
Research Article

N-Gram, Semantic-Based Neural Network for Mobile Malware
Network Traffic Detection

Huiwen Bai ,1 Guangjie Liu ,2 Weiwei Liu,1 Yingxue Quan,1 and Shuhua Huang1

1School of Automation, Nanjing University of Science and Technology, Nanjing, China
2School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing, China

Correspondence should be addressed to Guangjie Liu; gjieliu@gmail.com

Received 15 January 2021; Revised 5 April 2021; Accepted 9 April 2021; Published 23 April 2021

Academic Editor: Qi Liu

Copyright © 2021 Huiwen Bai et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mobile malware poses a great challenge to mobile devices and mobile communication. With the explosive growth of mobile
networks, it is significant to detect mobile malware for mobile security. Since most mobile malware relies on the networks to
coordinate operations, steal information, or launch attacks, evading network monitor is difficult for the mobile malware. In this
paper, we present an N-gram, semantic-based neural modeling method to detect the network traffic generated by the mobile
malware. In the proposed scheme, we segment the network traffic into flows and extract the application layer payload from each
packet. *en, the generated flow payload data are converted into the text form as the input of the proposed model. Each flow text
consists of several domains with 20 words. *e proposed scheme models the domain representation using convolutional neural
network with multiwidth kernels from each domain. Afterward, relationships of domains are adaptively encoded in flow
representation using gated recurrent network and then the classification result is obtained from an attention layer. A series
of experiments have been conducted to verify the effectiveness of our proposed scheme. In addition, to compare with the state-of-
the-art methods, several comparative experiments also are conducted. *e experiment results depict that our proposed scheme is
better in terms of accuracy.

1. Introduction

*anks to the advance of the mobile communication net-
works, recent years are able to witness the opening of the
mobile era. And, the smart IoT (Internet of *ings) devices
and smart applications may continue increasing in the
5G\6G communication networks. However, continuous
improvement in mobile device hardware and mobile
communication technologies has not only led to a highly
interconnected world but also a world grown highly vul-
nerable. *e explosive growth of mobile communication
brings substantial burden to the mobile security manage-
ment. According to a recent report [1], the number of apps
in the Google Play Store has risen from 16000 in December
2009 to more than 2 million in February 2016. And, the
mobile traffic amount has reached 3.7 exabytes per month in
2015. However, the increase in mobile application is highly
impaired by the prevalent malware. Among different op-
erating systems, Android becomes the most popular

platform due to its open architecture [2]. Unfortunately,
mobile devices running with the Android system have
gradually become the main target of attackers and are in-
fected by malicious apps. *is circumstance reveals the
urgency of enforcing mobile communication network
security.

To address the problem of the mobile malware, many
researchers have to pay attention to the detection of
malware apps. Evading traffic-based methods is difficult,
as malware usually launches malicious behaviors through
network connections, including receiving commands
from servers, transferring the stolen data, and so on. In
addition, detecting malware traffic has many advantages
in terms of ease of deployment. *us, detecting malware
based on network traffic has the potential to greatly reduce
the threat of malicious activity in the mobile communi-
cation networks. For this reason, researchers start ex-
ploring new solutions for mobile malware detection based
on network traffic.

Hindawi
Security and Communication Networks
Volume 2021, Article ID 5599556, 17 pages
https://doi.org/10.1155/2021/5599556

mailto:gjieliu@gmail.com
https://orcid.org/0000-0002-8985-6977
https://orcid.org/0000-0003-4729-7406
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5599556

Network-traffic-based methods can be divided into three
types [3], namely, network signature-based analysis, lexical-
feature-based analysis, and statistical-feature-based analysis,
respectively. Signature-based detection collects domains and
signatures from known malware and compares them against
suspicious pieces of code in order to determine whether they
are malicious or benign. However, signature-based methods
lack adaptability. It can detect known attacks but has limited
ability to handle novel ones. *e statistic-based methods
detect themalware traffic by utilizing the header information
of the packets, for example, IP layer information or TCP
layer information. *e commonly used statistical features
contain packet size, duration of flow, the radio of the
packets, and so on. And, these features are combined with
classifiers, e.g., Random Forest, K-Nearest Neighbor, and
Decision Tree. However, the performance of these methods
highly depends on the manually engineered features and
some private traffic information, hence dramatically limiting
their accuracy and generalizability.

*e lexical-based methods detect the malware traffic
according to the text analysis of the network traffic. On the
one hand, comparing with signature-based methods, it can
adapt swiftly to detect new attacks. On the other hand, with
specific fields of traffic, it has a fine-grained characterization
of flows than statistical features, which greatly improves
malware detection performance. However, these methods
typically consider plaintext traffic such as HTTP traffic. In
the recent research [3], the researchers have decrypted the
encrypted TLS traffic, before classifying the traffic. In ad-
dition, manually analyzing and extracting protocol feature
domains for mobile malware detection has limitations. *e
extracted features fail to detect mobile malware traffic when
new protocols are employed by the malware. Because of the
existence of various types of the network application pro-
tocols, there are no fixed domains for network traffic flows. It
is difficult to manually extract meaningful semantic features
for all protocols separately. As it requires a lot of manual
resources, and when new protocols appear, existing semantic
features failed to cover them. To address this problem, we
employ the neural network model to detect mobile network
traffic in an end-to-end way.

In this paper, we propose an N-gram, semantic-based
neuralmethod to detectmobile malware network traffic. In our
scheme, we transfer each five-tuple-based network flow into
the text file that contains several domains. Each domain in the
text consists of 20 words and each word in the text is a byte
content in the network flow. To analyze the network traffic
semantic, the proposed neural model processes the network
traffic flow representation in two stages. It first produces
continuous domain vectors from word representations with
domain composition.*ese domain representations are treated
as inputs of network flow composition to get network flow
representation. Network flow representations are then used as
features for flow-level malware traffic detection. And, each flow
has an associated label, which is required to train the algorithm
as we employ supervised method.

We employ the deep learning method to process the
generated texts to find the flows generated by the mobile
malware, as deep learning methods can avoid manually

analyzing and selecting features, and these methods have a
higher learning capability compared to traditional machine
learning methods like Random Forest and Support Vector
Machine [4]. One of the main drivers of this work is to
assess the applicability of deep learning advances to the
lexical-based mobile malware detection problem. *ere-
fore, we have studied the adequacy of different deep
learning architectures. And, for the proposed model, we
have conducted several experiments to find the best per-
formance of the architecture and parameters. In addition,
the size of the text also the impacts the model performance;
thus, we have conducted several experiments on the text
size.

*is paper’s contributions can be summarized as follows:

(1) We propose a novel network traffic process method
that converts network flows into texts, and the words
in the text consists of a byte content of the network
flow payload. Each network flow is divided into
several domains and each domain consists of several
character-level words.

(2) We propose an N-gram semantic neural model to
detect mobile malware traffic. It first produces
continuous domain vectors from word representa-
tions’ domain composition using convolutional
neural network (CNN) model. Afterward, several
domain vectors are processed as a domain repre-
sentation. *en, these domain representations are
treated as inputs of network flow composition to get
network flow representation using gated recurrent
unit (GRU). Network flow representations are then
used as features for flow-level malware traffic
detection.

(3) We conducted a series experiment on real-world
network traffic, which contains different types of
protocols to adjust the architecture and parameters
so as to obtain a better performance. Extensive ex-
perimental results show that the proposed model
outperforms prior state of arts by achieving 92.6%
malicious flow detection rate.

*e remainder of this paper is organized as follows. In
the next section, we summarize the related work on the
existing mobile malware detectionmethods. In Section 3, the
proposed N-gram, semantic-based neural method is intro-
duced. In Section 4, we firstly introduce and describe the
selected dataset in our research and then a series of ex-
periments are conducted on the datasets. Finally, in Section
5, we conclude our research and the future work.

2. Related Work

*ere are many proposed security mechanisms to detect
mobile malware and protect users’ mobile devices from
attacks. Existing typical methods can be classified into 3
categories [5], namely, static-based methods, dynamic-based
methods, and hybrid-based methods. In addition to the
typical methods, some researchers employ network traffic to
detect mobile malware.

2 Security and Communication Networks

2.1. Typical Methods. Static-based methods detect malware
by extracting statistic features from APPs, which unpack or
disassemble them without running the APPs [6–10]. *ese
statistic features can be extracted from application per-
mission list [11, 12], sensitive Application Programming
Interface (API) calling or critical code segments in the
source code [13–15]. Static-based methods are widely used
for vetting apps. However, there exist several key challenges
that static-based methods are facing, for example, the static-
based methods cannot detect certain source code tampering
operations.

Dynamic-based methods examine the features of APPs,
which are running, and the features of the execution be-
haviors. In these methods [16–20], the information, namely,
memory utilization, system calls, network connections, and
battery power, is employed to detect the mobile malware.
However, there still remain some issues in dynamic-based
methods. On the one hand, these methods cannot fully
traverse the execution path of the software. And, on the
other hand, these methods cannot detect certain malicious
behaviors if an app is protected by runtime security
mechanisms (e.g., DexGuard).

In order to avoid the limitations of both static-based and
dynamic-based methods, hybrid-based methods, the com-
bination of both the mechanisms, are employed to detect the
mobile malware. *ese methods have a two-step process,
wherein initially static analysis is performed before the
dynamic one [21–23]. However, the combination of the two
methods consumes more resources and results in less
improvement.

2.2. Network-Traffic-Based Methods. To address the limita-
tion of the typical methods, the researchers have investigated
the malware identification and private information tracking
extensively. *e researchers begin to analyze and identify
malicious apps using network traffic, as almost all the at-
tackers use mobile networks to obtain sensitive information
of the user or interact with its malicious APPs. Network-
behavior-based method can be divided into three categories
[3], namely, network signature-based methods, lexical-
feature-based methods and statistical-feature-based
methods, respectively.

*e signature-based methods detect the malware
traffic according to the predetermined malware signa-
tures. Griffin et al. [24] extracted 48 bytes’ code sequence
as a string signature of malware. In addition, automatic
generation of network signatures has been explored in
various previous works [25–27]. Most of these studies
focused on worm fingerprinting. Perdisci et al. [28] fo-
cused on generating network signatures for mobile
malware from their HTTP traffic. *ey analyzed the
structural similarities among malicious HTTP traffic trace
and then clustered the similar HTTP traffic. As for each
HTTP traffic cluster, they automatically generated net-
work signatures for each type of malware. In general,
signature-based methods lack adaptability. *ey can de-
tect known attacks but have limited ability to handle novel
ones.

*e statistic-based methods detect the malware traffic
according to the header information of the packets instead of
the payload information. Aresu et al. [29] showed how it is
possible to group mobile botnets families by analyzing the
HTTP traffic they generate. *e authors create malware
clusters by looking at specific statistical information that is
related to the HTTP traffic. *is approach also allows to
extract signatures with which it is possible to precisely detect
new malware that belong to the clustered families. Lashkar
et al. [30] proposed a detection and characterization system
for detecting meaningful deviations in the network behavior
of a smart-phone application with 9 traffic statistic-feature
measurements. *e authors employed five classifiers to
verify the performance of these features, namely, Random
Forest, K-Nearest Neighbor, Decision Tree, Random Tree,
and Regression. Arora et al. [31] compared malware’s traffic
with benign network traffic and finally found the deviation
of the malware on the network behavior. *e statistical
features they used contained average packet size, average
duration of flow, the radio of incoming to outgoing bytes,
and 13 other features.

In addition, there exist several researchers that employ
deep-learning-based methods to detect mobile malware
network traffic. Bendiab et al. [32] proposed a novel IoT
malware traffic analysis approach using deep learning and
visual representation for faster detection and classification of
new malware (zero-day malware). *e detection of mali-
cious network traffic in the proposed approach works at the
package level, reducing significantly the time of detection
with promising results due to the deep learning technologies
used. Feng et al. [33] proposed a two-layer method to detect
malware in Android APPs. *e first layer is permission,
intent, and component-information-based static malware
detection model. In the second layer, a new method
CACNN, which cascades CNN and AutoEncoder, is used to
detect malware through network traffic features of APPs.

*e lexical-based methods detect the malware traffic
according to the text analysis of the traffic. Android [34]
detected stealthy behavior in Android app by identifying the
disparity between UI textual semantics and program be-
haviors. However, it only used a few keywords to identify
sensitive operations such as “send SMS” and “call phone.”
WHYPER [35] used NLP techniques to identify sentences
that described the need for a given permission in the app
description. Nan et al. [36] proposed a framework called
UIPicker for identifying personal user information on a large
scale, and this framework was based on a novel combination
of NLP, machine learning, and program analysis techniques.
*e N-gram model in NLP has been used in an automatic
network protocol identification system designed for traffic
analysis [37]. Ren et al. [38] proposed to reveal and control
personal identifiable information (PII) leaks in mobile net-
work traffic, in which the key/value pairs are used for
identifying PII. Wang et al. [3] proposed an automatic
malware detection method using the text semantics of net-
work traffic. In particular, the authors considered each HTTP
flow generated by mobile apps as a text document, which can
be processed by natural language processing to extract text-
level features. *e text semantic features of network traffic

Security and Communication Networks 3

were utilized to develop a malware detection model. In ad-
dition, the authors designed a detection system on encrypted
traffic for bring-your-own-device enterprise network, home
network, and 3G/4G mobile network. *e detection model is
integrated into the system to discover suspicious network
behaviors.

*rough literature research, using network traffic and
lexical analysis to discover hidden malware is promising. In
this research, our scheme utilizes deep learning algorithm to
extract traffic lexical to discover malicious behaviors in
mobile network traffic. Dee-learning-based methods are
expected to learn from highly complicated domains to gain
higher accuracy than machine-learning-based methods with
more functionality. In addition, we process network flows
into character-level text files. Each word in the text files is a
byte content in the network flows. We examine the per-
formance by a published dataset that contains the network
traffic consisting of multitypes of protocols, including both
encrypted and nonencrypted network traffic.

3. Proposed Approach

*e following sections present the proposed mobile
malware network traffic detection neural model, which
computes continuous vector representations for network
flows of variable types of protocols. An overview of the
approach is displayed in Figure 1. *e proposed approach
processes the network traffic flow representation in two
stages. It first produces continuous domain vectors from
word representations with domain composition. *ese
domain representations are treated as inputs of flow
composition to get flow representation. *e flow repre-
sentations are then used as features for flow-level traffic
classification.

3.1. Network Traffic Semantic Analysis. Network traffic is the
data transmitted over networks, using a series of network
protocols, e.g., IP, TCP, and HTTP. *e network protocols
are a set of rules that must be observed when exchanging
information between peer entities that communicate with
each other in the networks. Just as languages are employed
by humans to communicate, there are also languages be-
tween the devices in networks, namely, the network pro-
tocols. *e network protocol is composed of three elements:
semantics, syntax, and temporal. Different network devices
must use the same network protocol to communicate with
each other. However, as the large number of protocols in
networks, it is difficult to automatically analyze and extract
the key information from the network traffic.

For a section of network traffic, it can be regarded as a
domain set S, as shown in Figure 2. Decompose S into
domains S1, S2, S3, . . ., Sn. Let the total length of S be L, for a
given domain Si, as long as the length of each segment Li is
being determined; the network traffic can be described
segment by segment according to the value of Li. *e length
of Li is not always fixed. In addition, depending on the value
of Si, the optional domain Si−j may appear. *erefore, the
main problem of network traffic description is the

representation problem of the variable length of domains
and the branching problem of optional domains.

In the following sections, we introduce the proposed
neural model to model a network flow. We process the
network flows as character-level texts, namely, each word in
the texts is a one-byte character. Each text document of flow
is divided into nd domains, and each domain consists of nw
words. According to Figure 2, the length of the fields in the
protocols is not fixed. *erefore, we employ multiwidth
kernel CNN to learn the domain representations, which can
represent the fields of different lengths in the domains.*ese
domain representations are then considered as input of the
flow composition using GRU, and finally the classification of
flows is output through an attention layer.

3.2. Domain Composition. Before presenting a CNN with
multiple kernels for domain composition, each word is
represented as a low dimensional, continuous, and real-
valued vector, namely, word embedding. All the word
vectors are stacked in a word embedding matrix Lw ∈ Rd×|V|,
where d denotes the dimension of word vector and |V| is
vocabulary size. *ese word vectors can be randomly ini-
tialized from a uniform distribution.

We utilize CNN to compute domain representations
with a semantic composition. CNN is able to learn fixed-
length vectors for domains, capture the word order in a
domain, and does not depend on external dependency or
constituency parse results. *erefore, we divide each text
into nd domains, and each domain contains nw words.
Specifically, we use CNN with multiple convolutional ker-
nels of different widths to produce multi N-gram domain
representations to adapt to different length value of fields in
protocols. Figure 3 displays the domain composition
method.

*e convolutional kernels of different sizes can capture
different N-gram semantics. For example, a convolutional
kernel with a width of 2 essentially captures the semantics of
bigram fields in a domain. A domain consisting of nd

(padded where necessary) words is denoted as

c1: nd � c1⊕c2⊕ · · ·⊕cnd, (1)

where ⊕ is the concatenation operator. Each word ci is
mapped to its embedding representation ei ∈ Rd. *e input
of a linear layer is the concatenation of word embeddings in
a fixed-length window size lc, which is denoted as

Ic � ei; ei+1; . . . ; ei+lc−1[] ∈ Rd·lc , (2)

where lc be the width of a convolutional kernel. For the
multiwidth kernel convolution, given a collection of con-
volution kernel sizes K � k1, k2, . . . , knk{ }, after the convo-
lution operation with the ith kernel ki is applied, the output of
each kernel is as follows:

O
ki
j �W

ki
j · Iki + bki, (3)

whereW
ki
j ∈ Rloc×d·lc , bki ∈ R

loc×d·lc , loc is the output length of
the linear layer. To capture global semantics of a domain, we
feed the outputs of linear layers to an average pooling layer,

4 Security and Communication Networks

S1 S2 S3 S4 S5 S6 S6–1 S6–2 S7 Si Sn

L1 L2 L3 L4 L5 L6

Network traffic flow S

L6–1 L6–2 L7 Li Ln

Figure 2: Examples of message structure features. (1) *e length S4 is determined by S3. (2) Depending on the value of S6, optional field S6-1
or S6-2 may appear.

Domain representation Unigram

Filter 1 Filter 2 Filter 3 Filter 4 Filter 5

Bigrams Trigrams 4-grams 5-grams

tanh

Pooling

Convolution

Word embedding

c1 c2 c3 c4 c5 c6 clw

...

Figure 3: Patter composition with multikernel convolutional neural network. kernel i represents the kernel with width of i.

Flow representation

Flow composition
GRU

Multi-filter CNN Multi-filter CNN Multi-filter CNN

GRU GRU GRU GRU GRU GRU GRU GRU

GRU

d1

f1

c1
1 c2

1 clw
1 c1

2 c2
2 clw

2 c1
p c2

p
clw
p

f2 f3 f4 f5 f1 f2 f3 f4 f5 f1 f2 f3 f4 f5

d2 dld

GRU GRU GRU GRUGRU GRU GRU GRU

Domain composition

Domain representation

Word representation

Self-attention layer

... ...

... ...

... ...

... ...

......

...

...

Figure 1: *e description of our proposed N-gram, semantic-based neural method to detect mobile malware network traffic.

Security and Communication Networks 5

resulting in an output vector with fixed-length. We further add
hyperbolic tangent (tanh) to incorporate pointwise nonline-
arity. *e output of each convolution operation becomes

Oki � o
ki
1 , o

ki
2 , . . . , o

ki
N[], (4)

where N is the number of ci convolution kernel. *e set of
vector outputs by the multikernel CNN is denoted as

O � Ok1 , Ok2 , . . . , Oknk[], (5)

where O is the domain representation and it is the input of
the flow composition. In this work, we use five convolutional
kernels whose widths are 1, 2, 3, 4, and 5 to encode the
semantics of unigrams, bigrams, trigrams, 4-grams, and 5-
grams in a domain. Each kernel consists of a list of linear
layers with shared parameters.

3.3. Flow Composition. *e obtained domain vectors are fed
to a flow composition component to calculate the flow
representation. We utilize a GRU approach for flow com-
position in this part. GRU is a variant of Recurrent Neural
Network (RNN); it is simpler than Long Short-Term
Memory (LSTM) RNN. Since GRU is a variant of LSTM, it
can also solve the problem of long dependence in the RNN
network. As displayed in Figure 4, a common GRU unit
consists of an update gate (zt) and a reset gate (rt).

Specifically, the transition function of the GRU is cal-
culated as follows:

h̃
t

j � 1 − ztj()ht−1j + ztjh̃
t

j,

nettz � x
tWz

+ ht− 1Uz,

ztj � σ nettz()j,
nett

h̃
� xtW + rt ∘ ht− 1()U,

h̃
t

j � tanh nett
h̃

()j,
nettr � x

tWr
+ ht− 1Ur,

rtj � σ nettr()j,
netty � h

tWy,

ytj � σ netty()j,

(6)

where σ is the sigmoid function, tanh is the tangent function,
xt is one of the input vectors, and ∘ represents the product,
namely, the product of corresponding elements. *e sub-
script j represents the index of the node and the superscript t
represents the time. Wy ∈ Rhd×yd represents the parameter
matrix from the hidden layer to the output layer, hd and yd
are the number of nodes in the hidden layer and output
layer, respectively. Wz ∈ Rxd×hd and Uz ∈ Rhd×hd represent
the connection matrix between the input and the last hidden
layer to update gate (zt), respectively, and xd represents the
dimension of the input data. Wr ∈ Rxd×hd and Ur ∈ Rhd×hd
represent the connection matrix between the input and the
previous hidden layer to reset gate (rt), respectively.

W ∈ Rzd×hd and U ∈ Rhd×hd represent the connection matrix
between the input and the hidden layer to the selected state
(h̃t) at the previous time, respectively.

In this research, since we prefer not to discard any part of
the domain semantics to get a better flow representation, the
GRU units in the model are always on. Given the domain
vectors as input, flow composition produces a fixed-length
flow vector as output.

3.4. Traffic Classification Based on Semantic. *e composed
flow representations can be naturally regarded as semantic
features for flow for classification without feature engi-
neering. In addition, we add a self-attention layer for the
flow representations to improve the classifying performance.
*e self-attention layer architecture is shown in Figure 5.

*e degree of influence between the output information
obtained by the GRU at each time point is the same. In order
to highlight the importance of some output results to
classification, the attention of weighting is employed. *e
attention mechanism has been widely used in various NLP
tasks for the past few years. *e attention mechanism is
essentially a weighted sum. *e set of vectors input by the
GRU layer is expressed as [h1, h2, . . . , ht]. *e attention
process can be described as

et � σ Wa · ht + ba(),
at � softmax et(),
mt � at · ht,

p �∑
n

i�1

mi,

(7)

where yt is the output of the GRUmodel. And,Wa represent
the weightedmatrix during the training process, ba represent
the biases. *e at means the attention matrix, and p is the
output of the attention layer.

Finally, we add a linear layer to transform flow vector to
real-valued vector whose length is class number C. After-
ward, we add a softmax layer to convert real values to
conditional probabilities, which is calculated as follows:

Pi �
exp yi()

∑Ci′�1 exp yi′(). (8)

We conduct experiments in a supervised learning
method, where each network flow in the training data is
accompanied with its label.

ht–1 ht

rt

xt

zt h
~

+

1–

tanhσσ

Figure 4: GRU unit architecture.

6 Security and Communication Networks

4. Experimental Evaluation

In this section, a series of experiments are conducted and the
corresponding results are analyzed in detail. In the begin-
ning, we introduce the experiment environment, including
the selected dataset, data processing, and the basic evaluating
metrics scheme. *en, we compare the model classification
performance using different components in the proposed
semantic neural model. In addition, a comparative experi-
ment to verify malware detection performance is conducted
between the proposed scheme and several influential algo-
rithms proposed in recent years.

4.1. Selected Dataset and Data Processing

4.1.1. Selected Dataset. For this work, we have made use of
real data from CICAndMal2017 [15] datasets, which collect
4,354 malware and 6,500 benign apps from VirusTotal [39],
Contagio security blog [40], and previous researchers
[15, 41, 42]. *e collected network traffic data are described
in Table 1. Benign apps were collected from Google play
market published in 2015, 2016, and 2017. *ese APPs were
collected based on their popularity and identified based on
the detection results from VirusTotal [39]. Only those APPs
that VirusTotal determined as benign are included to the
benign APP set. *e malware network traffic consists of 4
categories, namely, adware, ransomware, scareware, and
SMS malware. Each category has different malware family.
Adware has Dowgin, Ewind, Feiwo, Gooligan, Kemoge,
koodous, Mobidash, Selfmite, Shuanet, and Youmi family.
Ransomware has Charger, Jisut, Koler, LockerPin, Sim-
plocker, Pletor, PornDroid, RansomBO, Svpeng, and
WannaLocker family. Scareware has AndroidDefender,
AndroidSpy.277, AV for Android, AVpass, FakeApp,
FakeApp.AL, FakeAV, FakeJobOffer, FakeTaoBao, Penetho,
and VirusShield family. SMSmalware has BeanBot, Biige,
FakeInst, FakeMart, FakeNotify, Jifake, Mazarbot, Nan-
drobox, Plankton, SMSsniffer, and Zsone family.

Because of the sample errors and the problem of in-
consistent labelling in different datasets, CICAndMal2017
retains 5000 (malware 429 and benign 5,065). In addition, as
most of the advanced malware employs the evasion or
transformation technique to evade detection (code per-
mutation, register renaming, idle activation) [21], the
malware behaviors are triggered only after connecting
network update, or over time after the restart process. In
order to trigger the malware network behaviors, the network
traffic data capture occurs in 3 stages, namely, 3 minutes
after the app is installed, 15 minutes before, and after
restarting the smartphone.

4.1.2. Data Processing. As mobile software commonly em-
ploys the TCP and UDP protocol to execute the network
activity, we handle TCP and UDP connection as the main
interaction granularity between the apps and the networks.
In this research, we have designed a tool with the use of C++
programme to process the network traffic, called PKTPT
(packet processing tool), and the PKTPT architecture is
shown in Figure 6. *e network traffic data processing
contains 3 stages, namely, traffic segmenting, data genera-
tion (including data extracting, trimming, and padding), and
data transformation.

Traffic Segmenting. Traffic segmenting stage processes the
network traffic into flows based on the 5-tuple (protocol,
source IP, source port, destination IP, destination port). In
this research, we use bidirectional flows, which have the
same IP address and port. Further details of traffic seg-
menting are explained in Algorithm 1. PKTPT first separates
packets in the specific packet queue according to source
address, destination address, source port, destination port,
and transport layer protocol. *en, each packet is taken out
in order, and according to the 5-tuple, the same flow packets
are processed as the same flow node in the flow table, which
is implemented using hash_map (a data struct in the C++
program).

Data Generation. In the previous stage, the network traffic is
processed into TCP and UDP flows. In this stage, the packet
in the flow is processed. Each flow consists of several frames
of packets, and each frame is generally encapsulated in a
fixed structure: Ethernet II header, Internet Protocol header,
Transport header, and application payload. In our frame-
work, we only use the application payload of the packets, as

Table 1: Description of CICAndMal2017 dataset.

Items APP numbers Composition
Collected
traffic data

Benign 5065
2015

19.0G
6.0G

2016 6.8G
2017 5.9G

Malware 429

Adware

19.2G

8.4G
Ransomware 3.4G
Scareware 5.1G

SMS malware 2.3G

F

A A A

an

h1 h2 hn

a2 a1

+

m2m1

× × ×

mn...

...

Figure 5: Self-attention layer architecture.

Security and Communication Networks 7

the application payload is the data that interact with each
other on both sides of the communication, and the header
data of each layer is used to establish communication
channels, such as host IP addresses and ports. Truncation
and zero-padding are necessary as different flows have
different sizes of application payload. In this research, we
extract the first n byte data in each flow and save them into a
csv file, using spaces to separate byte data. We also take the
flow data size as a parameter of the impactor of performance
for deep learning model.

Data Transformation. In this research, we employ text-
processing method to process the network traffic. Indeed,
packet contents with different protocols can be treated as
texts following different grammars. Due to different protocol
structures, there are different domains in packets. We
employ character-level word as vocabulary in text processing
and establish models to learn the semantic relationships
between them and protocol structures of a specific protocol.
*en, the established models extract domain and flow
feature according to the semantic to classify the malware and
benign traffic.

*erefore, we transform the flow data obtained in the
previous stage into texts. Each flow data is processed as a text
file consisting of several words. We split the words using
space, namely, the words in the text files is the character
level. *en, the texts are fed into a deep learning model to be

classified. In addition, some existing work converts traffic to
images. In order to compare the effectiveness of the two
processing methods, we have also developed the function to
convert traffic to images in the stage of data transformation.

4.2. Experiment Environment and Evaluation Metrics.
Our experiments are executed on Ubuntu 16.04 LTS with
64GB of RAM and one GPU card (NVIDIA GTX 1080Ti
11GB). For the experimental implementation, we used
Tensorflow-gpu 1.12.0 and Keras 2.2.4 operated with Python
3.6.10. *e deep learning models are constructed, trained,
and tested by Keras using the Tensorflow-gpu backend.

We separate the flow-based dataset into learning and test
data. Next, the learning data are separated into training and
validation data. And, the ratio of training, validation, and
test data is 8 :1 :1. *en, the model is trained using the
training and validation data, and the model performance is
measured using the test data. *e description of dataset is
shown in Table 2.

In our cases, we employ the mini-batch gradient decent
method in the training process. In this method, the data are
divided into several batches and the parameters are updated
according to the batches. In this process, there are two
parameters, namely, batch size and iterations, which rep-
resent the number of samples for each training and the
number of iterations for completing a total sample training,

Network
traffic

Traffic segmenting Data generation

Application payload
aggregating

Data truncating
and padding

Data

Data transformation

Text

Image

...

Packet

Establish
flow table

Flow

Figure 6: Description of data processing.

WHILE (packet reading a packet)
IF (hash_search(packet 5-tuple information m_fe)�� FALSE)

FUNC () {
creat flow: Flow New
establish the hash mapping of flow: HM(m_fe)
put the flow into hash_table

}
ELSE

*e packet belongs to Flow A
IF (the packet arrival time is out of the set timeout value)

Delete Flow A
FUNC()

END IF
END IF
flow ← packet

END WHILE

ALGORITHM 1: Traffic segmenting.

8 Security and Communication Networks

respectively. A single training iteration for all batches
propagated forward and backward can be denoted as an
epoch. *e number of learning epochs is set to 200, and the
learning rate of optimizers (i.e., rmsprop and Adam) is set to
0.001.

To evaluate the detection effectiveness of the proposed
scheme, the following terms are used for determining the
quality of the classification models:

Accuracy: it estimates the ratio of the correctly rec-
ognized network traffic flows to the entire test dataset.

accuracy �
TP + TN

TP + TN + FP + FN
, (9)

where TP represents True Positive, TN represents True
Negative, FP represents False Positive, and FN repre-
sents False Negative.

Precision: it estimates the ratio of the correctly iden-
tified malware traffic flows to the total number of
samples classified to malware class. It is denoted as

precision �
TP

TP + FP
. (10)

Recall: it estimates the ratio of the correctly identified
malware traffic flows to the number of all malware
traffic flows. It is denoted as

recall �
TP

TP + FN
. (11)

F1-score: it is the harmonic mean of Precision and
Recall. It is denoted as

F1 − score � 2 ×
precision × recall

precision + recall
. (12)

4.3. Comparative Experiments of Different Model
Architectures. As the proposed model is an N-gram, se-
mantic-based neural model, we conduct several experiments
on the main components, namely, domain composition and
flow composition. In addition, to avoid the impact of the
flow payload length, we select 6 types of lengths of flow
payload for each experiment.

4.3.1. Domain Composition. We first analyze the perfor-
mance of the mobile malware detection using different
domain composition architectures of the proposed model.
For domain composition, we conduct an experiment to
compare the impact of the single width kernels and the
multiwidth kernels, and for the single width kernels, we

select 5 types of widths, namely, 1, 2, 3, 4, and 5. For the flow
composition, we employ the same architecture, namely,
GRU to learn the flow representation and employ an at-
tention layer to classify the flows at last.

*e detailed description of the different domain com-
position architectures is given in Table 3.

In Figure 7, we provide the mobile malware detecting
accuracy with different domain composition architectures in
the case of different text sizes. And, the proposed multiwidth
kernel gives the best results for accuracy for the mobile
malware traffic detection. *e accuracy of the proposed
model for malware traffic detection can reach 0.924 at a text
length of 1000, which is better than the single-width kernels.

In addition, we provide a detailed description of clas-
sification performance metrics of different domain com-
position architectures in Table 4.

In the network flows with various types of protocols, the
domain consists of several characters, which has an inde-
terminate amount. Even in a single-protocol flow, different
domains can have different amounts of characters. *ere-
fore, the single-type CNN kernels fail to represent all of these
cases. *e character-level domain can obtain an accuracy
over 0.90, as all the domains can be split into the set of
characters. However, character-level domains reduce the
relationship between the multicharacter domains. Multitype
kernel CNN is able to represent the domains better. With
multiwidth kernel CNN, we can obtain various field rep-
resentations carried by different N-gram representations,
which can avoid the deficiency of single-width CNN. Type 6
and Type 7 have an accuracy of 0.906 and 0.901, respectively.
However, the accuracy of these two multikernel CNNs is still
lower than that of the Type 8 and Type 9, as the latter two
types represent domains more comprehensively. *e ac-
curacy of the two types of CNN is basically the same, namely,
0.926. A kernel of width 6 in Type 9 is already represented by
the previous five types of kernels and does not affect the
causal relationship between domains. To obtain a better
classification performance, we add weights for each multi-
kernel representation. And, the parameters are updated by
feedback, and the model is able to obtain a better domain
expression by adjusting the weight.

4.3.2. Flow Composition. In this section, we analyze the
performance of themobile malware detection using different
flow composition architectures of the proposed model. For
flow composition, we conduct an experiment to compare the
impact of different deep learning architectures, namely, one-
layer GRU, tow-layer GRU, one-layer LSTM, and two-layer
LSTM. For domain representation, we selected the multi-
kernel CNN with 5 different kernels according to Section
4.3.1.

*e detailed description of the different flow composi-
tion architectures is provided in Table 5.

In Figure 8, we provide the mobile malware detecting
accuracy with different flow composition architectures in
case of different text sizes.*e accuracies of the four models
for malware traffic detection are similar, which are all more
than 0.92. Both LSTM and GRU architectures are able to

Table 2: Description of dataset for binary-classification
experiment.

Training Validation Test Total

Number of
samples

Benign 165306 20663 20663 206632
Malware 144088 18011 18011 180110
Total 309394 38674 38674 386742

Security and Communication Networks 9

Table 3: Description of the different domain composition architectures.

Domain composition number Domain representation architecture description in detail

1 Unigram CNN kernel with width of 1
2 Bigram CNN kernel with width of 2
3 Trigram CNN kernel with width of 3
4 4-gram CNN kernel with width of 4
5 5-gram CNN kernel with width of 5
6 Multi N-gram CNN kernels with widths of 1, 3, and 5
7 Multi N-gram CNN kernels with widths of 2 and 4
8 Multi N-gram CNN kernels with widths of 1, 2, 3, 4, and 5
9 Multi N-gram CNN kernels with widths of 1, 2, 3, 4, 5, and 6

1

0.8

0.6

A
cc

u
ra

cy

0.4

0.2

0
1 2 3 4 5

Pattern composition type number

6 7 8 9

(a)

1

0.8

0.6

A
cc

u
ra

cy

0.4

0.2

0
1 2 3 4 5

Pattern composition type number

6 7 8 9

(b)

1

0.8

0.6

A
cc

u
ra

cy

0.4

0.2

0
1 2 3 4 5

Pattern composition type number

6 7 8 9

(c)

1

0.8

0.6

A
cc

u
ra

cy

0.4

0.2

0
1 2 3 4 5

Pattern composition type number

6 7 8 9

(d)

1

0.8

0.6

A
cc

u
ra

cy

0.4

0.2

0
1 2 3 4 5

Pattern composition type number

6 7 8 9

(e)

1

0.8

0.6

A
cc

u
ra

cy

0.4

0.2

0
1 2 3 4 5

Pattern composition type number

6 7 8 9

(f)

Figure 7: Accuracy of different deep learning architectures in case of different text sizes. (a) Text size of 200. (b) Text size of 500. (c) Text size
of 700. (d) Text size of 1000. (e) Text size of 1200. (f) Text size of 1500.

Table 4: Description of detecting performance metrics of different domain composition architectures with different text sizes.

Domain composition type number Evaluation metrics
Text size (byte) of the transformed data from network flow

200 500 700 1000 1200 1500

1

Precision 0.775 0.828 0.935 0.942 0.945 0.950
Recall 0.657 0.724 0.820 0.863 0.863 0.864

F1-score 0.711 0.773 0.873 0.900 0.902 0.905
Accuracy 0.706 0.773 0.874 0.903 0.905 0.907

2

Precision 0.773 0.821 0.924 0.929 0.930 0.933
Recall 0.657 0.721 0.810 0.850 0.849 0.854

F1-score 0.710 0.768 0.863 0.888 0.888 0.891
Accuracy 0.707 0.769 0.863 0.890 0.891 0.894

10 Security and Communication Networks

process sequential information, i.e. the previous input is
related to the subsequent input. And, they can solve the
problem of the disappearance of the governor in the long
sequence of recursive neural network. *e detailed de-
scription of classification performance metrics is depicted
in Table 6, and it can be seen that increasing the LSTM
layers or GRU layers does not improve detection perfor-
mance. However, increasing LSTM layers or GRU layers
can increase the model complexity and the time consumed
of the training process. And, since the detection effect of
LSTM and GRU is similar, while the training time of GRU
is shorter than that of LSTM, we opted to use one-layer
GRU as the flow composition in our model.

4.4. Comparative Experiments

4.4.1. Different Models. In this section, we analyze the
performance of the mobile malware detection in dif-
ferent cases, namely, the deep learning architectures and
different text sizes. To verify the effectiveness of the
proposed scheme, we have implemented different deep
learning architecture models to detect malware traffic. In
order to find the most suitable architecture model, a
variety of deep learning architectures have been built for
comparison purposes, namely, MLP, TextCNN, Bi-GRU,
Bi-LSTM, and the proposed model. *e detailed

description of the different architecture models is pro-
vided in Table 7.

For Table 2, there are several supplemental instructions
as follows: (1) Embedding (input_dimension, out-
put_dimension) converts a positive integer (index value) to a
dense vector of fixed size. (2) FC(n) denotes the fully
connected layer with n output dimensions. (3) Con-
v1D(kernels, kernel_size) denotes the convolutional layer,
where the first parameter denotes the number of the kernels
and the second parameter represents the kernel size. In
TextCNN architecture, the second layer contains 4 kinds of
convolution kernels with different kernel sizes. (4) LSTM(n)
denotes the LSTM layer and n denotes the output dimen-
sions. Bi-LSTM stands for the Bidirectional LSTM, and its
parameters are the same with LSTM. GRU has the same
usage with LSTM.

We have provided the detailed description of classifi-
cation performance metrics of different deep learning ar-
chitectures with different text sizes in Table 8.

*eMLP architecture consists of 3 fully connected layers
that have the lowest classification performance in all the text
sizes. *e second type of deep learning architecture,
TextCNN, has a convolutional layer that consists of 4 types
of kernels with different kernel sizes. It has an improvement
to MLP in detecting the malware traffic. However, compared
to the other three types of deep learning architectures, the
classification performance of TextCNN is slightly weaker.

Table 4: Continued.

Domain composition type number Evaluation metrics
Text size (byte) of the transformed data from network flow

200 500 700 1000 1200 1500

3

Precision 0.778 0.818 0.918 0.920 0.924 0.926
Recall 0.659 0.720 0.805 0.843 0.844 0.847

F1-score 0.714 0.765 0.858 0.880 0.883 0.885
Accuracy 0.709 0.766 0.858 0.883 0.886 0.887

4

Precision 0.777 0.822 0.912 0.906 0.912 0.912
Recall 0.661 0.720 0.798 0.831 0.832 0.836

F1-score 0.714 0.714 0.851 0.867 0.870 0.872
Accuracy 0.712 0.762 0.851 0.870 0.873 0.875

5

Precision 0.770 0.809 0.902 0.894 0.859 0.896
Recall 0.660 0.712 0.791 0.820 0.821 0.823

F1-score 0.711 0.757 0.843 0.855 0.856 0.858
Accuracy 0.708 0.758 0.843 0.859 0.860 0.862

6

Precision 0.784 0.836 0.900 0.946 0.944 0.949
Recall 0.662 0.732 0.799 0.862 0.864 0.863

F1-score 0.718 0.781 0.847 0.902 0.902 0.904
Accuracy 0.713 0.781 0.848 0.904 0.905 0.906

7

Precision 0.775 0.822 0.926 0.931 0.934 0.936
Recall 0.659 0.720 0.815 0.861 0.862 0.863

F1-score 0.712 0.768 0.867 0.895 0.896 0.898
Accuracy 0.709 0.774 0.868 0.898 0.900 0.901

8

Precision 0.847 0.894 0.954 0.969 0.971 0.971
Recall 0.715 0.784 0.848 0.880 0.881 0.881

F1-score 0.775 0.836 0.898 0.922 0.924 0.924
Accuracy 0.772 0.836 0.899 0.924 0.925 0.926

9

Precision 0.848 0.896 0.954 0.969 0.971 0.971
Recall 0.716 0.784 0.849 0.880 0.881 0.882

F1-score 0.776 0.836 0.899 0.923 0.924 0.924
Accuracy 0.772 0.837 0.899 0.924 0.925 0.926

Security and Communication Networks 11

Table 5: Description of the different flow composition architectures.

Flow composition type number Flow representation architecture description in detail

1 One-layer GRU
2 Two-layer GRU
3 One-layer LSTM
4 Two-layer LSTM.

1

0.8

0.6

A
cc

u
ra

cy

0.4

0.2

0
1 2

Flow composition type number

3 4

(a)

1

0.8

0.6

A
cc

u
ra

cy
0.4

0.2

0
1 2

Flow composition type number

3 4

(b)

1

0.8

0.6

A
cc

u
ra

cy

0.4

0.2

0
1 2

Flow composition type number

3 4

(c)

1

0.8

0.6

A
cc

u
ra

cy

0.4

0.2

0
1 2

Flow composition type number

3 4

(d)

1

0.8

0.6

A
cc

u
ra

cy

0.4

0.2

0
1 2

Flow composition type number

3 4

(e)

1

0.8

0.6

A
cc

u
ra

cy
0.4

0.2

0
1 2

Flow composition type number

3 4

(f)

Figure 8: Accuracy of different flow composition architectures in case of different text sizes. (a) Text size of 200. (b) Text size of 500. (c) Text
size of 700. (d) Text size of 1000. (e) Text size of 1200. (f) Text size of 1500.

Table 6: Description of detecting performance metrics of different flow composition architectures with different text sizes.

Flow composition type number Evaluation metrics
Text size (byte) of the transformed data from network flow

200 500 700 1000 1200 1500

1

Precision 0.847 0.894 0.954 0.969 0.971 0.971
Recall 0.715 0.784 0.848 0.880 0.881 0.881

F1-score 0.775 0.836 0.898 0.922 0.924 0.924
Accuracy 0.772 0.836 0.899 0.924 0.925 0.926

2

Precision 0.846 0.894 0.955 0.969 0.971 0.971
Recall 0.716 0.785 0.848 0.880 0.881 0.881

F1-score 0.775 0.836 0.898 0.922 0.924 0.924
Accuracy 0.772 0.836 0.899 0.924 0.925 0.926

3

Precision 0.848 0.895 0.954 0.970 0.971 0.971
Recall 0.715 0.784 0.848 0.879 0.881 0.880

F1-score 0.776 0.836 0.898 0.922 0.924 0.923
Accuracy 0.772 0.836 0.899 0.924 0.925 0.925

4

Precision 0.846 0.894 0.956 0.970 0.971 0.971
Recall 0.716 0.785 0.849 0.880 0.881 0.882

F1-score 0.776 0.836 0.899 0.923 0.924 0.925
Accuracy 0.772 0.837 0.899 0.925 0.926 0.926

12 Security and Communication Networks

*e reason may be that these kinds of architecture are
different in the way of learning features. Both can learn the
characteristics of malware and benign software. *e 1st and
2nd types use CNN structure to build the model, while the
3rd and 4th types use RNN structure to build the model.
Since RNNs are more advantageous in time series, Types 3
and 4 outperform Types 1 and 2. For the proposed N-gram
semantic neural model, the performance is improved
compared to Types 3 and 4, as we combine CNN and RNN
structures to further improve the effectiveness. *us, the
proposed model that employs an N-gram semantic neural
model to solve the mobile malware traffic detection problem
in an end-to-end way is recommended.

Specially, in [33], a two-layer deep learning method is
proposed to detect android malware. *e first layer employs
the static features about permission, intent, and component
information. And, the second layer employs the network
traffic features to receive the classification results from the
first layer. In our research, we reimplement the network
traffic detecting method and conduct a comparative
experiment.

*e implemented deep learning model parameters are
shown in Table 9. In the research [33], each network flowwas

converted to a 24∗24 image, namely, 784 bytes of network
flow data were utilized. In the comparison experiment, we
used the first 700 bytes of data from the network flow in our
proposed scheme.

*e binary classification performance metrics is shown
in Table 10.

According to the comparative experiments, the proposed
scheme performs better than the scheme in [33].*e average
accuracy of the [33] model for detecting the malware from
benign traffic is 0.768, while the accuracy of our proposed
model can reach 0.899. *e difference in detection accuracy
is mainly due to the different deep learning models. Scheme
[33] uses CNN architecture while our scheme employs CNN
combined GRU architecture. *ese two kinds of architec-
tures are different in the way of learning features. Both can
learn the characteristics of malware and benign software.
However, the proposed model can acquire the features of the
time dimension while CNN can only learn the spatial
features.

4.4.2. Different Text Size. *e text size is another important
impactor for the classification results, and we use the text

Table 7: Description of deep learning architecture models to detect mobile malware traffic.

Deep learning type
number

Deep learning
architecture

Architecture detail description

1 MLP Embedding(10000,64)-FC (1024)-FC(512)-FC(64)-FC(1)

2 TextCNN
Embedding(10000,64)-{Conv1D(100, kernel_size)-Maxpooling()-Flatten()}(kernel_size� 3,

4, 5)-Dropout(0.5)-FC(32)-FC(1)
3 Bi-LSTM Embedding(10000,64)-LSTM(128)-LSTM128)-FC(1)
4 Bi-GRU Embedding(10000,64)-GRU(128)-GRU(128)-FC(1)

5 Proposed model
Embedding(10000,64)- {Conv1D(100, kernel_size)-Maxpooling()}(kernel_size� 1, 2, 3, 4,

5)-GRU(100)-Attention()-FC(1)

Table 8: Description of detecting performance metrics of different deep learning architectures with different text sizes.

Deep learning type number Evaluation metrics
Text size (byte) of the transformed data from network flow

200 500 700 1000 1200 1500

1

Precision 0.671 0.672 0.682 0.713 0.718 0.722
Recall 0.584 0.594 0.599 0.614 0.617 0.621

F1-score 0.625 0.631 0.638 0.660 0.664 0.667
Accuracy 0.625 0.633 0.640 0.658 0.661 0.665

2

Precision 0.711 0.761 0.827 0.843 0.869 0.878
Recall 0.624 0.669 0.694 0.727 0.749 0.757

F1-score 0.665 0.712 0.755 0.781 0.802 0.813
Accuracy 0.666 0.713 0.749 0.779 0.800 0.812

3

Precision 0.768 0.817 0.883 0.916 0.914 0.936
Recall 0.651 0.716 0.779 0.837 0.848 0.859

F1-score 0.705 0.763 0.828 0.874 0.879 0.896
Accuracy 0.701 0.764 0.829 0.878 0.883 0.899

4

Precision 0.767 0.816 0.883 0.915 0.908 0.934
Recall 0.651 0.718 0.777 0.833 0.847 0.853

F1-score 0.704 0.762 0.826 0.872 0.876 0.892
Accuracy 0.700 0.765 0.827 0.875 0.881 0.895

5

Precision 0.847 0.894 0.954 0.969 0.971 0.971
Recall 0.715 0.784 0.848 0.880 0.881 0.881

F1-score 0.775 0.836 0.898 0.922 0.924 0.924
Accuracy 0.772 0.836 0.899 0.924 0.925 0.926

Security and Communication Networks 13

size as the parameter to develop several experiments. We
extract and splice the application layer payload of the
successive packets in each flow as flow payload data. And,
the text size is the length of the flow payload data. Flow
payload with different sizes may contain different amounts
of information, which can affect the detection of malware.
For testing this parameter, we selected 6 sizes of text,
namely, 200 bytes, 500 bytes, 700 bytes, 1000 bytes, 1200
bytes, and 1500 bytes. In the case of flowsmore than the size
of the texts, we have disregarded the following payload, and
in the case of flows with less than the size of the texts, we
have padded them with zeros. Figure 9 depicts the mobile
malware traffic detection accuracy with different text sizes
using different deep learning architectures.

Figure 9 depicts that the performance of the model
increases with the size of the input text. When the input text
size is below 1000 bytes, the performance of the model is
poor, including precision, recall, and accuracy. When the
input text size is 1000 bytes, the model performance is
relatively high, with an accuracy of about 0.91 using the
proposed model. When the input text size is 1200 bytes, the
model performance curve starts to flatten out and the
performance indexes no longer increase significantly. Even
when the input text size is 1500 bytes, the performance of the
model tends to decline. *e larger the size of the text used,
the more features can be captured, and themore accurate the
detection of mobile malware traffic. However, when a certain
length is reached, the content of traffic payload cannot
continue to provide effective features to help improve the
detection accuracy.

4.4.3. Binary-Classification in HTTP Scenario. In [3], each
HTTP flow generated by mobile apps is converted into a text
document, which can be processed by natural language
processing to extract text-level features. *ey examine the
traffic flow header using the N-gram method from the
natural language processing (NLP). *en, an automatic
feature selection algorithm based on chi-square test is uti-
lized to identify meaningful features. *ese automatically
selected features are used to build an SVM classifier for
malware detection. In our research, we reimplement the

network traffic detecting method and conduct a comparative
experiment. In this process, we divided the HTTP dataset
into training set and test set according to the ratio of 8 : 2.
*e HTTP dataset is described in Table 11.

*e binary classification performance metrics is shown
in Table 12. As HTTP protocol has more obvious features in
semantic, both methods have high accuracy in detecting
malicious traffic from HTTP protocol traffic. Both ap-
proaches make full use of the semantic information of HTTP
traffic. *e difference is that the approach in Ref [3] analyzes
and extracts specific field contents as features manually,
while our approach learns valid information automatically
by deep learning models.

4.5. Discussion. With the proposed N-gram semantic based
neural model, the essential purpose of this paper has been
achieved, namely, detecting the different protocol types of
mobile malware traffic in an end-to-end way by transferring
the traffic flow into character-level text.

*e existing detecting method needs manual analysis of
traffic semantic information generated by the specific pro-
tocol, which failed to detect the mobile malware traffic
hiding in other protocols. To address this problem, we
proposed to employ deep learning methods to learn the text
converted from network flows. We segment the network
traffic into flows according to Algorithm 1. *en, the ap-
plication payload of the packets in each flow is extracted and
is waiting to be transferred into other forms that can be fed
into deep learning algorithms. In our research, the flow
payload data are transferred into the character-level text
form. Application layer payload consists of the user behavior
data expressed by different types of application protocols,
i.e., HTTP and DNS. We utilize a multiwidth kernel CNN as
the domain composition to learn the text semantic. And,
different width kernels have different weights updated in the
training progress. And, we proved the advantage of multi-
kernel CNN through experiments. Afterward, we select the
GRU architecture as the flow composition in the model by
conducting comparative experiments on 4 types of deep
learning architectures, namely, 1-layer LSTM, 1-layer GRU,
2-layer LSTM, and 2-layer GRU.

Table 9: Description of the reimplemented parameters of ref [33].

Layer Operation Input Kernel Output

1 Convolution 28∗28∗1 5∗5∗32 28∗28∗32
2 Max pool 28∗28∗32 2∗2∗∗32 14∗14∗32
3 Convolution 14∗14∗32 5∗5∗64 14∗14∗64
4 Max pool 14∗14∗64 2∗2∗64 7∗7∗64
5 Fully connected 7∗7∗64 — 1024
6 Fully connected 1024 — 2/4

Table 10: Comparative experiment result of binary classification performance between our scheme and ref [33].

Evaluation metrics Our scheme Ref [33]

Precision 0.954 0.770
Recall 0.848 0.765
F1-score 0.898 0.766
Accuracy 0.899 0.768

14 Security and Communication Networks

To verify the effectiveness of the proposed scheme, a series
of experiments are conducted. In these experiments, we
compare the performance of different deep learning archi-
tectures and a recommended architecture has been the pro-
posed N-gram, semantic-based neural model according to the
experiments. In addition, we also consider the impact of the
size of the text, namely, the length of the used flow payload.
Experiment results show that as the text size increases, the
detection effect gets better. However, when the size exceeds
1000bytes, the improvement of detection effect becomes less.

5. Conclusion

In this paper, we present a scheme to detect mobile malware
traffic by extracting flow payload and converting it into

character-level text. And we employ multi-filter CNN and
GRU to model the generated text into domain representa-
tions and flow representations, respectively. As the text is
character-level based, no manual analysis about specific
protocol semantic information is needed. To accomplish the
above work, we also designed a tool, called PKTPT, to
process the network traffic into flows and extract the ap-
plication layer payload from each packet. From the several
experiments, our proposed scheme is proved to be effective.
Compared with the state-of-the-art methods, several com-
parative experiments are also conducted. And, the experi-
ment results depict that our proposed scheme is better in
terms of accuracy and is suitable for mobile malware de-
tection that is likely to use various protocols. However, as
more mobile software uses encryption protocols, semantic-
based malware traffic detection becomes less reliable. We
will study methods for detecting mobile malware traffic in
the scenario of encrypted traffic in the future.

Data Availability

*e data are available from http://205.174.165.80/
CICDataset/CICMalAnal2017/Dataset/.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

Acknowledgments

*is work was supported in part by the National Natural
Science Foundation of China under Grant Nos. U1836104
and 61702235 and in part by the Fundamental Research

0.7

0.68

0.66

A
cc

u
ra

cy

0.64

0.62

0.6
0 300 600 900

Text size

1200 1500

(a)

0.85

0.8

0.75

A
cc

u
ra

cy

0.7

0.65

0.6
0 500 1000

Text size

1500

(b)

0.8

0.85

0.9

0.75

A
cc

u
ra

cy

0.7

0.65

0.6
0 500 1000

Text size

1500

(c)

0.9

0.8

0.85

0.75

A
cc

u
ra

cy

0.7

0.65

0.6
0 500 1000

Text size

1500

(d)

0.9

0.85

0.8

0.75
A

cc
u

ra
cy

0.7

0.65

0.6
0 500 1000

Text size

1500

(e)

Figure 9: Accuracy of different text sizes in case of different deep learning architectures. (a)MLP architecture. (b) TextCNN architecture. (c)
LSTM architecture. (d) GRU architecture. (e) Proposed architecture.

Table 11: Description of HTTP traffic dataset for 2-classification
experiment.

Malware type Benign Malware

Train 41637 35145
Test 10409 8786
Total 52046 43931

Table 12: Comparative experiment results of binary-classification
performance for detecting HTTP mobile malware traffic between
our scheme and ref [3].

Evaluation metrics Our scheme Ref [3]

Precision 0.969 0.955
Recall 0.943 0.962
F1-score 0.956 0.941
Accuracy 0.959 0.955

Security and Communication Networks 15

http://205.174.165.80/CICDataset/CICMalAnal2017/Dataset/
http://205.174.165.80/CICDataset/CICMalAnal2017/Dataset/

Funds for the Central Universities under Grant No.
30918012204.

References

[1] G. Play, “Number of apps 2009–2016,” 2017, http://www.
statista.com/statistics/266210/.

[2] Security threat report 2014—sophos, 2017, http://www.
sophos.com/en-us/medialibrary/PDFs/other/sophossecurity-
threat-report-2014.pdf.

[3] S. Wang, Q. Yan, and Z. Chen, “Detecting android malware
leveraging text semantics of network flows,” IEEE Transac-
tions on Information Forensics and Security, vol. 13, no. 5,
pp. 1096–1109, 2017.

[4] S.-H. Yoon, J.-W. Park, J.-S. Park, Y.-S. Oh, and M.-S. Kim,
“Internet application traffic classification using fixed IP-port,”
in Proceedings of the Asia-Pacific Network Operations and
Management Symposium, pp. 21–30, Springer, Jeju, Republic
of Korea, 2009.

[5] W. Wang, M. Zhao, Z. Gao, G. Xian, Y. Li, and X. Zhang,
“Constructing features for detecting android malicious ap-
plications: issues, taxonomy and directions,” IEEE Access,
vol. 7, pp. 67602–67631, 2019.

[6] C. Urcuqui-López and A. Navarro Cadavid, “Framework for
malware analysis in Android,” Sistemas y Telemática, vol. 14,
no. 37, pp. 45–56, 2016.

[7] N. Peiravian and X. Zhu, “Machine learning for Android
malware detection using permission and API calls,” in Pro-
ceedings of the IEEE 25th International Conference Tools
Artificial Intelligence, pp. 300–305, Herndon, VA, USA,
November 2013.

[8] L. Onwuzurike, E. Mariconti, and P. Andriotis, “MaMaDroid:
detecting Android malware by building Markov chains of
behavioral models (extended version),” ACM Transactions on
Information and System Security, vol. 2, no. 2, 2019.

[9] S. Hou, Y. Ye, and Y. Song, “HinDroid: an intelligent Android
malware detection system based on structured heterogeneous
information network,” in Proceedings of the 23rd ACM
SIGKDD International Conference Knowledge Discovery Data
Mining, pp. 1507–1515, ACM, Halifax, Canada, August 2017.

[10] H. Kang, J.-W. Jang, A. Mohaisen, and H. K. Kim, “Detecting
and classifying android malware using static analysis along
with creator information,” International Journal of Distrib-
uted Sensor Networks, vol. 11, no. 6, p. 479174, 2015.

[11] Y. Zhang, M. Yang, and B. Xu, “Vetting undesirable behaviors
in Android apps with permission use analysis,” in Proceedings
of the ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS), pp. 611–622, ACM, Berlin, Ger-
many, November 2013.

[12] L. Sun, Z. Li, and Q. Yan, “SigPID: significant permission
identification for Android malware detection,” in Proceedings
of the 11th International Conference on Malicious and Un-
wanted Software (MALWARE), pp. 1–8, Fajardo, PR, USA,
October 2016.

[13] X. Wang, K. Sun, and Y. Wang, “DeepDroid: dynamically
enforcing enterprise policy on Android devices,” in Pro-
ceedings of the Network and Distributed System Security
Symposium, pp. 1–15, San Diego, CA, USA, February 2015.

[14] E. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb,
“MalDozer: automatic framework for android malware de-
tection using deep learning,” Digital Investigation, vol. 24,
pp. S48–S59, 2018.

[15] A. H. Lashkari, A. F. A. Kadir, and L. Taheri, “Toward de-
veloping a systematic approach to generate benchmark

Android malware datasets and classification,” in Proceedings
of the International Carnahan Conference on Security Tech-
nology (ICCST), pp. 1–7, Montreal, Canada, October 2018.

[16] B. Amos, H. Turner, and J. White, “Applying machine
learning classifiers to dynamic Android malware detection at
scale,” in Proceedings of the 9th International Wireless
Communications and Mobile Computing Conference
(IWCMC), pp. 1666–1671, Sardinia, Italy, July 2013.

[17] M. Grace, Y. Zhou, and Q. Zhang, “RiskRanker: scalable and
accurate zero-day Androidmalware detection,” in Proceedings
of the 10th International Conference on Mobile Systems, Ap-
plications, and Services (MobiSys), pp. 281–294, London, UK,
2012.

[18] V. Rastogi, Y. Chen, and W. Enck, “Apps play ground: au-
tomatic security analysis of smartphone applications,” in
Proceedings of the 3rd ACM Conference on Data and Appli-
cation Security and Privacy (CODASPY), pp. 209–220, San
Antonio, TX, USA, 2013.

[19] J. W. Jang, J. Yun, and J. Woo, “Andro-profiler: anti-malware
system based on behavior profiling of mobile malware,” in
Proceedings of the 23rd International World Wide Web
Conference, pp. 737-738, Seoul, Republic of Korea, 2014.

[20] A. Shabtai, U. Kanonov, and Y. Elovici, “Intrusion detection
for mobile devices using the knowledge-based, temporal
abstraction method,” Journal of Systems and Software, vol. 83,
no. 8, pp. 1524–1537, 2010.

[21] L. Taheri, A. F. A. Kadir, and A. H. Lashkari, “Extensible
Android malware detection and family classification using
network-flows and API- calls,” in Proceedings of the Inter-
national Carnahan Conference on Security Technology
(ICCST), pp. 1–8, Chennai, India, October 2019.

[22] R. Vinayakumar, K. P. Soman, and P. Poornachandran,
“Detecting Android malware using long short-term memory
(LSTM),” Journal of Intelligent & Fuzzy Systems, vol. 34, no. 3,
pp. 1277–1288, 2018.

[23] Malware Detection Methods, http://www.avg.com/us-en/avg-
software-technology.

[24] K. Griffin, S. Schneider, and X. Hu, “Automatic generation of
string signatures for malware detection,” Signal Process,
vol. 87, no. 12, pp. 2882–2895, 2009.

[25] J. Newsome, B. Karp, and D. Song, “Polygraph: automatically
gener- ating signatures for polymorphic worms,” in Pro-
ceedings of the IEEE Symposium on Security and Privacy,
pp. 226–241, Oakland, CA, USA, May 2005.

[26] S. Singh, C. Estan, and G. Varghese, “Automated worm
fingerprinting,” in Proceedings of the OSDI, vol. 4, no. 4, San
Francisco, CA, USA, 2004.

[27] V. Yegneswaran, J. T. Giffin, and P. Barford, “An architecture
for generating semantics-aware signatures,” in Proceedings of
the USENIX Conference on Security Symposium, vol. 7, San
Diego, CA, USA, 2005.

[28] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of
HTTP-based malware and signature generation using mali-
cious network traces,” in Proceedings of the USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI), p. 26, San Jose, CA, USA, 2010.

[29] M. Aresu, D. Ariu, and M. Ahmadi, “Clustering android
malware families by traffic,” in Proceedings of the 2015 10th
International Conference on Malicious and Unwanted Soft-
ware (MALWARE), pp. 128–135, Fajardo, PR, USA, October
2015.

[30] A. Lashkar, A. Kadir, and H. Gonzalez, “Towards a network-
based framework for android malware detection and char-
acterization,” in Proceedings of the 2017 15th Annual

16 Security and Communication Networks

http://www.statista.com/statistics/266210/
http://www.statista.com/statistics/266210/
http://www.sophos.com/en-us/medialibrary/PDFs/other/sophossecurity-threat-report-2014.pdf
http://www.sophos.com/en-us/medialibrary/PDFs/other/sophossecurity-threat-report-2014.pdf
http://www.sophos.com/en-us/medialibrary/PDFs/other/sophossecurity-threat-report-2014.pdf
http://www.avg.com/us-en/avg-software-technology
http://www.avg.com/us-en/avg-software-technology

Conference on Privacy, Security and Trust (PST), p. 233,
Calgary, Canada, 2017.

[31] A. Arora, S. Garg, and S. K. Peddoju, “Malware detection
using network traffic analysis in Android based mobile
devices,” in Proceedings of the 8th International Conference
on Next Generation Mobile Applications, Services and
Technologies, pp. 66–71, Oxford, UK, September 2014.

[32] G. Bendiab, S. Shiaeles, and A. Alruban, “IoT malware net-
work traffic classification using visual representation and deep
learning,” in Proceedings of the 2020 6th IEEE Conference on
Network Softwarization (NetSoft), pp. 444–449, Tokyo, Japan,
July 2020.

[33] J. Feng, L. Shen, Z. Chen, Y. Wang, and H. Li, “A two-layer
deep learning method for android malware detection using
network traffic,” IEEE Access, vol. 8, no. 8, pp. 125786–125796,
2020.

[34] J. Huang, X. Zhang, and L. Tan, “AsDroid: detecting stealthy
behaviors in Android applications by user interface and
program behavior contradiction,” in Proceedings of the 34th
International Conference on Software Engineering, pp. 1036–
1046, Zurich, Switzerland, June 2014.

[35] R. Pandita, X. Xiao, and W. Yang, “WHYPER: towards au-
tomating risk assessment of mobile applications,” in Pro-
ceedings of the USENIX Security Symposium, pp. 527–542,
Anaheim, CA, USA, 2013.

[36] Y. Nan, M. Yang, and Z. Yang, “UIPicker: user-input privacy
identification in mobile applications,” in Proceedings of the
USENIX Security Symposium, pp. 993–1008,Washington, DC,
USA, August 2015.

[37] X. Yun, Y. Wang, Y. Zhang, and Y. Zhou, “A semantics-aware
approach to the automated network protocol identification,”
IEEE/ACM Transactions on Networking, vol. 24, no. 1,
pp. 583–595, 2016.

[38] J. Ren, A. Rao, and M. Lindorfer, “ReCon: revealing and
controlling PII leaks in mobile network traffic,” in Proceedings
of the 14th Annual International Conference on Mobile Sys-
tems, Applications, and Services, Singapore, June 2015.

[39] Virustotal, https://www.virustotal.com/.
[40] V. Total, “Contagio mobile malware mini dump,” 2016, http://

contagiominidump.blogspot.ca/.
[41] A. F. A. Kadir, N. Stakhanova, and A. A. Ghorbani, “Android

botnets: what urls are telling us,” in Proceedings of the In-
ternational Conference Network and System Security, pp. 78–
91, Springer, Madrid, Spain, 2015.

[42] H. Gonzalez, N. Stakhanova, and A. A. Ghorbani, “Droidkin:
lightweight detection of android apps similarity,” in Pro-
ceedings of the International Conference on Security and
Privacy in Communication Systems, pp. 436–453, Springer,
Beijing, China, September 2014.

Security and Communication Networks 17

https://www.virustotal.com/
http://contagiominidump.blogspot.ca/
http://contagiominidump.blogspot.ca/

