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Abstract. The object of the present paper is to study N(k)-quasi Einstein

manifolds satisfying certain curvature conditions. Two examples have been
constructed to prove the existence of such a manifold. Finally, a physical

example of an N(k)-quasi Einstein manifold is given.

1. Introduction

A Riemannian or a semi-Riemannian manifold (Mn, g), n = dimM ≥ 2, is said
to be an Einstein manifold if the following condition

(1.1) S =
r

n
g,

holds on M , where S and r denote the Ricci tensor and the scalar curvature of
(Mn, g), respectively. According to ([1], p. 432), (1.1) is called the Einstein metric
condition. Einstein manifolds play an important role in Riemannian Geometry as
well as in general theory of relativity. Also Einstein manifolds form a natural sub-
class of various classes of Riemannian or semi-Riemannian manifolds by a curvature
condition imposed on their Ricci tensor ([1], p. 432-433). For instance, every Ein-
stein manifold belongs to the class of Riemannian manifolds (Mn, g) realizing the
following relation :

(1.2) S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a, b are smooth functions and η is a non-zero 1-form such that

(1.3) g(X, ξ) = η(X), g(ξ, ξ) = η(ξ) = 1,

for all vector fields X,Y .
A non-flat Riemannian manifold (Mn, g) (n > 2) is defined to be a quasi Einstein

manifold [2] if its Ricci tensor S of type (0, 2) is not identically zero and satisfies
the condition (1.2). We shall call η the associated 1-form and the unit vector field
ξ is called the generator of the manifold.

Quasi Einstein manifolds arose during the study of exact solutions of the Einstein
field equations as well as during considerations of quasi-umbilical hypersurfaces of
semi-Euclidean spaces. So many studies about Einstein field equations are done.
For example, in [11], Naschie turned the tables on the theory of elementary particles
and showed that we could derive the expectation number of elementary particles
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of the standard model using Einstein’s unified field equation or more precisely his
somewhat forgotten strength criteria directly and without resorting to quantum
field theory [12]. He also discussed possible connections between Gödel’s classical
solution of Einstein’s field equations and E-infinity in [10]. Also quasi Einstein
manifolds have some importance in the general theory of relativity. For instance,
the Robertson-Walker spacetime are quasi Einstein manifolds [9]. Further, quasi
Einstein manifolds can be taken as a model of the perfect fluid spacetime in general
relativity [6].

The study of quasi Einstein manifolds was continued by Chaki [3], Guha [13], De
and Ghosh [7], [8] and many others. The notion of quasi Einstein manifolds have

been generalized in several ways by several authors. In recent papers, Özgür studied
super quasi Einstein manifolds [19] and generalized quasi Einstein manifolds [20].

Let R denote the Riemannian curvature tensor of a Riemannian manifold M .
The k-nullity distribution N(k) of a Riemannian manifold M is defined by [23]

(1.4) N(k) : p −→ Np(k) = {Z ∈ TpM : R(X,Y )Z = k[g(Y,Z)X − g(X,Z)Y ]},
k being some smooth function. In a quasi Einstein manifold M , if the generator
ξ belongs to some k-nullity distribution N(k), then M is said to be a N(k)-quasi
Einstein manifold [25]. In fact k is not arbitrary as the following:

In an n-dimensional N(k)-quasi Einstein manifold it follows that

(1.5) k =
a+ b

n− 1
.

Now, it is immediate to note that in an n-dimensional N(k)-quasi Einstein manifold
[17]

(1.6) R(X,Y )ξ =
a+ b

n− 1
[η(Y )X − η(X)Y ],

which is equivalent to

(1.7) R(X, ξ)Y =
a+ b

n− 1
[η(Y )X − g(X,Y )ξ] = −R(ξ,X)Y.

From (1.4) we get

(1.8) R(ξ,X)ξ =
a+ b

n− 1
[η(X)ξ −X].

In [25] it was shown that an n-dimensional conformally flat quasi Einstein man-
ifold is an N( a+b

n−1 )-quasi Einstein manifold and in particular a 3-dimensional quasi

Einstein manifold is an N(a+b
2 )-quasi Einstein manifold. Also in [18] Özgür, cited

some physical examples of N(k)-quasi Einstein manifolds. In 2011, Taleshian and
Hosseinzadeh [24] studied N(k)-quasi Einstein manifolds satisfying certain curva-
ture conditions. Nagaraja [16] also studied N(k)-mixed quasi Einstein manifolds.

In 1968, Yano and Sawaki [22] defined and studied a tensor C̃ on a Riemannian
manifold of dimensional n which includes both conformal curvature tensor and
concircular curvature tensor as particular cases. This tensor is known as quasi-
conformal curvature tensor and is defined by

C̃(X,Y )Z = λR(X,Y )Z

+µ{S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY }(1.9)

− r
n
{ λ

(n− 1)
+ 2µ}[g(Y,Z)X − g(X,Z)Y ],
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where r is the scalar curvature and Q is the symmetric endomorphism of the tan-
gent space at each point corresponding to the Ricci tensor S, that is, g(QX,Y ) =
S(X,Y ). Here λ and µ are arbitrary constants. If λ = 1 and µ = − 1

n−2 , then
the quasi-conformal curvature tensor is reduced to the conformal curvature ten-

sor. For an n ≥ 4 dimensional Riemannian manifold, if C̃ = 0 then it is called
quasi-conformally flat. Recently Mantica and Suh [15] studied quasi-conformally
recurrent Riemannian manifolds.

The projective curvature tensor P and the concircular curvature tensor Z̃ in a
Riemannian manifold (Mn, g) are defined by [26]

(1.10) P (X,Y )W = R(X,Y )W − 1

n− 1
[S(Y,W )X − S(X,W )Y ],

(1.11) Z̃(X,Y )W = R(X,Y )W − r

n(n− 1)
[g(Y,W )X − g(X,W )Y ],

respectively. In [25], the authors have proved that conformally flat quasi Einstein
manifolds are certain N(k)-quasi Einstein manifolds. The derivation conditions
R(ξ,X) · R = 0 and R(ξ,X) · S = 0 have been studied in [23], where R and

S denote the curvature and Ricci tensor respectively. Özgür and Tripathi [17]
continued the study of the N(k)-quasi Einstein manifolds. In [17], the derivation

conditions Z̃(ξ,X) · R = 0 and Z̃(ξ,X) · Z̃ = 0 on N(k)-quasi Einstein manifolds

were studied, where Z̃ is the concircular curvature tensor. Moreover in [17], for an

N(k)-quasi Einstein manifold it was proved that k = a+b
n−1 . Özgür in [18] studied the

condition R · P = 0, P · S = 0 and P · P = 0 for an N(k)-quasi Einstein manifold,
where P denotes the projective curvature tensor and some physical examples of
N(k)-quasi Einstein manifolds are given. Again, in 2008, Özgür and Sular [21]

studied N(k)-quasi Einstein manifolds satisfying R ·C = 0 and R · C̃ = 0, where C

and C̃ represent the conformal curvature tensor and the quasi-conformal curvature
tensor, respectively. This paper is a continuation of previous studies.

The paper is organized as follows: After preliminaries in section 3, we study
quasi-conformally recurrent N(k)-quasi Einstein manifolds. We prove that quasi-

conformally recurrent manifold satisfies R(ξ,X) · C̃ = 0. In section 4, we prove that

for an n ≥ 4 dimensional N(k)-quasi Einstein manifold, the conditions C̃(ξ,X)·S =

0, C̃(ξ,X) ·P = 0, C̃(ξ,X) · Z̃ = 0 hold on the manifold if and only if λ = µ(2−n).
Finally, we give two examples of an N(k)-quasi Einstein manifold and a physical
example of an N(k)-quasi Einstein manifold.

2. Preliminaries

From (1.2) and (1.3) it follows that

(2.1) S(X, ξ) = (a+ b)η(X),

and

(2.2) r = an+ b,

where r is the scalar curvature of Mn.
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From the definition of the quasi-conformal curvature tensor, we can write

C̃(ξ,X)Y = λR(ξ,X)Y

+µ{S(X,Y )ξ − S(ξ, Y )X + g(X,Y )Qξ − g(ξ, Y )QX}

− r
n
{ λ

(n− 1)
+ 2µ}[g(X,Y )ξ − g(ξ, Y )X].

Here using (1.7) and (2.1), we find

C̃(ξ,X)Y = {λk − r

n
{ λ

(n− 1)
+ 2µ) + µ(2a+ b)}{g(X,Y )ξ − η(Y )X}.

Now using r = an+ b, we find

λk − r

n
{ λ

(n− 1)
+ 2µ) + µ(2a+ b) = λ− µ(2− n).

Then we obtain

(2.3) C̃(ξ,X)Y = {λ− µ(2− n)}{g(X,Y )ξ − η(Y )X}.

The curvature conditions C̃ · S, C̃ · P and C̃ · Z̃ are defined by

(2.4) (C̃(U,X) · S)(Y,Z) = −S(C̃(U,X)Y, Z)− S(Y, C̃(U,X)Z),

(C̃(U,X) · P )(Y, Z,W ) = C̃(U,X)P (Y, Z)W − P (C̃(U,X)Y,Z)W(2.5)

−P (Y, C̃(U,X)Z)W − P (Y,Z)C̃(U,X)W,

and

(C̃(U,X) · Z̃)(Y, Z,W ) = C̃(U,X)Z̃(Y,Z)W − Z̃(C̃(U,X)Y,Z)W(2.6)

−Z̃(Y, C̃(U,X)Z)W − Z̃(Y,Z)C̃(U,X)W,

respectively.

3. Quasi-conformally recurrent N(k) -quasi Einstein manifold

In [21], Özgür and Sular proved that in an N(k)-quasi Einstein manifold the

condition R(ξ,X) · C̃ = 0 holds on Mn if and if only if either a = −b or, Mn

is conformally flat with λ = µ(2 − n). In this section we study quasi-conformally
recurrent N(k)-quasi Einstein manifolds.

A non-flat Riemannian manifold M is said to be quasi-conformally recurrent

[15] if the quasi conformal curvature tensor C̃ satisfies the condition ∇C̃ = A⊗ C̃,
where A is an everywhere non-zero 1-form. We now define a function f on M by

f2 = g(C̃, C̃), where the metric g is extended to the inner product between the
tensor fields in the standard fashion. Then we know that f(Y f) = f2A(Y ). So
from this we have Y f = fA(Y ), because f 6= 0. This implies that

X(Y f) =
1

f
(Xf)(Y f) + (XA(Y ))f.

Hence

X(Y f)− Y (Xf) = {XA(Y )− Y A(X)}f.
Therefore we get

(∇X∇Y −∇Y∇X −∇[X,Y ])f = {XA(Y )− Y A(X)−A([X,Y ])}f.
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Since the left hand side of the above equation is identically zero and f 6= 0 on M
by our assumption, we obtain

(3.1) dA(X,Y ) = 0, that is, the 1-form A closed.

Now from
(∇XC̃)(U, V )Z = A(X)C̃(U, V )Z,

we get

(∇U∇V C̃)(X,Y )Z = {UA(V ) +A(U)A(V )}C̃(X,Y )Z.

Hence using (3.1) we get

(R(X,Y )C̃)(U, V )Z = [2dA(X,Y )]C̃(U, V )Z = 0.

Therefore, for a quasi-conformally recurrent manifold, we have

(3.2) R(X,Y )C̃ = 0 for all X,Y.

An equivalent proof can be given as follows: From the conditon ∇iC̃
m
jkl = AiC̃

m
jkl

one gets easily ∇i(C̃
m
jklC̃

jkl
m ) = 2Ai(C̃

m
jklC̃

jkl
m ) and thus putting f = C̃m

jklC̃
jkl
m , we

recover locally the closedness of the 1-form A.
Hence by Theorem 4.3 of Özgür and Sular [21], we can state the following:

Theorem 1. An N(k)-quasi Einstein manifold is quasi-conformally recurrent if
and only if either a = −b or, Mn is conformally flat with λ = µ(2− n).

4. Main results

In this section we give the main results of the paper. At first we give the following
:

Theorem 2. Let Mn be an n-dimensional, n ≥ 4, N(k)-quasi Einstein manifold.

Then Mnsatisfies the condition C̃(ξ,X) · S = 0 if and only if λ = µ(2− n).

Proof. Assume that an N(k)-quasi Einstein manifold satisfies

C̃(ξ,X) · S = 0.

Then we get from (2.4)

(4.1) S(C̃(ξ,X)Y, Z) + S(Y, C̃(ξ,X)Z) = 0.

Using (2.3) in (4.1) we get

{λ−µ(2−n)}[g(X,Y )S(ξ, Z)−η(Y )S(X,Z) +g(X,Z)S(Y, ξ)−η(Z)S(Y,X)] = 0.

Then either
λ− µ(2− n) = 0,

or,

(4.2) g(X,Y )S(ξ, Z)− η(Y )S(X,Z) + g(X,Z)S(Y, ξ)− η(Z)S(Y,X) = 0.

Putting Y = ξ in (4.2) we find

(4.3) S(X,Z) = (a+ b)g(X,Z),

which implies that the manifold is an Einstein manifold which contradicts the def-
inition of N(k)-quasi Einstein manifold. Then only λ− µ(2− n) = 0 holds.

Conversely, let λ = µ(2− n), then from (2.3) we have C̃(ξ,X)Y = 0. Hence we

get C̃(ξ,X) · S = 0. This completes the proof. �
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If λ = µ(2− n) , then from the definition of quasi-conformal curvature tensor it

follows that C̃ = λC. Thus we can state the following:

Corollary 1. In an N(k)-quasi Einstein manifold satisfying the condition C̃(ξ,X)·
S = 0, conformally flatness and quasi-conformally flatness are equivalent.

Now we give the following:

Theorem 3. Let Mn be an n-dimensional, n ≥ 4, N(k)- quasi Einstein manifold.

Then Mn satisfies the condition C̃(ξ,X) · P = 0 if and only if λ = µ(2− n).

Proof. Suppose that the N(k)-quasi Einstein manifold satisfies

C̃(ξ,X) · P = 0.

Then from (2.5), we get

C̃(ξ,X)P (Y,Z)W−P (C̃(ξ,X)Y,Z)W−P (Y, C̃(ξ,X)Z)W−P (Y,Z)C̃(ξ,X)W = 0.

Using (1.10) and (2.3) we obtain

{λ− µ(2− n)}{g(X,P (Y, Z)W )ξ − η(P (Y,Z)W ))X − g(X,Y )P (ξ, Z)W

+η(Y )P (X,Z)W − g(X,Z)P (Y, ξ)W + η(Z)P (Y,X)W − g(X,W )P (Y,Z)ξ

+η(W )P (Y,Z)X} = 0,

which implies either λ− µ(2− n) = 0 or,

g(X,P (Y,Z)W )ξ − η(P (Y,Z)W ))X − g(X,Y )P (ξ, Z)W(4.4)

+η(Y )P (X,Z)W − g(X,Z)P (Y, ξ)W + η(Z)P (Y,X)W − g(X,W )P (Y,Z)ξ

+η(W )P (Y,Z)X = 0.

Taking the inner product of both sides of (4.4) with ξ, we have

g(X,P (Y, Z)W )− η(P (Y,Z)W ))η(X)− g(X,Y )η(P (ξ, Z)W )(4.5)

+η(Y )η(P (X,Z)W )− g(X,Z)η(P (Y, ξ)W ) + η(Z)η(P (Y,X)W )

+η(W )η(P (Y,Z)X) = 0.

Hence with the help of (1.10) the equation (4.5) is reduced to

(4.6) 0 = P (Y, Z,W,X) +
b

n− 1
{g(X,Z)g(Y,W )− g(X,Y )g(Z,W )},

where P (Y,Z,W,X) = g(X,P (Y, Z)W ).
Then by using (1.10) and putting X = Y = ei in (4.6), where {ei} is ortonormal

basis at each point of the manifold and taking summation over i, 1 6 i 6 n, we
obtain

bg(Z,W ) = 0.

This means that b = 0 which implies that the manifold is an Einstein manifold
which contradicts the definition of an N(k)-quasi Einstein manifold. Then only the
relation λ− µ(2− n) = 0 holds. Conversely, let λ = µ(2− n), then from (2.3), we

have C̃(ξ,X)Y = 0. Hence C̃(ξ,X) · P = 0. This completes the proof. �

Remark 1. The Corollary 1 also holds in this case.

Theorem 4. Let Mn be an n-dimensional, n≥ 4, N(k)-quasi Einstein manifold.

Then Mnsatisfies the condition C̃(ξ,X) · Z̃ = 0 if and only if λ = µ(2− n).
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Proof. We suppose that

C̃(ξ,X) · Z̃ = 0.

Then we get from (2.6)

C̃(ξ,X)Z̃(Y, V )W−Z̃(C̃(ξ,X)Y, V )W−Z̃(Y, C̃(ξ,X)V )W−Z̃(Y, V )C̃(ξ,X)W = 0.

So from(1.11) and (2.3), we obtain

{λ− µ(2− n)}{g(X, Z̃(Y, V )W )ξ − η(Z̃(Y, V )W ))X − g(X,Y )Z̃(ξ, V )W

+η(Y )Z̃(X,V )W − g(X,V )Z̃(Y, ξ)W + η(V )Z̃(Y,X)W − g(X,W )Z̃(Y, V )ξ

+η(W )Z̃(Y, V )X} = 0.

Then either λ− µ(2− n) = 0 or,

g(X, Z̃(Y, V )W )ξ − η(Z̃(Y, V )W ))X − g(X,Y )Z̃(ξ, V )W(4.7)

+η(Y )Z̃(X,V )W − g(X,V )Z̃(Y, ξ)W + η(V )Z̃(Y,X)W − g(X,W )Z̃(Y, V )ξ

+η(W )Z̃(Y, V )X = 0.

Taking inner product with ξ the equation (4.7), we get

g(X, Z̃(Y, V )W )− η(Z̃(Y, V )W ))η(X)− g(X,Y )η(Z̃(ξ, V )W )

+η(Y )η(Z̃(X,V )W )− g(X,V )η(Z̃(Y, ξ)W ) + η(V )η(Z̃(Y,X)W )− g(X,W )η(Z̃(Y, V )ξ)

+η(W )η(Z̃(Y, V )X) = 0.

Using (2.6) we obtain

(4.8) g(X,R(Y, V )W )− k{g(X,Y )g(V,W )− g(X,V )g(Y,W )} = 0.

Taking X = Y = ei in (4.8), we obtain

S(Y,W ) = (a+ b)g(Y,W ),

which implies that the manifold is an Einstein manifold which contradicts the def-
inition of an N(k)-quasi Einstein manifold. Then we have λ = µ(2− n).

Conversely, let λ = µ(2 − n), then from (2.3), we have C̃(ξ,X)Y = 0. Hence

C̃(ξ,X) · Z̃ = 0. �

Remark 2. The Corollary 1 also holds in this case.

Corollary 2. From Theorems 1-4 the following statements are equivalent:

i) C̃(ξ,X) · S = 0,

ii) C̃(ξX) · P = 0,

iii) C̃(ξX) · Z̃ = 0,
iv)λ = µ(2− n).

5. Examples of an N(k)-quasi Einstein manifold

Example 1. Let us consider a semi-Riemannian metric g on R4 by

(5.1) ds2 = gijdx
idxj = x2[(dx1)2 + (dx2)2 + (dx3)2]− (dx4)2.

Then the only non-vanishing components of the Christoffel symbols and the curva-
ture tensors are

Γ2
11 = Γ2

33 = − 1

2x2
, Γ2

22 = Γ1
12 = Γ3

23 =
1

2x2
,
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R1221 = R2332 = − 1

2x2
, R1331 =

1

4x2
, R1232 = 0,

and the components obtained by the symmetry properties. The non-vanishing com-
ponents of the Ricci tensor Rij are

R11 = R33 = − 1

4(x2)2
, R22 = − 1

(x2)2
, R44 = 0.

It can be easily shown that the scalar curvature of the resulting manifold (R4,g) is

− 3

2(x2)3
6= 0.

We choose the 1-form A as follows

Ai(x) =

√
{4(x2)2 + 1}x2

6{(x2)2 + 1}
, for i = 1, 3

=

√
2x2

3
, for i = 1, 2

= 0, otherwise

at any point x ∈ R4. We take the associated scalars as follows:

a =
1

x2
and b = −3

2

1 + (x2)2

(x2)3
.

Here we have

(5.2) R11 = ag11 + bA1A1,

(5.3) R22 = ag22 + bA2A2,

(5.4) R33 = ag33 + bA3A3.

R.H.S. of (5.2) is ag11 + bA1A1 = − 1
4(x2)2 = R11 = L.H.S of (5.2). Similarly,

we can verify (5.3) and (5.4). Now,

a+ b

n− 1
=

1
x2 − 3

2
1+(x2)2

(x2)3

3
= −3 + (x2)2

6(x2)3
.

In an n-dimensional N(k)-quasi Einstein manifold, the relation

r = na+ b,

holds. Here we find that r = 4a + b holds for this example. Therefore, (M4, g) is

an N(− 3+(x2)2

6(x2)3 )-quasi Einstein manifold.

Example 2. We consider the Riemannian metric g on R4

(5.5) ds2 = gijdx
idxj = x1(x3)4(dx1)2 + 2dx1dx2 + (dx3)2 + (dx4)2,

where i, j = 1, 2, 3, 4. Then the only non-vanishing components of the Christoffel
symbols, the curvature tensor and the Ricci tensor are following :

Γ3
11 = −2x1(x3)3 , Γ2

11 =
1

2
(x3)4 , Γ2

13 = 2x1(x3)3,

Γ1
12 = Γ3

23 =
1

2x2
, R1331 = 6x1(x3)2, R11 = 6x1(x3)2.
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Also the scalar curvature r = 0. We take the scalars a and b as follows :

a = x1x3 and b = −4x1x3.

We choose the 1-form A as follows :

Ai(x) =
1

2

√
x1(x3)4 − 6x3 for i = 1

= 0, otherwise.

From the definition we get

(5.6) R11 = ag11 + bA1A1.

R.H.S. of (5.6) is ag11 + bA1A11 = 6x1(x3)2 = R11 = L.H.S of (5.6). Now,

a+ b = x1x3 − 4x1x3 = −3x1x3.

So, this is an example of N(−x1x3)-quasi Einstein manifold. In this example, we
take the scalars a and b, such that the condition r = an + b is satisfied i.e., the
condition 4a+ b = 0 is satisfied.

6. Physical Example of an N(k)-quasi-Einstein Manifold

This example is concerned with an N(k)-quasi-Einstein manifold in general rel-
ativity by the coordinate free method of differential geometry. In this method of
study the spacetime of general relativity is regarded as a connected four-dimensional
semi-Riemannian manifold (M4, g) with Lorentzian metric g with signature (−,+,+,+).
The geometry of the Lorentzian manifold begins with the study of causal character
of vectors of the manifold. It is due to this causality that the Lorentzian manifold
becomes a convenient choice for the study of general relativity. Here we consider a
perfect fluid (PRS)4 spacetime of non-zero scalar curvature and having the basic
vector field U as the timelike vector field of the fluid, that is, g(U,U) = −1. An
n-dimensional semi-Riemannian manifold is said to be pseudo Ricci-symmetric [4]
if the Ricci tensor S satisfies the condition

(6.1) (∇XS)(Y,Z) = 2A(X)S(Y,Z) +A(Y )S(X,Z) +A(Z)S(Y,X).

Such a manifold is denoted by (PRS)n.
For the perfect fluid spacetime, we have the Einstein equation without cosmological
constant as

(6.2) S(X,Y )− 1

2
rg(X,Y ) = κT (X,Y ),

where κ is the gravitational constant, T is the energy-momentum tensor of type
(0, 2) given by

(6.3) T (X,Y ) = (σ + p)B(X)B(Y ) + pg(X,Y ),

with σ and p as the energy density and isotropic pressure of the fluid respectively.
Using (6.3) in (6.2)we get

(6.4) S(X,Y )− 1

2
rg(X,Y ) = κ[(σ + p)B(X)B(Y ) + pg(X,Y )].

Taking a frame field and contracting (6.4) over X and Y we have

(6.5) r = κ(σ − 3p).
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Using (6.4) in (6.5), we see that

(6.6) S(X,Y ) = κ[(σ + p)B(X)B(Y ) +
(σ − p)

2
g(X,Y )].

Putting Y = U in (6.6) and since g(U,U) = −1, we get

(6.7) S(X,U) = −κ
2

[σ + 3p]B(x).

Again for (PRS)4 spacetime [4], S(X,U) = 0. This condition will be satisfied by
the equation (6.7) if

(6.8) σ + 3p = 0 as κ 6= 0 and A(X) 6= 0.

Using (6.5) and (6.8) in( 6.6), we see that

(6.9) S(X,Y ) =
r

3
[B(X)B(Y ) + g(X,Y )].

Thus we can state the followings:

Theorem 5. A perfect fluid pseudo Ricci-symmetric spacetime is an N( 2r
9 )-quasi-

Einstein manifold.

Remark 3. Equation (6.9) recovers a result of Guha [14] which says that a perfect
fluid pseudo Ricci-symmetric spacetime is a quasi Einstein manifold with each of
its associates scalars equal to r

3 , r being the scalar curvature. Also, this result has
been mentioned by De and Gazi [5].
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TURKEY

E-mail address: ayildiz44@yahoo.com

Department of Pure Mathematics, University of Calcutta, 35, B.C. Road, Kolkata,

700019, West Bengal, INDIA
E-mail address: uc de@yahoo.com

E-mail address: azzimece@hotmail.com


