
N -Gram Similarity and Distance

Grzegorz Kondrak

Department of Computing Science, University of Alberta,
Edmonton, AB, T6G 2E8, Canada

kondrak@cs.ualberta.ca
http://www.cs.ualberta.ca/~kondrak

Abstract. In many applications, it is necessary to algorithmically quan-
tify the similarity exhibited by two strings composed of symbols from
a finite alphabet. Numerous string similarity measures have been pro-
posed. Particularly well-known measures are based are edit distance and
the length of the longest common subsequence. We develop a notion
of n-gram similarity and distance. We show that edit distance and the
length of the longest common subsequence are special cases of n-gram
distance and similarity, respectively. We provide formal, recursive defini-
tions of n-gram similarity and distance, together with efficient algorithms
for computing them. We formulate a family of word similarity measures
based on n-grams, and report the results of experiments that suggest
that the new measures outperform their unigram equivalents.

1 Introduction

In many applications, it is necessary to algorithmically quantify the similarity
exhibited by two strings composed of symbols from a finite alphabet. For exam-
ple, for the task of automatic identification of confusable drug names, it is helpful
to recognize that the similarity between Toradol and Tegretol is greater than the
similarity between Toradol and Inderal. The problem of measuring string simi-
larity occurs in a variety of fields, including bioinformatics, speech recognition,
information retrieval, machine translation, lexicography, and dialectology [9]. A
related issue of computing the similarity of texts as strings of words has also
been studied.

Numerous string similarity measures have been proposed. A particularly
widely-used method is edit distance (EDIT), also known as Levenshtein dis-
tance, which is defined as the minimum number of elementary edit operations
needed to transform one string into another. Another, closely related approach
relies on finding the length of the longest common subsequence (LCS) of the two
strings. Other similarity measures are based on the number of shared n-grams,
i.e., substrings of length n.

In this paper, we develop a notion of n-gram similarity and distance.1 We
show that edit distance and the length of the LCS are special cases of n-gram
1 This is a different concept from the q-gram similarity/distance [12], which is simply

the number of common/distinct q-grams (n-grams) between two strings.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 115–126, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

116 G. Kondrak

distance and similarity, respectively. We provide formal, recursive definitions of
n-gram similarity and distance, and efficient algorithms for computing them.
We formulate a family of word similarity measures based on n-grams, which are
intended to combine the advantages of the unigram and the n-gram measures.
We evaluate the new measures on three different word-comparison tasks: the
identification of genetic cognates, translational cognates, and confusable drug
names. The results of our experiments suggest that the new n-gram measures
outperform their unigram equivalents.

We begin with n-gram similarity because we consider it to be conceptually
simpler than n-gram distance. The latter notion is then defined by modifying
the formulation of the former.

2 Unigram Similarity

In this section, we discuss the notion of the length of the LCS, which we view
as unigram similarity, in the context of its applicability as a string similarity
measure. After defining the longest common subsequence problem in a standard
way, we provide an alternative but equivalent formulation of the length of the
LCS. The recursive definition not only elucidates the relationship between the
LCS length and edit distance, but also generalizes naturally to n-gram similarity
and distance.

2.1 Standard Definition

The standard formulation of the LCS problem is as follows [3]. Given a sequence
X = x1 . . . xk, another sequence Z = z1 . . . zm is a subsequence of X if there
exist a strictly increasing sequence i1, . . . , im of indices of X such that for all j =
1, . . . , m, we have xij = zj . For example, tar is a subsequence of contrary. Given
two sequences X and Y, we say that a sequence Z is a common subsequence of X
and Y if Z is a subsequence of both X and Y. In the LCS problem, we are given
two sequences and wish to find their maximum-length common subsequence.
For example, the LCS of natural and contrary is ntra. The LCS problem can be
solved efficiently using dynamic programming.

For the purpose of measuring string similarity, which is our focus here, only
the length of the LCS is important; the actual longest common subsequence is
irrelevant. The length of the LCS as a function of two strings is an interesting
function in itself [2].

2.2 Recursive Definition

We propose the following formal, recursive definition of the function s(X, Y),
which is equivalent to the length of the LCS. Let X = x1 . . . xk and Y = y1 . . . yl

be strings of length k and l, respectively, composed of symbols of a finite al-
phabet. In order to simplify the formulas, we introduce the following notational
shorthand, borrowed from Smyth [10]. Let Γi,j = (x1 . . . xi, y1 . . . yj) be a pair

N-Gram Similarity and Distance 117

of prefixes of X and Y , and Γ ∗
i,j = (xi+1 . . . xk, yj+1 . . . yl) a pair of suffixes of X

and Y .
For strings of length one or less, we define s directly:

s(x, ε) = 0, s(ε, y) = 0, s(x, y) =
{

1 if x = y
0 otherwise

where ε denotes an empty string, x and y denote single symbols.
For longer strings, we define s recursively:

s(X, Y) = s(Γk,l) = max
i,j

(s(Γi,j) + s(Γ ∗
i,j))

The values of i and j in the above formula are constrained by the requirement
that both Γi,j and Γ ∗

i,j are non-empty. More specifically, the admissible values
of i and j are given by the following set of pairs:

D(k, l) = {0, . . . , k} × {0, . . . , l} − {(0, 0), (k, l)}

For example, D(2, 1) = {(0, 1), (1, 0), (1, 1), (2, 0)}.
It is straightforward to show by induction that s(X, Y) is always equal to

the length of the longest common subsequence of strings X and Y .

2.3 Rationale

Our recursive definition exploits the semi-compositionality of the LCS. Clearly,
LCS is not compositional in the usual sense, because the LCS of concatenated
strings is not necessarily equal to the sum of their respective LCS. For example,
‖LCS(ab, a)‖ = 1 and ‖LCS(c, bc)‖ = 1, but ‖LCS(abc, abc)‖ = 3. What is
certain is that the LCS of concatenated strings is always at least as long as the
concatenation of their respective LCS:

s(X1, Y1) + s(X2, Y2) ≤ s(X1 + X2, Y1 + Y2)

Loosely speaking, s(X, Y) is superadditive, rather than compositional. It is
always possible to compose the LCS of two strings by concatenating the LCS of
their substrings, provided that the decomposition of the strings into substrings
preserves all identity matches in the original LCS. Such a decomposition can
always be found (cf. Figure 1, left pair).

2.4 A Reduced Set of Decompositions

Any decomposition of a pair of strings can be unambiguously defined by a pair
of indices. The set D contains all distinct decompositions of a pair of strings.
The number of distinct decompositions of a pair of strings is (k +1) ∗ (l+1)− 2.

The set of decomposition can be reduced without affecting the values of the
function s. Let D′ be the following set of decompositions:

D′(k, l) = {k − 1, k} × {l − 1, l} − {(0, 0), (k, l)}

118 G. Kondrak

C O N T R A R Y

N A T U R A L

CO

NA ALRAURTUAT

RYARRATRNTON

Fig. 1. A decompositions of a unigram alignment that preserves all identity matches
(left), and a decomposition of a bigram alignment with various levels of bigram simi-
larity (right)

For example, D′(2, 1) = {(1, 0), (1, 1), (2, 0)}. D′ never contains more than three
decompositions. By substituting D by D′ in the recursive definition given in
section 2.2, we obtain an alternative, equivalent formulation of s:

s(X, Y) = s(Γk,l) = max(s(Γk−1,l), s(Γk,l−1), s(Γk−1,l−1) + s(xk, yl))

The alternative formulation directly yields the well-known efficient dynamic-
programming algorithm for computing the length of the LCS [14].

2.5 Beyond Unigram Similarity

The main weakness of the LCS length as a measure of string similarity is its
insensitivity to context. The problem is illustrated in Figure 2. The two word
pairs on the left demonstrate that neighbouring identity matches are a stronger
indication of similarity than identity matches that are far apart. The two word
pairs on the right show that parallel identity matches are a stronger indication
of similarity than identity matches that are separated by unmatched symbols.

A family of similarity measures that do take context into account is based
on Dice coefficient [1]. The measures are defined as the ratio of the number of
n-grams that are shared by two strings and the total number of n-grams in both
strings:

2 × |n-grams(X) ∩ n-grams(Y)|
|n-grams(X)| + |n-grams(Y)|

where n-grams(X) is a multi-set of letter n-grams in X . Dice coefficient with
bigrams (DICE) is a particularly popular word similarity measure. For example,
DICE(Zantac, Contac) = (2 · 3)/(5 + 5) = 0.6 because three of the bigrams are
shared.

Although more sensitive to context that LCS length, DICE has its own prob-
lems. First, because of its “low resolution”, it often fails to detect any similarity

B N A D R O L

M I T O

E

SO R L

B N A D R O L

C R D U R AA

EA K I N

V A

M

D I O N

IA I K I N

A A R Y LM

M

Fig. 2. Two pairs of words with different levels of similarity and the same length of
the longest common subsequence

N-Gram Similarity and Distance 119

between strings that are very much alike; for example, the pair Verelan/Virilon
have no n-grams in common. Second, DICE can return the maximum similarity
value of 1 for strings that are non-identical; for example, both Xanex and Nexan
are composed of the same set of bigrams: {an,ex,ne,xa}. Finally, the measure
often associates n-grams that occur in radically different word positions, as in
the pair Voltaren/Tramadol.

Brew and McKelvie [1] propose an extension of DICE, called XXDICE, in
which the contribution of matching n-grams to the overall score depends on
their absolute positions in the strings. XXDICE performed best among several
tested measures, and it has subsequently been used by other researchers (e.g.,
[11]). Unfortunately, the definition of XXDICE is deficient: it does not specify
which matching bigrams are to be selected for the calculation of the score when
bigrams are not unique. There are a number of ways to amend the definition,
but it then becomes implementation-dependent, which means that the results
are no longer fully replicable. The case of XXDICE serves as an illustration that
it is essential to define string similarity measures rigorously.

In the next section, we formulate the notion of n-gram similarity sn, which
is intended to combine the advantages of the LCS length and Dice coefficient
while eliminating their flaws.

3 n-Gram Similarity

The main idea behind n-gram similarity is generalizing the concept of the longest
common subsequence to encompass n-grams, rather than just unigrams. We
formulate n-gram similarity as a function sn, where n is a fixed parameter. s1 is
equivalent to the unigram similarity function s defined in Section 2.2.

3.1 Definition

For the purpose of providing a concise recursive definition of n-gram similarity,
we slightly modify our convention regarding Γ . When dealing with n-grams for
n > 1, we require Γi,j and Γ ∗

i,j to contain at least one complete n-gram. This
requirement is consistent with our previous convention for n = 1. If both strings
are shorter than n, sn is undefined.

In the simplest case, when there is only one complete n-gram in either of the
strings, n-gram similarity is defined to be zero:

sn(Γk,l) = 0 if (k = n ∧ l < n) ∨ (k < n ∧ l = n)

Let Γ n
i,j = (xi+1 . . . xi+n, yj+1 . . . yj+n) be a pair of n-grams in X and Y . If

both strings contain exactly one n-gram, our initial definition is strictly binary: 1
if the n-grams are identical, and 0 otherwise. (Later, we will consider modifying
this part of the definition.)

sn(Γn,n) = sn(Γ n
0,0) =

{
1 if ∀1≤u≤n xu = yu

0 otherwise

120 G. Kondrak

For longer strings, we define n-gram similarity recursively:

s(X, Y) = sn(Γk,l) = max
i,j

(sn(Γi+n−1,j+n−1) + sn(Γ ∗
i,j))

The values of i and j in the above formula are constrained by the requirement
that both Γi,j and Γ ∗

i,j contain at least one complete n-gram. More specifically,
the admissible values of i and j are given by D(k − n + 1, l − n + 1), where D is
the set defined in Section 2.2.

3.2 Computing n-Gram Similarity

As in the case of s, a set of three decompositions is sufficient for computing sn.

sn(Γk,l) = max(sn(Γk−1,l), sn(Γk,l−1), sn(Γk−1,l−1) + sn(Γ n
k−n,l−n))

An efficient dynamic-programming algorithm for computing n-gram similar-
ity can be derived directly from the alternative formulation. For n = 1, it reduces
to the well-known algorithm for computing the length of the LCS. The algorithm
is discussed in detail in Section 5.

3.3 Refined n-Gram Similarity

The binary n-gram similarity defined above is quite crude in the sense that it
does not differentiate between slightly different n-grams and totally different n-
grams. We consider here two possible refinements to the similarity scale. The
first alternative, henceforth referred to as comprehensive n-gram similarity, is to
compute the standard unigram similarity between n-grams:

sn(Γ n
i,j) =

1
n
s1(Γ n

i,j)

The second alternative, henceforth referred to as positional n-gram similarity,
is to simply to count identical unigrams in corresponding positions within the
n-grams:

sn(Γ n
i,j) =

1
n

n∑
u=1

s1(xi+u, yj+u)

The advantage of the positional n-gram similarity is that it can be computed
faster than the comprehensive n-gram similarity.

Figure 1 (right) shows a bigram decomposition of a pair of words with various
levels of bigram similarity. The solid link denotes a complete match. The dashed
links are partial matches according to both positional and comprehensive n-
gram similarity. The dotted link indicates a partial match that is detected by
the comprehensive n-gram similarity, but not by the positional n-gram similarity.

N-Gram Similarity and Distance 121

4 n-Gram Distance

Since the standard edit distance is almost a dual notion to the length of the LCS,
the definition of n-gram distance differs from the definition of n-gram similarity
only in details:

1. Recursive definition of edit distance:

d(x, ε) = 1, d(ε, y) = 1, d(x, y) =
{

0 if x = y
1 otherwise

d(X, Y) = d(Γk,l) = min
i,j

(d(Γi,j) + d(Γ ∗
i,j))

2. An alternative formulation of edit distance with a reduced set of decompo-
sitions:

d(X, Y) = d(Γk,l) = min(d(Γk−1,l)+1,d(Γk,l−1)+1,d(Γk−1,l−1)+d(xk, yl))

3. Definition of n-gram edit distance:

dn(Γk,l) = 1 if (k = n ∧ l < n) ∨ (k < n ∧ l = n)

dn(Γn,n) = dn(Γ n
0,0) =

{
0 if ∀1≤u≤nxu = yu

1 otherwise

dn(Γk,l) = min
i,j

(dn(Γi+n−1,j+n−1) + dn(Γ ∗
i,j))

4. An alternative formulation of n-gram distance:

dn(Γk,l) = min(dn(Γk−1,l)+1,dn(Γk,l−1)+1,dn(Γk−1,l−1)+dn(Γ n
k−n,l−n))

5. Three variants of n-gram distance dn(Γ n
i,j):

(a) The binary n-grams distance, as defined in 3.
(b) The comprehensive n-grams distance: dn(Γ n

i,j) = 1
nd1(Γ n

i,j).
(c) The positional n-gram distance: dn(Γ n

i,j) = 1
n

∑n
u=1 d1(xi+u, yj+u).

The positional n-gram distance is equivalent to the the comprehensive n-
gram distance for n = 2. All three variants are equivalent for n = 1.

5 n-Gram Word Similarity Measures

In this section, we define a family of word similarity measures (Table 1), which in-
clude two widely-used measures, the longest common subsequence ratio (LCSR)
and the normalized edit distance (NED), and a series of new measures based on
n-grams, n > 1. First, however, we need to consider two measure-related issues:
normalization and affixing.

Normalization is a method of discounting the length of words that are being
compared. The length of the LCS of two randomly-generated strings grows with

122 G. Kondrak

Table 1. A classification of measures based on n-grams

n = 1 n = 2 n = 3 . . . n
Similarity LCSR BI-SIM TRI-SIM . . . n-SIM
Distance NED1 BI-DIST TRI-DIST . . . n-DIST

the length of the strings [2]. In order to avoid the length bias, a normalized
variant of the LCS is usually preferred. The longest common subsequence ratio
(LCSR) is computed by dividing the length of the longest common subsequence
by the length of the longer string [8]. Edit distance is often normalized in a
similar way, i.e. by the length of the longer string (e.g., [5]). However, Marzal and
Vidal [6] propose instead to normalize by the length of the editing path between
strings, which requires a somewhat more complex algorithm. We refer to these
two variants of Normalized Edit Distance as NED1 and NED2, respectively.

Affixing is a way of increasing sensitivity to the symbols at string boundaries.
Without affixing, the boundary symbols participate in fewer n-grams than the
internal symbols. For example, the word abc contains two bigrams: ab and bc; the
initial symbol a occurs in only one bigram, while the internal symbol b occurs in
two bigrams. In the context of measuring word similarity, this is a highly unde-
sirable effect because the initial symbols play crucial role in human perception of
words. In order to avoid the negative bias, extra symbols are sometimes added
to the beginnings and/or endings of words.

The proposed n-gram similarity and distance measures N-SIM and N-DIST
incorporate both normalization and affixing (Figure 3). Our affixing method
is aimed at emphasizing the initial segments, which tend to be much more

Algorithm N-SIM (X, Y)

K ← length(X)
L ← length(Y)
for u ← 1 to N − 1 do

X ← x′
1 + X

Y ← y′
1 + Y

for i ← 0 to K do
S[i, 0] ← 0

for j ← 1 to L do
S[0, j] ← 0

for i ← 1 to K do
for j ← 1 to L do

S[i, j] ← max(
S[i − 1, j],
S[i, j − 1],
S[i − 1, j − 1] + sN(Γ N

i−1,j−1))
return S[K, L]/ max(K, L)

Algorithm N-DIST (X, Y)

K ← length(X)
L ← length(Y)
for u ← 1 to N − 1 do

X ← x′
1 + X

Y ← y′
1 + Y

for i ← 0 to K do
D[i, 0] ← i

for j ← 1 to L do
D[0, j] ← j

for i ← 1 to K do
for j ← 1 to L do

D[i, j] ← min(
D[i − 1, j] + 1,
D[i, j − 1] + 1,
D[i − 1, j − 1] + dN(Γ N

i−1,j−1))
return D[K, L]/ max(K, L)

Fig. 3. The algorithms for computing N-SIM and N-DIST of strings X and Y

N-Gram Similarity and Distance 123

important than final segments in determining word similarity. A unique special
symbol is defined for each letter of the original alphabet. Each word is augmented
with a prefix composed of n − 1 copies of the special symbol that corresponds
to the initial letter of the word. For example, if n = 3, amikin is transformed
into ââamikin. Assuming that the original words have lengths K and L respec-
tively, the number of n-grams is thus increased from K +L− 2(n− 1) to K +L.
The normalization is achieved by simply dividing the total similarity score by
max(K, L), the original length of the longer word. This procedure guarantees
that the new measures return 1 if and only if the words are identical, and 0 if
and only if the words have no letters in common.

6 Experiments

In this section we describe three experiments aimed and comparing the effec-
tiveness of the standard unigram similarity measures with the proposed n-gram
measures. The three experiments correspond to applications in which the stan-
dard unigram measures have been used in the past.

6.1 Evaluation Methodology

Our evaluation methodology is the same in all three experiments. The underly-
ing assumption is that pairs of words that are known to be related in some way
(e. g., by sharing a common origin) exhibit on average much greater similarity
than unrelated pairs. We evaluate the effectiveness of several similarity measures
by calculating how well they are able to distinguish related word pairs from un-
related word pairs. In order for a measure to achieve 100% accuracy, any related
pair would have to be assigned a higher similarity value than any unrelated pair.
In practice, most of the related pairs should occur near the top of a list of pairs
sorted by their similarity value.

The evaluation procedure is as follows:

1. Establish a gold standard set G of word pairs that are known to be related.
2. Generate a much larger set C of candidate word pairs, C ⊃ G.
3. Compute the similarity of all pairs in C using a similarity measure.
4. Sort the pairs in C according to the similarity value, breaking ties randomly.
5. Compute the 11-point interpolated average precision on the sorted list.

The 11-point interpolated average precision is an information-retrieval eval-
uation technique. Precision is computed for the recall levels of 0%, 10%, 20%,
. . . , 100%, and then averaged to yield a single number. We uniformly set the
precision value at 0% recall to 1, and the precision value at 100% recall to 0.

6.2 Data

Genetic Cognates. Cognates are words of the same origin that belong to dis-
tinct languages. For example, English father, German vater, and Norwegian far
constitute a set of cognates, since they all derive from a single Proto-Germanic

124 G. Kondrak

word (reconstructed as *faδēr). The identification of cognates is one of the prin-
cipal tasks of historical linguistics. Cognates are usually similar in their phonetic
form, which makes string similarity an important clue for their identification.

In the first experiment, we extracted all nouns from two machine-readable
word lists that had been used to produce an Algonquian etymological dictio-
nary [4]. The two sets contain 1628 Cree nouns and 1023 Ojibwa nouns, re-
spectively. The set C of candidate pairs was created by generating all possible
Cree-Ojibwa pairs (a Cartesian product). An electronic version of the dictio-
nary, which contains over four thousand Algonquian cognate sets, served as the
gold standard G. The task was to identify 409 cognate pairs among 1,650,780
candidate word pairs (approx. 0.025%).

Translational Cognates. Cognates are usually similar in form and meaning,
which makes string similarity a useful clue for word alignment in statistical ma-
chine translation. Both LCSR and edit distance have been employed for cognate
identification in bitext-related tasks (e.g., [8]).

In the second experiment, we used Blinker, a word-aligned French-English
bitext containing translations of 250 sentences taken from the Bible [7]. For the
evaluation, we manually identified all cognate pairs in the bitext, using word
alignment links as clues. The candidate set of pairs was generated by taking a
Cartesian product of words in corresponding sentences. This time, the task was
to identify those 959 pairs among 36,879 candidate pairs (approx. 2.6%).

Confusable Drug Names. Many drug names either look or sound similar,
which causes potentially dangerous errors. An example of a confusable drug
name pair is Zantac and Zyrtec. Orthographic similarity measures have been
applied in the past for detecting confusable drug names. For example, Lambert
et al. [5] tested edit distance, normalized edit distance, and LCS, among other
measures.

In the final experiment, we extracted 582 unique drug names form an online
list of confusable drug names [13]. The candidate set of pairs was the Cartesian
product of the names. The list itself served as the gold standard. The task was
to identify 798 confusable pairs among 338,142 candidate pairs (approx. 0.23%).

6.3 Results and Discussion

Table 2 compares the average precision achieved by various measures in all
three experiments. The similarity-based measures are given first, followed by
the distance-based measures. PREFIX is a baseline-type measure that returns
the length of the common prefix divided by the length of the longer string.
Three values are given for the N -SIM and N -DIST measures corresponding to
the binary, positional, and comprehensive variants, respectively.

Although the average precision values vary depending on the difficulty of
a particular task, the relative performance of the measures is quite consistent
across the three experiments. The positional and comprehensive variants of the
n-gram measures outperform the standard unigram measures (the only exception
is that NED slightly outperforms TRI-DIST on genetic cognates). The difference

N-Gram Similarity and Distance 125

Table 2. The average interpolated precision for various measures on three word-
similarity tasks

DICE XXDICE LCS LCSR BI-SIM TRI-SIM
bin pos com bin pos com

Drug names .262 .308 .152 .330 .377 .403 .400 .356 .393 .396
Genetic cognates .394 .519 .141 .564 .526 .597 .595 .466 .593 .589
Transl. cognates .775 .815 .671 .798 .841 .841 .846 .829 .838 .832

PREFIX EDIT NED1 NED2 BI-DIST TRI-DIST
bin pos com bin pos com

Drug names .256 .275 .364 .369 .389 .399 .399 .352 .391 .391
Genetic cognates .276 .513 .592 .592 .545 .602 .602 .468 .589 .589
Transl. cognates .721 .681 .821 .823 .840 .838 .838 .828 .829 .830

is especially pronounced in the drug names experiment. The bigram methods are
overall somewhat more effective than the trigram methods. The differences be-
tween the positional and the comprehensive n-gram variants, where they exist,
are insignificant, but the binary variant is sometimes much worse. The normal-
ized versions substantially outperform the un-normalized versions in all cases.
NED consistently outperforms LCSR, but the differences between the similarity-
based methods and the distance-based methods for n > 1 are minimal.

6.4 Similarity vs. Distance

Interestingly, there is a considerable variation in performance among the unigram
measures, but not among the multigram measures. The reason may lie in LCSR’s
lack of context-sensitivity, which we mentioned in Section 2.5. Consider again
the two pairs on the right side of Figure 2. The LCS lengths are identical in
both cases (3), but edit distances differ (7 and 5, respectively). Notice the highly
parallel arrangement of the identity links between the second pair, a phenomenon
which usually positively correlates with perceptual similarity. Since by definition
LCSR is concerned only with the number of identity matches, it cannot detect
such a clue. The multigram measures, on the other hand, are able to recognize
the difference, because n-grams provide an alternative mechanism for taking
context into account.

7 Conclusion

We have formulated a new concept of n-gram similarity and distance, which
generalizes the standard unigram string similarity and distance. On that ba-
sis, we have formally defined a family of new measures of word similarity, We
have evaluated the new measures on three different word-comparison tasks. The
experiments suggest that the new n-gram measures outperform the unigram
measures. In general, normalization by word length is a must. With respect to

126 G. Kondrak

the unigram measures, we have argued that the normalized edit distance may be
more appropriate than LCSR. For n ≥ 2, BI-SIM with positional n-gram simi-
larity is recommended as it combines relative speed with high overall accuracy.

Acknowledgments

Thanks to Bonnie Dorr for collaboration on the confusable drug names project.
This research was supported by Natural Sciences and Engineering Research
Council of Canada.

References

1. Chris Brew and David McKelvie. 1996. Word-pair extraction for lexicography. In
Proc. of the 2nd Intl Conf. on New Methods in Language Processing, pages 45–55.

2. Vacláv Chvátal and David Sankoff. 1975. Longest common subsequences of two
random sequences. Journal of Applied Probability, 12:306–315.

3. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2001. Introduction to Algorithms. The MIT Press, second edition.

4. John Hewson. 1993. A computer-generated dictionary of proto-Algonquian. Hull,
Quebec: Canadian Museum of Civilization.

5. Bruce L. Lambert, Swu-Jane Lin, Ken-Yu Chang, and Sanjay K. Gandhi. 1999.
Similarity As a Risk Factor in Drug-Name Confusion Errors: The Look-Alike (Or-
thographic) and Sound-Alike (Phonetic) Model. Medical Care, 37(12):1214–1225.

6. A. Marzal and E. Vidal. 1993. Computation of normalized edit distance and appli-
cations. IEEE Trans. Pattern Analysis and Machine Intelligence, 15(9):926–932.

7. I. Dan Melamed. 1998. Manual annotation of translational equivalence: The Blinker
project. Technical Report IRCS #98-07, University of Pennsylvania.

8. I. Dan Melamed. 1999. Bitext maps and alignment via pattern recognition. Com-
putational Linguistics, 25(1):107–130.

9. D. Sankoff and J. B. Kruskal, editors. 1983. Time warps, string edits, and macro-
molecules: the theory and practice of sequence comparison. Addison-Wesley.

10. Bill Smyth. 2003. Computing Patterns in Strings. Pearson.
11. Dan Tufis. 2002. A cheap and fast way to build useful translation lexicons. In

Proc. of the 19th Intl Conf. on Computational Linguistics, pages 1030–1036.
12. Esko Ukkonen. 1992. Approximate string-matching with q-grams and maximal

matches. Theoretical Computer Science, 92:191–211.
13. Use caution — avoid confusion. United States Pharmacopeial Convention Quality

Review, No. 76, March 2001. Available from http://www.bhhs.org/pdf/qr76.pdf.
14. Robert A. Wagner and Michael J. Fischer. 1974. The string-to-string correction

problem. Journal of the Association for Computing Machinery, 21(1):168–173.

	Introduction
	Unigram Similarity
	Standard Definition
	Recursive Definition
	Rationale
	A Reduced Set of Decompositions
	Beyond Unigram Similarity

	n-Gram Similarity
	Definition
	Computing n-Gram Similarity
	Refined n-Gram Similarity

	n-Gram Distance
	n-Gram Word Similarity Measures
	Experiments
	Evaluation Methodology
	Data
	Results and Discussion
	Similarity vs. Distance

	Conclusion

