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Abstract

N,N-Diaryl dihydrophenazines are employed as organic photoredox catalysts (PCs) for 

photoinduced electron/energy transfer–reversible addition–fragmentation chain transfer (PET-

RAFT) polymerization. The ability of these PCs to mediate PET-RAFT is heavily dependent on 

the ability of the PC to access a photoexcited intramolecular charge transfer state. The use of PCs 

displaying intramolecular charge transfer in the excited state allows for efficient PET-RAFT of a 

variety of monomers, including vinyl acetate, and in a wide range of solvents. The ability of these 

PCs to also mediate organocatalyzed atom transfer radical polymerization (O-ATRP) is exploited 

to perform a sequential PET-RAFT/O-ATRP block copolymerization of PMA-b-PMMA using the 

same PC for both polymerizations.

Abstract

The use of photocatalysis1–7 has allowed for the introduction of light-controlled photoredox-

mediated variants of many controlled radical polymerizations (CRPs), including two of the 

most well-known CRPs, reversible addition–fragmentation chain transfer (RAFT) 

polymerization,8–12 and atom transfer radical polymerization (ATRP).13–17 Initial 
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development of these photoredox-catalyzed variants involved the use of a transition metal 

based photocatalyst (PC), such as tris(bipyridine)ruthenium(II) chloride [Ru(bpy)3] or tris(2-

phenylpyradinato-C2,N)iridium(III) [fac-Ir(ppy)3]. However, in order to eliminate the 

potential for metal contamination in the polymeric product, organic PCs have been sought to 

replace these transition metal photocatalysts.18 In the case of photoinduced electron/energy 

transfer RAFT (PET-RAFT) polymerization, organic molecules such as eosin Y and 

pheophorbide A have been reported to efficiently mediate the polymerization of 

methacrylates and acrylates,19–21 and a phenothiazine derivative has been reported for the 

polymerization of acrylates and acrylamides.22

In the case of photoredox-mediated ATRP, a number of PC types have been employed in 

organocatalyzed ATRP (O-ATRP).23–25 Among these, N,N-diaryl dihydrophenazines have 

emerged as highly promising PCs for O-ATRP due in part to their strong reducing power in 

their triplet excited state [E0(2PC•+/3PC*) < −2.0 V vs SCE] and their ability to access an 

intramolecular charge transfer (CT) excited state upon photoexcitation with visible light. 

This intramolecular CT state is characterized by the transfer of the excited electron from the 

phenazine core to the N-aryl substituent, and the ability to access an intramolecular CT state 

has been shown to be a crucial aspect of efficient O-ATRP by these catalysts.26–28 Given the 

similarity of the role of the PC as an electron-transfer agent in both PET-RAFT and O-ATRP 

(Figure 1), we hypothesized that the same physical properties which make N,N-diaryl 

dihydrophenazines successful PCs for O-ATRP would also extend to the PET-RAFT 

process.

To begin, we sought to address whether or not N,N-diaryl dihydrophenazines are generally 

capable of serving as PCs for PET-RAFT. Two representative PCs, one exhibiting CT (PC 1) 

and one without CT (PC 4), were tested in the PET-RAFT polymerization of a number of 

different monomers using 460 nm blue LED as the light source (Table 1). PC 1 proved to be 

an efficient catalyst for the PET-RAFT of methyl acrylate (MA), methyl methacrylate 

(MMA), vinyl acetate (VAc), and N,N-dimethyl acrylamide (DMA). All of the polymers 

produced were of low dispersity (Đ, determined by GPC), and experimental and theoretical 

molecular weights (MWs) were in relatively good agreement. Notably, this is the first 

reported PET-RAFT polymerization of VAc by an organic PC. In contrast, PC 4 showed low 

or no conversion for all of the tested monomers.

For the polymerization of MA with PC 1, control experiments were performed in which 

each of the polymerization components was removed, which resulted in no conversion in the 

absence of light or low conversion when PC was removed, indicating the potential for self-

initiation of the RAFT agent under polymerization conditions (SI, Table S1).29–31 The 

absence of RAFT agent results in an uncontrolled polymerization, as demonstrated by high 

MW and Đ. To lend support to a PET-RAFT mechanism, 1H NMR and MALDI-TOF 

analysis of a sample of PMA confirmed the presence of BTPA end groups (SI, Figures S2 

and S3). Additionally, a sample of PMA was employed as a macro-initiator and efficiently 

chain extended in the presence of MA to yield PMA-b-PMA polymer, which is 

demonstrated by the shift in MW distribution after chain extension (SI, Figure S4).
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In order to further investigate the behavior of these PCs as PET-RAFT catalysts, 6 N,N-

diaryl dihydrophenazine PCs (3 with CT and 3 without CT) were employed in the PET-

RAFT polymerization of MA in 6 different solvents (DMSO, DMF, DMAc, EtOAc, THF, 

and dioxane) under 460 nm blue LED light (Table 2). PCs 1–3 are capable of mediating the 

PET-RAFT of MA to high monomer conversion with low Đ and good agreement between 

theoretical and experimental MWs in solvents with a wide range of polarities. However, PCs 

4–6 gave low or no monomer conversion within 6 h in all of the solvents tested.

The PET-RAFT polymerization of MA in DMSO using each of the 6 PCs was also 

monitored over time (Figure 2, see SI for additional experimental details). These data show 

that polymerizations using non-CT PCs as the catalyst present very low polymerization rates 

compared to those using CT PCs (kapp of PCs 4–6 is approximately three times slower than 

kapp of PCs 1–3). Regardless of the CT nature of the PC, the polymerizations showed first-

order kinetics with respect to monomer concentration, a linear growth of Mn with respect to 

conversion, and decrease in Đ with increasing monomer conversion (Figure 2 and SI, Figure 

S5). These data indicate that both types of PCs are able to participate in the PET-RAFT 

process. However, we hypothesize that the presence of intramolecular CT in the excited state 

allows PCs 1–3 to more efficiently participate in the electron transfer step needed to activate 

the RAFT agent. Similar to our previous observations regarding the behavior of these PCs in 

O-ATRP, the presence of intramolecular CT, and the resulting localization of the excited 

electron on the N-aryl substituent of the PC, may minimize the potential for unproductive 

back electron transfer, resulting in more efficient activation and overall faster PET-RAFT 

polymerizations. One key difference between the two polymerization types, however, is that 

to produce polymers with low Đ O-ATRP requires a higher PC concentration, typically 500 

ppm, whereas PET-RAFT of MMA requires a significantly lower PC concentration 

(typically 10 ppm) (SI, Table S2).

With this information in hand, we sought to exploit the ability of PC 1 to efficiently catalyze 

both PET-RAFT and O-ATRP at different PC concentrations to devise an orthogonal 

copolymerization in which one PC is used to perform both types of CRPs in sequence. We 

began by synthesizing a dual initiator, EtBriB–BTPA, which contains a PET-RAFT initiating 

trithiocarbonate moiety and an O-ATRP initiating alkyl bromide moiety (Figure 3A). In the 

first stage of the copolymerization, MA was polymerized via PET-RAFT using PC 1 as the 

catalyst at 50 ppm. 1H NMR of the PMA product indicates that the polymerization was 

controlled by the trithiocarbonate moiety of EtBriB–BTPA, and the alkyl bromide moiety 

was left unreacted as demonstrated by the presence of a methyl signal at 1.8 ppm (Figure 3B 

and SI, Figure S11). Subsequently, to form the second block, MMA was added, and the PC 

was increased to 500 ppm. The PMMA block is expected to selectively polymerize via O-

ATRP as the BTPA moiety cannot polymerize methacrylates.32 GPC analysis revealed a 

shift in the retention time after chain extension, supporting the synthesis of PMA-b-PMMA 

(Figure 3C).

In conclusion, N,N-diaryl dihydrophenazines, previously employed as PCs for O-ATRP, 

were investigated for their ability to serve as photocatalysts for PET-RAFT polymerization. 

It was found that those PCs which possess an excited state with intramolecular CT character 

are able to efficiently polymerize a number of classes of monomers, including the first report 
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of a PET-RAFT polymerization of VAc by an organic PC. Additionally, it was found that all 

of the CT PCs tested resulted in efficient polymerization of MA in solvents with a wide 

range of polarities. Kinetic analysis indicated that non-CT PCs are also capable of mediating 

the PET-RAFT of MA. However, these polymerizations are slow compared to those which 

use a CT PC, likely due to less efficient activation. Finally, the ability of this one class of 

PCs to mediate two different controlled radical polymerizations was exploited to form a 

PMA-b-PMMA copolymer using both PET-RAFT and O-ATRP in sequence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Proposed mechanisms of PET-RAFT (top) and O-ATRP (bottom), highlighting the similar 

role of the PC in each.
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Figure 2. 
First-order kinetic analysis of the PET-RAFT polymerization of MA in DMSO using PCs 1–
3 (A) and PCs 4–6 (B). Evolution of Mn and Đ versus conversion using PC 1 (C) and PC 4 
(D).
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Figure 3. 
(A) Scheme of sequential PET-RAFT/O-ATRP copolymerization. (B) 1H NMR spectra 

showing the indicated protons before (left) and after (right) the polymerization of MA. (C) 

GPC traces of PMA block (red) and PMA-b-PMMA copolymer (blue).
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Table 2.
PET-RAFT Polymerizations of MA Using PCs 1–6 in Solvents of Varying Polarity

DMSO DMF DMAc EtOAc THF dioxane

Charge Transfer Catalysts

conv.
a
 = 78.9%

Mn
b
 = 13.9

Đc
 = 1.06

conv. = 68.8%
Mn = 12.5
Đ = 1.07

conv. = 85.4%
Mn= 15.1
Đ = 1.07

conv. = 80.0%
Mn = 13.6
Đ = 1.08

conv. = 90.7 %
Mn = 13.8
Đ = 1.16

conv. = 90.8%
Mn = 18.4
Đ = 1.06

conv. = 87.2 %
Mn = 17.3
Đ = 1.08

conv. = 93.3%
Mn = 19.1
Đ = 1.06

conv. = 97.8%
Mn = 19.7
Đ = 1.08

conv. = 92.1 %
Mn = 17.5
Đ = 1.11

conv. = 97.0%
Mn = 15.2
Đ = 1.20

conv. = >99%
Mn = 21.0
Đ = 1.12

conv. = 76.4%
Mn = 15.9
Đ = 1.07

conv. = 70.7%
Mn = 13.4
Đ = 1.07

conv. = 86.0%
Mn = 17.0
Đ = 1.06

conv. = 29.1%
Mn = 7.4
Đ = 1.16

conv. = 76.4%
Mn = 13.4
Đ = 1.07

conv. = 91.5%
Mn = 19.4
Đ = 1.08

Non-Charge Transfer Catalysts

conv. = 5.6%
Mn = 2.3
Đ = 1.44

conv. = 0% conv. = 16.7%
Mn = 3.7
Đ = 1.25

conv. = 0% conv. = 0% conv. = 0%

conv. = 8.3%
Mn = 2.6
Đ = 1.35

conv. = 0% conv. = 29.6%
Mn = 7.1
Đ = 1.15

conv. = 0% conv. = 10.7%
Mn = 2.7
Đ = 1.32

conv. = 0%

conv. = 49.2%
Mn = 10.7
Đ = 1.05

conv. = 0% conv. = 17.3%
Mn = 5.6
Đ = 1.17

conv. = 0% conv. = 24.8%
Mn = 5.4
Đ = 1.20

conv. = 31.0%
Mn = 8.2
Đ = 1.15

a
Determined via 1H NMR spectroscopy.

b
kDa, determined via GPC using PMMA standards.

c
Mw/Mn, determined via GPC. For all runs, [MA]: [BTPA]:[PC] = 200:1:0.01, based on 0.5 mL of MA; run in 0.5 mL of the indicated solvent (11 

M); λ = 460 nm blue LED; irradiation time 6 h. Green denotes conv. > 50%. Yellow denotes 50% > conv. > 20%. Red denotes conv. < 20%.
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