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-SIFT: -Dimensional Scale Invariant
Feature Transform
Warren Cheung and Ghassan Hamarneh

Abstract—We propose the -dimensional scale invariant feature
transform ( -SIFT) method for extracting and matching salient
features from scalar images of arbitrary dimensionality, and com-
pare this method’s performance to other related features. The pro-
posed features extend the concepts used for 2-D scalar images in the
computer vision SIFT technique for extracting and matching dis-
tinctive scale invariant features. We apply the features to images of
arbitrary dimensionality through the use of hyperspherical coordi-
nates for gradients and multidimensional histograms to create the
feature vectors. We analyze the performance of a fully automated
multimodal medical image matching technique based on these fea-
tures, and successfully apply the technique to determine accurate
feature point correspondence between pairs of 3-D MRI images
and dynamic CT data.

Index Terms—Biomedical image processing, difference of
Gaussian, feature extraction, image matching, medical images,
scale invariant feature transform (SIFT).

I. INTRODUCTION

E
STABLISHING correspondence between feature points

in a pair of images is important for landmark-based image

registration, and for building statistical models of shape and ap-

pearance [1]–[3]. Applications include stitching multiple im-

ages of the same patient from a session into a unified whole,

aligning images taken of the same patient at different times or

modalities, or aligning one image time-series with another. The

scale-invariant feature transform (SIFT) produces stable fea-

tures in 2-D images [4], [5]. We generalize SIFT to -dimen-

sional images ( -SIFT), and evaluate our extensions in the con-

text of medical images. -SIFT locates positions that are stable

in the image, creating a unique feature vector, and matches the

feature vectors between two scalar images of arbitrary dimen-

sionality.

At the extrema of the difference of Gaussian (doG) scale

space, feature vectors are constructed from local image gradi-

ents weighted by the distance from the feature position. Three

variations of -SIFT are proposed and evaluated—a global

weighted histogram-based feature vector, the histogram-based

feature reoriented in the direction of local gradients, and our
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extension of the standard 2-D SIFT to dimensions which we

refer to as the -SIFT feature vector. We use -dimensional

gradient vectors with directions and a magnitude,

summarized using a weighted multidimensional histogram. As

well, the 128D SIFT feature vector has been generalized to a

feature vector (Section III-B).

II. RELATED WORK

Detection of features in images is a vast research area, encom-

passing many methods to both detect feature points of interest,

as well as describing the features in a manner to facilitate com-

parison of features between related images. Existing strategies

for detecting salient features include edge and corner detection,

such as Canny edge detection [6], Harris/Plessey corner detec-

tion [7], Shi and Tomasi corner detector [8], SUSAN corner de-

tector [9], and FAST corner detector [10]. The use of doG in the

-SIFT approach evokes similar work in blob detection, such as

the MSER blob detector [11] and work by Lindeberg [12], [13].

Most pertinent to this work, however, are the developments on

the use of doG and SIFT features.

DoG image filtering has been previously used to successfully

identify features in breast thermograms for early detection of

breast cancer [14], suggesting that extrema in doG may also in-

dicate salient features. SIFT features and their extensions have

been previously applied for object recognition as an easily com-

puted scale-space kernel approximating the scale-normalized

Laplacian of Gaussian [4], [5], [15] and have been shown to be

most resistant against common image deformations [16].

In the domain of medical image analysis, the robustness of

SIFT features has been previously evaluated on 2-D medical

images. SIFT features show stability under arbitrary affine

transformations [17], [18] when tested on MRI and ultrasound

images. A B-spline based interpolation framework using SIFT

feature points showed promising performance registering elas-

tically deformed MRI images, although ultrasound images in

this case proved more challenging [18]. Improved matching

of images across multiple modalities under rotation has been

achieved by normalizing gradient magnitudes and restricting

gradient orientations to [19]. SIFT features have been

used as part of automated image classification systems using

Euclidean distance between SIFT features [20]. The SIFT

feature localization has also been used to deterministically

localize control points for elastic image registration [21].

A modified version of the SIFT feature has been previously

adapted to 3-D, using feature positions detected by Foerstner

corners without rotational invariance, and applied to thoracic CT

images [22]. The authors verify the technique against synthetic

nonlinear deformations as well as clinical data. The modified

SIFT feature uses multidimensional histograms to summarize
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Fig. 1. Image pyramid—Each level is a downsampled image, convolved with Gaussian scales , , and so on, and doG images from adjacent scales.

gradient directions, but the feature summarizes the gradients at

the pixel locations in a grid. The modified SIFT feature

is an intermediate between the histogram feature vector and the

-SIFT feature vector we propose. The 2-D SIFT feature is the

case of the -SIFT feature we describe in Section III.

In the following sections, we present a detailed description of

the three proposed features (Section III), then evaluate the fea-

tures using 3-D and 4-D medical image data (Section IV) and

conclude by discussing the results (Section V). We compare a

simple histogram-based feature against the addition of a method

for rotational invariance and the -SIFT method using several

test images, and show the effectiveness of -SIFT at success-

fully matching points under minor rotational change. A prelimi-

nary version of the work was published [23] and an open source

implementation has been made available to the research com-

munity [24].

III. METHODS

The computation of any of the three features consists of two

distinct steps: feature localization followed by feature genera-

tion. Feature localization involves finding distinctive locations

in the image. During feature generation, a feature vector is gen-

erated for each of the distinctive locations.

Once features for a pair of images have been computed, corre-

spondences between the feature points in one image with points

in the other image can be evaluated. This involves matching the

feature vectors from one image to the feature vectors in the other

while eliminating ambiguous matches.

A. Feature Localization

The first step in matching points across medical images de-

pends on localizing distinctive points in the image that are rela-

tively robust with respect to the deformations expected and dif-

ferences between subjects. For all three features, we identify

maxima and minima in difference of Gaussian scale space (Al-

gorithm 1).

Algorithm 1 Feature Localization in Difference of Gaussian

Scale Space. Takes an image and generates a set of features

by computing difference of Gaussian images (see Fig. 1).

Parameters are (number of image levels

to compute), (sigma for Gaussian Filter) and (number of

Gaussian scales to compute at each level) are specified by the

user.

1:

2:

3: for to do

4:

5: for to do

6: {Gaussian Filter

Image with sigma }

7:

8: end for

9: for to do

10: {See

Section III-A1}

11: for all do

12: {See

Section III-B}

13: end for

14: end for

15:

16: end for

17: return

To achieve invariance to image scaling, a multilevel image

pyramid is created, similar to the one employed by 2-D SIFT

[4], [5]. The first image of each successive level (represented

by white boxes in Fig. 1) is a linearly interpolated, downsam-

pled version of the Gaussian smoothed image at scale (where

is the standard deviation for the -dimensional Gaussian) in

the previous level (Algorithm 1 , line 15). For our experiments,
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Fig. 2. For 3-D images, an extremum (in black) is the maximum or minimum of the neighbors (shaded) at the same scale, and the corresponding voxels in the
scale above and below.

we downsampled the images by half in each dimension at each

level, yielding images of the same size as the original image at

the first level, a level of images half-sized in each dimension,

quarter-sized at the next, and so on.

1) Locate Extrema in the DoG Space: At each level, we ex-

amine an approximation of the doG space from to by taking

the difference of Gaussian blurred images. To test doG image

scales in a pyramid level, select such that . Starting

from the first image at each level, a series of Gaussian blurred

images are generated using and so on (lines 5,

6). From each neighboring pair of blurred images at scales

and , a doG image at scale is generated by taking the

difference of the images (line 7 and Gaussian images of Fig. 1).

Within each pyramid level, we locate extrema (local maxima

and minima) in our approximation of doG space (line 10). Each

voxel of a doG image (scale ) is compared against the neigh-

boring voxels immediately adjacent, orthogonally and diago-

nally, the corresponding voxel in the scale above at the

same pyramid level, and all the neighbors to that corresponding

voxel, and the corresponding voxel in the scale below

and all the neighbors.

Let us refer to a voxel from the doG image scale at

position as .

Definition 1: A voxel is a local extrema

iff

or

.

For an image, there are a total of neighbors to be

checked—the 3 width hypercube of voxels excluding the central

voxel. Fig. 2 shows an example for 3-D images.

As the scale above and below the current scale are needed to

determine whether a voxel is an extremum, doG images

and Gaussian images will need to be generated. Finally,

only extrema in the doG image having magnitude greater than

a threshold are considered feature points.

By computing feature positions and feature descriptors for

each level of the image pyramid, we incorporate robustness

against image scaling. Note that as we compute multiple image

levels for both of the images being matched, the system is

equally effective against magnification and reduction, although

a significant difference in image size means that the smaller

image will have substantially fewer features to match.

B. Feature Generation

At each of the extrema localized, an identifying feature is

generated. Regardless of the pyramid level or scale where the

extrema was localized, or the feature generation method used,

the feature vector generated will be associated with the physical

location in the original image corresponding to the location of

the extrema detected. For our analysis, we investigate three re-

lated methods for generating features involving histograms of

the local gradient.

The global weighted histogram feature (GWH) is a degen-

erate case of a SIFT feature where only a single histogram is

used to summarize the gradients near the located feature point.

The histograms summarize the direction of the gradient. In ,

we represent the direction of the gradient via hyperspher-

ical coordinates. For example, in 2-D, one angle— , the polar

angle, in polar coordinates—is sufficient to describe direction.

Similarly, in 3-D, two angles— , the azimuthal angle and ,

the polar angle, in spherical coordinates—will suffice. In gen-

eral, we can treat the direction as a point on an -dimensional

unit -sphere , described by

angular coordinates and where the radial coordinate .

These angles can then be summarized using a dimen-

sional histogram, with bins spanning radians for each ori-

entation, for a total of bins. For each voxel in the image,

we generate a value as the product of the magnitude of the gra-

dient and a Gaussian centred on the feature position. This value

is added to the corresponding bin for the gradient orientation.

Although all voxels in the image were considered in these exper-

iments, in practice only voxels within a couple of the feature

position need to be considered due to the Gaussian weighting

and would substantially improve runtime performance.

The histogram for a feature point can then be represented as a

dimensional vector, which is normalized. Normalizing the

histogram allows matching of images between different modal-

ities, as noticed previously in 2-D medical images [19], but also

makes the feature resistant to image intensity differences be-

tween the images.

The reoriented global weighted histogram feature (RGWH)

is computed in much the same manner; however, it normal-

izes the direction of the gradients with respect to the highest

value bin in the histogram, increasing robustness to changes

in orientation. Effectively, the orientation of all the gradient
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Fig. 3. In 3-D, each of the regions (dashed and shaded) summarizes
the gradients at voxel locations (solid and white).

vectors is rotated such that the highest value bin of the his-

togram always falls in the same histogram bin. This is imple-

mented by computing the histogram as per the GWH, and then

identifying the histogram bin with the highest value—the peak.

The index for the peak is first converted to its average orien-

tation direction in hyperspherical coordinates—the peak vector

. A new histogram is then created by taking

each bin in the original histogram, converting its bin index to hy-

perspherical coordinates , rotating it by sub-

tracting the peak vector , and

then converting this vector to the bin index of the new histogram

where we store the contents of the bin. Note that the peak after

reorientation will always reside in the bin corresponding to the

coordinates .

The -SIFT feature summarizes a hypercubic voxel re-

gion around the feature position. In contrast with the previous

two features which use a single global weighted histogram, the

-SIFT feature divides the local area into subregions, each

using a bin histogram to summarize the gradients of the

voxels in the subregion, resulting in a -dimen-

sional feature vector (Fig. 3). For example, for 2-D ,

the region summarized a 16 16 pixel square , divided into 16

subregions which are each 4 4 pixel squares. In 3-D ,

we have a voxel cube, divided into 64 subregions,

each summarizing a voxel cube. The -SIFT feature

described here implements the key features of the 2-D SIFT fea-

ture [5]. The histograms summarize the gradient direction, again

weighted by a Gaussian centred at the feature position.

C. Feature Matching

To match histogram(s) generated by any one of the three types

of features, we convert the histogram(s) of a feature to a single

vector, and compare the distance between a feature vector

in one image against every feature vector of the second image.

For feature , let be the best match (lowest distance), be

the second best match, and be the distance between fea-

tures and . We then make sure , is below a

threshold and that is, conversely, the best match for .

This decreases mismatches by removing matches where other

features are very close in feature space to the best match.

TABLE I
RUNTIMES WHEN THE TEST TRANSFORMATION IS A SCALE BY 0.8, FOR BOTH

THE ORIGINAL IMAGE AND THE TRANSFORMED IMAGE, SHOWING TIME (IN

SECONDS) FOR EXTREMA DETECTION ALONE, AND FOR EXTREMA DETECTION,
FEATURE GENERATION AND MATCHING FOR EACH OF THE THREE FEATURES

ON THE ORIGINAL AND TEST IMAGE

IV. RESULTS AND VALIDATION

We applied these features to 3-D human magnetic resonance

imaging (MRI) brain scans and 4-D canine com-

puted tomography (CT) cardiac scans, showing stability under

rotation and scaling transformations. Parameters were set to

those used by Lowe [5] and autopano-SIFT [25] as follows: the

Gaussian blur for the doG images was performed with

and sampling rate of , with for magnitude filtration

at 0.0075. For the GWH and RGWH features, we set

and Gaussian for weighting, matching the values

previously used for reorienting the SIFT feature vector. For

-SIFT, we set and . The matching threshold

was 0.8.

Three 1-mm isotropic BrainWeb simulated brain 3-D MRI

data (cropped size )1 [26] were used. 4-D CT

images of in-vivo canine heart from the Mayo Dynamic Spa-

tial Reconstructor, 0.925 mm isotropic images per cardiac

cycle (cropped size voxels time points)2 [27],

were also used. Extrema were searched through three octaves.

The images were transformed using linear interpolation. Run-

time on all pairs of sample 3-D images (feature extraction for

both images and matching features) was less than 19 CPU min-

utes for over 874 thousand voxels per image. Runtimes on pairs

of sample 4-D images was less than 37 CPU minutes for over

4.9 million voxels per image. Timed tests were run on an Intel

Pentium M 1.7-GHz machine with 1 GB of memory. For com-

parison, runtime of the same pairs of 3-D images on Pentium

1.6 GHz Itanium 2 machines with 64 GB of memory was less

than 6 CPU minutes.

A. Evaluating the DoG Extrema Extraction

For the 3-D images, extracting the extrema took 100–102

CPU seconds (CPU s). Generating and matching feature vec-

tors were much more computationally intensive parts. The total

runtime with these steps was 530–740 CPU s for the GWH and

the RGWH features, with reorientation causing no more than 10

CPU s difference. -SIFT is the quickest of the features to run,

taking a total of 330–415 CPU s, although adding reorientation

the -SIFT feature would negate this by requiring generation of

the GWH (Table I).

The extrema for an image and the same image scaled to 0.8

of its original size, rotated by 10 , or both scaled and rotated

1http://public.kitware.com/pub/itk/Data/BrainWeb/ (Accessed July 2009).

2http://nova.nlm.nih.gov/Mayo/NLMDATA/Dog/ (Accessed March 2006).
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TABLE II
NUMBER OF EXTREMA LOCALIZED FOR THE BRAINWEB 3-D IMAGE, AND THE

SAME IMAGE DOWNSCALED BY 0.8. THE MATCHES GENERATED BY THE GWH,
RGWH, AND -SIFT FEATURES ARE COMPARED

TABLE III
STABILITY OF EXTREMA FOR TRANSFORMED 3-D MRI IMAGES. MATCHES ARE

THE MEAN OF THE FRACTION OF EXTREMA CORRECTLY, UNDER VARIOUS

ERROR CRITERIA IN VOXELS. THE TRANSFORMATIONS ARE SCALING BY A

FACTOR OF 0.8, ROTATING BY 10 , OR BOTH SCALING AND ROTATING

TABLE IV
MEAN FRACTION OF GWH FEATURES MATCHED ACCURATELY (UNDER ERROR

IN VOXELS)

were compared. For each extremum located in the scaled image,

the closest ( distance) corresponding extremum in the original

image is located, and the margin of error ( distance) com-

puted. Table II shows half to two-thirds of GWH features in

the scaled image have no corresponding feature in the original

image within 1.5 voxels. -SIFT features, however, are the most

discriminatory, with potential matches for more than half the

features. Table III shows that under all error margins and trans-

formations tested, a significant portion (over 0.39) of the ex-

trema potentially matched, and over 0.77 of extrema matching

if the error bound is relaxed to 7.5 voxels.

B. Evaluating Feature Matching

We tested the stability and uniqueness of the features gener-

ated in the context of medical images under scaling of 0.8 of all

axes and rotation of 10 along a single axis. Matches were eval-

uated by Euclidean distance of the matched point in the original

image from the true corresponding point.

1) Global Histogram Feature Evaluation: Table IV shows

the (GWH) feature, for 3-D MRI data, is successful under the

scale transform alone, correctly matching over 0.95 of the fea-

tures at the largest margin of error (7.5 voxels). However, when

rotation is considered, the accuracy plummets to 0.56, but even

at the most stringent error margin, the accuracy is still at a not

insignificant 0.43. When considering both scaling and rotation,

TABLE V
MEAN FRACTION OF RGWH FEATURES MATCHED ACCURATELY

(UNDER ERROR IN VOXELS)

Fig. 4. Line connects an example point pair corresponding to matched -SIFT
features in 4-D CT slices Table VI.

TABLE VI
MEAN FRACTION OF -SIFT FEATURES MATCHED ACCURATELY

(UNDER ERROR IN VOXELS)

Fig. 5. Lines connect example point pairs corresponding to matched -SIFT
features between Brainweb T1 (slice 32) and PD (slice 36).

accuracy drops well below 0.5 for all images at all error margins.

However, this feature performs fairly well ( accuracy at all

error margins) on rotated 4-D CT data.

2) Reoriented Histogram Feature Evaluation: Table V

shows that, for 3-D MRI data, the RGWH results in less accu-

racy on scaled images than the GWH, although still managing

an accuracy of 0.8 at the largest margin of error. However,

the accuracy when rotation is considered is greatly improved,

with over half the points accurately matched at even the most

stringent margin of error. Although the accuracy drops again

when we consider both transformations at the same time, it still

manages to accurately match over half the points if we consider

the largest margin of error. On 4-D CT data, it performs slightly
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Fig. 6. Number of attempted matches ( voxels error) of the original image against the rotated test image for the three 3-D BrainWeb MRI test images.

better than the (GWH), with over 0.75 accuracy at the highest

error margin.

3) -SIFT Feature Evaluation: As seen in Table VI, in all

cases the accuracy using the proposed -SIFT feature was better

than the GWH feature, and in all cases, over half of the matches

were within 1.5 voxels of error. Over three-quarters of the fea-

tures were accurately matched at largest margin of error for all

tests, with accuracy being over 0.95 if we only look at the scale

transformation. At even the most stringent error margin, all tests

matched well over half the features accurately. Fig. 4 shows

a point from a volume slice at one time point in the original

series correctly matched by the algorithm to the cor-

responding volume slice and time point in the synthetic rotated

series.

4) Robustness to Translation: As extrema detection and

feature generation both only involve properties local and rela-

tive to the extrema point, the number of extrema generated and

matching performance was unaffected by translation (Data not

shown).

5) Robustness to Rotation: We then looked at the number

of matches generated by the various methods, when matching

points to the rotated image. As the angle of rotation increases,

the ability of all the methods except the RGWH feature should

decrease substantially. As we see in Fig. 6, the number of

matches generated by the method decreases—in the presence

of limited or no good matches, the nonreoriented methods

attempt very few (if any) matches. Of note as well is that the

number of matches attempted by the reoriented histogram

varies in a periodic manner (our analysis of this behavior is

presented in Section IV-B6.

We then examined the ability to extract features from rotated

test images for angles 0 to 90 degrees at 2 degree increments

(Fig. 7). All of the methods extract a large number of keypoints

from the original test image; however, even a small amount of

rotation significantly decreases the number of discernable key-

points. For the first test image, the GWH feature rapidly deterio-

rates, with less than 10 keypoints correctly matched after 18 de-

grees of rotation. The -SIFT feature reaches this point at 28 de-

grees, and the RGWH feature matches more than 10 keypoints

for all but 2 of the tested angles of rotation. Similar results were

obtained for the other two 3-D MRI BrainWeb test images.

We also collected data on the fraction of keypoints matched

correctly depending on the amount of rotation of the synthetic

test image (Fig. 8). All methods performed were effective at the

lowest levels of rotation. The GWH feature rapidly declined to

less than 0.6 of identified keypoints matching after only 10 de-

grees of rotation. As expected, the RGWH feature was the only

feature with any reasonable rate of matching after significant

(more than 30 degrees) of rotation. The -SIFT feature, how-

ever, proved surprisingly robust despite the lack of rotational in-

variance, maintaining reasonable levels (significantly more than

half) of keypoint matching past 20 degrees of rotation. Also in-

teresting to note is the periodic nature of the accuracy of the

response, especially visible in the RGWH feature.

6) Effect of the Number of Histogram Bins: We hypothesize

the periodic effect is due to the discrete nature of histogram bin-

ning (the parameter ). We note that for the RGWH feature, we

use and so we expect approximately equivalent response

at degree intervals, as was observed. Comparing

the fraction of points successfully matched using the RGWH

feature on the same image using shows a similar peri-

odic effect with an extended period of 20 degrees, as expected

(Fig. 9). However, other effects also appear to be involved, such

as the discrete nature of the image—voxels in the rotated image

do not maintain a 1 to 1 correspondence with the original voxels.
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Fig. 7. Number of matches ( voxels error) of the original image against the rotated test image for the three 3-D BrainWeb MRI test images.

Fig. 8. Fraction of keypoints identified that were successfully matched ( voxels error) from the original image against the rotated test image for the three
3-D BrainWeb MRI test images.

7) Robustness to Noise: To evaluate the stability of the fea-

tures to image noise, we added Gaussian noise [28] with mean 0

and varying to the 3-D BrainWeb MRI test images. Increasing

results in decreasing ability to match points (see Fig. 10).

Fig. 11 shows the effect varying sigma (compared to the ini-

tial image intensities of 0 to 255). Accurate matching (

voxel error) degrades quickly for all the features, with -SIFT

holding a slight advantage most of the time, and the number of

feature points matched also drops as the increases. Approxi-

mate matching (at voxels errors), however, can remain quite

high, especially in the case of -SIFT, where (for all images),

over 90% of points can be matched at this rough threshold to

(although only 2 to 11 points are being matched at this

extreme threshold).

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on October 10, 2009 at 19:53 from IEEE Xplore.  Restrictions apply. 



CHEUNG AND HAMARNEH: -SIFT: -DIMENSIONAL SCALE INVARIANT FEATURE TRANSFORM 2019

Fig. 9. Comparison of keypoints successfully matched from ( voxels
error) from the original image against a rotated 3-D BrainWeb MRI test image
using the reoriented histogram feature image, using 18 and 36 histogram bins
(results for the other two 3-D BrainWeb MRI test images are comparable). Note
the periodic response with cycle length of approximately 10 degrees in the case
of the 36 bin histogram feature, which becomes a cycle of approximately 20
degrees in the case of the 18 bin histogram feature.

Fig. 10. Number of attempted matches ( voxels error) of the original
image against Gaussian noised test images for one of the 3-D MRI BrainWeb
images (results for other BrainWeb images were similar).

8) Matching Images Between Modalities: Although the

features described are intended for matching features captured

using the same sensor, generating features on images of dif-

fering modalities (but of the same dimensionality) results in

feature vectors of the same length. These features can still be

compared using method described in Section III-C and we

expect successful matches when the local gradients (i.e., the

relative response of the various tissues) are comparable. As seen

in Table VII where we attempt to match features generated on

the BrainWeb test data at different modalities, all featureswere

unable to accurately match features from the T1 image to PD

or T2 images, but perform fairly well matching from T2 to PD

images. However, GWH and -SIFT were able to inaccurately

match over half the points from T1 to PD ( -SIFT was unable

to find many points to match from T1 to T2) (see Fig. 5).

V. DISCUSSION

We propose three SIFT-like features for matching points in

images—a global weighted histogram (GWH) feature, a reori-

ented global weighted histogram RGWH feature and the -di-

mensional Scale-Invariant Feature Transform ( -SIFT) feature.

We show the GWH feature is sufficient for robustness to

scaling, however, cannot cope with 10 rotation. The RGWH

TABLE VII
FRACTION OF FEATURES MATCHED ACCURATELY (UNDER ERROR IN VOXELS)

ACROSS DIFFERENT MODALITIES USING DIFFERENT FEATURES

feature reorients the image based on local gradient vectors

before computing the feature vector, improving robustness to

rotation, as shown by the improved accuracy with rotation.

However, the decreased performance when we consider the

scaling transform shows that reorientation sacrifices the distinc-

tiveness of the histogram, as the largest bin is always reoriented

to be in the same position in the feature.

-SIFT was the most successful of all the features tested. It

incorporates the discriminatory power of the gradient-based fea-

tures, but further subdivides the image into regions, each with

a separate histogram, relative to the feature location. Although

not reoriented, it is robust against minor rotational change, as it

employs only 8 bins to summarize each of the hyperspherical

coordinates, with each bin covering a 45 range.

A. Performance Considerations

The prototype system used in this paper was implemented in

, using the Insight Toolkit (ITK) and provided as an open

source publication [24], which includes tests to recreate part of

our results. Image sizes were cropped for testing of the many

combinations of images, features and synthetic test conditions.

The computation time of the feature extraction methods

described scales linearly with the size of the images involved.

However, as the dimensionality of the image increases, the

image size can also increase dramatically. The current imple-

mentation is single-threaded; however, it should be possible

adapt strategies used for optimizing 2-D SIFT implementations,

such as the multicore implementation of 2-D SIFT [29], [30],

and the GPU-based implementation [31].

B. Future Work

Even small error can have critical impact in medical appli-

cations. However, not all techniques used with SIFT features in

2-D images [5] have been implemented. Localization of features

could be improved by removing difficult-to-localize edge-like

extrema via testing ratios of principal curvatures, as well as in-

terpolating positions of the extrema using the Taylor expansion

of the doG scale space function. Images could also be upscaled

by a factor of 2 before running -SIFT to sample higher fre-

quency information. For the feature vector itself, reorienting

of the feature vectors and trilinear interpolation of the samples
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Fig. 11. Fraction of keypoints identified that were successfully matched at voxels error (left) and voxels error (right) from the original image against
Gaussian noised image for one of the three 3-D BrainWeb MRI test images.

could also be implemented. Additionally, the -SIFT histogram

features could be normalized, potentially improving matching,

especially between modalities, as in Chen and Tian [19].

All the parameters used were left at their default values from

[5] and [25] for the tests. More appropriate values may exist

for higher-dimensional images and for particular applications.

-SIFT could also initialize other intensity-based registration

methods, or potentially adapted for nonscalar vector or tensor

fields obtained from Diffusion Tensor MRI.

As long as extrema can be localized in approximately the

location and the local gradient near these extrema are compa-

rable, the techniques described here remain effective. This can

allow for matching even under large-scale image deformations,

as long as the local deformations are not too extreme. Already

described here is a method to compensate for significant rota-

tional change in the local gradients. A future extension, there-

fore, would be to detect and compensate for other deformations,

further improving the robustness of the features.

We do not claim the features described here as a replacement

for existing image registration approaches. Rather, the tech-

niques described could be used to provide corresponding land-

marks that initialize or provide hard/soft constraints for other

image registration approaches. Comparing the performance

of these methods in combination with various registration

approaches may reveal other avenues to improve the features.

Another application of these features would be for image re-

trieval, matching the features generated from an image against

the features from a library of images. Modified SIFT features

have been applied to this problem in the 2-D case [32]; however,

one extension would be to apply this to libraries of higher-di-

mensional images.

C. Conclusion

-SIFT extends SIFT features to images of arbitrary number

of dimensions. We evaluate a difference of Gaussian keypoint

detector, a global histogram of gradient feature vectors and re-

orientation of this vector in the direction of the most significant

gradient, and the -SIFT features. Our results indicate these

SIFT-like features can be matched efficiently in 3-D and 4-D

images, making them a potentially effective tool to find cor-

responding landmarks in related images. The implementation

has been provided as open source for the community to use,

test and extend, and has been downloaded by over 250 users at

our website from November 2007 to May 2009, in addition to

2267 views and 1134 downloads at the Insight Journal (July 16,

2009).
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