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ABSTRACT
i

We are given N learners each capable of learning concepts (subsets) of a domain

- set X in the sense of Valiant, i.e. for any c E C C_2 x, given a finite set of exam-

pies of the form < xi,Mc(xi) >;< x2,Mc(x2) >;...;< xl, M_(xt) > generated

according to an unknown probability distribution Px on X, each learner produces

a close approximation to c with a high probability. We are interested in combining
the N learners using a single fuser or consolidator. We consider the paradigm of

passive fusion, where each learner is first trained with the sample without the influ-
ence of the consolidator. The composite system is constituted by the fuser and the

individual learners. We consider two cases: open and closed fusion. In open fusion

the fuser is given the sample and the hypotheses of the individual learners; we show

that the fusion rule can be obtained by formulating this problem as another learn-

ing problem. For the case ali individual learners are trained with the same sample,

we show sufficiency conditions that ensure the composite system to be better than

the best of the individual: the hypothesis space of the consolidator (a) satisfies the

isolation property of degree at least N, and (b) has Vapnik-Chervonenkis dimension

less than or equal to that of every individual learner. If individual learners are

trained by independently generated samples, we obtain a much weaker bound on

the VC-dimension of the hypothesis space of the fuser. Second, in closed fusion the

fuser does not have an access to either the training sample or the hypotheses of the

individual learners. By suitably designing a linear threshold function of the outputs
" of individual learners, we show that the composite system can be made better than

the best of the learners.

Keywords and Phrases: N-learners problem, computational learnability,

passive fusion, open fusion, closed fusion.
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1. INTRODUCTION

In several practical applications, we are faced with the problem of combin-

" ing information from several sources. Such examples abound among humans and

machines alike. For example, a judge is required to examine the evidences from

attorneys and deliver a judgement -- in this case the information sources are "com-

petitive". In the example of a robot equipped with a number of sensors, the problem

is to combine the sensory information and form a description of the environment

in this case the information could be (a) "cooperative", e.g. two sensors indicating

an obstacle in the way; (b) "competitive", e.g. a faulty sensor giving a reading
different from a non-faulty one; or (c) "complementary", e.g. one sensor giving the

shape and another giving the color.

The N-Learners Problem is a special (abstracted) case of data fusion: we are

given multiple learners that infer concepts, and the problem is to design a consolida-
tor or fuser that combines the outputs of the individual learners. In the paradigm

of passive fusion the individual learners are not supervised by the fuser. In active

fusion the individual learners are controlled by the fuser. Note that a passive fuser

is a special type of active fuser that chooses not to control the learning process of

the individual learners. In this paper, we discuss only passive fusion when the indi-

vidual learners are as described under the framework of Valiant [28]. The learning

problems (i.e., design of individual learners) under this framework have been exten-

. sively studied over the past five to six years; a small selection of results is presented
in Section 4.

A variant of the N-learners problem has been first discussed in [25] in the context
" of sensor fusion in a hybrid system. Potential applications of the N-learners problem

include sensor fusion [11,16], hybrid systems [13,25], information pooling and group

decision models [14,20], and majority systems [8].

Consider a system of N learners L1,L2,...,LN, where each Li learns concepts

(subsets) of a domain X in the sense of Valiant [28], i.e., given a sufficiently large

sample of examples of c E C C 2x, a hypothesis h close to c will be produced

with a high probability. The closeness of the hypothesis (learned concept) h to c
is specified by a precision param_'ter e, and the probability that this closeness is

achieved is specified by a confidence parameter 1 -6. Given two learners trained

by the same number of examples, the one with higher or equal confidence for the

same value of precision is considered better (this notion is more precisely defined

in Section 4). In this paper, we only consider the problem of designing a f_L, er (or

consolidator) such that the composite system, of the fuser with the N learners, can
be made better than the best of the learners.

There are other interesting criteria for designing a fuser. For example, we might

be interested in making the composite system learn concepts that are not learnable

by the individual learners. In [26] a system capable of learning Boolean combina-

" tions of halfspaces by utilizing a system of perceptrons is described; note that a

single perceptron is incapable of learning such concepts [23].

We first illustrate some simple cases where the composite system can be easily

seen to be better than each of the learners (Section 3), and then consider more

general cases.

1



2 Introduction

We consider two paradigms:

(a) Open Fusion: In open fusion, the fuser is given the training examples and

the hypotheses of the individual learners. We introduce a property called the

isolation, and present sufficiency conditions that ensure the composite system to

be better than the best of the learners. We show that the problem of designing

the fuser can be solved by casting it as another learning problem that can be
solved using known methods if the suitable isolation property is satisfied. We
consider the two cases:

(i) all learners are trained with the same sample, and

(ii) each learner is individually trained with a separate random sample.

We derive sufticiency conditions for several formulations of the learnability prob-

lem such ;hat the composite system has higher confidence than the best of the

learners. In both cases, the hypothesis class of the fuser must satisfy the iso-

lation property of degree N, where N is the number of individual learners;

additionally, the condition in the first case is that the Vapnik and Chervonenkis

dimension [7] (VC dimension) of the fuser be smaller than or equal to that of

every learner. And in the second case the fuser can have much larger VC dimen-

sion (the exact bound is specific to the formulation of the learning mechanism

of Li's). In other formulations that do not use VC dimension (e.g., learnabil-

ity under fixed distributions [6], learning under metric spaces [15]), we use the

corresponding parameters to express sufficiency conditions.

(b) Closed Fusion: In closed fusion, the fuser does not have access to either the

examples or the hypotheses of the individual learners. We show that a linear

threshold fuser can be designed such that the composite system is better than
the best of the learners. This result shows that that even if all individual learners

are completely consistent with the sample (i.e. all of them have zero empirical

error), we can still make the performance of the composite system better than

that of any individual learner.

The organization of this paper is as follows: A precise formulation of the present

version of the N-learners problem is presented in Section 2. Spccialized examples
where a suitable fusion rule makes the overall system better than the best of the

learners are given in Section 3. A selection of existing learning formulations, and an

approach to compare the learners are outlined in Section 4. The general problem is

solved in Section 5 for the case of open fusion. Closed fusion using linear threshold

functions (of the outputs of the learners) is addressed in Section 6.



2. N-LEARNERS PROBLEM

A concept is a subset of a domain set X; for a concept c C X we define a

. membership function Mc " X --, {0,1} such that for x E X: Mc(x) = 1 ifx E

c and Mc(x) = 0 if x _ c ( for ease of presentation we abuse the notation by

interchangeably using c and Mc when the reference is clear from the context). A
set of concepts is called the concept class. An example of a concept c C_X is any

pair < x, Mc(x) > for x E X, and an l-sample of c is a sequence of I examples of c.

An example < x, Mc(x) > is called positive if Mc(x) = 1 and negative if Mc(x) = 0.
We assume that an example is randomly produced according to a distribution PA"

on X, and the examples of a sample are produced independently. Each learner for
a concept class C C 2x has a hypothesis class H C_2x. We mainly consider the

cases where Px is unknown; we consider one case where Px is known.

The concept class C is learnable by a hypothesis class H if for every PA', for

any concept c G C, there exists l < _ such that: given an /-sample of c (i.e.,

< xlMe(zl) >,< x2,Mc(z2) >,...,< zt,Mc(xr) >) and e and 5, ( 0 < e, 5 < 1)
an approximation h G H can be produced such that

Prob[#(cAh) > e] < 5 (2.1)

where cAh = (c-h)U(h-c) and #(cAh) = f dPx(x), i.e. the integration
Mc(x)¢Mh(x)

. is over ali x that precisely belong to one of c and h but not to both [7,28]. Note that

#(cAb) is the probability that a randomly chosen example (with respect to Pa" ) will
yield different values under Mc and Mh. Here c is often called the target concept

- and h is called the _ypothesis of the learner. Informally, the equation (2.1) means
that with an arbitr._rily specified confidence 1- 6, we must be able to produce a

hypothesis that approximates the target concept within e which is also arbitrarily

specified.

The above formulation is popularly referred to as the Probably Approximately

Correc_ (PAC) learning [7,28]. Several variants of this basic problem have been
studied by a number of researchers (see the references). We refer to condition in

Eq (2.1) as the (e, 6)-condition. This condition is also often expressed as

Prob[#(cAh) < e] _>1- 6. (2.2)

We say that C is polynomiaUy learnable by H if the number of examples, often

called the sample size, needed to ensure the (e, 6)-condition is a polynomial in l/e,

1/6 and some appropriate parameters of H such as VC dimension, cardinality, etc.

[7,28]. In some formulations, the sample size has to be polynomial in the complexity

of the target complexity (e.g. [2,22]). Also, in some cases only a single parmneter

is used to express the (e, 6)-condition; for example, h = ! = __is used in [22,28].
Now consider N learners such that each learner has t_e same concept class C C_

2x and the same output space of {0, 1}. The ith learner Li has a hypothesis space of

Hi C 2 X. Each learner has its own way of producing a hypothesis. In other words,

the individual learners can differ in their hypothesis classes, and/or in the methods

used to produce the hypotheses. The N-learners problem deals with designing a

fuser or consolidator that learns a map from the outputs of the N learners to {0, 1}.
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4 N-Learners Problem

Let HF denote the hypothesis space of the fuser. One example for the hypothesis
class of fuser is a set of Boolean combinations of at most N variables. We consider

more general hypothesis classes by embedding the N-dimensional Boolean cube into

N N, and letting HF to be a subset of 2_^'.

Our main objective is to make the composite system of the fuser and the learners
better than the best of the individual learners. The notion of "better" is formalized

in Section 4. The problem of designing the fuser critically depends on the informa-
tion available to the fuser such as the type of learners, the examples given to the

individual learners, etc. We are intersected in identifying the cases in which a fuser

can be designed to outperform the individual learners.



3. SIMPLE FUSERS

To illustrate the basic ideas of passive fusion, we consider a very simple set of

. N learners; we show that in these cases a fuser can be very easily designed. Our

examples consist of learners, called learners with one aided error, that are allowed to

make mistakes on only positive examples or only on negative examples of a concept.

3.1 ONE-SIDED LEARNERS

Consider a set of learners such that each Hi makes only one-sided errors as in

Valiant [28], i.e., corresponding to a target concept f, Li learns a hypothesis fi

such that f C_ fi; we denote this by f =¢, fi. In other words, Li is not allowed

to misclassify members of f, but can misclassify non-members of f. Valiant [29]

discusses learning algorithms for such learners for several cases of Boolean formulae

(see also Natarajan [22] for some additional work).

Now consider that each Li has been trained with a sample that ensures (e, 6)-

condition, and x E X is given to be classified. We define a fuser F in this case to

yield a value of 1 if and only if all Lis yield ls, i.e., the hypothesis of the consolidator

is h = [_ fi. Clearly, we have f =_ n fi. Properties of the fuser are given in the
/ i

following theorem.

Theorem 1. For the system of N statisticedly independent/earners with one-sided

errors such that f =_ fi for each /earner Li, let the hypothesis of the fuser be

" h = ('1fi. Then we have:
i

(i) With the probability at least 1 -5 N we have #(f Ah) <_e.

(ii) With the probability at least (1 - 6) N, we have

#(f Ah)<_ max{p j}

where pij = #(fiA(fi N fj)).

(iii) With the probability at least (1-5) N, we have for any f0 E {fx,f2,..., fN}"

.(SAh)<" Z_. e- Pi+ Pi,j+'"+( 1)Npi_,,2,...,i_v
i i,j

where pi = #(fA(fo N fi)), Pi,j = #(fA(fo n fi N fj)), for distinct i,j E

{1,2,...,N}

Pi,,i2,...,ij = #(fA(fo n li, n... n fii) )

for distinct i l i2, ij E {1 9 N} and 1 < j < N, ... ,_._, . . . , _ _ •

" (iv) Let .T = {f,, f2,..., fN } and mk = .T"-- {fk}. For any fk, let

5



6 Simple Fusers

Then we have

,Xs,- - Prob[fkn f,] + Prob[fk n fi n + ...
fi E _k Ii, fj G_k

d fi k

We Mso have

#(fAh) <_e- max{Prob[fk]- Af_}"
lk EY-

. Proofi Since each Li is a Valiant's learner, we have #(fAfi) >_e with a probability

of at most 5. Thus with a probability of at least 1- 5N, there exists Li with

#(fAfi) _<e. Since h =_ fi and f =_ h, every x in h but not in f, will definitely
be in li. Thus every x that contributes a non-zero value to #(fAh) will also

contribute the same value to #(fAfi). Hence we have (i). For the second part,

with a probability of (1 -5) N, we have #(fAfi _< e) for each Li. By taking AND

of fi and fj we reduce e by pij.
A tighter bound on the total amount of reduction in e can be estimated by using

the the Inclusion-Exclusion Principle [12,18]; this bound is given in (iii) and (iv)

parts. Consider a set Y. For any A1,A2,...,AN C_Y, and a function ¢ ' 2 Y

[0, MI for _h'/< oe, such that ¢(A U B) = ¢(A) + ¢(B) for any two disjoint subsets
A, B C_Y, we have

¢(fi,1 N A2 N... n,4_) = ¢(Y) - E ¢(Ai) + E ¢(Ai n AS) +... +
i i,j

n n... n A,),

where -4i = Y- Ai.

We identify ¢ with the probability measure [12]. Let Y = f0- f, thus Prob[Y] =

#(f0Af) < e; and let = (foAl1N...fj)-f, thus Pi,,i2,...,ij = #(foO fi_ N

• .. fij)/kf). Thus the part (iii) directly follows. Part (iv) follows along the lines of

(iii) by simple algebraic manipulation. QED.

Now consider the implications of this theorem. First, we are able to ensure

that the composite system has a higher confidence factor of 1 - 5 N of bounding

the precision by e; also, the ratio of the corresponding confidence factors increases

with N since (1-eN) 1 -t- 5 -_-5 2 "[-" "[-5 N-1 Second, with lesser confidence, we1--5 ....

can reduce the e by Pi,j. Note that p_,j U pj,_ = #(LAfj); thus the reduction in e
is proportional to the biggest amount of "dissimilarity" between two hypotheses of

the individual learners. An expression for more precise reduction in e is given in

(iii) and (iv).
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" Example 3.1. Finite Hypotheses Classes:

Consider the case of finite number of hypotheses for each learner, i.e. [Hi[ < oo.

" Assume that C C_ni for i = 1,_,...,9 N. Then the number of examples needed to

ensure learnability is given by m = i, In (H_I-_)as in Natarajan [22] (also see Blumer

et al [7]). A learning algorithm for Li in this case simply produces a hypothesis that
is consistent with the sample, i.e. any h E Hi that contains ali positive examples and

does not contain any negative examples is guaranteed to satisfy the (e, 5)-condition.

In our present case, we assume that the individual learners differ in the way they

pick their hypotheses.

Now consider the condition (i) of Theorem 1. If a single learner of the above

kind has to satisfy the (e, 5N) condition, then the number of examples required is

1 In (,1_1). Thus the effect of composite syetem is as if the numbergiven by ml = 7

'ln (6--_-_)•ofexarnplesto a singlelearnerhas been increasedby 7

SimilarcomputationscanalsobecarriedoutusingtheotherpartsofTheorem I.

By using part (ii) we have

1 (i '"" )7721 --" In

1-- N

where Pmax -- max{pij }"
tj

Since

. _ _ _< _ (I - II,"

the effective increase in the number of examples is at least

Pmax ln(lHi[) _ 1 in (1 (1-5) N )c(e - Pmax) e 6 _ "

It is interesting to note that if e = Pmax, then the effective increment in the

examples is oo; this is because this condition is tantamount to recovering f com-

pletely. Also the more the number of learners, the more will the effective increment

in the number of examples.

We now consider the counterpart case where each learner Li satisfies the prop-

erty: any x E X in fi must be in f, i.e. Li is allowed to misclassify elements of f:

but is not allowed to misclassify non-members of f. i.e., Li learns concept fi such

that fi C_f; we denote this condition by f _ fi. In this case, the hypothesis of the

fuser is h = U fi. We have f <= U fi.
i i

Theorem 2. For the system of N statisticaJly independent/earners with one-sided

errors such that f ¢= fi for each /earner Li, let the hypothesis of the fuser be

h = (.J fi. Then we have:
t

0

(i) With probabiIity at least 1 - 6N we have #(f Ah) < e,



8 Simple Fusers

(ii) With probability of at least (1 -5) N we have
m

#(fAh) < e-max{pi,j}
133

(iii) With probability at least 1- 5 N we have

_,(f/xh)<_N_- (N - i)_i + _ _,i +--. + (-i) N_,,_,...,_
i,j

where 3"Y= Prob[f], ")'i,j -- Prob[finfj], for distinct i,j E {1,2,... ,N} and

7il,i_,...,ij = Prob[fil n fi, n... n fij]

for distinct il,i2,...ij 6 {1,2,...,N} and 1 _<j _<N.

(iv) With probability (1 -5) N, t'or

2N-1 _ ! NeL
2(,v - eL)+

Prob[f] >_e-_ N -1 + N -1 N-1

for some _, we have
#(fAh) < e-

where eu = max max Pil,i2,...,i i add where eL -- rain rain pit,i2,...,i i
j il,i2,...,i1 .7 il,i2,...,ii

Proof: The proofs for parts (i) and (ii) are similar to those in Theorem 1. For (iii),

we first note, for f = Y

#(/Ah) = Prob(fl n f2 n... n fN).

Then using the Inclusion-Exclusion principle, and Prob(Y) = Prob(f), and

Prob(fi) >_7I -e, we have (iii). Then

Prob(fl f-If2 VI... VIfr-l) = Prob(f) - E 7i + ___ 7i,j
i i,j

+... + (-1)_-17i_,i2,...,i,_,.

Let us denote

= + +... + •
i,j i,j,k

Then the condition #(fAh) _ e- _, where _ >__0, is implied by

A
Prob[f] >_e + _ +N-1 N-1

We now derive an upper bound on A as follows:

-- 2 £U-- eL +''"
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Now we have

. + +...+ = -1

" " " " " " 2"

Thus X<_[2g-1 - ½](_v- _z) + N,L. QED.

If ,v = ,L, then we can reduce the e by Oe (Prob[f]- e)(N - 1) N__ -- N_---_£L.

The value of e can be reduced by employing a suitable number of learners. In a

general case, such reduction may not be achievable.

3.2 COMBINATION OF LEARNERS

Now we consider the case where we have N independent learners of tile type in

Theorem 1 and N independent learners of the type in Theorem 2. The hypotheses

of the first type of leaners are denoted by fl, f2,- .-, fN, and those of the second type

are denoted by gl,g2,...,gN. Let ._- = {fl,f2,...,fN} and _ = {gl,g2,...,gN}
Then we obtain a static fusion rule given by (for x E X):

N

ifx E 0 gi, then output 1
i=1

N

else ifx $ N fi, then°utput 0
i=1

else flip a fair coin, and output 1 if heads oi" output 0 otherwise;

Consider that N = 1, then with probability (1 - 6)2 we have fAh < e. To see

this, note that with probability I - 5 both fl and gl will guarantee a precision of

e. Using the above algorithm, the region of error is (fl - f) O (f - gl) and the
1 Thus the total probability

probability of error for any point in this region is 7"
1of error is 7[#(flAY) + #(fAg1)] < e. In the general case the following are direct

consequences of the discussion of last subsections.

(i) With probability at least (1 -6N) 2 we have #(yAh) < e,

(ii) With probability of at least (1 -6) 2m we have

#(yAh)<e- g max{#(fiA(fiAfj))}+max{#(giA(giNgJ))}
- - L i,3 ',J

Inview of(i)thisalgorithmfaresworsethanthebestoftheindividuallearners

fortheparticularcasewhen N - I.Ina generalcasethecondition(I- 5N )2>_I-6In 2 .

is implied by 1 -5 g >__1 - _ [1]. This condition in turn is satisfied if N >__1 + (1/_),

- thus, we can make the system have confidence higher than 1- 6 by suitably choosing
the number of learners. In particular if 6 < 1/2, i.e. each learner performs better

than a fair coin, it suffices to ensure N > 2. Also note that this algorithm can

exploit the diversity of members of both _ and _ as in (ii). More precise bounds

on #(fAh) can also be worked out along the lines of last subsections.



4. COMPARISON OF LEARNERS
q

In judging the performance of various learners, it is often necessary to make

comparisons between _he learners. We characterize a learner by the parameter

pair (e,_); recall that the learner Li and the fuser F are chara,*erized by the

pairs (ei,_i) and (ef,_F) respectively. In general, for many formulations of the

learnability problem, there i_xa functional relation between ei and _i of a learner

as will be subsequently illustrated. Also, some authors use a single parameter to

characterize the learners (e. g. [22,28]). We compute the adjusted $i, denoted
N

by _i, corresponding to the mean value cf g = _ ei; the subsequent discussion
i=1

is, however, valid for any other value for g. In the case all learners are trained

by the same number of examples we define _mi,_ = min _i. The parameter _ is
1

used for comparing the various learners. Li is considered better than Lj if _i _< Si,

i.e. 1 -_i _> 1 -_j, for the same sample size; this definition is extensively used

subsequently in this paper.

We now present a list of examples for different existing formulations of the

individual learners; in each formulation we describe some interesting features and

underlying formulae of the learnability problem. Our intention here is to illustrate

some important existing formulations, and also to derive formulae for adjusted $'s

for these cases. These formulae are used in obtaining some sufficiency conditions in
Section 5. In the rest of this section we assume that each learner is trained with a

m-sample.

b

Example 4.1. Finite Hypotheses Classes:

From Example 3.1, we have, _i = IHi[e -m_, and the adjusted 6 is given by
N

_i = [Hi[e -m_, where _ = _-r _ el. Note that if all learners are trained by the same
i--1

set of examples (or the same number of examples), the learner with least number

of hypotheses will yield highest adjusted confidence. Stated in mmther way, the

learner that can explain the sample using only a smaller set of hypotheses will a

better predictor of the target concept.

The formulation of Example 4.1 can be adapted to take into the account tile

complexity of the target concept, denoted by n, as illustrated in the next example.

Example 4.2. Occam 's Razor:

Consider the case Hi is countably infinite. We assume that C C Hi. Let the

complexity of a hypothesis h E Hi denote the number of bits needed to specify h

in some fixed encoding [7]. An Occam-algorithm for Hi with constant parameters

ci >_ 1 and 0 _< c_i < 1 is a learning algorithm that"

(i) produces a hypothesis of complexity at most n_'m _; when given a sample

of size m of any concept of 6' of complexity at most n, and

10
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(ii) runs in time polynomial in the length of the sample.

It has been shown that the existence of an Occam-algorithm for H implies polyno-

mial learnability [7]. Then given a sample of c E C of complexity at most n, the
number of examples needed to ensure polynomial learnability is given by

m - kln(l/5)+ k(nC'/e) 1/(1-_')

where k is a constant. The value of the adjusted 5 is given by

3i=

where x = n_-_, g_'. Note that in this case each learner is characterized by the

parameters of its Occam-algorithm.

We now consider more general cases of X and Hz as discussed in [7]. A family

H C 2x shatters a set Xt = {xl,x2,...,xl} C X, if {h n Xllh E H} = 2x', i.e. for

every subset of Xz there exists h E H that contains this subset but not its com-

plement. The Vapnik and Chervonenkis dimension of H, denoted by VCdim(H) is
the maximum size such that every subset of X of this size is shattered by H. The

VCdim(.) plays a very critical role in learnability in that C c_ H is learnable if and

only if VCdim(g) < ¢x_[7].

Example 4.3. Infinite domain and infinite hypotheses classes:

• We now consider the cases when X is finite, finitely enumerable, a Boolean

cube or a vector space and C C_Hi; let VCdim(Hi) = di < (:x_. From Blumer et

al [7], the number of examples needed for learnability using hypothesis space H,

VCdirn(H) = d, is given by

max(! l°g2_' 8d l°g le3)"e

Here, the learning algorithm simply outputs any hypothesis that is consistent with

the given sample. Thus we take a sufficient value of the required number of examples

given by"

4 ") 8d 13
m = -log-_ + -- log--.

E 0 E E

Then adjusted _i corresponding to a m-sample is given by

Further assume that each example is subjected to misclassification with a prob-

" ability of 1 -7. Then the number of examples needed to ensure (e,_)-condition is

given by (Blumer et al [7, Theorem A3.1])"
w

_' 72e 72e •
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Then adjusted 6; is given by

_rn72 _ *

$i _" 8 e2d' In (_--_e) e s

Now if all '.earners are trained by the same set of examples, the leaner with least

VC-dimet sion for the set of hypotheses will yield highest adjusted confidence.

In some formulations of learnability, the notion of cover plays a very important

role; one such instance occurs when Pa" is known. For e _>0, a set C_ C_2x is an

e-cover of C C 2x under Px if for every c 6 C there is _ E C, such that p(cA_) <"e
C is finitely covetable with respect to Px if for every e _>0 there is a finite e-cover

C_ of C. It has been shown in [6] that C is learnable with respect to Pa" if arid only
if C is finitely covetable with respect to Px.

Example 4.4. Learnability under fixed distribution:

We will now consider the case where Px is k'aown, which is known as learnability

under fized distributions [6]. In this case, the number of examples needed to ensure

(e,6) is given by

m - -- in
e

where N, = N_(C, Px, e) is the cardinality of a finite 2-cover of hypothesis space H
with respect to Px. In this case the adjusted _5iis given by

i - Nie aT

where Ni is the _-cover of Hi. If each example is subjected to misclassification with
a probability of p, the required number of examples is given by

m= 12(e+p-2eP) ln__N

e2(1/2 _ p)2 6

The adjusted a is given by

_(m_2(l12_-p)=,_

_i "- Nie t 12(e+p-=ep)).

More details on these aspects can be found in [6].

Example 4.5. Learning under malicious errors:

Kearns and Li [17] study the problem of learning in presence of classification
error. The probability distribution Pa" is represented as a combination of two

distributions P+ and Px based on concept c; P+ and Px are distributions on

c and X- c respectively. Here a learning algorithm can make calls to oracle POS_I

(NEG_M) which produces x 6 X such that

(a) with probability at least 1 -/_, x belongs to c (X - c); and
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(b) with probability 8, x's classification may or may not be correct.

If fl _< e/2, a learning algorithan, called _-robu3t OccarrL Algorithm, exists (for

hypothesis space H) with the sample size given by

m = -- In IHI +In
E

such that e bounds both the errors due to P+ and Px" Let the m examples returned

by POS_M and NEG_M be ul, u2,..., um E X, and va, v2, ..., vm E X respectively.
Here, the E-robust Occam Algorithm returns, with probability at least 1- 6, h E H
such that

(i) lg_,l.,¢hJl < __m _ 2

(ii) [(v_l"_h)l <vn _ 2'

Thus, with high probability h agrees with a fraction exceeding 1 - _ of the sample.

In this case the adjusted 6 is given by _i = 2[Hi[e :_

Example 4.6. Learning subsets of metric spaces:

We now consider a special case of Haussler [15] who discusses the problem of

learning functions of the form f" X _-_Y; the following discussion deals with case

Y = [0, M] _CR (note that for concept learning we have Y = {0,1}). Here Px is
chosen from a set of distributions D; if 7? denotes set of all probability distributions

we have the case of distribution-free learning of Valiant [28] and if [7?I = 1 we have

the learnability by fixed distribution by Benedek and Itai [6].

Consider a set S with a metric d • S x S _-*R +. For any e >_0, an e-cover for
T C_ S is a finite set N C_S such that for all x E T there exists y E N such that

d(x, y) <_e. Note that this cover is different from that in Example 4.4.
Consider a probability space (S, D), for D E 7?, and let F denote a set of real-

valued random variables on S. For any fixed sequence $ = (_1,..., (,,) E S m and
m

f E F, let /)_(I) = -_ _ f(_i) which is the empirical estimate of the mean of f
i=l

ba.s_'d on $. Further for $ E S m, define

FI_= {(f(f_),...,f(fm))lf E F}

Let dL, denote the L a metric. Then let N(e, FI_,dL_ ) be the size of the smallest

e-cover of FI_ by arbitrary points in R m under metric L a. Let us define a metric

dv(r,s) = I_:._1 for ant real v > 0 and non-negative reals r and s The sample sizev+r+s '

. needed to solve the learnability problem for any 7;) in this case is given by

16 ln[4E(N(8, ,dL,))1+ ln( )• ,U_2 "

The adjusted _ii in this case is given by

_ql n ...........
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£V

4E[N(-_-, FI_ , dL, )le-[ _-'--_]

where Fi(.) corresponds to the hypothesis class of learner Li.



5. FUSION AS LEARNING

Consider that the product space of the outputs of the learner {0, 1}N be eta-

" bedded in Rg. Let HF be a family of subsets of _N; if HF consists of Boolean

functions they can be embedded in _N and viewed as subsets of _N Let (} denote

the origin, and ii denote the N-dimensional vector with 1 in the ith component
and 0 in all other components. We say that HF satisfies isolaiion properiy of degree

N if for i = 1, 2,..., N, there exists hi E HF such that hi n {8, i} = {0, 1}, and

wjij _ hi for wj E {0, 1} and _ wj > 1. The isolation degree of HF, denoted
j:_i j_i

by I_dim(HF) is the maximum value of N such that HF, embedded in _N, has
the isolation property of degree N. This property, as simple as it is, is sufficient to

guarantee that the passive fusion through learning yields a system that is at least

as good as the best of the learners.

Example 5.1.

Consider that HF is the set of all Boolean functions of N variables. This set

trivially satisfies the isolation property of degree N.

Example 5.2.

Let HF corresFond to set of all hyperplanes of _N. It is trivial to note that

I_dim(HF) = N. In the next example we show that various subclasses of one-
" dimensional hyperplanes will have I_dim(.) of N.

Example 5.3.

Let HF correspond to set of all line segments of the form {xt +(1 -t)y I for some

x, y E _i}{N and Ix- Yl > 1}. Here I_dim(HF) - N. Note that the same value is
retained if we restrict the line segments to orthonormal or iso-oriented, i.e. parallel

to one of the coordinate axes. If the condition Ix- Yl -> 1 is changed to Ix - Yl < 1,

then I_dim( H f ) = O.

Example 5.4.

Consider the class of iso-oriented boxes of dimensionality more than one such

that the length of each side is greater than 1. For this set I_dim(.) = O.

- Using I_dim(), we show the following theorem.

Theorem 3. Let the domain be either finite, finitely enumerable, a vect.or space

• ota Boolean lattice. Consider that same set of examples are used in training the

individual /earners, and each /earner is statistically independent. Let f F and f,

denote the adjusted 6's of the fuser and the/earner Li respectively. If HF satisfies

15
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isolation property of degree N, and has a VC-dimension less than oi" equal to that

of the smallest of learners, then composite system can be made sud_ that

6 F _ rain 6i.
i

Proof."We solvethepassivefusionproblemas anotherlearningproblem - we pick

thehypothesish 6 HF thathas theleastamount ofempiricalerror.Thus by the

isolation property of degree N, we are guaranteed to pick a hypothesis whose error

is less than or equal to the least among the fis. Note that by the isolation property,
the fuser can "mimic" any of the individual learners. For all the four cases of X -

namely, vector space, Boolean lattice, finitely enumerable and finite - the required

number of examples to ensure (e, 6)-condition is monotonically related to the VC-

dimension [7]. Thus for the same number of examples, the consolidator will have

least adjusted 6 because its VC-dimensien is at most as large as the least of the

learners. QED.

We now consider the case when each of the learners is trained by ap indepen-

dently generated m-sample.

Theorem 4. Consider that each learners is trained by aJ_ independently generated
N

1
m-sample. Let _ = -_ y_ ei, and 6i be the adjusted 6 of L,. Then a sufficiency

i=1

condition for making confidence of the composite system higher than or equal to

that o£ the best of the (statistically independent)/earners is given by:

O) If X is £nite, then

]HF] <_mi.n{lHil}e (N-1)m_
1

i

(ii) If X is a vector space, Boolean lattice, or finitely enumerable, then

(N - 1 )mi
VCdirn(HF) <_min{VCdirn(gi)} +

, 8 log 13-'2-_
£

(iii) If the classit_cation of the examples is subjects to an error with probability

1 - p, then

(N - 1 )p2rne
VCdim(Hy) <_min{VCdirn(Hi)} +

i 161n JA<
p2(

Proof: The critical point is that the fuser has an (Nm)-sample to pick its hypothesis,

whereas each I: _",_ _-_examples. First consider the case of finite set. The adjusted

6_for this case _,, Je obtained fl'om Natarajan [22] as 5, = lH, le-'_ (from Example

4.1). Then 6F = I;tFle -Nm_ The condition 6F _<min6i establishes the claim (i).

From Blumer et al [7], the number of examples needed for ensuring (e, 6) condition
in the case (ii) is given by

(4 13)
max log2 8dlog_ .
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The adjusted 5; is given by (as in Example 4.3.)

-- r_i{"

_i = 2e2d' l°g (__) e'--T-.

Now a simple algebraic manipulation of the condition _iF < rain _; establishes (ii).
i

Case (iii) follows similarly (using Example 4.3). QED.

We now take several formulations of the learnability problem and obt_in suffi-

ciency conditions similar to those in Theorem 4.

Example 5.5. Learning Boolean Formulae:

We consider problem of learning certain disjunctive normal form (DNF) dis-

cussed in Valiant [29]. Let Mo denote the set of+all monomials on a set of t pred-

icates, where each monomial is a product obtained by a subset of the predicates.

A DNF expression f is of the form _ mi, where M C Mo. A set M1 C_Mo is
miEM

polynomial generable deterministically if and only if there is a deterministic algo-

rithm that runs in time polynomial in t and generates descriptions of all members

of Ml. A learning algorithm for some M1 that guarantees (e, 6)- condition such that

h=7_ _1_ 1 requires L(h, IMII) <_2h(IM_l + lnh) negative examples. Notice that in
this case there is only a single parameter h that characterizes the learner.

Let Mi and hi denote the monomial set and the parameter of Li respectively.

Now let hF denote the parameter of the fuser, and let hmin be the parameter of the

learner with minimum Mi. Now we show that a sumciency condition for hF > hmi,

is [MFI < NIMminl for N > hFlosh_• -- -- hmin log hmin "

Using 2hmi,([Mminl+lnhmin) = ra and 2hF(]MF} +lnhE) = Nra, and by equating
the two values for m we obtain

IMFI = NhminlMminl + In .... (5 5.1)
hF _F hF hF " "

Under the condition N > hFlos hF ..-- h_, los h_, we get the second term on the right hand side

to be positive. This implies IMFI >_NIMm_nl(hm_n/hF), which yields hp >_hm_, if

]MFI < NIMm_.I. Now consider the condition for the general case. Eq (5.5.1) can
be rewritten as

IMFI hmin 1 In hmin hF

N]Mmin] = h---_+ NIMmi,, I tzF '

The the following condition

1 hmix, hF
IMF[ < 1 + In . (5.5.2)

. NIMmin I - NlMmi. I hv
w

implies hF > brain. Also, since bmi n > 1, the condition
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[MPI 1
< 1 + ln(1/h,ni.)

NIMmi,, - NlMmin[

or equivalently IMFI<_NIMm_nl+ln(1/hF' implies Eq (5.5.2) which in turn implies
hF _ hmin.

On the other hand, by noting that hF > 1 we have

uh___am
bmi n hF

< h hl;' < h Nhmm

hF - -

3.hus the following condition

Nhmin
IMFI > 1 + ln(hmin)

NlMmin[ - N[Mmin[

or equivalently [MF[ :> N[Mmin[ + Nhminlog(hmin) in turn implies hF <_ hmin.

Several other cases of learning Boolean formulae are presented in Table 1. For1
the case of learning DNF under error probability of p = _, by equating the

value of m we obtain (MR is the monomial set of the fuser and see Table 1 for

definition of other terms)

IMFI hmin log(lMmin [brain)
= (5.5.3)

glMmi,[ hf log([MR[hF)

Now under the condition [MF[ <_ [Mmin[min(hmi,/hr, g), we have [Mvlhv <

IMFI < N. The first condition implies that 1 < log(lMmin[hmin)
[Mminlhmin and _ _ - Iog(IMFII_F) '

IM.r l > _ The second condition then implies thatwhich reduces Eq (5.5.3) to IM,,,,I -- hF
hF __>brain.

Now consider the third case in Table 1. In this case the number examples needed

to ensure the (e, _)- condition is given by h(nO(n)+ logn) where D(72) is called the

dimension of the hypothesis class (see [16] for the precise definition). Then the
condition hF > hmin is equivalent to

Nm m
>

nDF(n) + logn - nDmi,,(n) + Iogn

such that Dmi.(n)= min{Di(n)}, where Di(n) is the dimension of Hi. The above
i

equation is equivalent to

N-1
Dp(n) > gDmin(n) + _ log n.

72

........................ - v
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Case Fornmla for m CoIMition for 6_. < rain 6i-- i

Learning DNF 2h(lMmi. I+ lnh) IMFI < NIMm:nl
-t- log(l/hmin)

p

DNF with errors 36hlMl[1og(lM, lh) IMrl <_

Valiant [21] IMm_nlmin(hm_n/hF, W)
1

p -- 4hlM?l M_" monomial set
of Li

:error probability

Ml" subset of Mmin = rain M{i

monomials

h=1/e=1/6

toolean functions h(nD(n) + logn) Dg(n) <

Natarajan [16] NDmin(n) + (N-l),, logn
n: number of

variables

D(n): dimension of
hypotheses family

J,

Table 1. Leaning Boolean formulae.

Example 5.6.

We now present the results along the lines of Theorem 4 for Example 4.1 through

4.6 in Table 2; the derivations for all, except the Occam's algorithm, are direct. For

Occam's algorithm we have

m = + k(nC'l_) 11(1-°'')

Since each Occam's algorithm is characterized by (ci, _i), we normalize with respect
N

to & = -_ _ c_i. Thus normalized value of ci, denoted by ?:i is given by n_mc_i =
i----1

negro6'; thus ci - nlogc_+(a_--_)logm Then the condition bF < min6i is equivalent-- log n -- i

to

. (n___r)x/(,-_,) <__(_)l/(,-_) + m(N-1)k (4.6.1).

" Since 0 < _ < 1, we have _ >__1. Thus the condition (4.6.1) is definitely implied

by
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m(N - 1)_
r_CF < ?_Cmin +

- k

Since n >_1, this condition in turn is implied by CF __< Cmin + m(N--1)_k

Ex. No. Case Condition for 6F < rain _i-- {

4.1. Finite hypotheses IHI _< [HminI e(g-1)m_

classes

4.2. Occam's algorithm CF _< Cmin + .m(N-1)_k

(N-1)m_

4.3. Infinite hypothesis dR <_ drain "4- 8 ln(13/e)

classes

4.4. Fixed distribution N F _< Nmine(g-ll_-_2e

- no error

(N-I)_I/2-p) 2

Fixed distribution N F _<Nmine 12(_+,-2_.)
with error

4.5. Learning under [HI < [gminle (N-1)mt-/24

malicious error

4.6. Learning in metric E[NF(_, FI_, dL' )]
( N - 1 )t "2 vm

spaces _<E[Nmin(-_,F(bar_, dL_ )1e ,6

Table 2. Concept learning.

We now discuss some more formulations of the learnability problem that have

not been covered earlier.

Example 5.7. Learning under noise:

We consider the case where the classification is prone to an error with probability

,7 < r/b. This case has been studied by Angluin and Laird [3]; this noise model is

more general than that of Valiant [29] and more benign than that of Kearns and Li

[17]. In this case the sample size required to ensure (e, t_) condition is given by

m= e2(l_2,]b) 2In

The condition of Theorem 4 yields

• (N- 1)(l--2rt(_ ) 2e2m

IHI < IHm_.l_ =
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where Hmin corresponds to the learner with minimum adjusted 6i.

Example 5.8. Heuristic learnability:

+ Consider that we wish to learn a concept class C2 by using a hypothesis class

C1 when concepts of latter can only approximate those of C2. This form of learning

has been studied by Amsterdam [2]. A concept class C1 is said to be h-dense in

the concept class C2 if and only if for every c2 E C2 and probability Px, there

exists ca E Ca such that #(qAc2) < e. Then the concept class Ca is h-heuristically
learnable by a concept (72 if there exists an algorithm A that

1

(i) runs in time polynomial in 7, ½ and the size of ci E C1, and

(ii) outputs a concept c2 E C2 such that with probability 1- 6, we have

_(cl Ac2) < h + _.

The number of examples needed to ensure (e,6)-condition is given by m =

2_In (41__) The condition 6F < min _i yields the following conditionE2 •
l

IHI= IHminldN-l  -
where each Hi is h-dense in C, and Hmin corresponds to the learner with minimum

adjusted 6i.

Example 5.9. Concepts on Strings:

Now we consider that X is a set of strings on a fixed alphabet _; this case has
been studied by Natarajan [22]. Here X can be naturally partitioned into finitely

O0

enumerable classes using the length of the strings, i.e., X = I.J Xm, where Xm
i=1

denotes the set of ai1 strings of length m on the alphabet Y_. For Li now let HS

denote the set of all strings of Hi of length at most n. The dimension of Hi is

defined to be di(n) = log(H_). The number of examples needed to ensure the

(e, 6)-condition is given by m = h(di(n) + log(h)). In this case let hF(n) denote

the parameter of the fuser and brain(n) denote the parameter of the learner with

minimum dimension dmi_(n) for particular n. A sufficiency condition for hF(n) <_
hF(n) log hp(n)

brain(n) is dF(n) <_ Ndmin(n) for N > hmin(n)loghm,n(n) as in the case of Example

5.5. We obtain a more refined condition as follows: note that m = hm;,(n)[dm;n(n)+

log hmi,(n)] and Nm = hF(n)[dF(n) + log hF(n)]. Thus we obtain (by using value

of m from the former in the latter)

hmin(n) drain(n) -Jr- log(hmin(n)) - log(hF(n)). (5.9.1)
dF(n) = N hF(n) hF(n)

_ The rest of the derivation is similar to that of Example 5.5. Also by noting that

hmjn(n) > 1, the condition of Eq (5.9.1) is implied by

• dF(n) < Ndmin(n) + log(1/hmin).

....................
............................... nll lll iii i .... lr



6. FUSION BY LINEAR THRESHOLD FUNCTIONS
Q

The method of the last section requires the knowledge of tile examples and

the hypotheses of the individual learners. We now consider the case where such

knowledge is not readily available. This section also covers the case where the

empirical error achieved by the fuser is greater than or equal to that of some of the
individual learners. This situation can happen when HF does not have the isolation

property of degree N and also when the sufficiency conditions of the last section
are not satisfied.

We consider all learners with minimum _i, denoted by _. Further we assume

that $ < 1/2. Thus, each of these learners is guaranteed to ensure that the precision

is greater than e with a probability of at most delta _. Further assume that we have

N such learners in a given set of M >__N learners.

We now discuss a specific class of fusion rules obtained by taking the linear

combinations of the outputs of the learners and comparing with a threshold, i.e.
N

functions of the form _ yi >__rN. Note that the example of Theorem 1 (Section 3)
i=1

corresponds to r = 1, and the example of Theorem 2 correspond ;,) r = 1/N. We

first show the result for the special case r = 1/2, and then genera_e it.

The basic intuition for expecting that such fusers are possible is provided by

the following Jury Theorem formulated by Condorcet in 1785.

Condorcet Jury Theorem. [14] Given a group of N (N is odd) voters ead_

capable of makir, the right choice in a set of two alternatives with probability p

independent of others, the probability that the majority (the rule that chooses the

decision of the majority of the group) makes the right choice is given by

N

PN=_(Nii)Pi(1-p) N-ii=rn

where m = (N + 1)/2.
Further

(i) if 1 > p > 1/2, then PN is monotonically increasing in N and lira PN _ 1;

(ii) if12 > p > 0, then PN is monotonically decreasing in N and lim PN _ 0;
N --,oo

(iii) if p = 1/2, then PN = 1/2 t'or ali N.

Several variations and extensions of this theorem have been studied in various

contexts such as information pooling group decision making models (see Grofman

and Owen [14] and Miller [20] for some recent surveys), majority systems [8,27], etc.

In the present context, if N is sufficiently large, then the composite system can

be made to have confidence arbitrarily close to 1; hence its 5 ca_l be made smaller

than that of the best learner (namely, 6). Here, we are interested in more exact con-

ditions that guarantee that the composite system is better than the best of the learn-

ers. We first show that a majority system ensures this condition if the number of

( ')learners is larger than 2(_-6) and 0 < 5 < 1/2, such that k _<min 1 + x/_, (1/2-_)

22

......................
r .......................................................



Fusion by Linear Threshold Functions 23

in Theorem 5; this condition does not guarantee that majority system can be used

- as a fuser for smaller values of N. Then, we show that the composite system can

be guaranteed to be better than the best of the learners by suitably choosing r of
the threshold function as specified in Theorem 6.

P

Theorem 5. If the number of learners is larger than 2(_-6) and 0 < 6 < 1/2, such
N

( 1)that 0 < k < rain 1 + v/2, (a/2-g) then the fusion rule _ yi > N/2 will ensure

that 5F <_ 5, where 5 corresponds to the lowest of the individual learners trained

with an l-sample. For example, by choosing k = 2(1/2- 5) we have 5F <_5.

Proof: Let event Ei denote the fact that #(fAfi) _<e. Ei occurs with a probability

of 5. Assuming ali events Ei are independent, the probability that there will be at

most NI2 successes of the events from a total of N Bernoulli trials is given by

(Angluin and Laird [3]):

N/2

5)N-k 5 e-2(1/2-5)_N

k=0

This is the probability with which this composite rule generates an error greater

than e. Thus, we have the probability that #(fAg) >__e is less than e-2(1/2-6)2N
k -2(1/2-6) 2N < e-(1/2-5)k Now we show that under

By using N >_ 2(1/2-6i we have e

the hypotheses of the theorem 5 >_e-(1/2-6)k. In the view of Lemma Al, under the

condition (1/2- 6)k < 1 it suffices to show that

>__1- k(1/2- _)+ (1/2- _ .

Since 6 < 1/2 and k > 0 this condition is implied by

>__1 + k(1/2- 5) + k2(1/2 - 5)_.

This condition in turn yields a quadratic equation

k2(5 - 1/2) 2 - (k + 1)(5 - 1/2) + 1/2 <_0

whose solution is given by

(k+ ±2k 2 _ k + 1 - 2k 2.

In order that the roots of the above equation are real, the quantity under square

root sign must be positive. This yields a quadratic equation k_"-2k - 1 <_0 whose

roots are 14- x/_; this condition yields 1 - x/_ < k <_1 + x/_. This condition coupled

with the condition (1/2 - 5)k < 1 is satisfied by the hypothesis

( ) /02/0< k_<min 1+v/(-2),(1/2_6) "
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Note that the range of k always exists since the lower bound is always negative and
the upper bound is positive by hypothesis.

Now going back to Eq (6.1), we have (k+ 1)2-2k 2 = (k+ 1- v/22k)(k+l + x/Z22k).

1 =x/_-+ 1; thisLet X = k(1 - v/2) + 1, Now the condition X >__0 yields k _ __y

condition is subsumed by Eq (6.2). Then we have

[(1 + V_)k-_- 1]2 __(k + 1)2 - 2k2 > [(1 - v__)k + 1]_

Now the condition of Eq (6.1) can be expanded as

(k+l) 1 V/i )2 (k+l) 1 V/i k 1)2 ,)k22k 2 2k 2 k+l -2k 2_< (5-1/2)_< 2k 2 F_ + -- .

Since X 2 __<[(k + 1)2 _ 2k 2] and X _>0 this condition is implied by

< I/2)<2k 2 - _ 2k2

Using this, we obtain the bounds on 5 as follows:

1 t- 1 <5< 1_(1___1 + 3- -v 2 ) 2k

Now in order that the range is feasible for 5 we have

k 1

which yields k < 1 which is equivalent to k < 1 + x/_.-- V_--I

To show the second part choose k = 2(1/2- 5) which translates to condition on

5as ---g--_1-'/7 < (5<_ 1+,/72, which is implied bv, the hypothesis 0 < 5 < 1/2. Hence the
Theorem. QED

Note that r = 1/2 corresponds to the majority rule; it is possible to reduce

the confidence even under a non-majority rule by choosing a suitable value for r as

shown in the following theorem.

k a

Theorem 6. For 0 < 5 < 1/2 and N >_ 2(k-1) for any r = 5 + _ and k > 1, 5F
is Stud/lcr than that of the lowest adjusted 5 of the individual/earners.

Proof'. Along the lines of proof of Theorem 4 and from Angluin and Laird [3], we
have

LE(5, N,r) < e -2(r-6)2N

k the condition for reducing the adjusted 6 of the entireBy choosing N _> 2(_-e)

system, we have the condition

k2(r __)2

5>_ 1- k(r-6) + 2
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This yields a quadratic equation in (r-5) whose solution yields the following
- condition:

k2 - _ k2

Note that, since k > 1 and k X/2(1 - r) > 0

2

(_- k)_- 2k_(_- _)> [(k- _)- kv/2(_- _)1,
and

[(lc- 1)- kv/2(1 - r)] 2 = [k-v/2(1 - r)- k + 1]2 = [k(V/2(1 - r)- 1)+ 112.

Now let X = k(.v/2(1 - r)- 1) + 1. First consider the case X > 0; this condition
implies

v/2(1- _)> 1- 1/k.

The above condition on r- 5 is implied by the following condition (similar to the
proof of Theorem 5)

k-l-X k-l+X
< (_- _)<k 2 - _ k2

Thus the lower bound is evaluated as follows:

k2 - k2

Then the upper bound can be evaluated as

k2 - k2

Thus the choice of r -- 6 + _ will definitely imply the required condition on

r - 5. To ensure 0 < r < 1 we need to ensure that 0 < __t < 1/2; this condition
can be easily shown to be satisfied if k > 1. In the second case when X __<0, we

use Y = -X and the rest of the derivation is essentially the same. The condition
k 3

N _> 2(k-1) is straight forward. Hence the theorem. QED

As an example of the conditions of this theorem, for k = 2, we obtain N >_4
and r = 5 + 0.25.

Consider that all learners are consistent, i.e. they correctly classify each exam-

ple. In this case, the method of last section stands the chance of picking one of the

. learners which may or may not be the best (i.e. has lowest adjusted 5); whereas,

using Theorem 6 we are guaranteed to have the performance of the best of the
learner in the worst case.
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One of the natural questions to ask is: can we minimize the expected error of
N

misclassification of the fuser in the class of functions of the form _ wiyi > r, for
i-'1

wi E _ ? If the probabilities with which the examples are chosen from the target.
concept and its complement, and Prob[fi- f] and Prob[f- li] are known, then

we can compute wi's and r of the required fuser by using the result of Chow [9];
this method cannot be directly applied in distribution-free formulations, or in the

fixed distribution formulation of [6]. It would be interesting to see if some estimated

values can be used to compute wi's and r in order to guarantee close to optimal

performance.



7. CONCLUSIONS

We have addressed the N-learners problem where each learner is capable of

learning subsets of a domain set X in the sense of Valiant [28]. That is for each

learner and for any c E C C_ 2 x, given a finite set of examples of the form <

xi,Mc(xi) >; ... ;< xl,-h¢c(xt) > generated according to an unknown distribution
on X, each learner produces a close approximation to c with high a probability. The

N learners problem requires a combination of the outputs of the N learners using

a single consolidator. We considered the paradigm of passive fusion, where each
learner is trained with the sample, and then consolidator is allowed to use the sample

and the functions of the learners. We inferred the fusion rule by formulating this

problem as a basic learning problem. A sufficiency condition to make this composite

system better than the best of the individual learners is: the hypothesis space of

the consolidator (a) satisfies the isolation property of degree at least N, and (b) has

Vapnik-Chervonenkis dimension less than or equal to that of the individual learners.
Then we considered the case where the fuser does not have access to the training

sample or the hypotheses of the individual learners. Then by suitably designing a
linear threshold function of the outputs of individual learners, we showed that the

confidence parameter of the entire system can be made greater than oi" equal to
that of a best learner.

This work can be used as a basis for applications involving sensor fusion, infor-

mation pooling and majority systems; to this end, however, some extensions and

adaptations of the present formulation would be needed. Future work can be fo-

cussed in several directions. Obvious extensions to the present work include fusion
of functions and relations, and active fusion. Another topic of interest deals with

the cases where the composite system is capable of achieving tasks that are beyond

the capabilities of the individual learners. Some preliminary work o11this topic has

been presented in [26].
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APPENDIX A
4

Lemma A.1.

(a) For O < x < 1,
X X 2

_-_ <1-_.+ 2-7.

(b) For M _<x _<M + 1, for positive integer M

X X 2 X M X X 2 X M-1

- _ + _ +- M---T< _-_ l_ql- p. + _ +...- (M - 1)! _o,M odd

X X 2 X M-I X X 2 X M

1__.+_. +..._ (M_ I)! ____-_ <_-T.,+_+...+M--7 _o,M Cv_x,

Proof." We express e-_ 1 _,.+ $., + (-1)i _'= - _ "" 7 +"" into even and odd forms

respectively as follows"

x)e-X= (1-- U +_.t 1-_ +...+_-. 1 i+1 +""

e-X=l-_. 1-_ --_-. 1- 7 -... ii 1 i+1 -""

Simple algebraic manipulation of these equations will establish the required result.

QED
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