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1 Introduction and results

An interesting feature of gauge theories in 2+1 dimensions is the existence of infrared (IR)
dualities that exchange standard mesonic operators with monopole operators. The first
example was found long time ago: the bosonic particle-vortex duality [1, 2] claims that a
U(1) gauge theory (QED) with one scalar flavor is dual to a theory without gauge fields:
the O(2) vector model.

In this paper we study similar examples, in the case of QED with minimal N = 1
supersymmetry (SUSY), sQED for short. Recently, new dualities for N = 1 non-Abelian
gauge theories have been investigated [3, 4], suggesting that many interesting phenomena
wait to be discovered. See also [5–8] for early, and [9, 10] for recent, work on N = 1 theories
in the string theory context.

Starting from well known N > 1 dualities known as mirror symmetries [11–13], we find
dualities relating N = 1 sQED with 2 flavors to Gross-Neveu-Yukawa models. The latter
theories have no gauge interactions, so they are much simpler than a QED to analyze.
When they are supersymmetric they are usually called Wess-Zumino models.

We focus on theories with manifest ultraviolet (UV) symmetry SU(2)flav × U(1)top.
Here SU(2)flav rotates the two flavors, while U(1)top is the “topological” symmetry that
shifts the dual photon. Monopole operators are charged under both factors, while mesonic
operators (polynomials in the elementary fields) have zero topological charge. We consider
four different cases, distinguished by the number of gauge-singlet fields. These gauge-singlet
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fields enter the superpotential multiplying the quadratic mesons and can be in a SU(2)flav-
triplet or in a SU(2)flav-singlet.1 One model has enhanced N = 4 supersymmetry, and
its well-known dual description in terms of free superfields is our starting point. Another
model has N = 2 SUSY and displays SU(3) symmetry enhancement in the infrared, as
recently pointed out in [14, 15]. The other two models are genuinely N = 1: one of them
exhibits IR symmetry enhancement to O(4), while the other one (with no gauge singlets
and vanishing superpotential, W = 0) shows no evidence of symmetry enhancement.

The enhanced symmetries are simple UV symmetries on the Wess-Zumino side, but act
non-trivially on the sQED side: mesonic and monopole operators combine into irreducible
representations of the IR symmetry.

These features closely resemble the conjectured behavior of non-supersymmetric QED
with 2 scalars or 2 fermions: using particle-vortex and bosonization dualities, such theories
can be argued to be self-dual, and it has been proposed that the UV symmetry SU(2)flav×
U(1)top enhances in the IR to O(4) [16–18] or SO(5) [19]. These fixed points are supposed
to describe interesting quantum phase transitions. One important question is if they are
stable, i.e. if there are deformations of the theories (on top of the mass terms, which
are tuned to zero) which preserve the UV symmetry and are relevant in the IR. Such
deformations would destabilize the fixed point and rule out the possibility that the CFT
with enhanced symmetry describes a physical quantum phase transition.

In our cases we can take advantage of the duality with the Wess-Zumino models, which
are much simpler to analyze than a gauge theory. As we did in [4], we study the Wess-
Zumino models in the D = 4− ε expansion, which is not a particularly accurate technique,
but it is good enough to learn qualitative features, like whether an operator is relevant in
the IR or not. We find that in all four cases, the SU(2)flav×U(1)top preserving deformations
(basically a quartic operator which is the square of the quadratic SU(2)flav singlet meson)
are irrelevant. So these N = 1 fixed points are stable.

On the other hand, we find that there are relevant superpotential deformations that
break the SU(2)flav × U(1)top symmetry. For instance in the model with W = 0 we can
turn on a quartic superpotential in the isospin-2 representation of SU(2)flav. Studying these
N = 1 deformations is certainly interesting, but goes beyond the scope of this paper.

We also construct a model of sQED with 4 flavors and N = 2 SUSY that displays
enhanced symmetry in the infrared: the topological symmetry combines with an SO(4)
flavor symmetry to form an SO(6). From this model it is possible to construct RG flows
along which some symmetry enhancement is preserved, and for instance land on the sQED
with 2 flavors and enhanced SU(3) symmetry.

Organization of the paper. In each section from 2 to 5 we consider a different sQED
with two flavors and its dual Wess-Zumino model. We describe the superpotential, and the
mapping of the basic operators (which are 4 mesonic operators and 4 monopoles) across the

1These models are in the class of N = 1 gauge theories considered in [4]. The dualities found in [4]
indeed include on one side of the duality gauge-singlets in the adjoint plus a singlet of the SU(Nflavor)
symmetry. The examples of this paper however lie outside the naive range of validity of the dualities of [4].
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duality. We check that dual pairs have the same massive deformations, and in one case show
how to deform the duality to the duality for N = 1 sQED with just one flavor found in [4].

In section 6 we study the theory with 4 flavors, argue for a self-duality, which is
obtained combining Aharony duality [20] with mirror symmetry. We also check symmetry
enhancement computing the superconformal index.

Note added. While this work was in preparation, [21] appeared, which has some overlap
with our paper.

2 N = 4 mirror symmetry for sQED with 2 flavors

We start setting out our notation and reviewing the well known mirror duality [11] for N =
4 sQED with a charge +1 hypermultiplet, that is two complex N = 1 scalar supermultiplets
Q1 and Q2 with gauge charge +1. We will also consider some neutral matter fields, which
we denote by Φx. Each N = 1 real scalar supermultiplet A contains a real boson a and a
Majorana fermion ψA.

We use N = 1 superspace notation with anticommuting coordinates θ, and denote the
matter superfields with capital letters:

A(θ) = a+ ψAθ + FAθ
2 . (2.1)

In the theories we discuss, beyond the gauge interactions, there is also a cubic superpoten-
tial

W = dijk
6 PiPjPk , (2.2)

that in components leads to a quartic potential V ∼ (∂W )2 ∼ p4 and cubic Yukawa terms
of the form ∂2Wψψ ∼ pψPψP . In other words, such theories can be considered as N = 1
supersymmetric Gross-Neveu-Yukawa models, possibly gauged.

Monopole operators. A crucial role is played by local gauge-invariant operators M

that are usually called monopole operators [22, 23]. They carry non-zero charge under the
topological symmetry associated to shifts of the dual photon. Since we consider a U(1)
gauge theory with zero effective Chern-Simons term and two charge 1 fermions, the bare
Chern-Simon term is 1. So the bare monopole Mq

bare has gauge charge q, where q ∈ Z is
the charge of the monopole under U(1)top. In order to get a gauge-invariant operator, we
need to dress the bare monopole Mq

bare with q charged elementary fields from Q or Q†,
either the scalars q or the fermions ψQ. Since the theory is supersymmetric, the monopoles
form supermultiplets. We will mostly be concerned with the simplest monopoles M±1:
they have minimal topological charge and are dressed by the lowest modes of the matter
superfields Q. Since we have 2 flavors, the monopoles will transform in a representation of
SU(2)flav,2 which in this case is simply the two-dimensional representation.

Summarizing, the basic monopoles M± of the various sQEDs with 2 flavors organize
into 4 real supermultiplets, transforming as a complex doublet of SU(2)flav and with charge

2The group SU(2)flav is useful — as a book-keeping device — also when the symmetry is broken by the
interactions.
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±1 under U(1)top. Under the dualities we discuss, these two complex monopoles will always
map to 2 complex superfields in the dual Wess-Zumino models we propose. Generically
the dual WZ models will also contain additional superfields with U(1)top charge 0.

N = 4 SQED ↔ free hyper. The basic N = 4 Abelian duality states that the U(1)
gauge theory with one hypermultiplet (i.e. two complex N = 1 multiplets) of charge 1 is
dual in the IR to a free massless hypermultiplet [11, 13]. The gauge theory has R-symmetry
SU(2)C × SU(2)H and a topological flavor symmetry U(1)top.

We can write the N = 4 sQED gauge theory in a way which is manifestly invariant
under the antidiagonal subgroup SU(2)flav of the two R-symmetry factors, using the N = 1
notation.3 Then the duality can be stated as:

U(1)0 with 2 flavors Qα=1,2
and 3 real fields ΦI=1,2,3
W = ΦI Qα(σI)αβQ†β

⇐⇒
Free theory of

2 complex fields Mα=1,2
W = 0 .

(2.4)

Here σI are the three Pauli matrices. With a slight abuse of notation, sometimes we use
α = +,− interchangeably with α = 1, 2. The low-lying superconformal primary operators
are mapped according to

∆
Mα

ΦI

|Q1|2 + |Q2|2

Qα(σI)αβQ†β

 ⇐⇒


Mα

Mα(σI)αβM †β
|M+|2 + |M−|2

DMα(σI)αβDM †β


1
2
1
1
2

(2.5)

Here Mα is the complex superfield whose lowest component is the scalar gauge-invariant
monopole operator Mψ†Qα . The operators Mα ↔ Mα have charge 1 under U(1)top. In
the last column we have indicated the dimensions of the operators. The last line involves
N = 1 SUSY descendants of φI . Notice that the duality gives us the relation

∑
I Φ2

I ↔(
|M+|2 + |M−|2

)2, which implies the quantum relation∑
I

Φ2
I =

(
|Q1|2 + |Q2|2

)2 (2.6)

in the gauge theory. Notice also that since the r.h.s. is free, we also know that the quartic
operator

(
|Q1|2 + |Q2|2

)2 has ∆ = 2, so it is a marginally irrelevant N = 1 deformation.
3In the N = 2 notation, the theory looks as follows: U(1)0 with two chiral multiplets Q, Q̃ of gauge

charge +1 and −1, respectively, and a neutral chiral multiplet Φc, with superpotential WN=2 = ΦcQQ̃. In
this notation the Cartan subgroup of SU(2)C is visible as a U(1) R-symmetry under which Q, Q̃,Φc have
charges 0, 0, 2, respectively, while the Cartan subgroup of SU(2)H is visible as a U(1) R-symmetry under
which they have charges 1, 1, 0, respectively. Their difference is an axial flavor symmetry. In the N = 1
notation there is one extra real singlet Φr from the N = 2 vector multiplet, and the N = 1 superpotential is

W = Φr
(
QQ† − Q̃Q̃†

)
+ 2Re

(
ΦcQQ̃

)
. (2.3)

Renaming the flavor variables Q→ Q1, Q̃→ Q†2 and grouping the three real gauge-singlet superfields Φr,Φc
in a triplet ΦI , we get the presentation (2.4). In this presentation SU(2)flav is manifest, with Qα=1,2 forming
a doublet and ΦI=1,2,3 forming a triplet. Its Cartan subgroup is the axial flavor symmetry mentioned above.
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Relevant N = 1 deformations include monopole superpotentials (up to order M3) and
terms linear in the ΦI ’s. The relevant deformations break the UV SU(2)flav × U(1)top
global symmetry.

3 N = 1 sQED ↔ 7-field SU(2)×U(1) WZ model

From the duality (2.4) and the operator map (2.5) we perform an N = 1 flip of the three
gauge-singlets ΦI ↔ Mα(σI)αβM †β , in other words we introduce three new fields µI and
add a superpotential

δW = µI ΦI ←→ δW = µIMα(σI)αβM †β . (3.1)

This operation does not break the SU(2)flav×U(1)top flavor symmetry. On the sQED side
the fields ΦI become massive and can be integrated out, while on the other side we obtain
an interacting Wess-Zumino model:

U(1) with 2 flavors Q1, Q2
W = 0

⇐⇒
WZ model with a real triplet µI

and a complex doublet Mα

W = µIMα(σI)αβM †β .
(3.2)

This duality appeared in [5], intepreting Hanany-Witten branes setups with N = 1 susy.
In [5] it was checked that the moduli space of vacua (which is a 3-real dimensional cone)
agrees on the two sides. The superpotential of the WZ model on the r.h.s. can be written
more explicitly as

W = µ3
(
|M+|2 − |M−|2

)
+ 2µ1 Re

(
M+M

†
−
)

+ 2µ2 Im
(
M+M

†
−
)
, (3.3)

or as the determinant of a 3× 3 matrix

W = detMU(2) = det

 µ3 µ1 + iµ2 M+
µ1 − iµ2 −µ3 M−

M †+ M †− 0

 . (3.4)

This is the most general cubic superpotential compatible with the SU(2)flav × U(1)top
global symmetry. There are also Z2 discrete symmetries: ZT2 times reversal and ZC2 charge
conjugation (mapping Qα 7→ Q†α).

The mapping of the basic gauge-invariant operators across the duality is now:

∆
Mα(

|Q2|2 − |Q1|2 −2Q1Q
†
2

−2Q2Q
†
1 |Q1|2 − |Q2|2

)
|Q1|2 + |Q2|2

 ⇐⇒


Mα(
µ3 µ1 + iµ2

µ1 − iµ2 −µ3

)
−2
∑
µ2
I +

∑
|Mα|2


' 0.76

' 0.66

' 1

(3.5)

The approximate dimensions are computed at one-loop in the ε-expansion, as discussed
below. In the last line, the particular linear combination of two flavor symmetry singlets on
the r.h.s. is dictated by the one-loop computation and it diagonalizes the dilation operator
at that order.
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3.1 Relevant and irrelevant deformations

In the WZ model, we have computed the scaling dimension of various operators in the
D = 4− ε expansion, as in [4], using the general formulas, which can be found for instance
in the appendix of [24].

The value of the coupling in W = λ detMU(2) at the RG fixed point at two-loops is

λ∗
4π
√
ε

= 1
6
√

3
+ 1

27
√

3
ε+O(ε2) . (3.6)

The scaling dimension of the elementary fields are

∆
[
µI
]

= 1− ε

3 −
ε2

108 +O(ε3) ' 0.66

∆
[
M±

]
= 1− ε

4 + ε2

144 +O(ε3) ' 0.76 .
(3.7)

The 28 quadratic operators transform as

(30 ⊕ 2±1)⊗2
S = 2 · 10 ⊕ 30 ⊕ 50 ⊕ 2±1 ⊕ 4±1 ⊕ 3±2 , (3.8)

where we denoted by Nq an operator in the N -dimensional irrep of SU(2)flav with charge q
under the U(1)top. The 30 is a SUSY descendant of µI , while the 2±1 is a SUSY descendant
of Mα.

The two singlets 10 have one-loop scaling dimension

∆
[
2
∑

µ2
I + 3

∑
|Mα|2

]
= 2 + ε

3 +O(ε2) ' 2.33

∆
[
−2
∑

µ2
I +

∑
|Mα|2

]
= 2− ε+O(ε2) ' 1 .

(3.9)

Since the singlet −2
∑
µ2
I +

∑
|Mα|2 has ∆ < 3

2 , it is possible to flip it with a free N = 1
real superfield. We will study this deformation in section 5. On the other hand, the
singlet 2

∑
µ2
I + 3

∑
|Mα|2 has ∆ > 2 and so it is an irrelevant deformation. The SU(2)flav

invariant quartic term
(∑
|Qα|2

)2 is not a SUSY descendant in the sQED, and it maps
to the primary singlet 2

∑
µ2
I + 3

∑
|Mα|2. From the duality we learn that the SU(2)flav

invariant quartic superpotential is an irrelevant deformation.
Let us look at the SU(2)flav isospin-2 operators 50. They have scaling dimension

∆
[
µIµJ −

δIJ
3
∑

µ2
I

]
= 2− 2

3ε+O(ε2) ' 1.33 , (3.10)

therefore they are relevant. They map to the quartic SU(2)flav isospin-2 operators in the
sQED (the SU(2)flav isospin-1 operators are descendants of the SU(2)flav isospin-1 quadratic
mesons). This means that it is possible to use these 5 operators to deform the sQED with
W = 0.
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Massive phases. We can give mass to both flavors of the sQED with W = 0 in two
different ways.

One way is SU(2)flav invariant, and uses a ∆ ' 1 operator:

δW = m
(
|Q1|2 + |Q2|2

)
←→ δW = m

(
−2
∑

µ2
I +

∑
|Mα|2

)
. (3.11)

On the sQED side, depending on the sign of m, we are left with the pure N = 1 CS gauge
theory U(1)±1, which has a trivial gapped vacuum (the gaugino is massive because of the
non-zero Chern-Simons term). On the WZ side, the F-terms equations are satisfied only
at a single point, where all 7 fields have vanishing VEV.4 At such a point all scalars and
fermions are massive, and we are left with a trivial gapped vacuum for both signs of m.

Another way to give mass to the two flavors breaks SU(2)flav and uses a ∆ ' 0.66
operator:

δW = m
(
|Q1|2 − |Q2|2

)
←→ δW = −mµ3 . (3.12)

On the sQED side, for both signs of m we are left with the pure N = 1 gauge theory
U(1)0. Dualizing the photon, we get an S1 worth of vacua plus a free Majorana fermion
(the gaugino). On the WZ side, for m > 0 the complex scalar M+ acquires a VEV with
|M+|2 = m. This spontaneously breaks U(1)top and gives an S1 of vacua, over which one
real boson and one Majorana fermion are massless. For m < 0 the story is the same, except
that M− instead of M+ takes a VEV.

Other deformations. We can flip the operator |Q1|2− |Q2|2 ↔ −µ3 by means of a real
scalar superfield Ψ; this operation explicitly breaks SU(2)flav to U(1)flav. On the sQED
side this corresponds to the superpotential W = Ψ

(
|Q1|2 − |Q2|2

)
. The resulting theory

is, in fact, N = 2 sQED with two chiral multiplets Q = Q1 and Q̃ = Q†2 of gauge charge
+1,−1, respectively. On the WZ side the superfields µ3 and Ψ become massive and can be
integrated out. One is left with the superpotential W = 2Re

[
(µ1 + iµ2)M+M

†
−
]
. Defining

X = µ1 + iµ2, Y = M+ and Z = M †−, we obtain an N = 2 Wess-Zumino model of three
chiral multiplets with superpotential WN=2 = XY Z. Succinctly:

U(1)0 with 2 flavors Q1, Q2
and a (real) singlet Ψ
W = Ψ

(
|Q1|2 − |Q2|2

) ⇐⇒
WZ model with

3 complex multiplets X,Y, Z
W = 2Re

(
XY Z

)
.

(3.13)

We have obtained the well-known N = 2 Abelian mirror duality [12].
Another interesting case is to turn on both massive deformations in (3.11) and (3.12),

with a tuning that keeps one massless flavor Q1 = Q in the sQED. The resulting theory
has gauge group U(1)1/2 and is not parity invariant in the UV, therefore we expect a
superpotential term W = |Q|4 to be generated along the RG flow.

On the WZ side the massive deformation corresponds to

δW = m1

(
−2
∑

µ2
I +

∑
|Mα|2

)
−m2 µ3 . (3.14)

4This is true because the two terms on the r.h.s. of (3.11) have opposite sign, and one obtains the equation
4m
∑

µ2
I = −m

∑
|Mα|2. Crucially, the deformation with equal signs is irrelevant and cannot be used.
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There are three possible solutions to the F-term equations:

a) Mα = 0 , µ3 =− m2
4m2

1
for m1 6= 0

b) |M+|2 =m2−4m2
1 , M−= 0 , µ3 =−m1 for m2≥ 4m2

1

c) M+ = 0 , |M−|2 =−m2−4m2
1 , µ3 =m1 for m2≤−4m2

1

(3.15)

and µ1,2 = 0 in all cases. a) is a gapped vacuum, while b) and c) are S1s worth of vacua
accompanied by a massless Majorana fermion. With a tuning m2 = 4m2

1 we can arrange
such that the S1 collapses and fuses with the other vacuum; around the vacuum, only
M− and µ1,2 are massive, while M+ is massless. We are left with a WZ model of a real
superfield µ3 ≡ H and a complex superfield M+ ≡ P , with a low-energy superpotential

W = H|P |2 +H2 + δmH (3.16)

where δm describes the displacement from the tuned m2 = 4m2
1. Then H can be integrated

out as well, leavingW = −1
2δm |P |

2− 1
4 |P |

4. This is a chiral multiplet P with mass δm and
a marginally irrelevant interaction. For δm = 0, it flows to a free massless chiral multiplet
with emergent N = 2 supersymmetry. We are thus led to the duality

U(1)1/2 with 1 flavor Q
W = |Q|4

⇐⇒ free N = 2 chiral multiplet P . (3.17)

In the IR, this is the well-known N = 2 duality. In N = 1 language, it has recently been
studied in [3].

Notice that in the UV theories, both on the gauge theory side (l.h.s. of (3.17)) and
on the side of a chiral multiplet P with quartic superpotential interactions, the space of
vacua comprises a gapped vacuum and an S1 worth of vacua for one sign of the mass
deformation, while only a gapped vacuum for the other sign of the mass deformation. On
the other hand, in the very low-energy CFT description as a free N = 2 chiral multiplet
P , there is only a gapped vacuum for either sign of the mass deformation, and a C worth
of vacua (a non-compact moduli space) in the massless theory. If we picture the vacua in
the space of theories as we vary δm, the S1 forms a cigar, which appears as a moduli space
C close to the point δm = 0.

4 N = 1 sQED with 4 singlets ↔ 5-field O(4) WZ model

This time we flip the meson |Q1|2+|Q2|2 ↔ |M+|2+|M−|2 in theN = 4 mirror duality (2.4)
and (2.5). Such operator is a singlet of SU(2)flav × U(1)top. We obtain a duality with the
schematic form

U(1)0 with 2 flavors Qα=1,2
and (real) singlets H, ΦI=1,2,3

W = ΦIQα(σI)αβQ†β +HQαQ
†
α + . . .

⇐⇒
O(4) WZ model with

1 real and 2 complex fields H, Mα

W = HMαM
†
α + . . .

(4.1)
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where the dots stand for quantum corrections that we describe below. The operator map is

∆
Mα

ΦI

H

 ⇐⇒


Mα

Mα(σI)αβM †β
H


∼ 0.62
∼ 1.46
∼ 0.81

(4.2)

As we are going to describe, this duality implies an IR symmetry enhancement in the sQED:

SU(2)flav ×U(1)top → O(4) . (4.3)

On the WZ side, the four real superfields contained in M+,M− transform in the vector
representation of O(4), while H is a singlet. From the duality we infer how the operators
organize on the sQED side.

For instance, on the WZ side there are nine quadratic operators in the symmetric
traceless representation (3,3) of O(4). The three of them with charge 2 under U(1)top,
namely

(
M2

+,M+M−,M
2
−
)
, are mapped to monopole operators M+2 on the sQED side,

while the three of them with charge 0, namely Mα(σI)αβM †β , are mapped to the singlets
ΦI . We conclude that the 9 operators M+2,ΦI ,M

−2 must be degenerate in the sQED.
The full quantum superpotential for the sQED has the general form

W = α
[
Φ3
(
|Q1|2 − |Q2|2

)
+ 2Re

(
(Φ1 − iΦ2)Q1Q

†
2

)]
+

+ β H
(
|Q1|2 + |Q2|2

)
− γ H

∑
Φ2
I + δ H3 .

(4.4)

On the other hand, the full quantum superpotential for the Wess-Zumino model has the
general form

W = H
(
|M+|2 + |M−|2

)
− λH3 . (4.5)

This WZ model was studied in [4]: it was found that the sign of the quantum-generated
cubic superpotential is negative (i.e. λ > 0). Also, the one-loop scaling dimensions reported
in eq. (4.2) were computed.

The flavor-singlet operators. On the sQED side, the first parity-even flavor-singlet
scalar operators are

H2 ,
∑

Φ2
I ,

∑
|Qα|2 , . . . (4.6)

A linear combination of them is a descendant of H. Similarly, on the WZ side the first
parity-even flavor-singlet operators are

H2 ,
∑
|Mα|2 , . . . (4.7)

A linear combination of them is a descendant of H. The other linear combination was
found in [4] to be irrelevant:

∆
[∑
|Mα|2 +H2

]
∼ 2.23 . (4.8)

It is also likely that all higher operators, such as
(∑
|Mα|2

)2, H2∑ |Mα|2 and so on,
have ∆ > 2. If that is true, all parity-even O(4) invariant operators have ∆ > 2 in the
WZ model. Using the duality, it follows that all parity-even SU(2)flav × U(1)top invariant
deformations of the sQED are irrelevant.
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Massive deformations. The most natural deformation is O(4) invariant and parity-odd:

δW = mH . (4.9)

Recall that parity-odd deformations of the superpotential preserve parity.
Consider first the sQED side, for m > 0. At least assuming that the signs in the

superpotential at the fixed point are as in (4.4), the triplet ΦI acquires a VEV and breaks
the SU(2)flav symmetry to U(1). The vacua sit on a S2:∑

Φ2
I = m , H = Qα = 0 . (4.10)

At each point of S2, the two flavors Qα get opposite mass and leave a free N = 1 gauge
theory U(1)0 in the IR. The bosonic part of the theory describes a S1 fibered over S2,
namely a NLSM with target S3.

For m < 0 we find two vacua related by spontaneously-broken parity symmetry: ΦI =
Qα = 0 and H = ±

√
−m. In each vacuum the two flavors get a mass of the same sign,

leaving a pure N = 1 CS gauge theory U(1)±1 with a trivial gapped vacuum.
Let us now look at the WZ side. For m < 0 there is an S3 worth of vacua,

∑
|Mα|2 =

−m and H = 0, from the spontaneous breaking O(4) → O(3). For m > 0 there are two
vacua sitting at Mα = 0 and H = ±

√
m, where parity is spontaneously broken. The vacua

match upon mass deformations (up to an uninfluential sign redefinition of H).

5 N = 2 sQED ↔ N = 1 8-field SU(3) WZ model

Starting from the dualities in the previous sections, we can obtain a duality for the N = 2
theory U(1) with 2 chiral multiplets of charge +1.5 In N = 1 language, this theory reads

U(1) with 2 flavors Q1, Q2 and a (real) singlet Φ

W = Φ
(
|Q1|2 + |Q2|2

)
.

(5.1)

The continuos UV global symmetry is SU(2)flav ×U(1)top ×U(1)R.

Enhanced global symmetry. This N = 2 sQED is expected to have enhanced SU(3)
global symmetry in the IR, as pointed out in [14, 15], using geometrical features of the
3d/3d correspondence.

It is possible to argue for the enhanced global symmetry in the following way. Using
the duality between a free chiral multiplet and N = 2 U(1)1/2 sQED with one flavor:

U(1)1/2 with 1 flavor Q
W = ΨQQ† − 1

2Ψ2 ⇐⇒ Free complex superfield P
W = 0 ,

(5.2)

5In 3d QED’s, the notion of sign of gauge charges is meaningful only for N = 2 SUSY. For N > 2
the flavors always come in pairs, that in N = 2 language have opposite charge. For N = 0, 1 it is always
possible to make a field redefinition (exchange a field with its complex conjugate) that changes the sign of
the charge. In the N = 2 case, instead, if we write a theory with N+ flavors of charge +1 and N− flavors
of charge −1 in N = 1 language, there are N = 1 superpotential interactions that break SU(N+ +N−) to
SU(N+)× SU(N−).
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it is possible to show a self-duality of the N = 2 gauge theory U(1) with 2 flavors of charge
+1. This self-duality exchanges 2 mesons with 2 monopoles:

{Q1Q
†
2 , Q2Q

†
1} ←→ {M+Q1 , M

−Q†1} . (5.3)

Since the 2 mesons transform in the 30 of SU(2)flav × U(1)top while the 2 monopoles
transform in 2±1, it must be that the UV flavor symmetry SU(2)flav×U(1)top enhances in
the IR, in this case to SU(3).6

In the UV there are four classical flavor currents, corresponding to SU(2)flav×U(1)top.
In the IR there must be four extra accidental currents from monopole operators. Since
with N = 2 supersymmetry each current supermultiplet starts with a scalar operator
of dimension ∆ = 1, we expect eight such scalar operators in total. Four of them are{
Qα(σI)αβQ†β , Φ

}
(a triplet and a singlet of SU(2)flav, respectively), while the other four

are the scalar monopole operators {M±ψQα} (two with topological charge +1 and two with
−1). All the 8 basic operators must form a 8 of SU(3) and have ∆ = 1.

A dual N = 1 WZ model with manifest SU(3) symmetry. In this paper we are
interested in studying the symmetry enhancement using the duality with the Wess-Zumino
model, which will make the SU(3) manifest (even though it hides the extended SUSY).

Starting from the duality (3.2) and its operator map (3.5), we can find the dual N = 1
WZ model.7 We flip the mesonic singlet

|Q1|2 + |Q2|2 ←→ −2
∑

µ2
I +

∑
|Mα|2 . (5.4)

On the l.h.s. we obtain the N = 2 gauge theory U(1) with two flavors of charge +1
(Q1 = Q, Q2 = Q̃†), while on the r.h.s. we obtain a cubic WZ model with a total of eight
real superfields:

U(1) with 2 flavors Q1, Q2
and a (real) singlet Φ
W = Φ

(
|Q1|2 + |Q2|2

) ⇐⇒
WZ model

W = Φ
(
−2
∑
µ2
I +

∑
|Mα|2

)
+ µIMα(σI)αβM †β + . . .

(5.5)

On the sQED side no additional superpotential terms can be generated, due to the en-
hanced N = 2 SUSY. On the WZ side, instead, we expect a cubic superpotential term
Φ3 to be generated quantum mechanically: this is the only other cubic SU(2)flav ×U(1)top
singlet which is also parity-odd. The most general cubic superpotential that respects the
SU(2)flav ×U(1)top symmetry is then

W = α
[
µ3
(
|M+|2 − |M−|2

)
+ 2Re

(
(µ1 − iµ2)M+M

†
−

)]
+

+ β√
3

Φ
(
|M+|2 + |M−|2

)
− 2γ√

3
Φ
∑

µ2
I + 2δ

3
√

3
Φ3 .

(5.6)

6The same self-duality can be argued for the N = 2 sQED with 1 flavor of charge +1 and 1 flavor of
charge −1 of (3.13). In this case the self-duality exchanges the complex meson QQ̃ (which is in the chiral
ring) with a BPS chiral monopole. Together with parity, which exchanges monopoles with anti-monopoles,
it implies that there is a quantum IR S3 symmetry. This S3 is of course manifest in the dual N = 2 XY Z
Wess-Zumino model.

7We could as well start from the N = 4 duality (flipping the 3 singlets ΦI and the meson), or from the
duality of section 4 (flipping all 4 singlet fields).
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The reason we chose such normalization of the four couplings is that if we organize the 8
real superfields in a 3× 3 matrix as

MSU(3) =


µ3− Φ√

3 µ1 + iµ2 M+

µ1 − iµ2 −µ3− Φ√
3 M−

M †+ M †− 2 Φ√
3

 , (5.7)

then with α = β = γ = δ the superpotential becomes simply

W = α detMSU(3) (5.8)

and the Wess-Zumino model enjoys SU(3) global symmetry, since MSU(3) transforms in the
adjoint representation of SU(3).

The operator map is very similar to the ones for the other dualities:
Mα(

|Q2|2 − |Q1|2 −2Q1Q
†
2

−2Q2Q
†
1 |Q1|2 − |Q2|2

)
Φ

 ⇐⇒


Mα(
µ3 µ1 + iµ2

µ1 − iµ2 −µ3

)
Φ

 (5.9)

At the SU(3) invariant point, the scaling dimension of all 8 fields in MSU(3) is expected to
be ∆ = 1 (as imposed by N = 2 supersymmetry).

Parity can be taken to act as MSU(3) → −MSU(3), while charge conjugation acts as
MSU(3) → M∗SU(3) = MT

SU(3). Notice that the U(1) R-symmetry and the N = 2 supersym-
metry are not visible in the UV in the WZ model.

Analisys of the Wess-Zumino model in the D = 4−ε expansion. We analyze the
N = 1 Wess-Zumino model (5.6) perturbatively using the D = 4− ε expansion, as in [4].

The one-loop beta-functions for the four couplings in (5.6) are:

βα = −αε+ α

3π2

(
9α2 + 2β2 − 4βγ + 2γ2

)
ββ = − β√

3
ε+ 1

3
√

3π2
(
18α2(β − γ) + β(3β2 + 2βδ + 3γ2 + δ2)

)
βγ = − γ√

3
ε+ 1

3
√

3π2
(
6α2(γ − β) + γ(β2 + 11γ2 − 4γδ + δ2)

)
βδ = −2 δ√

3
ε+ 2

3
√

3π2

(
2β3 + 3β2δ − 12γ3 + 9γ2δ + 7δ3

)
.

(5.10)

We look for critical points where the beta-functions vanish. Notice that there is no solution
with δ = 0 and β 6= 0 or γ 6= 0: as expected the term Φ3 is generated. Modulo α→ −α and
δ → −δ (which can be obtained by field redefinitions), the solutions of the beta-function
equations (with all couplings turned on) for the four rescaled couplings

1
4π
√
ε
{α, β, γ, δ} (5.11)
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are:
1

4
√

3
{1, 1, 1, 1} {0.032,−0.279, 0.020, 0.171}

{0.051,−0.245, 0.041, 0.161} {0.052,−0.156, 0.130, 0.159} .
(5.12)

It can be checked that the first fixed point — with enhanced SU(3) symmetry — and the last
one are stable. At the other two fixed points the direction parametrized by γ is unstable.
This implies that the SU(2)flav ×U(1)top global symmetry enhances in the IR to SU(3).

We have computed the scaling dimension of the 8 elementary fields at the SU(3)
invariant point at two-loops,8 finding

∆[8] = 1− ε

2 + 5ε
18 + 10ε2

243 +O(ε3) ∼ 0.82 . (5.14)

Notice that this result is quite far from the exact scaling dimension ∆ = 1 that is implied
by the duality. This means that the ε expansion has poor accuracy and can only be used
to infer qualitative features of the IR CFT.

The 36 quadratic operators transform under SU(3) as

(8⊕ 8)⊗2
S = 1⊕ 8⊕ 27 . (5.15)

The 8 is a SUSY descendant of the elementary fields.
The other two representations have one-loop scaling dimension

∆[1] = 2− ε+ 5ε
3 +O(ε2) ∼ 2.33 (5.16)

and
∆[27] = 2− ε+ 7ε

9 +O(ε2) ∼ 1.77 . (5.17)

Also in this theory the flavor singlet is irrelevant, so the quartic SU(2)flav invariant super-
potential on sQED side cannot be turned on.

Massive phases. We consider the SU(3)→ SU(2)×U(1) breaking deformation

δW = mΦ . (5.18)

The discussion is parallel to the case of the previous section, since the superpotentials are
the same: what changes is on which side the gauge field sits.

On the sQED side, for m > 0 the quarks Qα acquire a VEV which sits on an S3:∑
|Qα|2 = m and Φ = 0. Quotienting by the gauge action, we obtain an S2 worth of

vacua. For m < 0 we need to include one-loop quantum effects, since we are going to
move along the Coulomb branch of an N = 2 gauge theory. When Φ acquires a VEV, the
quarks get masses of the same sign and an effective Chern-Simons term with level sign(Φ)

8At the SU(3) invariant point, where W = α detMSU(3), the two-loop beta-function and scaling dimen-
sions are

βα = −αε+ 48
(4π)2α

3 − 4864
3(4π)4α

5 , ∆[8] = 1− ε

2 + 5
6π2α

2 − 25
18π4α

4 . (5.13)

Notice that the beta-function equation should be solved perturbatively in ε.
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as well as its supersymmetric partner δW = sign(Φ)Φ2 are generated. This happens both
for Φ = m and Φ = −m. Concluding, for m < 0 there are two gapped vacua.

On the WZ side, for m > 0 the triplet µI acquires a VEV: the vacua sit on a S2

parametrized by
∑
µ2
I = m and Mα = Φ = 0. For m < 0 there are two vacua related by

spontaneously-broken parity symmetry: Φ = ±m and µI = Mα = 0. The vacua match
upon mass deformations.

6 SO(6) enhancement in N = 2 sQED with 2 + 2 flavors

In this section we consider the gauge theory U(1) with 4 flavors Qα, Q̃β . In the case of
N = 4 SUSY, that is N = 4 U(1) gauge theory with 2 hypermultiplets whose UV global
symmetry is SU(2)×U(1)top × SO(4)R, it is well known that the theory is self-dual under
mirror symmetry [11]. The self-duality exchanges monopoles with mesons, and implies an
IR symmetry enhancement to SU(2)× SU(2)× SO(4)R.

It is conceivable that similar self-dualities exist for QED with 4 flavors and less super-
symmetry. Such phenomena might also have interesting implication for quantum phases
transitions. Here we present an example with N = 2 SUSY, that to the best of our knowl-
edge has not been discussed in the literature.9 In this section we use N = 2 notation and
all superpotentials are complex N = 2 superpotentials.

We consider the N = 2 sQED theory with 2 flavors Qα of charge +1, 2 flavors Q̃β of
charge −1 and 4 gauge-singlet chiral fields ηαβ .10 The complex N = 2 superpotential

WN=2 =
2∑

α,β=1
ηαβQαQ̃β (6.1)

is manifestly SU(2)L×SU(2)R invariant. The continuos UV global symmetry of the theory
is

SU(2)L × SU(2)R ×U(1)a ×U(1)top ×U(1)R . (6.2)

Here SU(2)L and SU(2)R rotate the quarks Qα and Q̃β , respectively, while ηαβ transform
as a bifundamental of SU(2)L × SU(2)R.

The chiral ring is generated by the four gauge singlets ηαβ and the two SUSY chiral
monopoles M± (which are singlets under the SU(2)2). The holomorphic mesons QαQ̃β are
set to zero by the F-terms of ηαβ . We will see that these operators satisfy a single quadratic
quantum relation.

Normalizing the U(1)a × U(1)R charges of the fundamental flavors as (1, r), all six
chiral ring generators have U(1)a × U(1)R charges (−2, 2 − 2r). The superconformal R-
charge r of the fundamental flavors can be determined to great accuracy numerically using
ZS3-extremization:

r = 0.6696 . . . . (6.3)
9We are indebted with Sara Pasquetti for stimulating discussions about this and related topics.

10See also Footnote 5.
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6.1 Self-duality and symmetry enhancement

We want to argue for a self-duality of the theory in (6.1). We focus on the chiral ring
generators. Let us recall that the 3d N = 2 theory U(1) with 2 + 2 flavors and W = 0
satisfies two different IR dualities.

The first one is Aharony duality [20]:

U(1) with 2 flavors Qi, Q̃i
W = 0

⇐⇒ U(1) with 2 flavors Pi, P̃i
W =

∑
i,j µijP̃iPj +

∑
± µ±M

± (6.4)

The six chiral ring generators map as


Q̃1Q1 , Q̃2Q2
Q̃1Q2 , Q̃2Q1

M±

 ⇐⇒

µ11 , µ22
µ12 , µ21
µ±

 . (6.5)

The second duality is an N = 2 version [12] of mirror symmetry [11]:

U(1) with 2 flavors Qi, Q̃i
W = 0

⇐⇒ U(1) with 2 flavors Ri, R̃i
W =

∑2
i=1 φiR̃iRi

(6.6)

The six chiral ring generators map as


Q̃1Q1 , Q̃2Q2
Q̃1Q2 , Q̃2Q1

M±

 ⇐⇒


φ1 , φ2
M±

R̃1R2 , R̃2R1

 . (6.7)

We can apply the dualities above to the theory in (6.1). Basically, we start from either
one of the above dualities and flip on both sides the right operators, using the mapping
of chiral ring generators. Starting from (6.1), applying Aharony duality horizontally and
mirror symmetry vertically, we obtain the following duality web:

U(1)w/ 2 flavorsQi, Q̃i
W =

∑2
α,β=1 ηαβQαQ̃β

⇐⇒ U(1)w/ 2 flavorsPi, P̃i
W =

∑
± µ±M

±~w� ~w�
U(1)w/ 2 flavorsRi, R̃i
W =

∑
± φ±M

± ⇐⇒ U(1)w/ 2 flavorsSi, S̃i
W =

∑
i ρiSiS̃i + ρ+S1S̃2 + ρ−S2S̃1

(6.8)

Looking at the top-left and bottom-right theories, we recognize that — composing Aharony
duality and mirror symmetry — we get a self-duality of the theory in (6.1). We can think
of this as a quantum Zdual

2 symmetry emerging in the infrared.11 Under self-duality, the

11Of course also the theories sitting at the top-right and bottom-left corners, with only two chiral gauge-
singlets fields, are self-dual and enjoy the enhanced symmetry. They are the same in the IR.
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six chiral ring generators map as
η11 , η22
η12 , η21
M±

 ⇐⇒


Q1Q̃1 , Q2Q̃2
Q1Q̃2 , Q2Q̃1

µ±

~w� ~w�
R1R̃1 , R2R̃2

φ±
R1R̃2 , R2R̃1

 ⇐⇒

ρ1 , ρ2
M±

ρ±


(6.9)

From the final diagram we learn that Zdual
2 acts on the six chiral ring generators as

η11 , η22
η12 , η21
M±

 ⇐⇒

η11 , η22
M±

η12 , η21

 . (6.10)

Since the self-duality exchanges the gauge singlets η12 and η21 (which are part of the
representation (2,2)0 of SU(2)L×SU(2)R×U(1)top) with the monopoles M± (which are in
the (1,1)±1), it must be that the UV global symmetry SU(2)L×SU(2)R×U(1)top enhances
in the IR to a bigger rank 3 group. Besides, Zdual

2 is part of the Weyl group of the enhanced
symmetry, which in this case must be SO(6)en. Thus, the combination of Aharony duality
and mirror symmetry implies that the IR symmetry of the theory is enhanced to

SO(6)en ×U(1)a ×U(1)R .

The adjoint of SO(6)en decomposes into irreps of SU(2)L×SU(2)R×U(1)top as follows:

15→ (1,3)0 ⊕ (3,1)0 ⊕ (1,1)0 ⊕ (2,2)±1 . (6.11)

The last term represents eight emergent current multiplets, which are monopoles with
topological charge ±1. They are N = 2 real multiplets, whose bottom component is a
scalar with ∆ = 1 and zero R-charge.12

Massive deformation to the SU(3) sQED with 2 flavors. The N = 2 “real mass”
operator in the Cartan of SU(2)R,

|Q1|2 − |Q2|2 −
2∑

β=1
(|η1β |2 − |η2β |2) , (6.12)

sits in the adjoint representation of SO(6)en, is neutral under SU(2)L×U(1)top, and breaks
SU(2)R to U(1)b. Therefore, turning this deformation on breaks SO(6)en to a subgroup
SO(4)en × U(1)b and triggers an RG flow along which the topological symmetry is always

12These scalar monopoles arise from dressing the bare charge ±1 monopoles with 2 fermionic zero-modes,
as required by gauge invariance (recall that the bare Chern-Simon level is −Nf/2). Since the two fermions
must be antisymmetrized, we have in total 6 + 6 states. 4 of them are chiral/antichiral BPS monopoles,
the other 8 are in the 8 conserved supermultiplets which emerge in the IR.
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enhanced to a non-Abelian group. In the IR the flavors Q̃ and the 4 complex singlets η
are massive: we are left with sQED with 2 flavors Q1, Q2 and zero Chern-Simons level
(because the two massive flavors have opposite mass), discussed in section 5. In the IR
only an SU(2)en subgroup of SO(4)en×U(1)b acts, while the rest of the group acts trivially.
The factor U(1)a enhances to SU(2)flav. The two IR symmetries SU(2)en and SU(2)flav
do not commute and combine into an SU(3) symmetry. This RG flow presents a different
perspective on the symmetry enhancement of the theory considered in section 5.

6.2 Superconformal index, chiral ring and moduli space of vacua

As a further check of the claimed symmetry enhancement, let us compute the supercon-
formal index of the theory. Defining

f∆[s, x, t] = tx|m|+∆ − t−1x|m|+2−∆

1− x2 , (6.13)

the single-letter partition function for an Abelian gauge theory with 2 + 2 flavors and 4
singlets is

fs.l.(z, a, b, ta) = fr[s/2, x, a±1taz] + fr[s/2, x, b±1ta/z] + f2−2r[0, x, a±1b±1t−2
a ] . (6.14)

Here z, a, b, ta are the fugacities for U(1)gauge × SU(2)L × SU(2)R × U(1)a, while r is the
R-charge of the flavors, whose superconformal value is given in (6.3).

The superconformal index that includes the fugacity t for U(1)top [25] is a sum over
all monopole sectors:13

SC-I(t, a, b, ta) =
+∞∑

m=−∞
tm
∫
dz

z
x2−2r t−|m|a PE

[
fs.l.(z, a, b, ta)

]
. (6.16)

It can be checked that it indeed admits an expansion at small x in terms of characters
χso(6) of SO(6)en:

SC-I = 1 + x2−2r t−2
a χso(6)[6] + x4−4r t−4

a χso(6)[20′]
+ x3−3r t−6

a χso(6)[50]− x2(χso(6)[15] + 1
)

+O(x2) ,
(6.17)

where
χso(6)[6] = ab+ a

b
+ 1
ab

+ b

a
+ t+ 1

t
. (6.18)

The first three contributions in (6.17) are chiral ring operators (linear, quadratic, cubic
in the generators), while the term proportional to −x2 is the contribution of fermionic
operators sitting in the IR conserved current multiplets. We indeed see that the adjoint of
SO(6)en appears there.

13The Plethystic Exponential PE of a function f(t) such that f(0) = 0 is defined as

PE
[
f(t)

]
= Exp

(
∞∑
n=1

1
n
f(tn)

)
. (6.15)
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Let us close with a description of the chiral ring and the moduli space of vacua. From
the expansion (6.17) we can see that the six chiral ring generators satisfy a quadratic
equation, which is an SO(6) invariant quantum relation for the monopoles:

M+M− = ηαβ ηγδ ε
αγ εβδ = 2(η11η22 − η12η21) . (6.19)

The moduli space of vacua of the gauge theory is the 5-complex dimensional cone defined
by one SO(6) invariant quadratic equation in 6 variables. So in particular the moduli space
of vacua is a complete intersection. This implies that the chiral ring Hilbert Series [26] is
a simple Plethystic Exponential:

HS =PE
[
χso(6)[6]t− t2

]
= 1+χso(6)[6]t+χso(6)[20′]t2 +χso(6)[50]t3 +χso(6)[105]t4 + . . .

(6.20)
where t = x2−2r is the scaling dimension and the R-charge of the chiral ring generators.
In terms of Dinkyn labels of SU(4) ∼ SO(6), we get an all-order expansion as sum over all
representations with Dinkyn labels proportional to the Dinkyn label of the 6:14

HS =
∞∑
n=0

[0, n, 0]su(4)t
n . (6.21)

Notice that only SU(4) representations of even quadrality appear, consistent with the fact
that the enhanced symmetry is SO(6) = SU(4)/Z2.
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