N-nacnac stabilized tetrelenes: formation of an *N*,*P*-heterocyclic germylene via C—C bond insertion

Dinh Cao Huan Do,^[a] Andrey V. Protchenko,^[a] Petra Vasko,^[a] Jésus Campos,^[a] Eugene Kolychev,^[a] and Simon Aldridge^{*[a]}

Dedicated to Werner Uhl on the occasion of his 65th birthday

Abstract: The use of an amino-functionalised β -diketiminate ("N-nacnac") ligand in low-valent germanium chemistry is reported, with a view to comparison with 'conventional' Nacnac- systems. Transmetallation of the N-nacnac ligand from lithium allows access to a versatile chlorogermylene system, and subsequent substituent exchange processes are used to generate related hydrido-, and phosphaketenyl-germylenes. The latter undergoes photolytically-induced cleavage of the P—CO bond to yield an unusual imine-coordinated *N,P*-heterocyclic germylene. On the basis of DFT calculations this transformation is proposed to occur via concerted attack by the electron-rich carbon-carbon bond of the N-nacnac backbone accompanying CO loss, rather than via the generation of a free phosphinidene.

As a class of well-established main group complexes, donorsupported chlorogermylenes, R(L)Ge^{II}CI, are known to serve as convenient starting materials for a range of reactive molecular entities, in large part due to their simple/convenient synthesis,^[1] and the versatility of the chloride group towards further chemical transformations.^[1a-d, 1i, 2a-i] Stabilization of such sub-valent compounds is often achieved by the employment of sterically bulky and electron-rich ancillary ligands; these two requirements can be fulfilled by the use of the chelating mono-anionic β diketiminate (or "Nacnac") ligand family, [HC{(R)C(R')N}2]^{-[3a-c]} Prominent examples of (Nacnac)Ge^{II}CI systems acting as precursors to more exotic molecular species include (i) hydridefor-halide exchange, leading to a robust Ge^{II} hydride complex;^{[4a-} ^{c]} (ii) one-electron reduction, affording a remarkable twocoordinate germanium-centred radical.^[5] and most recently. (iii) salt metathesis with a source of the [PCO]⁻ anion leading to Ge^{II} phosphaketenyl complexes, which are reported to undergo photolytic decarbonylation to give transient germaphosphinidene species.[3c,6]

We were interested in the latter chemistry, not least because of its close relationship to the synthetic route used by the group of Bertrand to generate a "bottle-able" singlet phosphinidene.^[7a,b] In addition, it has been demonstrated that the steric/electronic profile of the Nacnac-backbone substituents exert a strong influence on the reactivity profile of the putative germaphosphinidene species generated on ejection of CO from Ge^{II}-PCO systems.^[3c, 6] Having recently reported a series of novel

[a] Mr. D. C. H. Do, Dr. A. V. Protchenko, Dr. P. Vasko, Dr. J. Campos, Dr. E. Kolychev, Prof. S. Aldridge Inorganic Chemistry Laboratory, University of Oxford South Parks Road, Oxford OX1 3QR E-mail: Simon.Aldridge@chem.ox.ac.uk

Supporting information for this article is given via a link at the end of the document.

Scheme 1. Previously reported Nacnac-stabilized phosphaketenyl germylenes: synthesis and rearrangement patterns on photo-induced release of CO (Dipp = 2,6-iPr2C₆H₃).

electron-rich amino-functionalized Nacnac ligand variants ("N-nacnac", $[HC{(Me_2N)C(R')N}_2]$) and explored their complexation chemistry with tin as a Group 14 representative,^[8] we sought to extend these studies to the lighter congener, germanium, focusing on potential chemical differences to their Nacnac counterparts. One aim was to investigate the impact of incorporating $-NMe_2$ groups into the ligand scaffold on the photochemical behaviour of the corresponding phosphaketenyl complexes, both experimentally and theoretically. Our efforts in this area are reported in the current manuscript.

In a similar manner to the preparation of the analogous chlorostannylene, the lithiated N-nacnac precursor [HC{(Me₂N)C(Dipp)N}₂]Li(OEt₂) undergoes salt metathesis with GeCl₂ dioxane, affording chlorogermylene **1** in moderate to good yield (66%; Scheme 2). **1** has been characterized by standard spectroscopic and analytical techniques, and its structure in the solid state has been determined by single crystal X-ray diffraction (Figure 1). This allows like-for-like comparison with previously reported chlorogermylenes stabilized by various Nacnac ligands, which differ only in the backbone C_{imine}-bound group (Table 1).^[3a-c]

Scheme 2. Synthetic protocol for chlorogermylene 1 and hydridogermylene 2.

Figure 1. Molecular structures of 1 (left) and 2 (right) in the solid state as determined by X-ray crystallography. Thermal ellipsoids have been set at 35% probability, with Dipp-substituents represented in the wireframe format, and hydrogen atoms omitted for clarity (apart from the Ge-bound hydride). Selected bond lengths (Å) and angles (°): (1) Ge1—Cl2 2.3490(4), Ge1—N3 1.9733(14), Ge1—N10 1.9680(13), N3—C4 1.347(2), C9—N10 1.358(2), C4—C8 1.414(2), C8—C9 1.397(2), C4—N5 1.367(2), C9—N23 1.368(2), N3—Ge1—N10 94.31(6), Cl2—Ge1—N3 94.92(4), Cl2—Ge1—N10 94.72(4); (2) Ge1—N1 2.0111(12), Ge1—N2 1.9922(12), N1—C1 1.3414(16), N2—C3 1.3447(16), C1—C2 1.4066(19), C2—C3 1.3925(19), C1—N3 1.3777(17), C3—N4 1.3796(17), N1—Ge1—N2 93.45(5).

R	d(Ge—Cl) (Å)	d(Ge—N) (Å)	∠(N-Ge-N) (°)	Distance of Ge above least squares NC ₃ N plane (Å)
H ^[3c]	2.302(1)	1.984(4) 1.972(4)	89.7(2)	0.276
Me ^[3a]	2.295(12)	1.988(2) 1.997(3)	90.89(10)	0.564
^t Bu ^[3b]	2.2942(8)	1.9394(19) 2.036(2)	91.99(8)	0.599
NMe₂	2.3490(4)	1.968(1) 1.973(1)	94.31(6)	0.550

1 features similar (or slightly shorter) Ge-N distances to previously reported Nacnac systems featuring backbone H or alkyl substituents, but a distinctly longer Ge-Cl bond, and a significantly wider N-Ge-N angle (Table 1). Very similar structural observations have been made for the corresponding tin complex, [HC{(Me₂N)C(Dipp)N}₂]SnCl, in comparison to the related Nacnac system [HC{(Me)C(Dipp)N}2]SnCl.[8] Spectroscopically, the chemical shift associated with the y-CH proton is consistent with a degree of conjugation of the amino groups into the unsaturated backbone of the β -diketiminate ligand. Thus, the more upfield shifted signals measured for the N-nacnac 4.26 complexes (δн = and 4.04 ppm for $[HC{(Me_2N)C(Dipp)N}_2]MCI (M = Ge, Sn) vs. 5.14 and 5.05 ppm$ for HC{(Me)C(Dipp)N₂]MCI) are consistent with the welldocumented effects of π -donor amino groups on alkene resonances.^[3a,8,9] The extent of this effect is presumably tempered by steric factors which prevent the (planar) -NMe₂ groups from attaining perfect co-planarity with the C₃N₂ plane (the mean inter-plane torsion angle for 1 is 27.1°).

The synthetic versatility of **1** in the synthesis of related germylene compounds is readily demonstrated. Thus, hydridogermylene **2** can easily be generated from **1** *via* a hydride-forchloride substitution using K[HBEt₃] (Scheme 2) and its molecular structure confirmed by X-ray crystallography. The geometric differences between **2** and **1** are small, with the germanium centre projected out of the C₃N₂ plane (by 0.646 Å) and the hydride ligand occupying the pseudo axial position.^[10] Of interest spectroscopically, are the observations that the germanium-bound hydride is slightly more deshielded in 2 than in [HC{(Me)C(Dipp)N}₂]GeH (δ_H = 8.14 vs. 8.08 ppm) and that the Ge-H stretching frequency is somewhat higher (1755 vs. 1733 cm⁻¹).^[4b] Both observations imply that the germanium centre bears a slightly higher partial positive charge in 2,[10] which in turn suggests that the net effect of the backbone NMe2 groups at the remote germanium centre (which is both coordinatively saturated and projected significantly out of the C_3N_2 plane) is as a σ electron-withdrawing group. On the other hand, the ¹H and ¹³C signals for the backbone γ -CH (δ_{H} = 4.22, δ_c = 78.2 ppm, cf. 4.92 and 97.8 ppm for [HC{(Me)C(Dipp)N}2]GeH), suggest that (as with 1) the effect of the NMe2 groups on the more-or-less conjugated C3 backbone is as a π electron donating group.

Similar substituent exchange chemistry can also be effected for the synthesis of the phosphaketenyl-germylene **3**, which is obtained in ca. 60% yield via the reaction between **1** and Na(PCO)(dioxane)_x (Scheme 3). **3** has been characterized by standard spectroscopic and analytical methods; particularly diagnostic are ³¹P and IR signatures for the Ge-PCO unit (δ_P = -317 ppm; v(CO) = 1876 cm⁻¹) which are in line with previous examples of this functional group.^[3c,6] While the molecular structure of **3** determined crystallographically (Figure 2) is also broadly in line with those of related systems, the ¹³C{¹H} NMR spectrum reveals a markedly upfield shifted resonance associated with the N-nacnac backbone CH group. The shifts measured for related compounds featuring backbone H, Me or

Scheme 3. Synthetic route to phosphaketenyl-substituted germylene **3** and imine-tethered *N*,*P*-heterocyclic germylene **4**.

Figure 2. Molecular structures of 3 (left) and 4 (right) in the solid state as determined by X-ray crystallography. Thermal ellipsoids have been set at 35 % probability, with Dipp-substituents represented in the wireframe format, and hydrogen atoms omitted for clarity. Selected bond lengths (Å) and angles (°): (3) Ge1—P2 2.5470(6), P2—C3 1.684(5), C3—O6 1.187(6), Ge1—N7 1.9872(15), Ge1—N14 1.9652(15), Ge1—P2-C3 37.29(16), P2—C3—O6 179.11(10); (4) Ge1—P2 2.4323(9), Ge1—N5 1.938(3), Ge1—N22 2.038(3), P2—C3 1.803(3), P2—C21 1.883(3), C3—C4 1.383(4), C4—N18 1.394(4), C4—N5 1.387(4), C21—N35 1.335(4), C21—N22 1.328(4), Ge1—P2—C3 90.27(10), Ge1—P2—C21 74.75(10), C3—P2—C21 98.85(14), P2—Ge1—N5 88.14(8), P2—Ge1—N22 71.44(8), N5—Ge1—N22 99.30(10).

^tBu groups fall in the range δ_c = 95.0-106.5 ppm, but that for **3** is observed at 81.3 ppm, consistent with the presence of a more electron rich backbone featuring pendant NMe₂ groups. In line with chloro- and hydrido-germylene complexes **1** and **2**, compound **3** features torsion angles between the aminofunctions and the 5-membered ring chelate of 27.5° and 28.7°.

Broadband UV-photolysis of **3** over the course of 6 h, followed by recrystallization from pentane at -26° C yields the C-C insertion compound **4** (Scheme 3). Definitive characterization in this case relies heavily on X-ray crystallography (Figure 2), and the structure so obtained can be described in terms of a five-membered *N*,*P*-heterocyclic germylene, stabilized by an imine tether. As such, the isolation of **4** might shed some light on potential mechanisms for the formation of a related (dimeric) *N*,*P*-chelated germylene in the corresponding photolytic reaction of [HC{(^tBu)C(Dipp)N}₂]Ge(PCO) (Scheme 1).^[3c] The P-P bonded product (and diazabutadiene co-product) might be viewed as being generated from a species similar to **4** via homolytic cleavage of the P-C bond to the pendant imine function (with subsequent dimerization).

The structure of **4** is bicyclic, hinged about the Ge(1)-P(2) bond and with the angle between the least-squares planes of the two rings being 80.0°. The two Ge—N distances (1.938(3) and 2.038(3) Å) are consistent with previous reports of single and dative bonds, respectively. ^[11a-c] In addition, there is evidence for a significant π -conjugation across the N22—C21—N35 triatomic unit, as evidenced by (i) the very small dihedral angle between the –N(22)C₂ plane and that of the N22—C21—N35 unit (3.3°), and (ii) the negligible degree of pyramidalization of the two nitrogen atoms (sums of angles: N22, 358.9°; N35, 360.0°). As such, the two C—N distances involving C21 (*d*(C21—N35) = 1.335(4) Å; *d*(C21—N22) = 1.328(4) Å) are statistically identical. From a spectroscopic perspective, **4** gives rise to a single ³¹P NMR resonance at δ_P = -50 ppm which shows two-bond coupling to the proton attached to C(3) (²*J*_{PH} = 33 Hz).

To shed a light on possible reaction pathways leading to the conversion of 3 to 4 we undertook DFT calculations at the PBE1PBE/Def2-TZVP level of theory. As a starting point, we considered the mechanistic hypothesis presented by Driess and co-workers, that initial photolytic loss of CO generates a transient germanium phosphinidene, which then rearranges via formal insertion into one of the backbone C-C bonds of the Nnacnac ligand.^[3c] A number of different geometries were considered for the [HC{(Me₂N)C(Dipp)N₂]GeP intermediate, the lowest energy of which features a Ge-P unit projected approximately perpendicular to the C3N3 plane, and which is converted via a very low energy transition state (ca. 6.1 kJ mol⁻¹) into 4 (see ESI). While the overall process is endoergic to the tune of +23.4 kJ mol⁻¹ it is presumably driven by removal of the CO co-product. Whatismore, similar energetic profiles can be calculated for the corresponding derivatives featuring backbone H, Me or ^tBu groups – albeit with slightly higher activation barriers (9.9, 16.8 and 19.6 kJ mol⁻¹, respectively).

We next considered the mechanism for the energetically expensive step, i.e. the CO loss from **3**. A linear transit carried out on the P-C(O) distance, however, revealed that stepwise

elongation is accompanied by ever-closer approach to the phosphorus centre by the γ -carbon of the N-nacnac backbone. This structural distortion is consistent with the electron-deficient nature of the developing phosphinidene centre, and the electronrich nature of the N-nacnac backbone (the NBO-calculated charge at the γ -C is -0.506). This trajectory for CO loss suggested to us that an alternative pathway for the direct conversion of 3 to 4 might involve concerted attack at P by the π -system centred at the γ -carbon accompanying CO loss (Scheme 4). Accordingly, we could locate a transition state (at +165.6 kJ mol⁻¹) corresponding to this process - which while relatively high in energy - is not inconsistent with the photolytic mode of activation of this chemistry. As such, we hypothesize that the overall transformation need not necessarily invoke the formation of a transient germanium phosphinidene intermediate. Intriguingly, the analogous linear transit carried out on the P-C(O) bond in [HC{(^tBu)C(Dipp)N}₂]GePCO reveals a similar interaction with the γ -carbon (consistent with the finding that the final product in this case also involves C-C insertion), while the less electron-rich [HC{(H)C(Dipp)N}2]GePCO system loses CO without involvement of the backbone π system – in line with the finding that the product in this case is the Ge₂P₂-containing "phosphindene dimer" (Scheme 1).[3c,6]

Scheme 4. Alternative (concerted) mechanism for the formation of 4 (Gibbs' energies in kJ mol⁻¹).

In summary we have developed the coordination chemistry of the N-nacnac family of ligands towards Ge^{II}, synthesizing chloride, hydride and phosphaketenyl systems (1-3). Electronically these systems feature a more electron rich β -diketiminate backbone – a feature which is not only signalled spectroscopically, but also of potential relevance in the photolytic reactivity of **3**, which proceeds via ejection of CO with concomitant insertion into one of the backbone C-C bonds.

Experimental Section

General details and the synthetic protocols for **2** and **4** are described in the ESI. X-ray crystal structure data have been deposited with the CCDC: 1528014 and 1849870-1849872.

Synthesis of 1: A solution of N-nacnac-Li(OEt)₂ (1 mmol) in toluene (50 mL) was added to a solution (10 mL) containing

GeCl₂.dioxane (1.1 equiv.) in the same solvent at -78°C, and the resulting mixture warmed to room temperature with stirring overnight. Volatiles were subsequently removed in vacuo, and the resulting residue was washed with cold hexane (0°C) to yield the product as off-white spectroscopically pure solid (yield 0.38 g, 66 %). X-ray guality crystals were obtained from a concentrated toluene solution, layered with hexane, and stored at -26°C for several days. ¹H NMR (C₆D₆, 400 MHz): δ_{H} 1.08 (d, ³J_{HH} = 6.8 Hz, 6H, (CH₃)₂CH), 1.11 (d, ³J_{HH} = 6.4 Hz, 6H, (CH₃)₂CH), 1.29 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 6H, (CH₃)₂CH), 1.65 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 6H, (CH₃)₂CH), 2.25 (s, 12H, (CH₃)₂N), 2.99 (sept, ³J_{HH} = 6.7 Hz, 2H, $(CH_3)_2CH$, 4.26 (s, 1H, methine CH), 4.53 (sept, ${}^3J_{HH}$ = 6.7 Hz, 2H, (CH₃)₂C<u>H</u>), 7.04-7.18 (6H, aromatic CH) ppm. ¹³C{¹H} NMR (100 MHz, C₆D₆): δ_{C} 24.1, 24.2, 26.7, 27.9 ((CH₃)₂CH), 28.3, 28.9 ((CH₃)₂CH), 41.0 (CH₃)₂N), 80.0 (methine CH), 124.4, 125.7 (m-CH of Dipp), 126.5 (p-CH of Dipp), 140.9, 145.0, 146.5 (aromatic carbons), 164.8 (imine quaternary C) ppm. EI-MS (m/z, %): 584.3, weak, $[M]^+$; accurate mass: calc. for C₁₉H₂₃ClGeN₄ ([M]⁺) 584.2701, found 584.2720. Elemental microanalysis: calc. for C₃₁H₄₇ClGeN₄: C 63.78, H 8.11, N 9.60%, meas. C 63.84, H 8.16, N 9.46 %.

Synthesis of 3: To a toluene suspension of NaPCO(dioxane)_x complex (1.3 equiv.), a solution (20 mL) of 1 (0.2 mmol) in the same solvent was slowly added at -78°C. The reaction mixture was warmed to room temperature and stirred overnight, after which solvent was removed in vacuo, and the residual solid was washed with hexane (ca. 5 mL) to afford the spectroscopically pure product (Yield 0.076 g, 63 %). Storage of a saturated hexane solution of 3 at -26°C produced light yellow crystals suitable for X-ray crystallography. ¹H NMR (400 MHz, C_6D_6): δ_H 1.04 (d, ${}^{3}J_{HH}$ = 6.7 Hz, 6H, (C<u>H</u>₃)₂CH), 1.09 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 6H, $(CH_3)_2CH$, 1.33 (d, ${}^{3}J_{HH}$ = 6.6 Hz, 6H, $(CH_3)_2CH$), 1.71 (d, ${}^{3}J_{HH}$ = 6.7 Hz, 6H, (CH₃)₂CH), 2.21 (s, 12H, (CH₃)₂N), 2.93 (sept, ³J_{HH} = 6.7 Hz, 2H, (CH₃)₂CH), 4.16 (s, 1H, methine CH), 4.47 (sept, ³J_{нн} = 6.8 Hz, 2H, (CH₃)₂C<u>H</u>), 7.02 (d, ³J_{нн} = 7.6 Hz, 2H, *m*-H of Dipp), 7.07 (t, ${}^{3}J_{HH}$ = 7.6 Hz, 2H, *p*-H of Dipp), 7.13 (d, ${}^{3}J_{HH}$ = 7.6 Hz, 4H, *m*-H of Dipp) ppm.¹³C{¹H} NMR (100 MHz, C₆D₆): δ_{C} 24.1 (overlapping signals), 26.7, 28.3 ((CH₃)₂CH), 30.5 (overlapping signals) ((CH₃)₂CH), 41.0 ((CH₃)₂N), 81.3 (d, methine CH, ${}^{4}J_{CP}$ = 9.2 Hz), 124.5, 125.7 (*m*-C of Dipp), 126.3 (p-C of Dipp), 141.1, 145.2, 146.3 (o-C and ipso-C of Dipp), 165.5 (d, through-space coupling with P, J_{CP} 4.2 Hz, imine quaternary C), 191.4 (d, ${}^{1}J_{CP}$ = 88 Hz, P<u>C</u>O) ppm. ${}^{31}P{}^{1}H{}$ NMR (162 MHz, C₆D₆): δ_P -317 ppm. IR (ATR, v_{C-0}/cm⁻¹): 1876. ESI-MS (m/z, %): 549.3, weak, [M - PCO]⁺; accurate mass: calc. for C₃₁H₄₇GeN₄ ([M - PCO]⁺) 549.3013, meas. 549.3028. Elemental microanalysis: calc. for C₃₂H₄₇GeN₄OP: C 63.28, H 7.80, N 9.22%, meas. C 63.42, H 7.96, N 9.18%.

Acknowledgements

We acknowledge funding from the Jardine-Oxford Graduate Scholarship (DCHD), EPSRC (EP/L025000/1 - AP), the Magnus Ehrnrooth, Emil Aaltonen and Finnish Cultural Foundations (PV), EU FP7, Marie Skłodowska-Curie actions (COFUND, Grant Agreement no. 267226) and Junta de Andalucía (JC) and EU FP7, Marie Skłodowska-Curie actions (PIEF-GA-2013-626441 -EK). We also thank Prof Jose Goicoechea, Drs Alexander Hinz and Frank Tamborino (University of Oxford) for samples of Na(PCO)(dioxane)_x. We are grateful for the use of the University of Oxford Advanced Research Computing (ARC) facility.

Keywords: germylenes • β-diketiminates • phosphaketenyl • decarbonylation • inorganic bicyclic molecules

- Selected examples: a) H. V. R. Dias, Z. Wang, J. Am. Chem. Soc. 1997, 119, 4650–4655; b) S. R. Foley, C. Bensimon, D. S. Richeson, J. Am. Chem. Soc. 1997, 119, 10359–10363; c) S. P. Green, C. Jones, P. C. Junk, K. Lippert, A. Stasch, Chem. Commun. 2006, 3978–3980; d) C. Jones, P. Rose, A. Stasch, Chem. Commun. 2006, 3978–3980; d) C. Jones, P. Rose, A. Stasch, Dalton Trans. 2008, 2871–2878; e) L. Pu, M. M. Olmstead, P. P. Power, B. Schiemenz, Organometallics 1998, 17, 5602–5606; f) W. Leung, C. So, Y. Wu, H. Li, T. C. W. Mak, Eur. J. Inorg. Chem. 2005, 513–521; g) J. Li, A. Stasch, C. Schenk, C. Jones, Dalton Trans. 2011, 40, 10448-10456; h) T. J. Hadlington, J. Li, C. Jones, Can. J. Chem. 2014, 92, 427–433; i) J. Berthe, J. M. Garcia, E. Ocando, T. Kato, N. Sa, F. P. Cossio, A. Baceiredo, J. Am. Chem. Soc. 2011, 133, 15930–15933.
- Selected examples: a) L. Pu, M. O. Senge, M. M. Olmstead, P. P. [2] Power, J. Am. Chem. Soc. 1998, 120, 12682-12683; b) M. Stender, A. D. Phillips, R. J. Wright, P. P. Power, Angew. Chem. Int. Ed. 2002, 41, 1785-1787; c) A. F. Richards, A. D. Phillips, M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 2003, 125, 3204-3205; d) L. Pu, A. D. Phillips, A. F. Richards, M. Stender, R. S. Simons, M. M. Olmstead, P. P. Power, J. Am. Chem. Soc. 2003, 125, 11626-11636; e) J. Schneider, K. M. Krebs, S. Freitag, K. Eichele, H. Schubert, L. Wesemann, Chem. Eur. J. 2016, 22, 9812-9826; f) M. Usher, A. V Protchenko, A. Rit, J. Campos, E. L. Kolychev, R. Tirfoin, S. Aldridge, Chem. Eur. J. 2016, 22, 11685–11698; g) J. Li, C. Schenk, C. Goedecke, G. Frenking, C. Jones, J. Am. Chem. Soc. 2011, 133, 18622-18625; h) J. Li, C. Schenk, F. Winter, H. Scherer, N. Trapp, A. Higelin, S. Keller, R. Pöttgen, I. Krossing, C. Jones, Angew. Chem. Int. Ed. 2012, 51, 9557-9561; i) N. Del Rio, A. Baceiredo, N. Saffon-Merceron, D. Hashizume, D. Lutters, T. Müller, T. Kato, Angew. Chem. Int. Ed. 2016, 55, 4753-4758.
- a) Y. Ding, H. W. Roesky, M. Noltemeyer, H. G. Schmidt, P. P. Power, *Organometallics* 2001, 20, 1190–1194; b) W. D. Woodul, A. F. Richards, A. Stasch, M. Driess, C. Jones, *Organometallics* 2010, 29, 3655–3660; c) S. Yao, Y. Xiong, T. Szilvási, H. Grützmacher, M. Driess, *Angew. Chem. Int. Ed.* 2016, 55, 4781–4785.
- [4] a) Y. Ding, H. Hao, H. W. Roesky, M. Noltemeyer, H. G. Schmidt, *Organometallics* 2001, 20, 4806–4811; b) L. W. Pineda, V. Jancik, K. Starke, R. B. Oswald, H. W. Roesky, *Angew. Chem. Int. Ed.* 2006, 45, 2602–2605; c) A. Jana, D. Ghoshal, H. W. Roesky, I. Objartel, G. Schwab, D. Stalke, *J. Am. Chem. Soc.* 2009, 1288–1293.
- [5] W. D. Woodul, E. Carter, R. Müller, A. F. Richards, A. Stasch, M. Kaupp, D. M. Murphy, M. Driess, C. Jones, *J. Am. Chem. Soc.* 2011, 133, 10074–10077.
- [6] Y. Wu, L. Liu, J. Su, J. Zhu, Z. Ji, Y. Zhao, Organometallics 2016, 35, 1593–1596.
- a) L. Liu, D. A. Ruiz, D. Munz, G. Bertrand, *Chem* **2016**, *1*, 147–153; b)
 M. M. Hansmann, R. Jazzar, G. Bertrand, *J. Am. Chem. Soc.* **2016**, *138*, 8356–8359.
- [8] D. C. H. Do, A. Keyser, A. V Protchenko, B. Maitland, I. Pernik, H. Niu, E. L. Kolychev, A. Rit, D. Vidovic, A. Stasch, C. Jones, S. Aldridge, *Chem.-Eur. J.* 2017, 23, 5830–5841.
- [9] E. Pretsch, P. Bühlmann, M. Badertscher in *Structure Determination of Organic Compounds* (eds. M. Badertscher, P. Bühlmann, E. Pretsch), Springer-Verlag, Berlin, 2009, Chp. 5.
- [10] A. Caise, D. Jones, E. L. Kolychev, J. Hicks, S. Aldridge, *Chem.-Eur. J.* 2018, in press (DOI: 10.1002/chem.201802603).
- [11] a) I. L. Fedushkin, M. Hummert, H. Schumann, *Eur. J. Inorg. Chem.* 2006, 3266–3273; b) A. Mcheik, N. Katir, A. Castel, H. Gornitzka, S. Massou, P. Rivière, T. Hamieh, *Eur. J. Inorg. Chem.* 2008, 5397–5403;

c) S. P. Chia, Y. Li, R. Ganguly, C. W. So, *Eur. J. Inorg. Chem.* 2014, 526–532.

Entry for the Table of Contents (Please choose one layout)

COMMUNICATION

When #ElectrophilicPhosphorus meets #NucleophilicCarbon: The complexation chemistry of N-nacnac-stabilized germylenes provides insight into electronic divergence from conventional Nacnac- supported systems. In the case of a PCO-substituted system, UV-induced decarbonylation affords an unusual bicyclic N,P-heterocyclic germylene. This is proposed to occur *via* a C—C bond insertion initiated by interaction of P with the remarkably nucleophilic γ-carbon of the ligand backbone.

Dinh Cao Huan Do, Andrey V. Protchenko, Petra Vasko, Jésus Campos, Evgeny Kolychev, Simon Aldridge*

Page No. – Page No.

N-nacnac stabilized tetrelenes: formation of an N,P-heterocyclic germylene via C—C bond insertion