
Frontiers in Immunology | www.frontiersin.

Edited by:
Vijay Kumar,

Louisiana State University,
United States

Reviewed by:
Hedwich Fardau Kuipers,

University of Calgary, Canada
Fabio Dall’Olio,

University of Bologna, Italy

*Correspondence:
Ivan Gudelj

ivan.gudelj@uniri.hr

Specialty section:
This article was submitted to

Inflammation,
a section of the journal

Frontiers in Immunology

Received: 10 March 2022
Accepted: 30 May 2022
Published: 27 June 2022

Citation:
Radovani B and Gudelj I (2022)

N-Glycosylation and Inflammation;
the Not-So-Sweet Relation.
Front. Immunol. 13:893365.

doi: 10.3389/fimmu.2022.893365

REVIEW
published: 27 June 2022

doi: 10.3389/fimmu.2022.893365
N-Glycosylation and Inflammation;
the Not-So-Sweet Relation
Barbara Radovani1 and Ivan Gudelj 1,2*

1 Department of Biotechnology, University of Rijeka, Rijeka, Croatia, 2 Genos Glycoscience Research Laboratory,
Zagreb, Croatia

Chronic inflammation is the main feature of many long-term inflammatory diseases such
as autoimmune diseases, metabolic disorders, and cancer. There is a growing number of
studies in which alterations of N-glycosylation have been observed in many
pathophysiological conditions, yet studies of the underlying mechanisms that precede
N-glycome changes are still sparse. Proinflammatory cytokines have been shown to alter
the substrate synthesis pathways as well as the expression of glycosyltransferases
required for the biosynthesis of N-glycans. The resulting N-glycosylation changes can
further contribute to disease pathogenesis through modulation of various aspects of
immune cell processes, including those relevant to pathogen recognition and fine-tuning
the inflammatory response. This review summarizes our current knowledge of
inflammation-induced N-glycosylation changes, with a particular focus on specific
subsets of immune cells of innate and adaptive immunity and how these changes affect
their effector functions, cell interactions, and signal transduction.
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INTRODUCTION

Inflammation is part of a complex biological tissue response triggered by infectious, traumatic, toxic,
or autoimmune injury. In acute inflammation, a controlled inflammatory response usually results in
restoration of homeostasis. However, persistent induction and dysregulation of inflammation may
contribute to the development of chronic inflammatory diseases (1). Chronic inflammation is
characterized by numerous systemic physiological and biochemical changes, most of which are
mediated by abundantly secreted proinflammatory cytokines (Figure 1). They are the key molecules
responsible for triggering the proinflammatory potential of innate and adaptive immunity,
oftentimes leading to tissue destruction (2). Moreover, chronic inflammation is characterized by
marked changes in glycosylation (3, 4). Glycosylation is one of the most common posttranslational
modifications of proteins and plays an important role in a variety of biological functions, including
protein stability and effector functions, intercellular interactions, signal transduction, and cell
immunogenicity. The enzymatic processes of protein glycosylation normally occur in the
endoplasmic reticulum (ER) and Golgi apparatus, but can also occur in the cytoplasm and
nucleus. The glycan structures are covalently linked to the protein backbone via the nitrogen
atom of the asparagine or the oxygen atom of the serine/threonine side chains, forming N-linked
and O-linked glycoproteins, respectively. The core of N-linked glycans consists of two consecutive
N-acetylglucosamines (GlcNAc) and three mannoses, which can be further extended and modified
by various glycosyltransferases (GTs) and glycosidases to form oligomannose, complex, or hybrid
org June 2022 | Volume 13 | Article 8933651
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N-glycans (Figure 2) (5). N-glycans are found on the surface of
key entities involved in the inflammatory response, including
endothelial adhesion molecules, immune cells of innate and
adaptive immunity, and secreted immunoglobulins and acute
phase proteins (APP). The composition of their N-glycans has
been shown to be modulated by abundantly secreted
proinflammatory cytokines, presumably by regulating the
expression of GTs and affecting the substrate availability
required for N-glycan biosynthesis. Overall, the changes in N-
glycosylation observed in chronic inflammation are diverse but
strongly dependent on the particular subset of immune cells.
Affected features of N-glycan structure include changes in the
number of antennae, changes in N-glycan structure composition,
and diversification of saccharide bonds resulting in different
ligand epitopes. Consequently, altered N-glycosylation can
significantly affect leukocyte trafficking, trigger a shift toward
more proinflammatory effector functions of leukocytes, and
initiate proinflammatory transformation of secreted
immunoglobul ins and APPs, ul t imately leading to
the development of various inflammatory diseases. Therefore,
the aim of this review is to summarize what is known about the
relationship between N-glycosylation and chronic inflammation,
proinflammatory cytokines, and consequently the development
of inflammatory diseases.
Frontiers in Immunology | www.frontiersin.org 2
ENDOTHELIUM

One of the main functions of the endothelium is transportation
of immune cells to the site of inflammation. To successfully pass
through the endothelium, immune cells undergo complex
process which involves ligand dependent binding followed by
surface rolling, adhesion, and finally transendothelial migration
(6, 7). Each step in this cascade is dependent on interaction
between endothel ia l adhesion molecules and their
counterreceptors expressed on the surface of leukocytes. Key
players in leukocyte transmigration process are selections,
integrins, intercellular and vascular adhesion molecules
(ICAMs and VCAMs), platelet endothelial cell adhesion
molecules (PECAMs), and junctional adhesion molecules
(JAMs) (8). The majority of the endothelial adhesion
molecules are heavily N-glycosylated (9), which is crucial for
successful leukocyte trafficking, as defined by the “zip code”
hypothesis. In the circulation, leukocytes encounter various
proteins and sugars expressed on the endothelial surfaces.
Efficient leukocyte adhesion is achieved only when a specific
combination of an adhesion molecule protein and N-glycan is
expressed (10). Adhesion molecules are not normally expressed
in resting cells, however their expression is upregulated in
inflammation, via cytokine-induced signaling pathway, such as
FIGURE 1 | Inflammatory response to harmful stimuli. When tissue or cellular damage occurs, danger-associated molecular patterns (DAMPS), pathogen associated
molecular patterns (PAMPs) and myriad inflammatory cytokines (TNFa, IL-1b, IL-6, IL-8) are released. These biomolecules can initiate activation of inflammatory
pathways resulting in leukocyte recruitment of innate and adaptive immunity, thus establishing a highly coordinated network of many cell types. Activated
macrophages, together with damaged endothelial cells, release factors that attract neutrophils and monocytes to the site of inflammation. This represents the
first line of defense characterized mostly by phagocytosis and NETosis. Macrophages, together with mature dendritic cells (DCs), are specialized in exposing
antigens to lymphocytes (T and B cells), thereby activating antigen-specific adaptive immunity. Lymphocyte differentiation leads to T cell-mediated cytotoxicity,
antibody secretion, and antibody dependent cell cytotoxicity (ADCC). Simultaneously, cytokines trigger synthesis and secretion of acute phase proteins from
the liver. CTL, cytotoxic T lymphocytes; FDC, follicular dendritic cells; Mj, macrophage; Mo, monocyte; NK cell, natural killer cell.
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NF-kB (11–14). Additionally, the life cycle of N-glycans involved
in the leukocyte trafficking is significantly controlled by
inflammation (15–17). Since inflammation-dependent
modulation of adhesion molecule expression and N-glycome
biosynthesis is critical for the innate immune response,
dysregulation of this axis may be crucial for the transition
from an innate immune response to inflammatory disease.

Selectins
Selectins are calcium-dependent (C-type) lectins that recognize
specific glycan residues as their ligands and mediate the adhesion
of immune cells to the endothelium. To date, three members of
the selectin family have been identified, P-selectin, E-selectin and
L-selectin (18). L-selectin is highly expressed on hematopoietic
stem cells and mature leukocytes, and is rapidly shed by
proteolytic cleavage upon leukocyte activation (18–20). P- and
E-selectin are known as “vascular selectins” because they can be
expressed on endothelial cells. P-selectin is constitutively
expressed by endothelial cells and platelets where they are
stored in Weibel-Palade bodies and a-granules, respectively.
Therefore, they can be translocated to the cell surface within
minutes after a proinflammatory stimuli such as thrombin and
histamine, making them the most important adhesive molecules
in acute injury. On the other hand, E-selectin is not constitutively
expressed by endothelial cells, but their expression is strongly
upregulated by inflammatory cytokines such as interleukin 1b
(IL-1b) and tumor necrosis factor a (TNFa) through binding of
NF-kB to regulatory domains in the E-selectin promoter. The
latter is not possible in the case of P-selectin, as the P-selectin
promoter in humans lacks binding sites for NF-kB (21, 22).
Because of this property, E-selectin is considered the most
important adhesive molecule involved in leukocyte capture in
chronic inflammation. The involvement of selectins in the
Frontiers in Immunology | www.frontiersin.org 3
development of many acute and chronic inflammatory
conditions is dependent on the selectin-ligand axis, with N-
glycosylation playing an important role. The interaction required
for leukocyte capture on the endothelial surface is dependent on
the affinity of selectins for sialofucosylated glycan epitopes
expressed on both endothelial and immune cells. These include
sialyl Lewis x (sLex), sialyl Lewis a (sLea), and 6-sulfo sialyl Lewis
x (6-sulfo sLex) epitopes, which are responsible for mediating
leukocyte capture/rolling during inflammation and are relevant
to the successful homing of lymphocytes to lymph nodes (15, 23,
24). E-selectin binds to sialofucosylated N-glycans on E-selectin
ligand-1 (ESL-1) and CD44 glycovariant, hematopoietic cell E-/
L-selectin ligand (HCELL), to support leukocyte extravasation to
the site of inflammation (25–27). Interestingly, Pachón-Peña
et al. demonstrated the potential use of glycoengineered HCELL
on human adipose-derived mesenchymal stem cells (A-hMSCs)
to direct their migration to sites of tissue injury/inflammation,
thus enabling relevant immunomodulatory and regenerative
functions (28). In addition, the sLex epitope found on APPs
may modulate the binding of leukocytes to E-selectin (29, 30). In
the case of L-selectin, Mitoma et al. demonstrated a critical role
for 6-sulfo sLex-decorated N-glycans found on CD34, a major
component of the L-selectin ligand, in the leukocyte trafficking in
the high-endothelial venules (HEV) of the peripheral lymph
node (17). Interestingly, Huopaniemi et al. showed that co-
regulated expression of CMP-sialic acid and GDP-fucose
transporters, essential for the synthesis of 6-sulfo sLex, occurs
in inflammation, which is not common in physiological
conditions. Therefore, it has been suggested that there must be
an inflammation-induced transcriptional regulation for Golgi
membrane transporters that support trafficking of substrates
necessary for synthesis of 6-sulfo sLex N-glycans (31).
Furthermore, sulfonation of sLex epitopes on N-glycans is
FIGURE 2 | Schematic representation of the biosynthesis of N-glycans involved in the fine-tuning of the immune response to inflammation. The schematic includes
the major N-glycan structures found on the surface of endothelium, immune cells, and secreted molecules, along with the relevant glycosyltransferases, whose expression
has been shown to be modulated by inflammatory cytokines, dramatically affecting glycan-dependent interactions important for leukocyte immune regulation. B4GALT1,
Beta-1,4-Galactosyltransferase 1; FUT, Fucosyltransferase; GCNT2, Glucosaminyl (N-acetyl) Transferase 2; MGAT, N-acetylglucosaminyltransferase; ST6GAL4, Beta-
Galactoside Alpha-2,3-Sialyltransferase 4; ST6GAL1, Beta-Galactoside Alpha-2,6-Sialyltransferase 1.
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thought to be the result of N-acetylglucosamine-6-O-
Sulfotransferase-1 (GlcNAc6ST-1) activity, but further studies
are needed to uncover how this synthesis is regulated
under physiological and pathological conditions (32).
Moreover, Beta-Galactoside-Alpha-2,3-Sialyltransferase 4
(ST3GAL4) is the primary sialyltransferase regulating the
synthesis of sLex epitopes in human myeloid leukocytes (33),
the expression of which, together with the expression of 6-sulfo
sLex, has been shown to be increased by TNFa in chronic lung
disease. Thus, disruption of ST3GAL4 function in human
myeloid cells may represent a potential target for anti-cell
adhesion and anti-inflammatory therapy (16). In addition,
fucosyltransferases such as FUT7 and FUT9 are involved in
the synthesis of the Lex epitope, and FUT7-9- dual knockdown
has been demonstrated to significantly decrease the selectin-
dependent interaction between leukocytes and endothelial cells
(34). Interestingly, an in vivo study has shown that the cytokines
IL-6 and/or IL-8 can induce a significant increase in the
expression of alpha-1,3/4-fucosyltransferases in mucosal cells,
contributing to an increased level of sLex epitopes and thus to
dysregulated transendothelial migration. The latter might
potentiate the persistent lung inflammation and tissue damage
in cystic fibrosis (CF) (35).

ICAM-1 and VCAM-1
After leukocyte rolling and capture by selectins, firm endothelial
adhesion of leukocytes is mediated by ICAM-1 and VCAM-1.
They are members of the immunoglobulin supergene family that
are expressed during chronic inflammation on vascular
endothelium, lymphocytes, and macrophages (36). The
expression of ICAM-1 and VCAM-1 is under the direct
influence of proinflammatory cytokines, such as TNFa, which
increase their levels on the endothelial surface (37). In response
to inflammation, increased ICAM-1 and VCAM-1 cell surface
levels enhance adhesive interactions with their ligands on
leukocytes, Lymphocyte function-associated antigen 1/
Macrophage-1 antigen (LFA-1/MAC-1) and Very late antigen-
1 (VLA-1), respectively (38, 39). N-glycosylation is a crucial
factor that can significantly affect the ligand binding of ICAM-1
and VCAM-1 (38, 40–43). In general, the transition from the
homeostatic to the inflammatory state of the endothelium is
characterized by a decrease in N-glycan complexity and
increased expression of high mannose and hybrid structures
(44–47). This has been demonstrated to be a consequence of
proinflammatory stimulation, possibly by inhibition of early
mannose-trimming enzymes (a-mannosidase) (42). Not
surprisingly, increased presence of high-mannose ICAM-1
(HM-ICAM-1) results in high-affinity leukocyte binding (38).
In part icular , this phenomenon is seen in CD16+

proinflammatory monocytes, which have a higher affinity for
HM-ICAM-1 molecules in atherosclerotic lesions compared with
complex a-2,6-sialylated ICAM-1 (48, 49). However, this is not
the only mechanism by which the pathological state is
maintained in chronic inflammation, as far as N-glycosylation
is concerned. In systemic lupus erythematosus (SLE), diabetes,
and rheumatoid arthritis (RA), this is regulated by inhibition
of galectin-mediated immunosuppressive prevention of
Frontiers in Immunology | www.frontiersin.org 4
ICAM-1/LFA-1 interaction (50), aberrant expression of
ICAM-1 N-glycans due to high glucose (51), and activity of
glycosyltransferases (52). Another possible candidate for
inflammatory modulation is VCAM-1, where removal of a2,6-
sialic acid increases leukocyte trafficking (41). The mechanism of
action does not involve stronger binding with VLA-1 on
leukocytes but with galectin-3 (Gal-3), which supports
leukocyte adhesion (53).

PECAMs
The final step in the process of leukocyte extravasation is
transendothelial migration (TEM). Adhesion molecules mainly
associated with this phenomenon are PECAMs (54). PECAM-1
is a member of the immunoglobulin (Ig) superfamily selectively
expressed on the surface of immune cells and is highly enriched
at the intercellular interface of endothelial cells (54). The main
mechanism responsible for interaction of PECAMs with
leukocytes involves homophilic binding (55). As PECAM-1 is
highly N-glycosylated, Lertkiatmongkol and her group showed
that homophilic binding interactions of human PECAM-1 are
supported by a2,3-linked, but inhibited by a2,6-linked sialic acid
residues (56). This was previously demonstrated by Doring et al.
who presented solid evidence for the importance of a2,3-linked
sialic acid in leukocyte activation, adhesion, and recruitment to
inflamed vessels (57). In agreement with this, it was later shown
that a variety of proinflammatory cytokines secreted in chronic
inflammation can downregulate the levels of the (extracellular)
enzyme Beta-Galactoside Alpha-2,6-Sialyltransferase 1
(ST6GAL1), responsible for the synthesis of a2,6-linked sialic
acid, and by that way maintain the inflammatory state (58, 59).
INNATE IMMUNITY

Innate immunity is the first line of defense against infection and
consists of resistance mechanisms that are not specific to any
pathogen. In any infection or tissue injury, inflammation is
triggered when innate immune cells recognize molecular
patterns that are foreign to a tissue, called pathogen-associated
molecular patterns (PAMPs), and initiate a cascade of
inflammatory responses. These innate immune cells include
tissue-derived macrophages, natural killer cells (NK cells) and
dendritic cells (DCs), as well as circulating leukocytes such as
monocytes and neutrophils (60, 61). To communicate with other
immune cells and exert their immunomodulatory functions, they
often rely on N-glycans expressed on their surface and
counterreceptors expressed by their binding partners. In this
section, we present examples of altered N-glycosylation in innate
immune cells due to chronic inflammation and show how this is
reflected in the functionality of immune cells and consequently
in the progression of various chronic inflammatory conditions.

Neutrophils
Neutrophils are polymorphonuclear leukocytes that have long
been known to be key players in pathogen recognition and
elimination in acute inflammation, but their role in chronic
June 2022 | Volume 13 | Article 893365
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inflammatory and autoimmune diseases, such as psoriasis, RA
and SLE, has also been described (62, 63). Understanding the
underlying mechanisms of neutrophil activation, migration,
survival, and executive function may open new avenues for the
treatment of chronic inflammation. N-glycosylation has been
shown to contribute to important effector functions of
neutrophils, such as extravasation, phagocytosis, degranulation,
and formation of neutrophil extracellular traps (NETs) (64)
(Figure 3). On their surface, neutrophils express the N-
glycosylated MAC-1 integrin, which consists of two subunits -
CD11b and CD18. This complex is involved in the regulation of
neutrophil trafficking and interaction with other immune cells
(65). Kelm et al. performed an analysis of glycan epitopes
expressed on the neutrophil MAC-1 surface and observed
decreased sialylation together with an increase in the Lex motif
and high mannose content in chronic inflammation. These
changes were significant in inflammatory bowel disease (IBD)
because blocking the terminal Lex motif reduces dysregulated
transepithelial migration of neutrophils, presumably by
inhibiting the binding of MAC-1 to ICAM-1 molecules
expressed on the surface of the inflamed epithelium (66, 67).
Moreover, the Lex motif expressed on MAC-1 mediates binding
to DC-SIGN expressed on DCs, thus providing an indirect link
between innate and adaptive immunity. Monocytes and
macrophages also express MAC-1, but since they lack the Lex
Frontiers in Immunology | www.frontiersin.org 5
motif, this trait is exclusively dependent on neutrophils (68).
Therefore, the Lex motif may represent a novel target for
modulating inflammation in chronic diseases in which tissue
damage is mediated by dysregulated neutrophil trafficking. After
neutrophils accumulate at the site of inflammation, their
immunomodulation depends on efficient degranulation,
phagocytosis, and NET formation. Interestingly, granule
glycoproteins show differential, stage-dependent glycosylation
that decorates them with hyper-truncated chitobiose core,
paucimannose and complex monoantennary N-glycans (64).
Interestingly, it was recently demonstrated that N-acetyl-
Beta-D-Hexosaminidase (Hex) enzyme is elevated in many
inflammatory diseases (69–71) and catalyzes formation of
paucimannosidic glycans found on neutrophilic granules (72).
Those paucimannosidic N-glycoforms of human neutrophil
elastase (HNE) show an enhanced ability to suppress the
growth of P. aeruginosa (PA), presumably by bypassing
interactions with its suppressive counter-binding partner, A1-
antitripsyne (A1AT) (73). However, PA was demonstrated to
uptake host’s sialylated N-glycans, making these bacteria suitable
binding partners for the inhibitory siglec-9 receptor expressed on
neutrophils. As a result, neutrophils show reduced levels of
reactive oxygen species (ROS) and released elastases which
leads to reduced formation of NETs and increases survival of
PA (74), eventually leading to chronic lung inflammation and
FIGURE 3 | Overview of altered N-glycosylation pathways in innate immune cells during chronic inflammation. The major factors contributing to the alterations in N-
glycosylation are proinflammatory cytokines (e.g., TNFa, IL-2, IFN-a, IFN-g) that are released in excess during inflammation. Here, the affected structural elements of
N-glycans on the surface of innate leukocytes (neutrophils, macrophages, NK cells, and DCs) are shown along with their associated glycosyltransferases and
glycosidases. In neutrophils, the increase of the Lex motif on the integrin MAC-1 leads to dysregulated neutrophil migration, whereas the binding of Lex decorated
MAC-1 to DC-SIGN further triggers the activation of DCs. While neutrophilic granules (e.g., HNE) secreted by neutrophils carry truncated N-glycans, the presence of
sialylated complex N-glycans and/or the sLex motif on Siglec counterbinding entities contributes to the inflammatory potential of neutrophils in a context-dependent
manner. Proinflammatory cytokines enhance transport of monocytes and direct their differentiation into proinflammatory M1 macrophages, while contributing to the
absence of sialylated N-glycans, cleavage of Gal-3, and increase in Siglec-1 expression. While surface-bound Siglec-1 is involved in the autoimmune response in
rheumatoid arthritis (RA), soluble Siglec-1 is a marker in interferonopathy. In addition, the Gal-1/IFN-b feedback loop involved in termination of inflammation appears
to be dysregulated in chronic inflammation. Similarly to macrophages, mature DCs also lack terminal sialic acids, plausibly due to inflammation-mediated decrease in
sialyltransferase and/or increase in neuraminidase activity. As for NK cells, the presence of oligomannose N-glycans on FcgRIIIa significantly increases ADCC,
whereas cytokine-induced increase in sialylation abrogates Siglec-9-dependent NK cell inhibition by cis-binding. BACE1, Beta-Site APP-Cleaving Enzyme 1; Gal,
galectin; hAGP-1; hepatic a1-acid glycoprotein; HNE, human neutrophilic elastase; IFN, interferon; IL, interleukin; ICAM-1, intercellular adhesion molecule 1; MAC-1,
macrophage-1 antigen; Man, Mannosidase; MMP-12, matrix metalloproteinase 12; MCP-1, monocyte chemoattractant protein-1; NEU, neuraminidase; NAGP-1,
neutrophil a1-acid glycoprotein; PA, Pseudomonas aeruginosa.
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tissue destruction as seen in CF patients susceptible to
respiratory infections caused by PA. Therefore, further studies
are needed to draw conclusions about neutrophil glycosylation
role in CF pathogenesis and completely illuminate these
processes. Another modulatory potential of neutrophil activity
lies in alpha-1-acid glycoprotein (AGP-1). AGP-1 can stimulate
neutrophil activation by inducing an increase in cytosolic
calcium concentration through interactions with the neutrophil
receptors siglec-5 and/or siglec-14, which preferentially bind a2-
3 or a2-6 sialic acid. The latter is presumably true for acute
inflammation as hyperfucosylation of AGP-1 in chronic
inflammation leads to increased expression of sLex on AGP-1,
a motif that is not a ligand for siglec-5 nor siglec-14 (75).
Furthermore, in addition to the liver, AGP-1 is expressed by
activated neutrophils. In contrast to the N-glycans expressed on
hepatic AGP-1 (hAGP-1), neutrophil-expressed AGP-1 (nAGP-
1) carries mainly high-mannose, nonsialylated, and mono-
sialylated N-glycans (76). Taken together, these data may
indicate that chronic inflammation in some cases attenuates
neutrophil recruitment and activation in favor of other, more
potent leukocytes.

Monocytes and Macrophages
Monocytes and tissue macrophages are part of the mononuclear
phagocyte system, which plays a central role in inflammation
through antigen presentation, phagocytosis, and cytokine-
mediated immune modulation (77). These mononuclear
leukocytes are considered hallmarks of the transition from
acute to chronic inflammation, as their accumulation is the
result of cytokine-induced neutrophil apoptosis and increased
production of monocyte chemoattractant protein (MCP-1) (78).
Not surprisingly, several studies have uncovered different
mechanisms in which monocytes and macrophages are
involved in the modulation and maintenance of chronic
inflammation. In particular, these have been demonstrated in
cardiovascular disease (CVD) (79), RA (80, 81), chronic
obstructive pulmonary disease (COPD) (82), diabetes (83, 84),
and IBD (85). In the last decade, N-glycosylation has gained
much attention as a tool by which inflammation orchestrates the
immune response of monocytes and macrophages. There are
three main steps involved in the accumulation of macrophages in
the inflamed environment: recruitment of monocytes from the
circulation, differentiation into macrophages, and activation of
macrophages at the site of inflammation (77). All three steps are
under the direct influence of altered N-glycosylation (Figure 3).
First, after monocytes are recruited by MCP-1 (83), their passage
through the endothelial layer requires a complex system of
interactions with heavily N-glycosylated adhesion molecules.
Previous studies have shown that proinflammatory cytokines
such as TNFa can upregulate the expression of adhesion
molecules (ICAM-1, VCAM-1, E-selectin) (12, 13) and
regulate their N-glycosylation (86). This was confirmed by
Chacko et al., who further identified the mannosidases
MAN1A2 and MAN1C1 as subjects of decreased expression by
TNFa. These mannosidases catalyze the early removal of
mannose, which is required for the conversion of high
Frontiers in Immunology | www.frontiersin.org 6
mannose to hybrid and subsequently complex N-glycans.
Using THP-1 monocytes and PPARy ligands, they also
demonstrated that the dual function of TNFa, stimulation of
adhesion molecules and regulation of their N-glycosylation, is
controlled by independent pathways, underscoring the
importance of high-mannose N-glycans for monocyte
trafficking (87). Recently, Regal-McDonald and his team
specified that MAC-1 receptors expressed on the intermediate,
proinflammatory, subclass of monocytes (CD14+CD16+) have a
higher affinity for HM-ICAM-1 compared with the classical
subclass (CD14+CD16-). They also showed that the monocytes
bind with higher affinity to HM-ICAM-1 than to a2,6-sialylated
ICAM-1 (48, 49). After migration through the endothelium,
monocytes differentiate into M0 macrophages, which can further
polarize into different subclasses of macrophages stimulated by
different cytokines - classically activated M1 macrophages,
alternatively activated M2 macrophages, CD169 macrophages,
or TCR macrophages (88). During differentiation from
monocytes to macrophages, ST6GAL1 is downregulated,
resulting in the loss of a2,6-sialic acid. Importantly, ST6GAL1
downregulation results from cleavage by Beta-Site APP-Cleaving
Enzyme 1 (BACE1), which is dramatically upregulated during
macrophage differentiation (89). This may also occur during
differentiation into M1 macrophages, as it has already been
shown that M2 macrophages, associated with anti-
inflammatory effects, exhibit higher ST6GAL1 production
compared with M1 (90). Moreover, a2,6-sialylation is included
in the regulation of macrophage survival. Liu et al. showed that
ST6GAL1 mediated a2,6-sialylation of TNFa death receptor 1
(TNFR1) expressed on primary macrophages inhibits apoptosis
(91). This discovery further highlights the protective properties
of a2,6-sialylation due to its promotion of proinflammatory M1
apoptosis, and survival of anti-inflammatory M2. In addition to
sialylation, fucosylation also affects M1/M2 polarization in
chronic inflammation. In RA, M1 macrophages were shown to
express 5-10 times more fucosyltransferases (FUTs), catalyzing
terminal and subterminal fucosylation (FUT1, FUT3, FUT7, and
FUT9), than their monocyte progenitors, whereas this was
not observed for FUT8, responsible for core fucosylation
(92).Interestingly, terminal fucosylation is important for
the synthesis of the sLex epitope, which is considered
proinflammatory (93), whereas core fucosylation has more
anti-inflammatory properties (94). Inhibition of terminal FUTs
such as FUT1/2 leads to a shift in M1 differentiation toward M2
macrophages (92). This study was the first to highlight the
potential of terminal fucosylation as a novel hallmark of
inflammatory M1 macrophages. Another subclass of
macrophages worth mentioning is CD169+ . These
macrophages express high levels of CD169, also known as
sialoadhesin or Siglec-1, and are strategically positioned at the
entry site of lymphoid tissue, where they bind and remove
pathogens from the lymphatic fluid and blood (95).
In addition to “gatekeeper” CD169+ macrophages that
constitutively express Siglec-1, its expression can be
upregulated in other tissue macrophages upon exposure to a
type I interferon (IFN-I) (96). Siglec-1 belongs to the sialic acid-
June 2022 | Volume 13 | Article 893365
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binding immunoglobulin-like lectins (Siglecs) (97), preferentially
binding to a2,3-linked sialic acids (98), and differing from other
siglecs as it has a long extracellular region (17 Ig domains) that
lacks intracellular signaling motifs (99). In their review, O’Neill
et al. introduced Siglec-1 as a macrophage-specific marker of
chronic inflammation and emphasized its contribution to cell-
cell and cell-matrix interactions of macrophages in inflammation
(100). Also, soluble Siglec-1 (sSIGLEC-1) has been presented as a
marker of monocyte and macrophage activation as well as a
marker of interferonopathy in SLE and other inflammatory
disease (101). Recently, Wang et al. showed that there is a
TNFa mediated reduction in a2,6-, but not a2,3-terminal
sialylation in RA (59). The latter would support interactions of
proinflammatory synovial fibroblasts with pathogenic
macrophages via Siglec-1, whose expression is upregulated in
macrophages in RA (59, 102). On the other hand, Tanno et al.
showed decreased expression of Siglec-1 on alveolar
macrophages in COPD, significantly reducing their phagocytic
capabilities against microbial pathogens and thus maintaining
the inflammatory state (103). This clearly demonstrates how
inflammation alters glycosylation and glycan binding molecules
to maintain inflammatory environment, rather than the other
way around. Mesenchymal stem cells (MSCs) have recently
ga ined much a t t en t ion a s po t en t i a l macrophage
immunomodulators in chronic inflammation. As mentioned
previously, they can be a(1,3)-exofucosylated to express the
sLex-decorated CD44 ligand (known as HCELL), allowing
them to migrate to the site of inflammation (28, 104). Further
ev idence sugges t s tha t t a rge t s o f MSC media t ed
immunosuppression include macrophages, as there is evidence
of the ability of adipose derived MSCs to shift macrophages from
the M1 to the M2 phenotype (105, 106). Whether binding of
HCELL ligand to Siglec-1 expressed on macrophages may be a
possible mechanism of immunosuppression, thereby stopping
macrophage interaction with other immune cells, is a question
that remains to be answered. Another family of glycan-binding
proteins involved in macrophage-mediated immunomodulation
are the galectins. Among the 15 galectins identified to date
expressed by immune cells, galectin-1 (Gal-1) and galectin-3
(Gal-3) show significant expression in macrophages and
monocytes (107, 108). Both Gal-1 and Gal-3 possess a
conserved carbohydrate recognition domain (CRD) that
recognizes glycans containing a terminal N-acetyllactosamine
(Galb1,4GlcNAc or LacNAc). However, the terminal a2,6-
sialylation present on LacNAc prevents the binding of Gal-1,
whereas this was not observed for Gal-3 (109). Since the
contribution of Gal-1 and Gal-3 to immunomodulation has
been discussed in great detail elsewhere (108, 110, 111), we
were focused here only on recent discoveries regarding the
interplay between these galectins and macrophages. According
to several different studies, soluble Gal-3 is mainly associated
with proinflammatory functions (112–114). However, Di Gregoli
et al. in their recent work proposed a new mechanism in
which high levels of circulating Gal-3 in inflammation
could be a consequence of matrix metalloproteinase 12
(MMP-12) dependent cleavage of Gal-3 from the surface of
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macrophages. Moreover, Gal-3 negative macrophages tend to
exhibit proinflammatory properties, whereas Gal-3 positive
macrophages exhibit pro-resolving and profibrotic properties
(115). The latter is consistent with previously published data
that revealed a novel mechanism of alternative M2 macrophage
activation through binding of Gal-3 to its heavily N-glycosylated
CD98 membrane receptor while emphasizing the association
between M2 macrophages and increased fibrosis (116). Thus,
although Gal-3 does not show direct proinflammatory effects, it
is still part of the axis in maintaining the inflammatory state. On
the other hand, Gal-1 seems to be a “jack of all trades” in
resolving inflammation (111). Regarding the macrophages, Gal-1
is known to promote the differentiation of macrophages into the
M2 profile (111, 117, 118). Yaseen et al. recently uncovered a
positive feedback loop involving interferon b (IFN-b) mediated
expression of Gal-1 in proinflammatory macrophages, thereby
promoting their reprogramming into a pro-resolving phenotype
with high expression of IFN-b (119). However, the specific
mechanism is still unknown. One possibility is autocrine
stimulation of proinflammatory macrophages by binding self-
expressed Gal-1 to N-glycan ligands on their surface that
normally lack the inhibitory a2,6-linked sialic acid. The Gal-1/
IFN-b feedback loop is thought to occur at the time of
termination of acute inflammation, so any misstep (e.g.,
insufficient Gal-1 expression) could lead to the development of
a chronic inflammatory state, as decreased Gal-1 has been
observed in several chronic inflammatory states (120–122).

Dendritic Cells
DCs are antigen-presenting cells with the ability to take up
antigens in the periphery and expose them to lymphocytes,
thus bridging the gap between innate and adaptive immune
responses (123). A specific subset of DCs derived from
monocytes (Mo-DC) plays a key role in inflammation (124).
The surface of Mo-DCs is covered with glycoproteins decorated
predominantly with sialylated glycans (125). Sialylation of DCs is
regulated during both differentiation and maturation, and has
been found to significantly affect DC functions such as antigen
uptake, phagocytosis, and T cell priming (126) (Figure 3).
Immature Mo-DCs are often tolerogenic because they have
high levels of a2,6- and a2,3-sialylated N-glycans that are
recognized by inhibitory siglecs (127) and galectins (128),
respectively. By binding to a2,3-sialic acid-decorated CD43/
CD45 clusters expressed on DCs, Gal-1 has been shown
to support differentiation of tolerogenic DCs, thereby
promoting interleukin 10 (IL-10) mediated T cell tolerance and
suppression of autoimmunity (129). However, DC maturation in
the presence of proinflammatory stimuli results in significant
downregulation of expression and activity of ST6GAL1 and
ST3GAL4 (130, 131), which may cause phenotype switch to
inflammatory DCs. In contrast to the strictly tolerogenic activity
of Gal-1, there are conflicting data regarding the control of
inflammatory and tolerogenic DC phenotypes mediated by
Gal-3 (128, 132, 133), reflecting the fact that this is a context-
and tissue-dependent phenomenon. Additionally, by regulating
T cell differentiation, DCs may also indirectly contribute to
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altered glycosylation of IgG molecules. Gringhuis et al. identified
the molecular mechanism by which fucose specific triggering of
DC-SIGN leads to increased Interleukin 27 (IL-27) expression by
DCs, which promotes differentiation of T follicular helper (Tfh)
cells known to affect IgG production by B cells (134, 135).
Interestingly, DC-SIGN preferentially binds N-glycans with
fucose incorporated into the Lex epitope (136), which is
abundantly expressed by various immune cells during
inflammation, suggesting another potential mechanism for
maintaining the inflammatory state. While the presence of
sialic acids has a tolerogenic effect on DCs, fully desialylated
DCs exhibit a much more potent phenotype – high expression of
major histocompatibility complex (MHC) molecules, secretion
of inflammatory cytokines, phagocytosis, and activation of
inflammatory T cells (137). Although the exact mechanism is
still unclear, sialidases such as neuraminidase 1 and 3 (NEU1 and
NEU3) are thought to contribute to the desialylation of DCs
(138–140). This hypothesis is also supported by the fact that
sialidases are abundant and involved in the pathology of many
inflammatory diseases (141). However, Lübbers et al. have
recently demonstrated an alternative pathway for the induction
of tolerance by DCs independent of their sialylation status,
driven by the immunoregulatory sialic acid-siglec axis.
Specifically, binding of a2-3-sialic acid to Siglec-9 expressed on
the surface of DCs alters metabolic pathways and cytokine
signaling and reprograms DCs to enhance regulatory T cell/T
helper type 1 (Treg : Th1) ratio balance (142). Collectively, these
data highlight the importance of glycan recognition by DCs in
controlling both inflammation and its resolution.

Natural Killer (NK) Cells
NK cells are known for their role in cell-mediated cytotoxicity
and secretion of proinflammatory cytokines (143), which are
critical for both the promotion of inflammation and immune
regulation (144). The effector functions of NK cells are regulated
by a series of activating and inhibitory receptors expressed on
their surface, with glycosylation playing a key role in receptor-
ligand recognition (Figure 3). FcgRIIIa (CD16a) is the most
abundantly expressed activating receptor on circulating NK cells
(145), and its role in antibody dependent cell mediated
cytotoxicity (ADCC) is well established (146). While it is
established that modulation of IgG N-glycome significantly
affects its binding to FcgRIIIa (94), Several studies made
observations that underscore the importance of N-
glycosylation of FcgRIIIa for IgG binding affinity. Tremendous
increase in binding affinity of proinflammatory afucosylated IgG
was observed when oligomannose N-glycans were present on
FcgRIIIa (147, 148), which correlated with decreased expression
of a-mannosidase in NK cells (149). Furthermore, higher levels
of sialylated complex N-glycans on FcgRIIIa were shown to
correlate with lower affinity for antibody binding (150), which
was also observed for the activating NK cell receptor 2B4
(CD244) (151). In their recent review, Rosenstock and
Kaufmann describe an important contribution of sialic acids to
the functions of NK cells, both through the expression of sialic
acid-binding receptors and by having sialic acids on their surface
(152). Two of these receptors are Siglec-7 and Siglec-9, which
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have an inhibitory function on NK cells. While Siglec-7 mainly
recognizes tumor-expressing gangliosides (153), Siglec-9 has a
high affinity for a2,6- and a2,3-linked sialic acids, including the
sLex epitope (154). Cytokines such as interleukin 2 (IL-2) and
interferon a (IFN-a) have been shown to increase the level of
sialylation on the surface of NK cells (155, 156). Although
increased sialylation is usually considered to be anti-
inflammatory, the functional role of these sialic acids may be
to mask Siglec-9 through cis interactions, and thus preventing
the inhibition of NK cells that would occur through trans
binding of sialic acids. The importance of Siglec-9 in NK cell
immunoregulation has been demonstrated in liver inflammation,
where decreased Siglec-9 expression has been associated with
disease progression (157). Although glycosylation in NK cells is
functionally important, there is little information on the
underlying mechanisms that alter N-glycosylation of NK cells
during inflammation because of their relatively low abundance.
However, the development of methods to enrich human NK cells
from a single donor (149) may be a first step toward a more
detailed analysis of inflammation induced N-glycosylation
changes in NK cells.
ADAPTIVE IMMUNITY

In contrast to innate immunity, adaptive immunity is
characterized by high degree of specificity as well as the
substantial property of memory. The adaptive immune
system can be further divided into cellular immunity
mediated by T cells and humoral immunity represented by B
cells and secreted antibodies (158). In adaptive immunity,
glycans are essential for the majority of signal transduction
and cell-cell interactions. N-glycans have been shown to
regulate important steps in lymphocyte biology, such as T
and B cell activity and cell differentiation and proliferation.
Moreover, N-glycans are of great importance for the fate
and function of secreted antibodies in chronic inflammation.
In this section, we will therefore describe mechanisms by
which inflammation can alter N-glycosylation of lymphocytes
and antibodies, explain the significance of these changes in
chronic inflammatory diseases, and discuss the potential of
immunotherapies based on manipulation of the altered
N-glycosylation.

T Cells
T cells (T lymphocytes) have a central role in the adaptive
immune system. Briefly, after differentiation from thymocytes
to naïve T cells, T cells leave the thymus and enter the periphery.
There, exposure to antigens by antigen presenting cells (APCs)
such as macrophages and/or DCs along with concomitant
cytokine stimulation triggers maturation of naïve T cells. In
general, mature T cells carry a unique T cell receptor (TCR) and
can express either CD4 or CD8 molecules, allowing the
identification of CD4+ T helper cells (Th) and CD8+ cytotoxic
T lymphocytes (CTLs). While CTLs can exert direct cellular
cytotoxicity, Th cells are required for the initiation of humoral
June 2022 | Volume 13 | Article 893365
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and cell-mediated immune responses. Thus, they can be divided
into several subtypes based on functions and the production of
specific cytokines - Th1, Th2, Th17, Tfh and Treg cells (159). The
involvement of T cells through various mechanisms in the
development and progression of chronic inflammation is
undisputed (160–163). T cell function in inflammation is
highly pleotropic and dependent on intra- and intercellular
communication, which is often mediated by N-glycans and
their corresponding binding partners (Figure 4). In this
regard, alterations in the N-glycome of T cells can significantly
affect their activation, differentiation, survival, and cytokine
production, often leading to autoimmunity, chronic
inflammation, or cancer (164). Under homeostatic conditions,
galectins are the major immune regulators of T cells, with Gal-1,
Gal-3, and Gal-9 consistently showing immunosuppressive
effects. The role of galectins in immunomodulation of T cells
has been discussed in detail by several authors (111, 128, 129,
165). Therefore, we will specifically discuss galectin functions
mediated by N-glycosylation in chronic inflammation, along
with the latest findings on the underlying mechanisms affecting
N-glycosylation in and by inflammation itself. Gal-1 and Gal-3
preferentially bind to branched N-glycans containing the
LacNAc motif found on their T cell counter-receptors such as
CD7, CD45, CD43 and TCR. This leads to inhibited
transendothelial migration and induced apoptosis of T cells
(108). The aforementioned binding is under the direct
influence of the activity of glycan-modifying enzymes and the
availability of corresponding substrates. One such enzyme is
Frontiers in Immunology | www.frontiersin.org 9
Golgi Beta-1,6-N-acetylglucosaminyltransferase V (MGAT5),
which catalyzes the biosynthesis of tetra-antennary N-linked
glycans, the preferred intermediates for elongation with (poly)
LacNAc and ligands for galectins. MGAT5 expression in T cells
is altered in chronic inflammatory diseases at both the genetic
and protein levels. At the genetic level, several MGAT5 single-
nucleotide polymorphisms (SNPs), associated with reduced
expression of the MGAT5 enzyme, have been found to
correlate with pathological changes in T cell glycosylation in
chronic diseases such as IBD, COPD, and multiple sclerosis (MS)
(47, 166, 167). Deficiency in the N-glycosylation branching
pathway increases susceptibility to development of severe
forms of disease due to the lack of galectins’ binding substrate
and consequently their inability to inhibit the exuberant Th1/
Th17 immune response (168, 169). In addition, N-glycosylation
alterations may occur under the influence of various cytokines;
an interesting study showed that in chronic viral infection, IL-10
induced expression of MGAT5 in CD8+ T cells promotes the
formation of the Gal-3 lattice and increases the antigen
activation threshold. Normally, this would be considered an
anti-inflammatory mechanism, but this restriction in viral
infection allows rapid replication of the pathogen, and thus
leading to the establishment of persistent chronic inflammation
(170). In terms of cytokine-mediated T cell N-glycome
regulation, IL-2 is one of the most involved. Based on their
research in MS, Grigorian and colleagues elegantly explained the
paradoxical impacts of IL-2 on N-glycan branching and MGATs
in T cells. Interestingly, IL-2 reduces N-glycan branching in
FIGURE 4 | Overview of altered N-glycosylation pathways regarding T cells during chronic inflammation. (A) Differentiation of lymphocytes and thus their surface
N-glycome is under the direct influence of cytokines and stimulation by antigen presenting cells (APCs). Cytokines control differentiation in favor of proinflammatory
T cells (Th1, Th17, Tfh), thereby altering their N-glycome by dysregulating the expression of glycosyltransferases such as MGAT5, ST6GAL1 and FUT8 and abrogating
substrate availability for the hexosamine biosynthesis pathway (HBP). The resulting N-glycan changes significantly reduce the binding affinity of inhibitory galectins and
Siglecs. (B) Schematic representation of the relevant cytokines responsible for the T cell differentiation. GLUT, glucose transporter; TCR, T cell receptor; Tfh, T follicular
helper cell; Th, T helper cell; Treg, T regulatory cell.
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resting T cells, whereas it has the opposite effect in activated T
cells. This is thought to be a consequence of IL-2 induced
upregulation of MGAT1, an enzyme that catalyzes the
biosynthesis of mono-branched N-glycans, in resting T cells.
MGAT1 has a ∼250-fold higher affinity for UDP-GlcNAc than
MGAT5, thus increased MGAT1 expression inhibits further N-
glycan branching by limiting UDP-GlcNAc availability to
MGAT5. In contrast, in active T cells, TCR signaling appears
to increase levels of MGAT5 and UDP-GlcNAc, thereby
exploiting IL-2 induced upregulation of MGAT1 to increase N-
glycan branching by providing more substrates for downstream
enzymes (47, 171). IL-2 is also involved in T cell differentiation.
It suppresses the formation of Th17 and Tfh while promoting the
development and activation of Treg cells (172–174). The latter is
critical for maintaining immune homeostasis, as Treg cell
dysfunction is associated with several inflammatory diseases.
Therefore it is no surprise that low-dose IL-2 therapy has shown
improvement in various autoimmune and inflammatory
conditions (175–177). Also, mature Treg cells on their surface
carry IL-2R receptor consisting of three subunits, IL-2Ra
(CD25), IL-2Rb (CD122), and IL-2Rgc (CD132), of which
CD25 is heavily N- and O-glycosylated (178). Reduced
branching decreases surface expression and retention of CD25,
inhibits proper IL-2 binding, and eventually prevents Treg cell
activation which consequently promotes inflammation (179). In
addition to glycosyltransferase activity, substrate availability is
another critical factor for successful N-glycan branching. The
hexosamine biosynthetic pathway (HBP) is the main source of
UDP-GlcNAc, which is required for N-glycan branching. De
novo synthesis of UDP-GlcNAc is characterized by the
conversion of fructose-6-phosphate to glucosamine-6-
phosphate by the rate-limiting enzyme glutamine-fructose-6-
phosphate transaminase (GFPT). To complete the conversion,
GFPT also requires glutamine. Thus, the synthesis of UDP-
GlcNAc by HBP may directly compete with glycolysis and
glutaminolysis for fructose-6-phosphate and glutamine,
respectively (179, 180). Inflammatory Th1 and Th17 undergo a
metabolic switch from oxidative phosphorylation to glycolysis
and glutaminolysis during inflammation (181). Therefore, by
switching to glycolysis alone during inflammation, Th1/Th17
indirectly starve the hexosamine pathway of fructose-6-
phosphate and consequently UDP-GlcNAc. In addition, Th17
cytokines were shown to induce down-regulation of GFPT,
UDP-GlcNAc and branching in abundantly present
proinflammatory T cells. These data suggest that glycolysis
drives Th17 over Treg differentiation, with Th17 cytokines
further maintaining reduced N-glycan branching (179).
Therefore, a potential treatment for autoimmune diseases
could be with metabolites of the hexosamine pathway (180).
As can be seen, alteration of N-glycan branching seems to have
dual function in promoting inflammation; it abrogates
immunosuppression by galectins and shifts fate toward
inflammatory T cells. Nevertheless, N-glycan branching is not
the only feature that influences immune modulation and
polarization of T cells. It has long been known that Gal-1
preferentially kills proinflammatory Th1 cells over anti-
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inflammatory Th2 and Treg cells. The latter is explained by the
fact that Th2 and Treg cells have higher expression of ST6GAL1,
which is responsible for the synthesis of terminal a2,6-sialic
acids, compared with Th1 cells, and are thus protected from
galectin-mediated apoptosis (109, 130, 182). Not surprisingly,
the expression of ST6GAL1 is altered in chronic inflammation.
In SLE, the expression of ST6GAL1 is increased in autoimmune-
activated T cells, which inhibits the binding of Gal-1 and thus
contributes to the pathophysiology of SLE (183). Moreover,
besides the lymphocyte-specific ST6GAL1, there is a soluble
form of ST6GAL1 released from the liver which is also
involved in the immunomodulation of T cells. Interestingly, in
mice with hepatocyte-specific ablation of ST6GAL1, there was an
increase in local inflammation and a decrease in systemic Ag
tolerance projected via increased T cell activation, and thus
greater susceptibility to T cell dependent inflammatory
diseases. Paradoxical as this may seem with respect to galectin
inhibition, this clearly demonstrates that galectins are not
sufficient to carry T cell immunosuppression alone. This is
consistent with the recent discovery that liver macrophages
expressing the a2,6-sialic acid-specific Siglec, CD22, can
inhibit a2,6-sialic acid decorated T cells, which provides an
alternative liver-driven mechanism for maintaining systemic
immune homeostasis (184). APCs also have a key role in T cell
polarization and activation. Sialylation of antigens has been
shown to cause a shift in the differentiation of effector T cells
toward tolerogenic Treg through the sialic acid-siglec axis on
DCs. This could open a new way to treat patients suffering from
autoimmune diseases or allergies (142, 185). Finally, another
important glycosylation trait on T cells that is altered in chronic
inflammation is fucosylation. The TCR receptor requires core
fucosylated N-glycans for its proper activation and function. This
is mediated by the Alpha-1,6-Fucosyltransferase, FUT8. In SLE
and IBD, the expression of FUT8 is strongly upregulated,
resulting in a hyperfucosylated TCR and thus hyperactivated T
cells that contribute to the pathophysiology of the
aforementioned diseases (186, 187). On the other hand, core
fucosylation is required for the expression of programmed cell
death receptor 1 (PD-1), which is responsible for attenuating
TCR signaling, resulting in depleted and unresponsive T cells
(188). The hyper-core fucosylation induced upregulation of PD-
1 expression could then provide an explanation for the
impairment of T cells in chronic viral infections (189, 190).
Unfortunately, the underlying mechanism of upregulated core
fucosylation in chronic inflammation is still unclear and is a
topic for further study. In summary, inflammation has
apparently found every loophole in the N-glycosylation life
cycle of T cells to turn the tide in its favor. Therefore, it is
necessary to consider N-glycosylation during the development of
anti-inflammatory therapy, and particularly in case of a therapy
specifically targeting critical steps in the transition from
homeostasis to inflammation.

B Cells
B cells, also called B lymphocytes, are the major central effector
immune cells in the humoral branch of adaptive immunity.
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During inflammation, naïve or memory B cells are exposed to
antigens by APCs under co-stimulation of Th cells in the
germinal center (GC) in secondary lymphoid organs. This
induces activation and rapid proliferation of B cells and
selection of high-affinity B cell receptors (BCRs) (191, 192). B
cells expressing a high-affinity receptor enter the periphery,
where they differentiate into plasma cells that secrete large
amounts of antibodies (193). Once antibodies encounter their
antigen, pathogen, or infected cells, their functions include
neutralization, ADCC, phagocytosis, and complement-
dependent cytotoxicity (CDC) (194). In addition to their
function as precursors of antibody-secreting plasma cells, B
cells are involved in suppression of T cells and secretion of
relevant cytokines that control adaptive immunity (195, 196). N-
glycosylation has a tremendous impact on B cell proliferation,
differentiation, and effector functions (Figure 5), but research on
this topic lags far behind that of T cells. Nevertheless, there are
implications that altered N-glycosylation in B cells may
contribute to the development of various chronic inflammatory
(autoimmune) diseases.

In B cells, among the best understood roles for lectin-glycan
interactions are those of sialoglycans and Siglecs in BCR
signaling. Sialic acids are often referred to as inhibitory “self-
signals” because of their high local concentration on the surface
of B cells. Thus, it is not surprising that Siglecs are considered
major B cell immunomodulators (197). B cells express siglec-2
(CD22) and siglec-10 (ortholog of mouse siglec-G), both of
which preferentially bind a2,6-sialic acid and act as inhibitory
co-receptors of the BCR to maintain peripheral tolerance and
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prevent autoimmunity (198, 199). Thus, varying degrees of
autoimmunity have been observed in mice lacking CD22,
Siglec G, or both (200–202). Interestingly, ST6GAL1 deficient
B cells show suppressed BCR signaling, yet mice deficient in both
CD22 and ST6GAL1 showed restored BCR signaling,
emphasizing the importance of a2,6-sialic/siglec axis in
immunomodulation of BCR signaling (203). In addition to
ST6GAL1, sialic acid acetyl esterase (SIAE) is another enzyme
involved in regulation of BCR signaling. SIAE deacetylate sialic
acid ligands, thereby allowing CD22-mediated inhibition of BCR
signaling (204). Several studies showed that congenital mutations
in SIAE are associated with an increased risk of autoimmune
disease in humans (205–207). Nevertheless, while the
contribution of sialic acid/siglec interactions to B cell function
has been extensively defined (97, 199, 208, 209), sialoglycans
represent only a fraction of the glycans involved in interactions
regulating B cell immunity. Recently, Giovannone and colleagues
discovered that B cells express significant amounts of tri- and
tetra- complex N-glycans decorated with (poly)LacNAcs.
Interestingly, the (poly)LacNAc structures were linear on naïve
B cells but modified by Glucosaminyl (N-acetyl) Transferase 2
(GCNT2) with I-branches in GC B cells. In addition, I-branches
were found to selectively impair B cell binding to Gal-9.
Specifically, Gal-9 was found to be predominantly expressed by
naïve B cells and to bind mainly the glycoprotein receptor CD45
carrying (poly)LacNAc decorated N-glycans. Functionally,
binding of Gal-9 to CD45 induces inhibitory signaling through
interaction with CD22, abrogated BCR calcium flux, and
attenuated B cell activation. On the contrary, in GC B cells,
FIGURE 5 | Overview of altered N-glycosylation pathways regarding B cells during chronic inflammation. In the presence of proinflammatory stimuli, inflammatory T
cells significantly affect B cell proliferation and their N-glycan profile by deregulating a specific subset of glycosyltransferases (B4GALT1, ST6GAL1, FUT8, MGAT3,
and GCNT2). The latter is reflected in an increase in features such as bisecting GlcNAc, agalactosylation, afucosylation, and the presence of I-branches that have
been shown to inhibit Gal-3 and Gal-9 binding. In addition to the affected Golgi enzymes, lysosomal sialic acid acetyl esterase (SIAE) is also downregulated so that it
is unable to deacetylate sialic acids, which is necessary for immunomodulation of B cell receptor (BCR) signaling. This figure also summarizes the Fc N-glycome of
secreted immunoglobulins, which reflects inflammation-related changes that may further contribute to disease progression.
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Gal-9 mediated inhibition is down-modulated by the combined
downregulation of Gal-9 and upregulation of GCNT2 (210).
Although this is a novel BCR regulatory axis involving Gal-9 and
GCNT2, further studies are needed to unravel the underlying
mechanisms controlling the expression of these proteins.
However, increased expression of Gal-9 has been reported in
various autoimmune inflammatory diseases (211), therefore the
exact involvement of Gal-9 in B-cell (dys)function in chronic
diseases remains to be elucidated. In addition to Gal-9, other
galectins such as Gal-1 and Gal-3 are also known to regulate BCR
signaling, plasma cell differentiation, and survival (212–214).
Interestingly, besides Gal-9, I-branches have also been shown to
selectively impair B cell binding to Gal-3 but not Gal-1 (210,
215). A proposed explanation includes the fact that Gal-3 and
Gal-9 preferentially bind to internal LacNAc residues, while Gal-
1 favors binding to (poly)LacNAc termini (128). This suggests
that I-branches may inhibit Gal-3 and Gal-9 binding, whereas
terminal modifications such as a2,6-sialylation by ST6GAL1
may more selectively inhibit Gal-1. In addition, branched N-
glycans are not exclusively a feature of B cell regulation but also
of B cell mediated T cell regulation in autoimmunity. Branched
N-glycans have been reported to suppress B cell triggered
proinflammatory Th1/Th17 differentiation by promoting Toll-
like receptor-2 (TLR2) and Toll-like receptor-4 (TLR4)
endocytosis and downstream APC activity in B cells, thereby
reducing inflammatory demyelination in a murine model of MS.
At the same time, it was observed that minimal branching
promotes surface retention of BCR and its co-receptor CD19,
thereby stimulating adaptive B cell function. Although branching
may represent another way to prevent Gal-9 binding and
enhance BCR signaling, MGAT1 deficiency has been observed
to prevent both branching and poly-LacNAc synthesis, leading to
a decrease in BCR/CD19 surface expression and BCR signaling
in this MS model (216). Because altered expression of
glycosyltransferases may be a mechanism of differential
regulation of galectin activity and receptor expression in B
cells, future studies are needed to determine potential roles of
these enzymes and their corresponding effector molecules in the
development of autoimmune diseases. Lastly, it was
demonstrated that core fucosylation of IgG-BCR mediates
antigen recognition, along with cell signal transduction via
BCR and antibody production (217).

The final, but not less important, role of B cells is the secretion
of immunoglobulins (Igs) - the major executive glycoproteins of
the humoral adaptive immune response. In humans, five classes
of immunoglobulins exist: IgG, IgA, IgE, IgM, and IgD. All
human Ig classes are N-glycosylated, with N-glycans attached to
the conserved glycosylation regions on the fragment
crystallizable (Fc) and/or on the variable fragment antigen
binding (Fab), where new glycosylation sites can be acquired
during somatic hypermutation (218). N-glycans can affect the
structural stability and conformation of immunoglobulins as well
as their effector functions (219). While alterations in N-
glycosylation of IgG have been observed in several chronic
(inflammatory) diseases and discussed in detail elsewhere (3),
not much is known about alterations in the N-glycosylation
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profile of other immunoglobulins under pathological conditions.
In the following paragraphs, the current knowledge about this
topic is summarized with the focus on the possible underlying
mechanisms mediated by inflammation that could contribute to
the alterations in N-glycosylation of Igs.

IgG
IgG represents 75% of all antibodies in human serum, making it
the most abundant immunoglobulin class in the bloodstream
(220). Its Fab region recognizes and binds antigens, while the Fc
fragment interacts with type I and type II Fcg receptors (FcgRs)
on the surface of many immune cells (including macrophages,
neutrophils, B cells, NK cells, etc.), triggering various immune
responses such as antigen neutralization, macrophage
phagocytosis, ADCC, and complement activation (221). Each
IgG molecule contains a conserved N-glycosylation site at the
Asn297 of the constant heavy 2 (CH2) domain on each of its
heavy chains. This site is where most of the contact with the
various IgG Fc receptors and ligands occurs, and it is critical for
maintaining both the pro- and anti-inflammatory effector
functions of IgG (222). Glycosylation traits that are of most
importance for IgG effector functions, and so mostly altered in/
by inflammation, are galactosylation, sialylation, fucosylation
and bisecting GlcNAc.

Galactosylation
Increased abundance of agalactosylated IgG glycans is
considered a hallmark of various diseases with an underlying
inflammatory component (3). Fc glycans lacking terminal
galactoses are thought to be proinflammatory by activating
complement through the alternative pathway along with the
lectin pathway by binding to mannose-binding lectin (MBL)
(223, 224). While agalactosylated glycans are considered strictly
proinflammatory, terminal galactosylation seems to be quite
controversial in this regard. Glycans decorated with galactoses
have been held responsible for attenuating inflammation by
binding to the inhibitory FcgRIIB, followed by inhibition of
the proinflammatory activity of complement component
C5a (225). On the other hand, Fc galactosylation is shown to
activate the classical complement pathway by facilitating IgG
hexamerization, thereby increasing C1q avidity and enhancing
CDC (226). It has also been found to increase the affinity of IgG
for activating FcgRs, leading to ADCC (227, 228). Although
biological functions of (a)galactosylated IgGs are described, the
underlying mechanism of how this is regulated in inflammation
remains unclear. In this context, decreased levels of IgG
galactosylation have been shown to associate with decreased
activity of Beta-1,4-Galactosyltransferase 1 (B4GALT1) in
peripheral B cells from RA patients, but no difference in
expression of B4GALT1 was observed in RA patients
compared with healthy controls. Proposed explanation points
toward a stress-induced disruption of Golgi (heat shock and
other stress proteins are elevated in RA), which could affect the
proper targeting of B4GALT1 and thus impair its catalytic
function (229). On the other hand, proinflammatory cytokines
are observed to alter glycosylation of IgG indirectly via T cell-
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dependent (TD) activation of B cells. Accordingly, low levels of
IgG galactosylation were dependent on the effects of the Th1
cytokine interferon g (IFN-g) via IFN-gRI signaling, as decreased
agalactosylation was observed in Ifngr1-/- mice (230). To support
this, a novel B-cell intrinsic IFN-gR signaling pathway has been
defined that is required for Tfh cell development and promotes
autoreactive B cell formation and autoimmunity (231). Tfh cells
secrete cytokines such as interleukin 6 (IL-6), IFN-g, and
interleukin 17 (IL-17), which maintain the agalactosylated state
of IgGs (232). Also, a recent genome-wide association study
(GWAS) showed that IL-6 signaling [SNPs in the IL6ST (gp130)
gene] correlates with low serum IgG galactosylation (233).
Interestingly, binding of these cytokines to their receptors leads
to activation of JAK/STAT pathway known to target genes that
appear to promote inflammation (234), therefore it is plausible
that targeted genes include galactosyltransferases.

Sialylation
The addition of sialic acid to the terminal end of IgG N-glycans is
essential for the control of inflammatory immune responses.
Highly sialylated IgG have a lower affinity for activating FcgRIIIa,
resulting in reduced ADCC (235, 236), whereas they stimulate
upregulation of inhibitory FcgRIIb and thus inhibition of CDC
(237). In autoimmunity, hyposialylation is thought to be
responsible for the development of chronic inflammation. The
results of more in-depth studies have shown that IL-23
stimulates Th17 cells to secrete IL-21 and IL-22, which are
responsible for decreased expression of ST6GAL1, and thus
sustaining hyposialylated state of IgG (238). Another
explanation for IgG hyposialylation includes Tfh cells, and
especially Tfh17 and Tfh1 cells. Tfh17 cells negatively regulate
ST6GAL1 from autoantibody-producing B cells via the OX40-
OX40L (TNF receptor superfamily) interaction. An increased
number of OX40-overexpressing Tfh17 cells was observed in RA
patients, and their frequency was negatively correlated with
ST6GAL1 expression. However, blocking the OX40-OX40L
pathway resulted in a decrease of Tfh17 cells and upregulation
of IgG sialylation (135). Moreover, IL-27 stimulates Tfh1 to
secrete IFN-g, which can downregulate ST6GAL1 expression in
cultured B cells by binding to the B cell intrinsic IFN-gR, and
activating the JAK1/2 signaling pathway (232). Consistent with
this effect of T cell cytokines on sialylation of IgG, it has been
shown that T cell-independent B cell activation leads to the
development of immunosuppressive sialylated IgG capable of
abrogating B cell activation independent of FcgRIIb (230),
possibly promoting an inhibitory feedback mechanism by
binding to CD22 expressed on the B cell surface (239). In
addition to inflammatory cytokines, increased risk of RA under
conditions of low estrogen levels (e.g., menopause) correlate with
estrogen induced increase in IgG Fc sialylation through increased
expression of ST6GAL1 in splenic plasmablasts (240). Of note,
recent evidence suggests that IgG glycans can be extracellularly
sialylated by hepatic ST6GAL1 present in the bloodstream (241,
242), although this appears to be an inflammation-dependent
process rather than a constitutive one (243).
Frontiers in Immunology | www.frontiersin.org 13
Core Fucosylation
More than 90% of Fc glycans of IgG in healthy individuals have
fucose bound to their core, which acts as a “safety switch” and
attenuates potentially harmful ADCC (94). More recently,
decreased fucosylation of the IgG core has been found in
autoimmune thyroid diseases. The underlying mechanism is
thought to be abnormal expression of the FUT8 and IKZF1
genes in B cells producing thyroid peroxidase antibody (TPOAb)
(244). Both genes have previously been associated with
afucosylated IgG N-glycans (233). Although the exact
mechanism is still unclear, the IKZF1 gene encodes the
transcription factor Ikaros, a potential indirect regulator of
fucosylation in B cells by promoting the addition of bisecting
GlcNAc, which then inhibits fucosylation (233). Interestingly,
several SNPs surrounding the IKZF1 gene have been associated
with other autoimmune diseases, including SLE (243) and IBD
(244). Of note, elevated plasma levels of a-L-fucosidase (FUCA-
1) were significantly associated with chronic inflammation and
autoimmune diseases (245), raising the question of extracellular
IgG defucosylation in inflammation. On the contrary, Plomp
et al. found that IgG fucosylation is increased in individuals with
a higher degree of inflammation, sometimes even in autoimmune
patients (246). This was further investigated by Huang et al. and
they found that increased IgG core fucosylation was observed in
the serum of RA patients with a concomitant decrease in a2,6-
sialylation. Moreover, a2,6-sialylation of IgG was increased in
Fut8-/- mice (247). These findings may represent a novel
mechanism for disease-specific, inflammation-related changes
in IgG glycome that are consistent with distinctive observations
regarding fucosylation and sialylation in autoimmune diseases
differing in mechanisms of pathophysiology.

Bisecting N-Acetylglucosamine (GlcNAc)
Bisecting GlcNAc has been classified as a proinflammatory trait
in many inflammatory diseases (3). Although afucosylated IgG
plays the most important role in enhancing ADCC, the addition
of bisecting GlcNAc to IgG Fc glycans has also been reported to
boost ADCC (248). However, because the presence of bisecting
GlcNAc blocks the addition of the core fucose residue (233,
249), it is difficult to distinguish the functional roles of these
two glycosylation features (248). Nevertheless, epigenetic
modifications and proinflammatory stimuli are shown to be
responsible for increased abundance of bisecting GlcNAc on
IgG Fc glycans in inflammation. It has been demonstrated that
aberrant methylation in the promoter region of the MGAT3
gene (encoding the MGAT3 enzyme responsible for the
production of bisecting GlcNAc structures) results in an
increased percentage of bisecting GlcNAc on IgG glycans in
CD patients, suggesting a possible involvement of bisecting
GlcNAc in the pathogenesis of CD (168). Moreover, Ho et al.
demonstrated that the cytokine transforming growth factor b1
(TGF-b1) exerts paradoxical activity, depending on the
inflammation state, in relation to the presence of tissue
fibrosis and bisected IgG (250). Although further studies are
needed to derive specific mechanisms that influence the
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formation of bisected IgG, the functional importance of this
feature in inflammation is undisputed.
IgA
Immunoglobulin A (IgA) is by far the most abundant antibody
in the human body (251). The majority of IgA is secreted as a
dimer and is known for its protective role on mucous
membranes. In serum, IgA is the second most abundant
isotype, usually produced as a monomer (252). For a long
time, IgA was considered ‘passive’ or anti-inflammatory, but
recently it has become clear that IgA also actively triggers
immune responses. IgA can trigger inflammation via FcaRI
(CD89) by directing the secretion of cytokines. Therefore, its
involvement in the pathogenesis of various chronic
inflammatory diseases (253) is not surprising. IgA has two
conserved N-linked glycosylation Fc sites (Asn263 and
Asn459) (254), but there are limited data on how the Fc N-
glycome of IgA modulates binding to FcaRI. The fact that FcaRI
has no direct mouse homolog (255, 256) may be a possible
explanation for the lack of research on this topic. Nonetheless, N-
glycosylation of IgA appears to be associated with inflammation.
One of the best studied chronic inflammatory diseases related to
IgA N-glycosylation is IgA nephropathy (IgAN). Recently, a
study by Dotz et al. showed that a decrease in N-linked
sialylation and galactosylation, and increased bisection in IgAN
is associated with worsening renal function (257). Interestingly,
it has been shown that mice lacking B4GALT1 develop human
IgAN-like glomerular lesions and have high serum levels of
polymeric IgA with agalactosylated N-glycans (258). The
elevated levels of polymeric form of IgA in patients with IgAN
is also associated with increased immune complex formation
(259 ) . Whi l e monomer i c IgA induce s inh ib i to ry
immunoreceptor tyrosine-based activation motif (ITAMi)
signaling via FcaRI, binding of IgA immune complexes to
FcaRI triggers classical ITAM signaling and activates
inflammatory responses (260, 261). Furthermore, quantitative
analysis revealed significant differences in N-linked glycosylation
between monomeric IgA and polymeric IgA, including the
presence of oligomannose exclusively on polymeric IgA (262).
The differential N-glycosylation of polymeric IgA may contribute
to its enhanced binding to mesangial cells and their subsequent
activation, as well as to its ability to activate complement via
binding to MBL. Moreover, the absence of terminal a2,6 linked
sialic acid enhances the pro-inflammatory capabilities of IgA
(263) and may serve as a predictor of poor prognosis in patients
with IgAN (264). On the contrary, elevated plasma ST6GAL1
levels have been shown to be associated with IgAN disease
severity (265), possibly representing an anti-inflammatory
positive feedback loop. Overall, these findings may suggest a
link between N-glycosylation of IgA and the pathogenesis of
IgAN via increased formation of polymeric IgA. However,
further in-depth studies are required for a better
understanding of the potential role of IgA N-glycome in the
development and progression of inflammatory diseases.
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IgE
Immunoglobulin E (IgE) is best known for its role in allergic
immune responses. Specifically, IgE binds to high-affinity IgE
receptors (FcϵRI) expressed on the surface of basophils and
mast cells, triggering degranulation and the release of
proinflammatory mediators (266). IgE is the most glycosylated
immunoglobulin, having seven N-glycosylation sites (267).
However, because IgE is the least abundant immunoglobulin in
the bloodstream (268), analysis of N-glycosylation of IgE is
significantly limited, leaving the biological function of IgE N-
glycosylation largely unclear. However, it has been shown that
there is a single N-glycosylation site at Asn394 consisting
exclusively of oligomannose N-glycans which is critical for
IgE-mediated initiation of the allergic cascade. Specific amino
acid mutations or complete deglycosylation of Asn394 alter the
secondary IgE structure, abolishing FcϵRI binding and
subsequent IgE-mediated degranulation and anaphylaxis (269,
270). Interestingly, mutation of all other N-linked sites of IgE,
which consist of complex N-glycans, had almost no effect on the
ability of IgE to elicit an anaphylactic response (270). Although
the underlying mechanism is not yet known, the functional
significance of oligomannose N-glycans at Asn394 may
provide a unique therapeutic target. On the other hand,
galectins such as Gal-3 and Gal-9 have also been shown to be
involved in the regulation of IgE-mediated functions. Gal-3,
previously known as IgE-binding protein, has the ability to
cross-link IgE and FcϵRI via their N-glycans and trigger
basophil or mast cell activation (271). Moreover, both Gal-3
(272) and IgE (273) are overexpressed in atopic dermatitis (AD),
suggesting that they are important players in mediating chronic
inflammation in AD. In contrast, Gal-9 has been shown to
reduce mast cell degranulation and anaphylaxis by blocking
the formation of the IgE-antigen complex (274). Given the
affinity of these galectins for complex N-glycans (128), it is
likely that the galectin-IgE interactions mentioned above are
mediated by complex N-glycans on IgE. Strikingly, the removal
of terminal sialic acid on IgE N-glycans, as well as coexistence of
other asialylated glycoproteins, attenuates degranulation of
effector cells (275). The exposed terminal galactoses could exert
a suppressive function by binding to inhibitory galectins,
although the exact mechanism remains to be elucidated.
IgM
Immunoglobulin M (IgM) is the largest antibody in serum and
its level is elevated in various inflammatory and autoimmune
diseases (276). It is another highly N-glycosylated antibody, as its
constant domain contains five N-linked glycosylation sites, three
of which belong to the biantennary complex form (Asn171,
Asn332, Asn395) and two to the oligomannose type (at Asn402,
Asn563) (219). Oligomannose N-glycans have been shown to be
important for MBL binding and subsequent elimination of IgM
aggregates by opsonization (277). On the other hand, complex
N-glycans are involved in immunomodulation of T and B cells.
Sialylated N-linked glycans have been demonstrated to induce
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internalization of IgM by T cells, which in turn causes inhibition
of T cell responses. The authors hypothesized that IgM-mediated
immunosuppression occurs through the binding of sialylated
IgM to the constitutively expressed IgM Fc receptor (FcmR) on
the surface of T cells (278). On the other hand, B cell activation is
under the direct influence of Gal-9-mediated negative regulation.
It has been proposed that Gal-9 organizes IgM-BCR and the
inhibitory molecules CD45 and CD22 into larger clusters by
binding to their N-linked glycans, and thus directly inhibiting
BCR signaling (279). Considering Gal-9 binding preferences
(128), the above N-glycan-mediated interaction could be
facilitated by complex N-glycans on IgM molecules. In
addition, sialylated N-glycans on soluble IgM are preferential
trans-binding ligands for CD22, which further contributes to the
abrogation of BCR signaling (280). These results support the
concept that the presence of a2,6-sialic acid on Igs contributes to
immunosuppression, as previously demonstrated for the anti-
inflammatory effects of intravenous immunoglobulin therapy
(IVIg) (281).

IgD
Even though O-glycans of Immunoglobulin D (IgD) are
associated with autoimmune diseases (282), nothing is known
about the role of N-glycosylation in IgD effector functions,
despite having three N-glycosylation sites in the Fc domain
(Asn354, Asn445, Asn496) (283). The oligomannose glycans at
Asn354 are inaccessible for potential lectin interactions because
the complex N-glycans at Asn445 block binding (284).
Nevertheless, oligomannose N-glycans are critical for IgD
production, and elimination of the Asn354 site by mutagenesis
results in incomplete assembly and failure of secretion (285),
proposing that the N-glycans are necessary for maintenance of
the correct Fc structure, which is important for IgD secretion.
ACUTE PHASE PROTEINS

APPs are mainly synthesized and secreted by hepatocytes.
During inflammation, proinflammatory cytokines such as IL-1,
IL-8, IL-6, and TNFa stimulate the acute phase response (286–
289), increasing APP serum levels up to 1000-fold (288). Several
APPs are glycoproteins and changes in their N-glycans have been
observed in chronic inflammation. The most significant N-
glycosylation changes observed in APPs are high branching
(tri- and tetra-antennary glycans) and increased levels of sLex
epitope as detected on haptoglobin (HPT), a1-acid glycoprotein
(AGP-1), a1-antitrypsin (A1AT), and a1-antichymotrypsin
(ACT) (29, 290–292). The sLex epitope on AGP contributes to
its antineutrophil capacity (75) and is critical for binding to
endothelium-expressing E-selectin, where AGP competes with
sLex-expressing leukocytes, providing a feedback inhibition
mechanism (293). Proinflammatory cytokines IL-1b, IL-6, and
TNFa, involved in the induction of the acute phase response,
may also be involved in the regulation of APP glycan
biosynthesis in hepatocytes (294–298). In vitro studies have
shown that AGP expresses N-linked glycans with increased
Frontiers in Immunology | www.frontiersin.org 15
branching and sLex epitope when hepatocytes are stimulated
with IL-1b and IL-6 (294), possibly through cytokine mediated
upregulation of enzymes responsible for biosynthesis of sLex
epitope, ST3GAL4 and FUT6 (295). Furthermore, TNFa has also
been shown to increase sLex synthesis by stimulating the
expression of ST3GAL4 and FUT4 via NFkB-p65 dependent
transcriptional regulation (298, 299). In addition to in vitro
studies, TNFa induced increase in sLex epitope has also been
observed in RA patients (300). Based on the results of their
GWAS study, Lauc et al. described another pathway for the
regulation of plasma protein sLex formation involving
hepatocyte nuclear factor 1a (HNF1a) and its transcriptional
cofactor HNF4a. HNF1a/HNF4a induce both de novo and
salvage synthesis of GDP-fucose, upregulate antennary
fucosyltransferases (FUT3/4/6) and downregulate core
fucosyltransferase (FUT8), ultimately leading to increased
sLex-expressing APPs (301). Interestingly, HNF1a mediated
transactivation of hepatic genes is stimulated by IL-6 (302),
adding to the molecular mechanism behind the reported
association between proinflammatory cytokines and increased
levels of sLex-expressing APPs. While sLex epitope formation is
highly dependent on cytokine mediated increase in the
expression of relevant glycosyltransferases, increased HBP flux
and consequently higher levels of UDP-GlcNAc in hepatocytes
lead to increases in tri- and tetra-antennary N-glycans on APPs
in chronic inflammation. Donor molecules directly involved in
modulating UDP-GlcNAc levels and HBP flux are glucose and
glutamine (303). During sustained inflammation, increased
hepatic uptake of glutamine and increased hepatic glucose
production via TNFa-activated NF-kB transcriptional
regulation have been observed (304, 305). Consequently,
increased hepatic HBP flux leads to high levels of UDP-
GlcNAc, the crucial substrate for N-glycan multistep branching
of APPs and other hepatic glycoproteins. The biosynthesis of tri-
and tetra-antennary N-glycan-decorated APPs is ultrasensitive
to UDP-GlcNAc content, as the affinity for UDP-GlcNAc
decreases from MGAT1 to MGAT5 (306). Furthermore, N-
glycan branching of hepatic membrane transporters (for
glucose and glutamine) increases galectin binding affinity,
protecting them from endocytosis and thus establishing a
positive feedback loop by increasing HBP substrate uptake
(307). In addition to the aforementioned APPs, hepatic
ST6GAL1 is also upregulated and released into the circulation
during inflammation (308). Although certain anti-inflammatory
effects of hepatic ST6GAL1 have been observed (242, 309), its
role still remains elusive. However, Oswald and coworkers have
shown that loss of hepatic ST6GAL1 leads to dysregulation of
hepatic metabolic pathways and consequent changes in the N-
glycan profile of circulating glycoproteins. It has been observed
that loss of a2,6-sialic acid, core and/or antennary fucose, and an
increase in a2,3-sialylation, branching, and bisection ultimately
lead to spontaneous liver inflammation and disease (310).
Interestingly, chronic alcohol exposure has previously been
shown to downregulate hepatic ST6GAL1 gene expression,
leading to metabolic dysfunctions, including altered
glycosylation (311). This highlights the fact that lifestyle may
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contribute to the loss of hepatic ST6GAL1, which in turn triggers
the development of inflammation and activates the cascade of
proinflammatory cytokines responsible for the increased
expression of hepatic ST6GAL1 during the peak of
inflammation (308, 309, 312, 313), providing a positive
feedback loop that may explain hepatic ST6GAL1 paradox.
CONCLUSION

N-glycosylation is one of the key mediators in intercellular
interaction and communication, which makes it highly
susceptible to changes in inflammation. On the other hand, as
discussed above, altered N-glycosylation affects the immune
response, which may further enhance the inflammatory
reaction. Therefore, N-glycans are essential for normal
immune system function, from innate to adaptive immunity.
This opens up the possibility for development of new therapeutic
approaches for various inflammatory diseases targeting altered
N-glycan structures or biosynthetic enzymes associated with
glycosylation. Moreover, the potential of N-glycosylation
alterations as novel biomarkers or as enhancements of existing
Frontiers in Immunology | www.frontiersin.org 16
ones for disease predisposition and progression, as well as for
diagnosis, prognosis, and response to therapy, cannot be ignored.
However, further in-depth research is needed to elucidate the
precise mechanism underlying some of these alterations so that
these discoveries can be translated into clinical practice and
diagnostic test development.
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AM, Blanquer M, Garcıá-Olmo D, et al. Exofucosylation of Adipose
Mesenchymal Stromal Cells Alters Their Secretome Profile. Front Cell Dev
Biol (2020) 8:584074. doi: 10.3389/fcell.2020.584074

105. Domenis R, Cifù A, Quaglia S, Pistis C, Moretti M, Vicario A, et al. Pro
Inflammatory Stimuli Enhance the Immunosuppressive Functions of
Adipose Mesenchymal Stem Cells-Derived Exosomes. Sci Rep (2018)
8:813325. doi: 10.1038/s41598-018-31707-9

106. Liu Y, Lou G, Li A, Zhang T, Qi J, Ye D, et al. AMSC-Derived Exosomes
Alleviate Lipopolysaccharide/D-Galactosamine-Induced Acute Liver Failure
by miR-17-Mediated Reduction of TXNIP/NLRP3 Inflammasome
Activation in Macrophages. EBioMedicine (2018) 36:140–50. doi: 10.1016/
j.ebiom.2018.08.054

107. Yang RY, Rabinovich GA, Liu FT. Galectins: Structure, Function and
Therapeutic Potential. Expert Rev Mol Med (2008) 10:e17. doi: 10.1017/
S1462399408000719

108. Rabinovich GA, Toscano MA. Turning “Sweet” on Immunity: Galectin-
Glycan Interactions in Immune Tolerance and Inflammation. Nat Rev
Immunol (2009) 9:338–52. doi: 10.1038/nri2536

109. Zhuo Y, Bellis SL. Emerging Role of a2,6-Sialic Acid as a Negative Regulator
of Galectin Binding and Function. J Biol Chem (2011) 286:5935–41.
doi: 10.1074/jbc.R110.191429

110. Henderson NC, Sethi T. The Regulation of Inflammation by Galectin-3.
Immunol Rev (2009) 230:160–71. doi: 10.1111/j.1600-065X.2009.00794.x

111. Sundblad V, Morosi LG, Geffner JR, Rabinovich GA. Galectin-1: A Jack-Of-
All-Trades in the Resolution of Acute and Chronic Inflammation. J Immunol
(2017) 199:3721–30. doi: 10.4049/jimmunol.1701172

112. Papaspyridonos M, McNeill E, De Bono JP, Smith A, Burnand KG, Channon
KM, et al. Galectin-3 is an Amplifier of Inflammation in Atherosclerotic
Plaque Progression Through Macrophage Activation and Monocyte
Chemoattraction. Arterioscler Thromb Vasc Biol (2008) 28:433–40.
doi: 10.1161/ATVBAHA.107.159160

113. De Boer RA, Voors AA, Muntendam P, Van Gilst WH, Van Veldhuisen DJ.
Galectin-3: A Novel Mediator of Heart Failure Development and
Progression. Eur J Heart Fail (2009) 11:811–7. doi: 10.1093/eurjhf/hfp097

114. Maiolino G, Rossitto G, Pedon L, Cesari M, Frigo AC, Azzolini M, et al.
Galectin-3 Predicts Long-Term Cardiovascular Death in High-Risk Patients
With Coronary Artery Disease. Arterioscler Thromb Vasc Biol (2015)
35:725–32. doi: 10.1161/ATVBAHA.114.304964
Frontiers in Immunology | www.frontiersin.org 19
115. Di Gregoli K, Somerville M, Bianco R, Thomas AC, Frankow A, Newby AC,
et al. Galectin-3 Identifies a Subset of Macrophages With a Potential
Beneficial Role in Atherosclerosis. Arterioscler Thromb Vasc Biol (2020)
40:1491–509. doi: 10.1161/ATVBAHA.120.314252

116. MacKinnon AC, Farnworth SL, Hodkinson PS, Henderson NC, Atkinson
KM, Leffler H, et al. Regulation of Alternative Macrophage Activation by
Galectin-3. J Immunol (2008) 180:2650–8. doi: 10.4049/jimmunol.180.4.2650

117. Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K, Hernandez SF,
et al. Galectin-1 Deactivates Classically Activated Microglia and Protects
From Inflammation-Induced Neurodegeneration. Immunity (2012) 37:249–
63. doi: 10.1016/j.immuni.2012.05.023

118. Correa SG, Sotomayor CE, Aoki MP, Maldonado CA, Rabinovich GA.
Opposite Effects of Galectin-1 on Alternative Metabolic Pathways of L-
Arginine in Resident, Inflammatory, and Activated Macrophages.
Glycobiology (2003) 13:119–28. doi: 10.1093/glycob/cwg010

119. Yaseen H, Butenko S, Polishuk-Zotkin I, Schif-Zuck S, Pérez-Sáez JM,
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