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Abstract  This article presents a new algorithm for generation of N-dimensional rotation matrix M, which rotates given 

N-dimensional vector X to the direction of given vector Y which has the same dimension. Algorithm, named N-dimensional 

Rotation Matrix Generation Algorithm (NRMG) includes rotation of given vectors X and Y to the direction of coordinate axis 

x1 using two-dimensional rotations. Matrix M is obtained as multiplication of matrix MX and inverse of matrix MY, which 

rotates given vectors to the direction of axis x1. Also examined is the possibility to perform parallel calculations of 

two-dimensional rotations. 
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1. Introduction 

High-dimensional spaces frequently occur in 

mathematics and the sciences, in example N-dimensional 

feature space, which presents input signals of neural 

network or collection of N-dimensional parameters for 

multidimensional data analysis. Rotation is one of rigid 

transformations in geometrical space, which preserves 

length of vectors and can be presented using matrix 

operation like Y = M.X, where X and Y are input and 

output vector respectively, and M is rotation matrix. This 

article proposes an N-dimensional rotation matrix 

generation algorithm for given input and output vector. 

2. Definition of the Task 

Let's say that we have two N-dimensional vectors X and Y, 

having the same dimension, X, Y  RN. We want to obtain a 

rotation matrix M that satisfies the equation. 

X.MY
~
                      (1) 

where Y
~

 has the same norm as X and the same direction as 

Y, i.e. XY
~

  and   1Y
~

,Ycos  . 

One of possibilities to generate rotation matrix M includes 

the following sequence of operations: 

1)  Obtain two orthogonal vectors in the plane, in which 

lies the two given vectors using Gramm-Schmidt 

procedure [2, 3, 16]. 

2)  Enlarge this 2-dimensional basis to N- dimensional 

basis B2, in which given vectors X, Y are transformed  
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to X  and Y . 

3)  Create matrix of Givens rotation G(1, 2, θ) for RN, 

which makes rotation of vector X  in 21xx -plane to 

the direction of vector Y . 

4)  Obtaining rotation matrix M as  

PGPM ).,2,1(.1                   (2) 

where P is matrix, which transforms initial basis B to basis 

B2. 

Another way to generate rotation matrix M is to use 

Householder Reflection [4, 10, 17, 18]. If X and Y are 

vectors with the same norm YX  , there exists an 

orthogonal symmetric matrix P such that XPY .  where 

TWWIP .  and   YXYXW  / . Matrix P is 

matrix of reflection (not a rotation) because det P = -1, 

(which gives the name to method) that’s why to obtain 

matrix of rotation M, for which det M = 1, have to be 

performed two subsequent reflections. Matrix of rotation can 

be obtained as multiplication of two matrix of reflection P1 

and P2 as M = P1.P2. 

This article presents a new algorithm for generation of 

N-dimensional rotation matrix, which rotates given vector X 

to the direction of given vector Y. Algorithm, named 

N-dimensional Rotation Matrix Generation Algorithm 

(NRMG) includes the following sequence of operations: 

1)  Obtaining rotation matrix MX, which rotates given 

vector X to the direction of axis 1x


. 

2)  Obtaining rotation matrix MY, which rotates given 

vector Y to the direction of axis 1x


. 

3)  Obtaining rotation matrix M as multiplication of MX 

by inverse matrix of MY given as MxMyM .1 . 

Below this three operations will be described 

subsequently 
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3. Rotation of Given Vector X to the 
Direction of Axis x1 

Rotation of given vector X to the direction of one of 

coordinate axes (e.g. axis 1x


) can be performed by 

subsequent multiplications by Givens matrices [1] as follow: 

 
1

T
(N 1) k X X

k N 1

X G k,k 1, .X M .X [r ,0, 0,0]



     (3) 

Givens matrices G(k, k+1, θk), k = N-1, n-2, … 1 are 

defined as follows [1, 2]: 

G(k, k+1, θk) = 
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 (4) 

where θk is the angle of rotation and coefficients Ck=cos( θk) 

and Sk=sin(θk) appears at the intersections of k-th and k+1 

-th rows and columns. 

Every one multiplication of vector by Givens matrix 

G(k, k+1, θk) performs rotation of its projection in 

coordinate plane (xk, xk+1), which changes values only of 

vector’s coordinates 
1, kk xx  to 

1, kk xx . This 

multiplication can be presented as multiplication of 

coordinates by sub matrix A(k, k+1, θk) as follows: 

 
   
    111

.
cossin

sincos
.,1,


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kkA

x

x




  (5) 

Taking in consideration that multiplication with Givens 

matrix G(k, k+1, θk) changes only values of vector’s 

coordinates 1, kk xx  (to 1, kk xx ), schema of 

multiplication by Givens matrix G(k, k+1, θk) can be 

presented as operator for two-dimensional rotation as 

follows: 

 

Figure 1.  Schema of two-dimensional rotation, performed by Givens 

matrix G(k, k+1, θk) 

The target of multiplication by Givens matrix G(k, k+1, θk) 

is to set to zero coordinate 1kx . It is easy to find that 

equation 01 kx  and equations (5) are satisfied 

simultaneously when )sin( k  and )cos( k  are 

calculated using formulas: 
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    (6) 

Thus searched matrix MX can be calculated as 

multiplication of Givens matrices 

     12N1N ,2,1G,,,3N,2NG,,2N,1NG     

as follows: 

 
N 1

X N k

k 1

M G N k, N k 1,






          (7) 

where coefficients of rotation )sin( k  and )cos( k  are 

calculated using formulas (6). Calculation of angles of 

two-dimensional rotations 1 ,… 2,-N 1,-N =k,k  really 

is not needed. If 0xx 2
1k

2
k    then corresponding Givens 

matrix is equal to Identity matrix G(k, k+1, θk) = I – no 

rotation. 

Schema for rotation of vector X to the direction of axis 1x


 

using two-dimensional rotations can be presented as follows: 

 

Figure 2.  Schema for rotation of vector X to the direction of axis 1x


 

Every one block for two-dimensional rotation (as it was 

given on Fig. 3) presents rotation of two-dimensional vector 

 Tkk xx 1,   to the direction of axis kx


 k=1,2,…N-1. This 

two-dimensional rotation is the base operation of proposed 

algorithm.  

 

Figure 3.  Block of base operation - rotation of two-dimensional vector 

 Tkk xx 1,   to the direction of axis kx


 

As it can be seen from (3) and Fig. 2, rotation of 

N-dimensional vector to the direction of axis 1x


 needs 
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execution of N-1 subsequent base operations. Thus if one 

base operation has execution time Tb, then rotation of given 

N-dimensional vector X to the direction of axis 1x


 will take 

execution time (N-1).Tb. As it is described below, this time 

can be reduced using parallel execution of base operations. 

4. Description of NRMG Algorithm  

NRMG algorithm for generation of N-dimensional 

rotation matrix M, which rotates given vector X to the 

direction of given vector Y consist the following operations: 

1)  Obtaining rotation matrix MX, which rotates given 

vector X to the direction of axis 1x


 

2)  Obtaining rotation matrix MY, which rotates given 

vector Y to the direction of axis 1x


. 

3)  Obtaining rotation matrix M, which rotates given 

vector X to the direction of given vector Y as 

multiplication of matrix MX and inverse matrix of MY, 

as follows: 

X
1

Y M.MM                   (8) 

It is important to note that NRMG algorithm do not need 

vectors X and Y to have the same norm (as it is needed for 

Householder Reflection i.e.). Multiplication of given vector 

X by matrix of rotation M will give resultant vector Y
~

, 

which will have norm of vector X, but direction of vector Y. 

Time complexity of proposed algorithm depends of 

algorithm, used for calculation of coefficients )sin( k  

and kcos( )  of two-dimensional base operations. This 

calculation depends of practical realization and is not a 

subject of this article. 

NRMG algorithm can be used for different reversible 

calculations. An example that uses NRMG algorithm for 

transformation of images appears below (6). 

5. Increasing Performance Using 
Parallel Execution of 
Two-Dimensional Rotations 

Parallel execution of two-dimensional rotations (base 

operations of algorithm) is one way to increase calculation 

performance. This possibility is proposed in [7, 8] in relation 

of matrix decomposition. As this parallelism gives 

significant decrease of subsequent calculations, below will 

be presented one realization of this approach for proposed 

algorithm without pretensions of novelty. 

Let’s have N-dimensional vector  TnxxxX ,...,, 21 . 

Vector X can be presented as a sum of two vectors X1 and 

X2, every one of which has half coordinates of value zero 

and half coordinates, that have the same values as the 

coordinates of given vector X, as follows: 
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       (9) 

Rotation of vector X to the direction of axis 1x


 by 

multiplication with matrix of rotation M will give resultant 

vector X12(N/2) which is the sum of rotated to the direction of 

axis 1x


 vectors X1 and X2 as follows: 
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 (10) 

For zero coordinates of X1 and X2 corresponding matrices 

of base operations G(k, k+1, θk) are equal to identity matrix I 

(i.e. no rotation). This shows that coordinate planes, in which 

are rotated projections of X1 are different from those, in 

which are rotated X2. As a resultant vector we get: 
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 (11) 

where in second sum symbol for angle or rotation φ has been 

replaced with θ for convenience. 

Vector X12(N/2) has only two non-zero coordinates - x1 and 

xN/2+1, so it lie in coordinate plane )x,x( 12/N1  . Vector 

X(N/2) to the direction of axis 1x


 can be obtained by only one 

two-dimensional rotation of vector X12(N/2) in this coordinate 

plane as follows: 

   0,,0,,0,r12X.,12/N,1GX X)2/N(2/N)2/N(   (12) 

 

Figure 4.  Schema for rotation of vector X, separated into two parts, to the 

direction of axis 1x

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Schema below presents obtaining of vector X(N/2) = [rX, 

0, …, 0]T. using rotation of vector X12(N/2) to the direction of 

axis 1x


.  

As it can be seen from (8)÷(10) and from schema on Fig. 4, 

after one division of given vector X the number of 

subsequent base operations is decreased to N/2 regardless 

that the number of base operations remain the same – N-1. It 

is easy to find that separation of given vector X to more then 

two parts will give more decreasing of subsequent base 

operations. 

The limit of subsequent divisions is reached when every 

one part has only two elements. In example if given vector 

has dimension N=8 it can be separated to 4 parts of two 

elements. Rotation of every one part of vector (as 

two-dimensional vector) to the direction of one of 

coordinates gives resultant vector, that has N/2 non-zero 

elements. The same way this sub-vector of dimension N/2 

can be separated to N/4 parts of two elements and rotation of 

every one of this parts gives resultant vector with N/4 

non-zero elements. It’s easy to find that if N=2P, P  (set of 

all natural numbers) then the number of subsequent rotations, 

needed to obtain vector with only one non-zero element, is 

equal to log2N.  

 

Figure 5.  Schema for accelerated rotation of 8-dimensional vector to the 

direction of axis 1x


 

In example if vector X has dimension N=8, the number of 

needed subsequent rotations will be log28 = 3. Schema for 

accelerated rotation of 8-dimensional vector to the direction 

of axis 1x


 will look as on figure above 

It is important to note the following: 

1)  Accelerated rotation (AR) of given vector to the 

direction of axis 1x


 can be applied not only for 

vectors, that have dimension N=2P, PN, but for every 

one vector with dimension greater then 2. In example 

if N=7 then difference between schema of AR and 

those, given above, will be only this, that in first stage 

will miss the last base operation and x7 will go straight 

to base operation on second stage.  

2)  The number NR of stages (in which parallel execution 

of base operations of AR have to be performed) is 

equal to log2N whereas number of all base 

operations is N-1 – the same as when all rotations are 

subsequent. 

3)  AR really increases calculation performance in case of 

parallel execution of base operations in stages. If base 

operations in stages are executed consecutively, the 

only advantage of AR is decreasing of accumulation 

of calculation errors (due to rounding e.g).  

 

Figure 6.  Matrices of stages for AR of 8-dimensional vector 

For high dimensional vectors AR proposes significant 

decreasing of subsequently executed base operations. In 

example if dimension of vectors is N=1024, the number of 

subsequently executed base operations is 1024-1, whereas 

AR algorithm uses number of stages (which defines the 

number of subsequent base operations) NStages = log21024 

= 10.  

It is important to note, that rotation is reversible linear 

operation, which mean that AR is reversible linear operation 

too. Reversibility of rotation, in particularly AR, is the “key 
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stone” of proposed NRMG algorithm. 

When AR is used, rotation matrix MX and MY can be 

presented as a multiplication of matrices MS1, MS2, … MSNR,  

which correspond to the stages of rotation, shown in Fig. 5. 

In example for vector with dimension N=8 matrices of stages 

MS3.MS2.MS1 will look as in Fig. 6. where C1,1, S1,1, C1,2, 

S1,2, C1,3, S1,3, C2,1, S2,1,C2,2, S2,2, C3,1, S1,3 are denotation of 

 ji,cos  and  ji,sin  , index i is the number of stage, and 

j is the number of base operation. 

As it can be seen, matrices of stages MSk, k=1, 

2, …,log2N (except the last one) are not Givens matrices. 

They are matrices for parallel execution of two-dimensional 

rotations in corresponding coordinate planes as follows: 

    
kN/2

k k 1
k n,k

n 1

MS G 1 n 1 .2 ,1 2.n 1 .2 ,



      (13) 

In NRMG that uses AR (which is not obligate), matrices 

of stages denote parallel execution of base operations. 

Schema, given below shows rotation of given 8-dimensional 

vector X to the direction of vector Y and obtaining rotation 

matrix M, which performs this rotation. Every one of 

matrices MX and MY is calculated as multiplication of 

log2N matrices of stages for which coefficients Ci-j and 

Si-j are calculated using (6). 

6. Reversible Transformation of Images 
Using NRMG Algorithm 

Down we will give one example of using NRMG 

algorithm for reversible image transformation. 

Let’s have two monochrome raster images I1 and I2 which 

have the same number of pixels N. As it is known [14], raster 

images are presented as dot matrix data structure, so the two 

given images can be presented as two N-dimensional vectors 

X and Y, every element of which presents brightness of one 

of pixels. Using NMRG algorithm can be obtained rotation 

matrix M, which rotates vector X to the direction of vector Y. 

Since rotation do not change the norm of the vector, resultant 

vector Y
~

 will have the same norm as X. As a result, 

rotation will transform image I1 to one presentation of image 

I2, brightness of every one pixel of which is equal to the 

brightness of corresponding pixel of image I2, scaled with 

coefficient XY / . If X and Y have the same norm, 

vectors Y
~

 and Y will be identical. 

 

function R = fnAR(X) 

N = length(X);   %X have to be row vector (transposed) 

R= eye(N);      %Initial rotation matrix = Identity matrix 

step = 1;        %Initial step 

while(step<N)    %Loop to create matrices of stages 

  A= eye(N); 

    n=1; 

    while(n<=N-step) 

        r2 = X(n)*X(n) + X(n+step)*X(n+step); 

        if r2 > 0 

            r = sqrt(r2); 

            pcos = X(n)/r; 

            psin = -X(n+step)/r; 

            % Base 2-dimensional rotation  

            A(n, n) = pcos; 

            A(n, n+step) = -psin; 

            A(n+step, n) = psin; 

            A(n+step, n+step) =  pcos; 

        end 

        n=n+2*step;  % Move to the next base operation 

    end; 

    step = step*2; 

    X=(A*X')'; 

    R= A*R;  % Multiply R by current matrix of stage A 

end; 

end; 

Example 1.  Code of Matlab function for accelerated rotation of vector X 

to the direction of axis x1. Function returns matrix of rotation MX 

 

Figure 7.  Schema for rotation of 8-dimensional vector X to the direction of vector Y using NRMG algorithm and AR 
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Has been created Matlab program to test proposed NRMG 

algorithm. Program consist function for accelerated rotation 

fnAR and code, which uses this function to obtain matrix M, 

which rotates given vector X to the direction of given vector 

Y. 

Code, that uses this function to obtain matrix M, which 

rotates given vector X to the direction of given vector Y is 

given below: 

 

Mx = fnAR(X); 

My = fnAR(Y); 

M = My'*Mx;  %Obtaining rotation matrix M 

Z = M*X';  %Obtain vector Z to the direction of Y 

if round(Z'*100000)/100000==Y  

 disp('Z and Y are identical'); 

end 

Example 2.  Code of Matlab, which creates matrix of rotation using fnAR 

function 

For test data has been used the following two images: 

 

Figure 8.  Test images 

Images can be presented as 64-dimensional vectors as 

follows (written using Matlab Language syntax for row 

vectors): 

X =[0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 

1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 

0 0]; 

Y =[0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 

1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0]; 

Test program, given above, obtain vector Z to the 

direction of vector Y using NRMG algorithm, and compare 

vectors Z and Y. Program displays message “Z and Y are 

identical”, which shows that two vectors (and corresponding 

images) are identical at least with precision of 10-6. It’s 

important to note, that vectors X and Y have the same norm.  

7. Conclusions 

In this article, we presents a new algorithm for generation 

of N-dimensional rotation matrix M, which rotates given 

N-dimensional vector X to the direction of given vector Y 

which has the same dimension. Also examined is the 

possibility to perform parallel calculation of base operations 

- two-dimensional rotations. Algorithm can be used for 

different reversible calculations. It is included one example 

of image transformation that uses NRMG algorithm. 

Proposed NRMG algorithm proves that 

1)  Every one matrix of rotation M, which rotates given 

vector X to the direction of given vector Y can be 

presented as X
1

Y M.MM   where MX rotates vector 

X to the direction of one of coordinate axes (e.g. axis 

x1) and MY rotates vector Y to the direction of the 

same coordinate axis. 

2)  Every one rotation of N-dimensional vector can be 

performed by 2(N-1) two-dimensional rotations in 

N-1 coordinate planes. 

As an advantage of NRMG algorithm to known solutions, 

(shortly described in p. 2), can be pointed a possibility to 

realise it as Discrete Linear System, elements in which 

performs base operations. This possibility is a result of the 

locality of data, used for base operations and independence 

of base operations inside one stage of rotation.  
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