
Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

N-MAP: A Virtual Processor Discrete Event Simulation Tool for

Performance Prediction in the CAPSE Environment

A. Ferscha and J. Johnson

Institut fiir Angewandte Informatik und Informationssysteme, Universitft Wien

Lenaugasse 2/B, A-1080 Vienna, Austria

Email: [ferscha 1 johnson]@ani.uniiie.ac.at

Abstract

The CAPSE (Computer Aided Parallel Software

Engineering) environment aims to assist a perfor-

mance oriented parallel program development approach

by integrating tools for performance prediction in the

design phase, analytical or simulation based perfor-

mance analysis in the detailed specification and coding

phase, and finally monitoring in the testing and cor-

rection phase.

In this work, the N-MAP tool as part of the CAPSE

environment is presented. N-MAP covers the crucial

aspect of performance prediction to support a perfor-

mance oriented, incremental development process of

parallel applications such that implementation design

choices can be investigated far ahead of the full coding

of the application. Methodologically, N-MAP in an

automatic parse and translate step generates a simu-

lation program from a skeletal SPMD program, with

which the programmer expresses just the constituent

and performance critical program parts, subject to an

incremental refinement. The simulated execution of

the SPMD skeleton supports a variety of performance

studies. We demonstrate the use and performance of

the N-MAP tool by developing a linear system solver

for the CM-5.

1 Introduction

The aim to accelerate the execution of computa-
tionally intensive applications using massively paral-
lel hardware demands the availability of performance
efficient implementations. As a consequence, perfor-
mance orientation must be the driving force in the
development process of parallel programs. In addition
to the adherence to well-developed software enginee-
ring principles, only the application of a profound per-

formance engineering [21] methodology can guarantee
t.he development of successful parallel program codes.

Performance evaluation and engineering in the con-
text of parallel processing has progressed over the past
quarter of a century along different lines. Histori-
cally first, works on the so called mapping problem
appeared [24,4] which addressed assignment and sche-
duling issues in distributed memory MIMD systems.
A large body of literature (see e.g. [20] for a classifi-
cation of the particular problems studied) is available
on the subject, however, most of the models have be-
come obsolete due to the technological development
of multiprocessor hardware now being in its third ge-
neration. The classical branch of computer systems
performance evaluation has also recognized fields for
research and application of analysis methods in paral-
lel processing [2]. Model based performance analysis
has recognized an overwhelming mass of contributi-
ons in the various paradigms: queueing network mo-
dels [15, 16, 111, Petri Net modeling [l] and marko-
vian/stochastic performance models [22] to give some
pointers. Performance models have been devised that
describe the interdependencies of hardware resources
[17], that characterize the behavior of parallel program
components and the workload for parallel systems [6],
but also integrated performance models explicitly re-
presenting parallel program, multiprocessor hardware
and mapping performance factors in a single model
have been reported [B, 181. Most of the results pro-
duced in this branch, however, are not related to the
development process of parallel programs but do stand
rather as contributions to the “art of modeling” for its
own.

A methodological integration of performance and
software engineering activities has been tried for cer-
tain purposes, and various different attempts have
been made. Among the earliest approaches, we find
the insertion of probes into parallel codes, generating
trace information at runtime for t,he purpose of moni-
toring [19], performance tuning [3] or post-execution
behavior visualization [13]. For the user-directed par-

216
1060-3425/95$4.00 0 1995 IEEE

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

I vktual I allelization of sequential codes in semiautomatic com-
pilation systems [28, 71, parameters are computed
from profiling the execution of a sequential run of the

program, and the parallelization strategy is selected
accordingly. Both approaches launch performance en-
gineering activities at a time when operational (paral-
lel or sequential) program code has already been pro-
duced, that is, at the end of the development cycle.
Performance pitfalls detected in that phase, however,
cannot be removed without major redesign and reim-
plementation efforts in general.

Performance engineering methods must therefore
be applied at the very front of the development cycle
in order to be able to avoid time-consuming and error-
prone reimplementations. Several approaches for per-
formance prediction based on models have been repor-
ted recently [18, 23, 261, some of which could be suc-
cessfully applied in restricted application areas [27],
but most applications fail to achieve the performance
predicted by analytical models. The main reason for
their limited practical relevance is the complexity of
implementation details that have significant perfor-
mance effects, the inaccuracy of hardware models and
the unforeseen dynamics of interacting parts and lay-
ers of the application at run time. Performance pre-
diction accurate enough to rank different implementa-
tion alternatives of an application based on program
or workload models is just not feasible in general, so
that the only practical evaluation method consists in
the evaluation of the actual implementation.

Figure 1: Parallel Program Development Cycle

2 Performance Oriented Parallel Pro-

gram Development Cycle

The major ambition of the performance oriented

parallel program development strategy [9] is to de-
rive preliminary behavior and performance predictions
from “rough” specifications of the parallel program.
As a consequence, to express his implementation in-

tent, the programmer should not be forced to provide
detailed, operable program code, but should rather
focus on specifying the constituent and performance
critical program parts. A specification language, ab-
stract enough to allow a quick denotation of the princi-
pal communication and computation pattern, but also
syntactically detailed enough to support an automa-
ted code generation and performance analysis is de-
manded.

This work systematically relates performance en-
gineering activities to the parallel program develop-
ment cycle. The activities can be classified roughly
as: performance prediction applied in early develop-
ment phases (design), modeling (analytical modeling

and simulation) in the detailed specification and co-
ding phase, and finally monitoring and measurements

in the testing and correction phase. Particularly in
this work, we present a performance/behavior predic-
tion methodology based on the direct simulation of
real (skeletal) codes, as opposed to traditional mo-
del based performance prediction (Section 2). We
demonstrate how program skeletons representing just
those program structures that have the highest impact
on performance, can be provided very quickly by the
application programmer within the the N-MAP (N-
(virtual) processor map) tool environment (Section 3).
The possibility to discover flaws that degrade perfor-
mance in a parallel program as early as possible, and
to reason about various implementation designs from
a performance viewpoint is presented in a case study
on the CM-5 (Section 4).

We consider (Figure 1) the “algorithmic idea” as
it appears in the developers mind right after under-
standing the computational problem as the first step
towards a parallel application. The N-MAP high le-
vel specification language is provided as means for the
direct encoding of this algorithmic idea as a parallel
SPMD program at the highest possible level of ab-
straction, the task structure level. Conveniently, the
N-MAP language is based on the C programming lan-
guage, providing language constructs for very intuitive
notions in parallel programming: tasks, processes and

(communication) packets. In a very abstract sense, a
task refers to a contiguous, sequential block of pro-
gram code. The functionality of a task in a parallel
program is referred to as its behavior, and the quan-
tification of its real or expected execution time is ex-
pressed with the requirements of a task. The behavior
of a task can either be computation or communica-
tion, requirements are intuitively expressed in units of
time. An ordered set of tasks defines a process, seen
as a stream of computational or communication task
calls. Since a process aggregates the behavior of the
constituent tasks, the interaction among processes ap-

Simulation
Trace File

1

Performance
Predic.tiod

ViSUalitiOn

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii Inremational Conference on System Sciences - 199.5

pears as the communication induced by tasks in diffe-
rent processes. The metaphor of “virtual processors”
can be adequately used to refer to a process in the
N-MAP language, and an arbitrary amount of virtual
processors with a full interconnect can be assumed to
be available for expressing algorithmic ideas. Commu-
nication objects, i.e. the actual data to be transferred
among virtual processors, are referred to as packets.
Analogous to tasks, packets are characterized by their
behavior (functionality to gather and pack the data),
and their requirements (quantification of the amount
of data to be transferred among virtual processors,
expressed in terms of the number of bytes).

Using the N-MAP language, programmers develop
parallel applications by incrementally and iteratively

going through various levels of explicitness. In each
phase of program development, more and more de-
tailed program functionality is added to the prelimi-
nary structure, until a complete executable parallel
program is created. This process is supervised by per-
formance predictions based on momentary informa-
tion, guiding the developer through the various stages
of development. With this strategy certain parts of
the full specification may be intentionally absent at
some stages of development, making performance pre-
dictions available right ahead of coding the details.
Specifically, performance predictions can be invoked
at any level of explicitness, with prediction precision
correlated to the qualit,y of available information.

3 The N-MAP Environment

An N-MAP specification that can be automatically
processed in the N-MAP environment (Figure 2) con-
sists of a mandatory program description at the task
structure level, and other (optional) sources of text
detailing functionalities and requirements:

TSS (Task Structure Specification) The TSS contains
a skeletal specification of the program, describing
it in terms of processes, tasks and packets. The
language used in the TSS is C with a few exten-
sions (see [lo] f or a more detailed description of
the language extensions used).

TRS (Task Requirement,s Specification) The require-
ments of each task may be specified in the TRS
which returns an execution time estimate for the
task. If no TRS is present for a given task, uni-
tary execution time is assumed. Probabilistic re-
quirements (e.g. random requirements following
the normal distribution) are provided and may

TBS

PRS

PBS

3.1

be used for tasks with non-deterministic execu-
tion times.

(Task Behavior Specification) The actual code to
be performed in a task may be specified in the
TBS which may contain any valid C function. If
no TBS is given, the task is assumed to return
NULL (in the case of a non-void function) and only
the TRS is evaluated during simulation.

(Packet Requirements Specification) Analogous
to the TRS, the number of bytes to be transfer-
red in the packet may be specified in the PRS. If
no PRS is given, a default unitary packet size is
assumed.

(Packet Behavior Specification) The PBS con-
tains the code necessary to pack the data and
returns a pointer to the memory address where
the data is located. If no PBS is given, only the
PRS will be evaluated during simulation.

Discrete Event Simulation of Virtual
Processor Programs

The N-MAP tool (Figure 2) operates in two pha-
ses. In the first phase, the program sources (fn. tss,
fn.trs, . . .) are parsed and translated into either a
discrete event simulation source program (fn. des . c)
or a target machine source program (fn.sys.c). In
the second phase, these are in turn compiled, linked
and executed producing either a trace of the program’s
simulated execution (fn. sim. trf) or of its true exe-
cution on the target machine (fn.sys.trf). (In Fi-
gure 2, fn stands for the name of the program to be
simulated/executed and sys stands for the name of
the particular target machine (e.g. cm-E).) All steps in
the large dotted box are fully automated and usually
not visible to the user.

The parser/translator itself (developed using yacc)
takes the source files and converts them into standard
C using the directives contained in the Translation
Template files (sim. t and sys . t). These allow for t.he
fully automated instrumentation of the program and
the conversion of the (generic) communication calls of
the TSS language into the syntax of the communica-
tion calls of the target machine. The user may also

provide new translation templates, allowing N-MAP
to produce source code for various target machines.

The source generated by the parser/translator is
then, in the case of simulation, compiled and linked
with the discrete event simulator (des .a) and with
routines necessary for producing the trace files them-
selves (trace. sim). In the case of executable code,

278

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

I Virtual Processor I

1 N-MAP Specification

n-------v

j fu.trs
; TaskReqtiwncnts
1 Specification . _-_--__ I

u-------q
1 Task Behavior

i fn.tbS: Specification . _ _ _ _ _ _ _ I

:-------: P&&&q,&-&
: h.Prs: Specification . _ _ _ _ _ _ _I

a-------*

; fn.pbi ;$z;?$;p . _ _ _ _ _ _ _I

:
:
: 43 sim.t
: h__ e-- n sys.r
:

I
I
I Physical Processor

YV - Program Parallel

Execution Trace File

Ifn.sys.trfl

Figure 2: N-MAP Compilation and Virtual Processor Simulation Environment

the source generated is compiled and linked with the
necessary libraries and tracing routines (if tracing is
to be performed).

The discrete event simulator uses a threads concept
to implement the behavior of the virtual processors.
The threads approach was chosen over other possi-
ble implementations (e.g. simulating program beha-
vior by the use of an interpreter) because of the speed
of execution attainable with this method. Further-
more, threads can be implemented very easily and ef-
ficiently on various platforms, making them a feasible
and tractable choice. The overhead introduced by the
use of threads is low and due primarily to the cost of
the context switch (setjmp(> and longjmp()) which
is necessary each time control is transferred from one
virtual processor to another. Also, because each vir-
tual processor is executing in its own context, no fur-

ther adjustments must be made to the program code
to be simulated in order to allow for concurrent ope-
ration.

Besides the trace files generated for the visualiza-
tion and animation of the simulated virtual processor
program execution, the discrete event simulator also
gathers statistics about the simulation run on-the-fly
in a file fn.sim.stats (not shown in Figure 2). The
data contained here includes event occurrence frequen-
cies allowing the computation of busy, overhead and
idle time for each virtual processor, as well as the
number of messages/bytes sent/received. The trace

files generated by both the simulation and execution
adhere to a standard trace file format (PICL [12]),
defining the interface to subsequent analysis and vi-
sualization tools (e.g. ParaGraph [14]).

4 Application Development in N-MAP

With the following case study, the development of
a parallel Housholder reduction (HR) [5] application,
we show the basic usage of the N-MAP methodology
and toolset. We follow the development process from
the TSS until a full implementation is reached, and
compare early performance predictions with empirical

performance observations on the CM-5.

4.1 Case Study: Problem Statement

Householder reduction (HR) as a procedure to
transform a set of n linear equations to upper trian-
gular form that can be solved by back substitution is
known as an an unconditional numerically stable me-
thod. In contrast to e.g. Gaussian elimination, it is
robust against the scaling of equations as a source of
numerical errors. The HR operation is a transforma-
tion of AZ = b’into (HA)Z = II;, where A is n x n. A

is triangularized in n - 1 iterative steps over elimina-
tions in the respective first column a’; and according
transformations of the columns a: . . . a’, and the right

279

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Figure 3: Implementation Strategy for HR

hand side 5 into II;. The following two steps describe
the HR operation more formally:

eliminate

ai,1 := sign(~l,l)((~ill

q1 :=
4

-2 (Ul,l - 4,1> 4,l

Hai := [a:,,, 0,. . .OIT

v’ := [Ul,J - a;,$ a2,1, . , %&?l

transform

Thinking in terms of virtual processors that execute
tasks, we can immediately provide process identifiers
as column[i] and task identifiers as eliminateCi1
and transform[i] [j]. With those, the algorithmic
idea developed above can now be coded directly as an
N-MAP Task Structure Specification (TSS):

Ha’i := G(l - 2 r? r?), for l<i<n

Hii:= ;(l - 2 t? G’)

/* HR.tss: Task Structure Specification */
*define Ii 16

The eliminate step eliminates nonzeros in the first
column of A and produces v’, whereas the transform
step uses v’ to transform the remaining columns of A.

Clearly, the transform step could be executed on the
respective columns in parallel. The first HR operation
applied to A creates HA with zeros below_the diagonal
element in the first column, and cinto Hb; the second
HR then operates on the remaining (n - 1) x (n - 1,>

submatrix of HA and the (n - 1) x 1 subvector of Hb;

etc.

int l,j;
task readblock[I],eliminata~E~,

transformCB1 CIil;
packet vcm1;
process column[il where C i=O..U-1;)

c
readblockCi1;
for (j=O; jCi; j++)

i
recv(columnCi-11,vCjl);
if (i<B-1) send(columnCi+ll,vCjl);

transformCilCj1;

eliminateCi1;
if (i<ll-1) send(column[i+ll,vCi1);

4.2 Implementation Strategy
The TSS first declares tasks for reading a column

At a first glance, the transformation rules above of A (readblock[N], N data items), for the elimi-

bring up an “algorithmic idea” of a dedication of one nate operation denoted by eliminate EN], and for the

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

virtual processor per column of A (Figure 3 a)) with
the following processor behavior: in the first column
(processor) perform an eliminate step (Figure 3 b)),

broadcast the resulting vector v’ to all the other co-
lumns (processors) (Figure 3 c)), and perform respec-
tive transform steps (using c) in parallel (Figure 3 d)).
After that, one HR operation is completed, and the
virtual processor which has assigned the second co-
lumn of A can start the elimination step of the second
HR operation (Figure 3 e)), etc. (Figure 3 f))

N-MAP, by supporting a processor topology in-
dependent possibility of expressing algorithmic ideas,
does not require any explicit representation of the vir-
tual processor interconnection topology. Referencing
virtual processors by their index implicitly defines the
communication pattern. This is a very powerful op-
tion for developing parallel algorithms by experimen-
tation within N-MAP, since no specific hardware as-
sumptions perturb the analysis. For our example, a
ring interconnection scheme could be assumed as di-
rect correspondence to the algorithmic idea: column
(virtual processor) i has to accept vectors 17 from CO-

lumn (i - l), pass it on to column (i + 1) and perform
the local transform with v’.

4.3 The Task Structure Specification

280

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Figure 4: Task occurrences simulated from TSS (left), simulated from TSS, TRS and PRS (middle), and observed
from real execution on CM-5 (right)

transform operation denoted by transf orm[N] [N] .

Note that nothing is said about the implementation
(TBS) of these tasks yet. A packet is defined as
the data item subject to transfer (v[~]). Finally B

successively indexed virtual column processors are de-
clared (column[il where (i=O. . N-i ; I). The in-
dex i here serves as the virtual processor index, i.e.
transformCi1 Cjl ; tells to conduct a transform step
in the j’th iteration on processor i; eliminate[il
shall eliminate on processor i. Note, however, that
the processor index can simultaneously define an ac-
tual parameter for the TRS, TBS, PRS and PBS.

Without providing - for the time being - a detai-
led workload characterization in terms of a TRS and
PRS, or a specific target architecture hardware model
(processor interconnection topology, mapping, etc.),
we can immediately generate the anticipated behavior
of the SPMD program in an idealized, virtual multi-
processor environment.

4.4 Adding Requirements

Naturally the vectors v’ arriving in some virtual
processor become shorter and shorter with each itera-
tion, and the amount of data to be transferred, as also
the computational complexity of vector transformati-
ons, reduces linearly with the increase of the iteration
count. A column i stops transforming after (i - 1)
vectors c, performs a local eliminate step generating a
new Z, propagates this v’ to column (i + 1) and finally
terminates.

This additional quantitative information can be ad-
ded to the TSS in terms of the TRS and PRS as
a matter of refinement of the characterization of the
quantitative behavior of the program. Assuming the

requirements of eliminate[] and transformC1 11 to
be linearly dependent to the iteration level j , since the
vectors to be manipulated reduce in size with each ite-
ration, we could write the respective TRSs as:

Figure 4 (left) h s ows the Gantt chart for the occur-
rences of the specified tasks in the simulated execution
of the TSS, generated by N-MAP for n = 16 virtual
processors. The chart mainly expresses the concurrent
invocation of the individual readblock[l tasks (color
code 0) by the 16 processors (lines in the diagram)
at the very left side of the chart, and the dependen-

cies among transformC1 [l-tasks (color code 1) and
eliminate [l-tasks (color code 2), i.e. the availability
of vectors generated by eliminate[l to be “piped”
to other column[]s. White spaces in the lines of the
diagram indicate that the corresponding processor is
idle at the respective points in time.

The creation of this chart only required a few lines
of code in the TSS and a few seconds of CPU time for
the simulation on a SunSparc workstation - but gives
a very clear intuition on the performance quality of
the algorithm in the implementor’s mind: It is easily
seen that expected processor utilization is rather poor.

(return alpha-trans;orm+beta-transform*j;)

The communication related requirements in terms
of the packet sizes defining the amount of data to
be transferred in the respective iterations of the al-
gorithm are written in the PRS as:

long REp-v(i) int i;
I return (E-l-i) * sizeof(float); 1

Using those TRSs and the PRS, the N-MAP tool
would generate simulated task occurrences reflecting
the reduced computational complexity towards the
higher iteration levels, as compared to the simulation
with unitary requirements. Target hardware perfor-
mance characteristics, however, are (intentionally) not
included in our preliminary N-MAP specification. To
turn from the idealized target system to a real envi-
ronment, we have to include a characterization of the

281

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

performance influences induced by the specific target
system. As an example, we shall demonstrate here,
how the effects of the CMMD message passing library
[25] provided by the operating systems of the CM-5
can be integrated and used by the N-MAP simulation
engine.

The “communication model” implicitly assumed so
far is a constant one, i.e. the behavior of a blocking
send communication together with a constant mes-
sage propagation time is simulated by N-MAP. To
provide a more detailed communication model for the
CMMD-send-block and CMMD-receive-block synchro-

nous message passing calls to be used in the final im-
plementation, we subdivide the execution time of each
communication operation into three distinct phases:
The init phase represents the time needed to create
a communication object, that is, to allocate buffer
space, move data to the buffer and deliver a pointer to
the message buffer. In the start phase, the pointer is
subsequently passed to the communication subsystem
which then initiates the send/receive. The wait phase
is the time necessary for the communication subsy-
stem to complete the call, that is, to confirm that
the message has been forwarded and that the sen-
der/receiver buffers may be safely accessed. In the
case of locally blocking communication, wait follows
start immediately, whereas in the case of locally non-
blocking communication, computation may intercede

in order to mask latency.

As an input to the N-MAP simulation tool, time
requirements for the respective phases are defined in
the System Requirements File (SRF) (<sys>. r). The
time a sender virtual processor is involved in commu-
nication is simply sinit()+s,tart()+s,,it(). Additional
delay is induced for the receiving processor due to id-
ling until the sender completes the start phase, and
due to the inherent latency caused by the communi-
cation network (latency). The excerpt from the SRF
cm-s. r below reflects the requirements related to the
CMMD specific communication model:

long REQ-ssend(packLEl) long packLEN;
{ return REP-mend-overhead +

packLEI * RECJ-ssend-byte;)

long REQ-recv(packLEli) long packLEl;

< return REQ-rem-overhead +
packLEN * REQ-recv-byte;)

long REQ-propagation-latency(packLEB) long packLEN;
{ return REP-data-transfer-setup +

REQ-propagation_delay*packLEl;)

With the additional CM-5 specific SRF cm-s. r, a
“CM-5 specific” sample trace is generated by N-MAP,

Blockwisc Interleaved

awe q wl m YPZ 0 YP3

Figure 5: Blockwise vs. interleaved decomposition

giving the predicted task occurrences as in Figure 4
(middle). The chart explains, that for the CM-5 the
communication will dominate computations (gaps bet-
ween transform blocks in the same iteration on dif-
ferent columns). Compared to previous predictions
based on less specific information, a more detailed be-
havior could be generated.

4.5 Adding Behaviors

Given that the programmer is now willing to fully
implement parallel Householder transformations ba-
sed on the preliminary algorithmic idea, he would now

provide TBSs and PBSs containing the source code for
the tasks declared in the TSS. The N-MAP tool can
then automatically generate an executable for the CM-
5 (from the TSS, TBS, TRS, PBS and PRS), using
CMMD message passing library call substitutions for
the send0 and recv() tasks in the TSS.

The instrumented version running on 16 nodes of a
CM-5 produced the behavior in Figure 4 (right) and
Figure 6 (left). From a direct comparison of the be-
haviors generated on the basis of the TSS (exclusi-
vely) and incremental extensions up to the final SPMD
program we see, that it was sufficient to characte-
rize the program behavior in terms of TSS to obtain
the main performance characteristics of the algorithm.
We could derive this program behavior within a few
minutes of programming efforts, while the full imple-
mentation of the algorithm would have taken hours of
coding, debugging, etc. Thus - without wasting pro-
gramming efforts - we can make performance critical
implementation decisions in the early program deve-
lopment phases.

4.6 Implementation Alternatives

From the very first chart in Figure 4 the program-
mer might have recognized the inefficiency of the al-
gorithmic idea based on a “one column of A to one
processor mapping”. Already at that point, various
other algorithmic ideas might have been studied by
providing further TSSs.

282

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Figure 6: Processor utilization observed from execution on CM-5: original implementation strategy (left), b
wise (middle), interleaved (right)

Jock-

/* hh.contblo.tss: contiguous blockwise */
#define P 32 /* lo of processors e/
#define I 128 /* Dimension of A */
#define B 4 /* columns/processor */
int i,j,k;

task readblock[Il,trausform[Il~Il,eliminate~I];
packet VII];

process columnCi] where C i=O . . P-l; 1

{
for (j=O; jcB; j++)

(
readblock[i*B+jl;

1

/* pivot column not in my block */
for (j=O; j<i*B; j++)

{
recv(columnCi-ll,vCjll;

if CiCP-1)

c
send(column[i+ll,v[j]);

)
for (k=O; k<B; k++)

C
transform[i*B+kl[jl;

)
1

/* pivot column in my block */

for (j=O; j<B; j++)

c
eliminate[i*B+j];
if CicP-1)

c
send(column[i+ll,v[i*B+jl);

)
for (k=j+l; k<B; k++)

c
transforaCi*B+klCi*B+jl;

)
)

1

/* hh.interl.tss: interleaved */
define P 32 / IO of processors */
define I 128 / Dimension of A */
define B 4 / columns/processor */
int i,j,k,s;

task readblock[I],transform[I][I],eliminate[I];
packet vCI1;

process columnCi] where { i=O . . P-l; 1

C
for (j=O; j<B; j++)

c
readblock[i+j*P];

1

s=o ;
for (j=O; j<I; j++)

t

if (jY.P==i) /* eliminate in my block */

c
eliminateCj1;
send(column~(i+l+p)~~~,v~j~);

s++ :

else /* pivot not in my block */

C
recv(columnC(i-1+P)'/.P1,vCjl);

if ((i+l)Y.P!=jXP)

C
send(column[(i+l+P)XPl,v[jl)

1
)

for (k=s; k<B; k++)

c
trausfornCi+k*PlCjl;

>
1

>

Figure 7: Variations of the Algorithmic Idea for the CM-5: TSSs

283

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

A contiguous blockwise partitioning of A could si-
gnificantly reduce the communication invocations by a
single processor and would allow the mapping of a set
of consecutive (in terms of their index) virtual proces-
sors to a set of physical processors. An improvement of
this partitioning strategy is to interleave the columns
(virtual processors) when mapping them to physical
processors in such a way, that the amount of blocking
time in the propagation of orthogonal vectors is mi-
nimized. Every physical processor j out of a set of
M processors in this case is assigned columns j + iM,
(i = 0,2,. ..+l) ofA.

These two implementation strategies can be quic-
kly specified in the form of a TSS (see Figure 7).
By re-using the behavior and requirements specificati-
ons already developed in the previous implementation,
we immediately obtain performance characteristics for
the two new strategies which are shown in the form of a
Utilization Count Chart in Figure 6. We see that both
interleaved and blockwise mapping are superior in per-
formance to the original one-to-one mapping (while
processing more matrix columns). True execution per-
formance on the CM-5 is compared with predictions
of N-MAP for the contiguous blockwise (Figure 8) and
the interleaved decomposition (Figure 9) of A. Natu-
rally, the regular structure (deterministic behavior) of
Householder reductions, together with our communi-
cation model are responsible for the high prediction
precision achieved by N-MAP. We wish to note howe-
ver, that prediction quality is not the main claim of N-
MAP. The major goal addressed with the N-MAP tool
is rather to demonstrate that from within most com-
mon programming environments (UNIX) it is possi-
ble to generate very quickly and with minor program-

ming efforts execution behaviors of parallel programs
as they would execute in a real multiprocessor envi-
ronment. Earliest possible behavior visualizations and
performance predictions (even if rather rough) are the
primary concern of N-MAP.

5 Conclusions

This work proposed an incremental, performance
oriented development process for parallel programs.
Performance/behavior prediction has been treated as
a performance engineering activity in the early deve-
lopment stages, supporting the evaluation of imple-
mentation strategies far ahead of the actual coding.
Specifically, an extension to the C programming lan-
guage has been made to allow a quick specification of
parallel SPMD programs at the highest level of ab-
straction, the task structure level. Mainly communi-

Figure 8: Blockwise decomposition of A: CM-5 exe-
cution vs. N-MAP prediction

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

Figure 9: Interleaved decomposition of A: CM-5 exe-
cution vs. N-MAP prediction

cation patterns among tasks comprised in processes
(metaphorically seen as virtual processors) are expres-
sed at this level, and performance impacts of the pre-
liminary implementation skeleton can already be pre-
dicted. As program functionality and a quantification
of the anticipated program execution behavior is in-
crementally added in refinement steps, the quality of
the predictions is successively improved. In this way,
starting from a virtual processor, target architecture
independent program specification, a performance ef-
ficient implementation is reached for a specific target
platform after a few refinement iterations.

Methodologically, task structure specifications

(TSSs), parametrized with quantitative workload pa-
rameters and target specific performance characteri-
stics as an option, are parsed by the N-MAP tool and
translated into a virtual processor SPMD programs,
the discrete event simulation of which generates exe-

284

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

cution statistics and traces. All relevant program per-
formance characteristics can be deduced from the sta-
tistics/traces in a subsequent analysis. In the final de-
velopment phase, N-MAP can automatically generate
“physical processor” SPMD program source code for
the dedicated target software environment (message
passing libraries).

With a case study, the implementation of parallel
Householder transformations on the CM-5, we have
demonstrated how a full implementation is incremen-
tally developed from the TSS. Variations of imple-
mentation strategies could be analyzed based on fast
SPMD skeletons, supporting performance decisions
without time-consuming and error-prone coding and
debugging of the full program version.

References

PI

PI

[31

[41

[51

if51

171

181

PI

PI

P11

M. Ajmone Marsan, G. Conte, and G. Balbo. A Class
of Generalized Stochastic Petri Nets for the Performance

Evaluation of Multiprocessor Systems. A CM Transactions
on Computer Systems, 2(2):93 - 122, May 1984.

I. F. Akyildiz. Performance Analysis of a Multiprocessor
System Model with Process Communication. The Compu-

ter Journal, 35(1):52-61, 1992.

Thomas E. Anderson and Edward D. Lazowska. Quartz:
A Tool for Tuning Parallel Program Performance. Perfor-
mance Evaluation Review, Special Issue, 1990 ACM SZG-

METRICS, 18(1):115-125, May 1990.

Shahid H. Bokhari. On the Mapping Problem. ACM Tram-
sactions on Computer Systems, C-30(3):207-214, March
1981.

P. Brinch Hansen. Householder Reduction of Linear Equa-
tions. ACM CompzLting Surveys, 24(2):185 - 194, June

1992.

Maria Calzarossa and Guiseppe Serazzi. Workload Cha-
racterization: A Survey. In Proceedings of the IEEE, 1993.

T. Fahringer and H.P. Zima. A Static Parameter based Per-
formance Prediction Tool for Parallel Programs. In Proc.
1993 ACM Znt. Conf. on Supercomputing, July 1993, To-

kyo, Japan, 1993.

A. Ferscha. Modelling Mappings of Parallel Computations

onto Parallel Architectures with the PRM-Net Model. In
C. Girault and M. Cosnard, editors, Proc. of the ZFZP WG

10.3 Working Conf. on Decentralized Systems, pages 349
- 362. North Holland, 1990.

A. Ferscha. A Petri Net Approach for Performance Ori-
ented Parallel Program Design. Journal of Parallel and
Distributed Compuling, 15(3):188 - 206, July 1992.

A. Ferscha and J. Johnson. Performance Oriented Develop-

ment of SPMD Programs Based on Task Structure Specifi-
cations. In B. Buchberger and J. Volkert, editors, Parallel

Processing: CONPAR94-VAPP VI, LNCS 854, pages 51-
65. Springer Verlag, 1994.

Cynthia A. Fur&a-Lea, Tasos D. Kontogiorgos, Robert
J. T. Morris, and Larry D. Rubin. Interactive Visual Mo-
deling for Performance. IEEE Software, pages 58-68, Sep-
tember 1991.

[12] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley.
A Users’ Guide to PICL: a Portable Instrumented Commu-
nication Library. Technical Report ORNL/TM-11616, Oak
Ridge National Laboratory, August 1990.

[13] G. Haring and G. Kotsis, editors. Perfomzance Measu-
rement and Visualization of Parallel Systems, volume 7
of Advances in Parallel Computing, G. R. Joubest, Udo
Schendel (Series Eds). North Holland, 1993.

[14] Michael T. Heath and Jennifer A. Etheridge. Visuali-

zing Performance of Parallel Programs. Technical Report
ORNL/TM-11813, Oak Ridge National Laboratory, May
1991.

[15] P. Heidelberger and K. S. Trivedi. Queueing Network

Models for Parallel Processing with Asynchronous Tasks.
IEEE Transactions on Computers, C-31(11):1099-1109,
November 1982.

[16] P. Heidelberger and K. S. Trivedi. Analytic Queueing Mo-

dels for Programs with Internal Concurrency. IEEE Tran-
sactions on Computers, C-32(1):73-82, January 1983.

[17] I. 0. Mahgoub and A. K. Ehnagarmid. Performance Ana-

lysis of a Generalized Class of m-Level Hierarchical Mul-
tiprocessor Systems. IEEE Transactions on Parallel and

Distributed Systems, 3(2):129 - 138, March 1992.

(181 V. W. Mak and S. F. Lundstrom. Predicting Performance

of Parallel Computers. IEEE Transactions on Parallel and
Distributed Systems, 1(3):257-269, July 1990.

[19] A. D. Malony, D. A. Reed, and H. A. G. Wijshoff. Perfor-
mance Measurement Intrusion and Perturbation Analysis.
IEEE Transactions on Parallel and Distributed Systems,
3(4):433 - 450, July 1992.

[20] M. G. Norman and P. Thanisch. Models of Machine and
Computation for Mapping in Multicomputers. A CM Com-

puting Surveys, 25(3):261 - 302, September 1993.

[21] Connie U. Smith. Performance Engineeting of Software

Systems. Addison Wesley, 1990.

[22] R.M. Smith and K.S. Trivedi. The Analysis of Computer

Systems Using Markov Reward Processes. In H. Takagi,
editor, Stochastic Analysis of Computer and Communica-

tion Systems, pages 589 - 630. North-Holland, 1990.

[23] H. V. Sreekantaswamy, S. Chanson, and A. Wagner. Per-

formance Prediction Modeling of Multicomputers. In PTO-
ceedings of the 12th International Conference on Dish-
buted Computing Systems, pages 278-285, Los Alamitos,
California, 1992. IEEE Computer Society Press.

[24] Harold S. Stone. Multiprocessor Schedulingwith the Aid of
Network Flow Algorithms. IEEE Transactions on Software
Engineering, SE3(1):85-93, January 1977.

[25] Thinking Machines Corporation, Cambridge, Massachu-
setts. CMMD Reference Manual, Version3.0, May 1993.

[26] A. J. C. van Gemund. Performance Prediction of Parallel

Processing Systems: The PAMELA Methodology. In PTOC.
1993 ACM Znt. Conf, on Supercomputing, July 1993, To-
kyo, Japan. ACM, 1993.

[27] H. Wabnig and G. Haring. PAPS - The Parallel Pro-
gram Performance Prediction Toolset. In PTOC. of the ph

Znl. Conf. on Modelling Techniques and Tools for Compu-
ter Performance Evaluation., LNCS 794, pages 284-304.

Springer-Verlag, 1994.

[28] H.P. Zima, H.-J. Bast, and H. M. Gerndt. SUPERB -
a Tool for Semiautomatic MIMD/SIMD Parallelization.
Parallel Computing, 6:1-18, 1988.

285

Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS'95)
1060-3425/95 $10.00 © 1995 IEEE

