. 4 and 5. The growth rate isfornd enifirically co peak when $g_{x}=m / n$, where m is an integer and q_{x} is the value of q at the sadole point occurring at $k_{q}=\pi$ in the $\lambda\left(q_{1}, k_{q}\right)$ contorr plots (Fig. 3). This is also approximately trie when $\lambda\left(q_{x}, \pi\right)>0$, bit if the $17 s t a b l e$ region is localized close to $k_{q}=0$, as occirs at low B, the amplitude of the oscillations is very small and m / n is closer to g_{0}. The oscillatory structure can be explained by an extension of the wKB formalism to include tunneling between different branches.

Althorgin fractinnal valies of n are not physically realizable, $\beta_{C}(n)$ is an analytic Eunction and cari be extrapolated. However, since the period of the oscillations is $\Delta n=1 / G_{x}<i$ extrapolation based only on integer valses of n is not a valid proeedure. Also, G_{x} is a function of equilibrimm Farameters, and che behavior of the curve at fractional n is a good indicator of the sensitivity of the resilts to small changes in the equilibrim.

Saquer:ce If appea:s to have superior stability properties to Sequence I at intermediate values of n, presimaty due to stronger shear, but the $n=\infty$ limit on S_{c} is approximately the same for both. ifn fact, $\boldsymbol{\beta}_{c}(\infty)$ is somewhat lower in Sequence II.) Even for Sequence II, when β is significantly greater than $\beta_{c}(\infty)$, there is a broad band of instable modes with $k_{\perp} \rho_{i}<1$. The effect of such modes on transport must be determined before the significance of this res'dlt for high 3 tokamak operation can be evaluated.

More details on PEST-II and on the wKe formalism will be E'sblished elsewhere.

ACKNOWLEDGMENTS

Ne wish to acknowledge Dr. A. M. M. Todd for his assistance in generatirg the equilibria, Mr. A. E. Miller for performirg many of the PEST-II rins, Drs. A. H. Glasser, J. M. Greene, and E. A. Frieman for sharing their knowledge of Dallooning modes, and Er. D. A. Monticello for stimulating o'dr interest in the segidences studied.

This work was supported by United States Department of Energy Contract No. DE-ACO2-76-CHO-3073.

REFERENCES

L. A. Charlton, R. A. Dory, Y. -K. M. Peng,
D. J. Strickler, S. J. Lynch, D. K. Lee, R. Griber, and F. Troyon, Phys. Rev. Lett. 43, 1395 (1979).
D. Dobrott, D. B. Neison, J. M. Greene, A. H. Glasser, M. S. Chance, and E. A. Frieman, Phys. Rev. Lett. 39, 943 (1977).
[4] Y. C. Lee and J. W. Van Dam, Varenna, 1977 (as in Ref. 3). p. 93.
[5]
J. W. Connor, R. J. Hastie, and J. B. Taylor, Proc. R. Soc. Lond. A365, 1 (1979).
[6]
M. S. Chance, R. L. Dewar, E. A. Frieman, A. H. Glasser, J. M. Greene, Y-Y. Hsieh, J. L. Johnson, J. Manickam. and A. M. M. Todd,

Proceedings of the Sherwood Meeting,
Gatlinburg, 1978 (Oak Ridge National Laboratory, 1978), Abstract 08l.
[7]
[8]
[9]
[10]
L. A. Charlton, private comminication.
[13]
R. C. Grimm, J. M. Greene, and J. L. Johnson,
in Methods in Computational Physics, Vol. 16,
J. Killeen, ed. (Academic, N. Y., 1976) p. 253.
[14]
M. Binear, Nug1. E'sion 2, 130 (1962).
[15] P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953). p. 1099.
[16] L. A. Chatlton, D. B. Nelson, and R. A. Dory, Dat. Ridge National Laboratory Report ORNL/TM-7198 (1980).

EIGURE CAPTIONS

Fig. 1. Ecys $1 / n$ fris Sequences I and II. Solid line connects PEST-II results, dashed line connects results from Eq. (11). The large dots are additional PESTMI points. In Sequence II, the values of B were obtained using the approximation $\beta=21 \% / s^{2}$, which overestimates β for the diamagnetic plasma considered here.

Fig. 2. Contours of constant $\lambda\left(q, k_{q}\right)$ for the case $s=1.414$ ($\beta=10.5 \%$) in sequence $I \mathrm{I}$, plotted at nine equal levels between 0 (outermost contour, $q_{L}<q<q_{R}$) and $\lambda_{\text {min }}$ [most unstable point, at $\left.\left(q_{0}, 0\right)\right]$.

Fig. 3. Contours of constant λ for the case $B=8.9 \%$ of Sequence I, which is a case where the saddle point at $\left(q_{x}, \pi\right)$ is unstable $\left[\lambda\left(7_{x}, \pi\right)<0\right\}$. This topological configuration occurs for $\beta>88$ in Sequence I, and $\beta>18 \%$ in Sequence II.

Fig. 4. Fourier amplitudes of a mode with $n=6.5$ for the case $\beta=7.5 \%$ of Sequence I. The strongest component ($m=7$) satisfies the relation $m=n q_{x}$. This case is typical of those with maximum growth rate (minimum β_{c}). The locations of some rational surfaces are shown.

Fig. 5. Fourier amplitudes of a mode with $n=6.9$ for the case $B=7.58$ of Sequence I. The strongest component ($m=8$) satisfies the relation $m-1 / 2 \approx n_{x}$. This case is typical of those with minimum growth rate (maximum B_{c}.

Fig. 1. (PPPL-802128)

Fig. 2. (PPPL-802092)

Fig. 3. (PPPL-802091)

Fig. 4. (PPPL-802127

Fig. 5. (PPPL-802126)

