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ABSTRACT

We discuss N-Skart, a nonsequential procedure designed to deliver a confidence interval (CI) for the steady-state mean of a
simulation output process when the user supplies a single simulation-generated time series of arbitrary size and specifies the
required coverage probability for a CI based on that data set. N-Skart is a variant of the method of batch means that exploits
separate adjustments to the half-length of the CI so as to account for the effects on the distribution of the underlying Student’s
t-statistic that arise from skewness (nonnormality) and autocorrelation of the batch means. If the sample size is sufficiently
large, then N-Skart delivers not only a CI but also a point estimator for the steady-state mean that is approximately free
of initialization bias. In an experimental performance evaluation involving a wide range of test processes and sample sizes,
N-Skart exhibited close conformance to the user-specified CI coverage probabilities.

1. INTRODUCTION

A long-standing problem in the analysis of an output process generated by a steady-state simulation is the formulation of a
robust and efficient procedure to construct a valid confidence interval (CI) for the steady-state process mean. Three primary
problems impede successful analysis (Law 2007). The first problem is the influence of the simulation’s initial condition on the
output process, which often results in a transient that induces substantial bias in the sample mean of a simulation-generated
time series. The second problem is the effect of correlation between successive simulation responses on the conventional
estimator of the standard error of the sample mean, which often results in substantial underestimation of the variability of
the sample mean. The third problem is the effect of highly nonnormal simulation responses on the distribution of the usual
Student’s t-ratio underlying conventional CIs for the steady-state mean. In many types of applications, these problems can
give the user a misleading picture of the true accuracy and reliability of simulation-based results—that is, the bias and
variance of the point estimator of the steady-state mean as well as the probability that the associated CI will cover the
steady-state mean. A good CI procedure requires the solution of these three problems to provide the following:

(a) an accurate point estimator of the steady-state mean that is approximately free of initialization bias;
(b) a sufficiently stable estimator of the standard error of the point estimator (a) that adequately accounts for any

correlation among the simulation responses used in computing the point estimator; and
(c) a suitable adjustment to the usual critical value of Student’s t-distribution that adequately accounts for any departures

from normality in the simulation responses used in computing the point estimator (a) and the standard error estimator
(b).

Exploiting (a)–(c), we are then able to construct not only an accurate point estimator for the steady-state mean but also a
CI estimator whose actual coverage probability is close to the user-specified nominal confidence level.

In this paper we discuss N-Skart, a new nonsequential procedure for steady-state simulation output analysis which can be
considered as an extension of the classical method of nonoverlapping batch means. This procedure is designed for simulation
experiments in which the size of the output data set is fixed because of a limited computing budget, a constraint on the time
available for the user to complete the simulation study, or other restrictions that prevent the user from resuming the current
run of the simulation model. Therefore, N-Skart is specifically designed for the situation in which the user merely supplies
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a single simulation-generated time series of an arbitrary fixed length and requests a CI with a specific coverage probability
based on all the available data.

The rest of this paper is organized as follows. Section 2 provides a brief overview of N-Skart. Section 3 contains
a formal algorithmic statement of N-Skart. In Section 4 we present selected results from our experimental performance
evaluation. In Section 5 we present our main conclusions and recommendations for future work. The slides for the oral
presentation of this article are available online via <www.ise.ncsu.edu/jwilson/files/ wsc09nskart.pdf>.
N-Skart is a simplified version of Skart, a fully sequential procedure designed to deliver a CI for the steady-state mean
that satisfies user-specified requirements concerning not only the CI’s coverage probability but also the absolute or relative
precision provided by its half-length. A complete discussion of N-Skart and Skart is given in Tafazzoli (2009).

2. OVERVIEW OF N-SKART

We begin by introducing some notation required to state the problem and to describe the operation of N-Skart. Let
fXi W i D 1; 2; : : : ; N g denote the output time series of length N generated by a single run of a nonterminating (infinite-
horizon) probabilistic simulation. If the simulation is in steady-state operation, then the random variables fXig will have
the same steady-state marginal cumulative distribution function (c.d.f.) FX .x/ D PrfXi � xg for i D 1; 2; : : : ; N and for all
real x.

Usually in a nonterminating simulation, we are interested in constructing point and CI estimators for some parameter of
the steady-state c.d.f. FX .�/. In this article, we are primarily interested in estimating the steady-state mean, �X D EŒX� DR1

�1 x dFX .x/; and we limit the discussion to output processes for which EŒjXi j3� < 1 so that the marginal mean �X ,

marginal variance �2X D VarŒXi � D EŒ.Xi ��X /2�, and marginal skewness SkŒXi � D E
˚�
.Xi ��X /=�X

�3�
are well defined.

We also assume that the variance parameter

�
X
D

1X
`D�1

CovŒXi ; XiC`� D
1X

`D�1
EŒ.Xi � �X /.XiC` � �X /� (1)

is positive and well defined in the sense that (1) is absolutely convergent.
To construct point and CI estimators for �X based on the time series fXi W i D 1; : : : ; N g, N-Skart addresses the start-up

problem by successively applying the randomness test of von Neumann (1941) to spaced batch means with progressively
increasing batch sizes and interbatch spacer sizes. When the randomness test is finally passed with a batch size m and
spacer size dm for sufficiently large integers m and d (where m � 1 and d � 0), the data-truncation point (warm-up
period) is defined by the initial spacer so that the initial dm observations are truncated (ignored) in calculating the point
and CI estimators of �X . N-Skart addresses the normality problem by a modified Cornish-Fisher expansion for the classical
batch-means Student’s t-ratio that incorporates a term due to Willink (2005) accounting for any skewness in the set of
truncated, nonspaced (adjacent) batch means that are finally delivered. N-Skart addresses the correlation problem by using
an autoregressive approximation to the autocorrelation function of the delivered set of truncated, nonspaced batch means.

Beyond the data-truncation point dm, N-Skart computes the k0 truncated, nonspaced batch means with batch size m,

Yj .m/ D 1

m

.dCj /mX
iD.dCj�1/mC1

Xi for j D 1; : : : ; k0 I (2)

and then N-Skart computes the truncated grand mean of the batch means,

xY .m; k0/ D 1

k0
k0X
jD1

Yj .m/ : (3)

Next N-Skart computes an asymptotically valid 100.1� ˛/% skewness- and autoregression-adjusted CI for �X having the
form 2

4 xY .m; k0/�G.t1�˛=2;k00�1/

s
AS2

m;k00

k0 ; xY .m; k0/�G.t˛=2;k00�1/

s
AS2

m;k00

k0

3
5 ; (4)
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where

G.�/ �
( �

3
p
1C 6ˇ.� � ˇ/� 1�ı.2ˇ/ ; if ˇ D yBm;k00

ı�
6
p
k0� 6D 0 ;

� ; otherwise,
(5)

and 
S2
m;k00

yBm;k00

!
D
(

approx. unbiased est. of marginal
�

variance
skewness

�
of the truncated, nonspaced batch means (2)

computed from k00 spaced batch means with batch size m that are separated by spacers of size dm,

)
(6)

where for q 2 .0; 1/, the quantity tq;� denotes the q quantile of Student’s t-distribution with � degrees of freedom. (Note that
in Equation (5), the indicated cube root 3

p
1C 6ˇ.� � ˇ/ is understood to have the same sign as the quantity 1C 6ˇ.��ˇ/.)

Thus we see that G.t1�˛=2;k00�1/ and G.t˛=2;k00�1/ are skewness-adjusted quantiles of Student’s t-distribution for the left and
right half-lengths of the proposed CI; and the autoregression (correlation) adjustment A is applied to the sample variance
S2
m;k00

described in Equation (6) so as to compensate for any residual correlation between the truncated, nonspaced batch
means (2) that are used to compute the truncated grand mean (3). The correlation adjustment A is computed as

A D
h
1C y'

Y.m/

i.h
1 � y'

Y.m/

i
; (7)

where the standard estimator of the lag-one correlation of the truncated, nonspaced batch means is

y'
Y.m/
D bCorr

�
Yj .m/; YjC1.m/

� D 1

k0 � 1
k0�1X
jD1

h
Yj .m/� xY .m; k0/

ih
YjC1.m/� xY .m; k0/

i.
S2m;k0 ; (8)

and

S2m;k0 D 1

k0 � 1
k0X
jD1

�
Yj .m/� xY .m; k0/

�2
(9)

denotes the usual sample variance of the truncated, nonspaced batch means defined by Equation (2).

3. DETAILED ALGORITHMIC STATEMENT OF N-SKART

Figure 1 depicts a high-level flowchart of N-Skart. To invoke this procedure, the following user-supplied inputs are required:

� A simulation-generated time series fXi W i D 1; : : : ; N g of length at least 1,280 from which the corresponding
steady-state mean �X is to be estimated;

� The desired CI coverage probability 1 � ˛, where 0 < ˛ < 1.

A formal algorithmic statement of N-Skart for a data set of fixed size N is given in Figure 2. In the rest of this section, we
explain the logic of the steps of N-Skart that are detailed in Figure 2.

First we discuss the initialization of N-Skart (Step [1] of Figure 2). Using the given time series fXi W i D 1; : : : ; N g,
N-Skart first computes the sample skewness yB of the last 80% of the raw (unbatched) observations as follows:

N0 D b0:8N c ; xX  1

N0

NX
iDN�N0C1

Xi ; S2  1

N0 � 1
NX

iDN�N0C1

�
Xi � xX

�2
;

yB N0

.N0 � 1/.N0 � 2/
NX

iDN�N0C1

�
Xi � xX

�3
=S3 :

9>>>>>=
>>>>>;

(10)

If
ˇ̌yBˇ̌ > 4:0, then N-Skart sets the initial batch size m according to m  minf16; bN=1,280cg. This extreme case only

happens when the observations are highly nonnormal. Usually, we have
ˇ̌yBˇ̌ � 4:0; and in this situation N-Skart assigns
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Figure 1: High-level flowchart of N-Skart

the initial batch size m  1. To complete its initialization step, N-Skart makes the following assignments: d  0 is the
current number of batches per spacer; d�  10 is the maximum number of batches allowed in a spacer in subsequent steps;
k  1,280 is the current number nonspaced (adjacent) batch means; ˛ran  0:20 is the level of significance used on each
iteration of the randomness test; and b  0 is the number of times the batch count has been deflated and the batch size has
been inflated in successive iterations of the randomness test.

At key points in testing the spaced batch means for randomness (that is, in Step [2] of Figure 2), N-Skart must reassign
d�, the maximum number of batches per spacer, as a function of the skewness of the nonspaced batch means with the current
batch size. First N-Skart computes the current set of nonspaced batch means with the latest batch size m according to

Yj .m/ D 1

m

jmX
iD.j�1/mC1

Xi for j D 1; : : : ; k I (11)

then N-Skart computes the sample skewness of the last 80% of the batch means defined by Equation (11) to reduce the
effect of any initialization bias that may be present. Specifically, N-Skart performs the following calculations:

` b0:8kc ; xY .m; `/ 1

`

kX
jDk�`C1

Yj .m/ ; S2m;`  
1

` � 1
kX

jDk�`C1

�
Yj .m/� xY .m; `/

�2
;

yBm  `

.` � 1/.` � 2/
kX

jDk�`C1

�
Yj .m/� xY .m; `/

�3ı
S3m;` :

9>>>>>=
>>>>>;

(12)

If the estimated skewness yBm of the batch means satisfies
ˇ̌yBmˇ̌ > 0:5, then N-Skart performs the reassignment d�  3 ;

otherwise N-Skart retains the assignment d�  10. By doing this, N-Skart forces the randomness test to increase the batch
size more frequently for highly skewed data sets.

Next N-Skart applies the randomness test of von Neumann (1941) to the current set of nonspaced batch means to
determine the required batch count, batch size, spacer size, and data-truncation point beyond which all computed spaced
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batch means are approximately independent not only of each other but also of the simulation’s initial condition (see Step
[3] of Figure 2). After each iteration of the randomness test, we let k0 denote the current number of spaced batch means,
where each spacer consists of d ignored batches. Each time the randomness test is failed, N-Skart adds an additional batch
to each spacer and increments the number of batches per spacer, d  d C 1 (up to the computed limit of d� batches per
spacer), and updates the count of spaced batch means, k0  bn=f.d C 1/mgc; then N-Skart reapplies the randomness test
to the new reduced set of k0 spaced batch means.

If the randomness test is failed with a spacer consisting of d� batches (see Step [4] of Figure 2), then some key status
variables of the procedure must be suitably updated before reapplying the randomness test. Because only a limited number
of simulation-generated observations are available in N-Skart, a feasibility check is performed in this step of the procedure
to determine if the updates to the batch size m and batch count k would cause the sample size n for the next iteration of
the randomness test to exceed the available sample size N as follows—

� If dp2me�d0:9ke � N , then we perform the following updates: the batch size is inflated according tom dp2me;
the batch count is deflated according to k  d0:9ke, where the assignment b  bC 1 updates the total number of
times the batch count is deflated in the randomness test (b is of course initialized to 0); the overall sample size is
updated according to n km; and finally we take d  0 and d�  10. Next N-Skart reperforms the following
operations:

(i) the computation of the nonspaced batch means according to Equation (11) and the assignment of d� based on
the sample skewness of the batch means as computed from Equation (12) (that is, Step [2] in Figure 2); and

(ii) the randomness testing procedure outlined in the paragraph immediately preceding this paragraph (that is, Step
[3] of Figure 2).

� On the other hand if dp2me � d0:9ke > N , then N-Skart issues a warning to the user, stating that the randomness
test could not be passed because of insufficient data. The warning also notes that if the user decides to continue
the procedure under the given circumstances, then the delivered CI might not provide the target confidence level.
Here the user has two choices:

(i) quit the procedure without delivering a CI; or

(ii) continue with construction of the requested CI by ignoring the warning.

Once the randomness test is passed (or bypassed owing to an inadequate data-set size and at the user’s explicit request),
N-Skart recomputes the truncated, spaced batch means with the final values of the warm-up period, the batch count, and the
batch size (see Step [5] of Figure 2). N-Skart skips the first w D dm observations in the warm-up period, so that

N 0 D N � w

approximately steady-state observations are available to build a CI for �X . Next the batch count k0 is reinflated according
to the formula

k0  min
˚˙
k0.1=0:9/b

	
; k
�

to compensate for the total number of times the batch count was deflated in successive iterations of the randomness test.
Then N-Skart computes a multiplier

f D pN 0=.k0m/

to increase both the batch count k0 and the batch size m so as to use all the available N 0 observations, subject to the constraint
that k0 � 1,024. Thus, N-Skart updates the count of truncated, nonspaced batch means according to

k0  min
˚bf k0c; 1,024

�I
and the associated batch size is updated as follows:

m 
(
bfmc; if k0 < 1,024;

bN 0=1,024c; if k0 D 1,024:
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Then, N-Skart computes k0 nonspaced batch means for batches of size m according to

Yj .m/ 1

m

N�.k0�j /mX
iDN�.k0�jC1/mC1

Xi for j D 1; : : : ; k0 I (13)

so that there is no partial batch left at the end of the data set; and N-Skart adds the extra N 0 � mk0 observations (where
N 0 �mk0 < m) to the end of warm-up period,

w  w C .N 0 � k0m/ ;

so that the initial observations fXi W i D 1; : : : ; wg are the only unused items in the entire data set of size N . This step
enhances the removal of any transient effect, especially in the problem instances in which the provided sample size N is
fairly small and the randomness test of N-Skart is bypassed at the user’s request.

Next N-Skart computes the correlation adjustment to be used in computing the CI for �X (see Step [6] of Figure
2). N-Skart computes the following sample statistics from the final set of truncated, nonspaced batch means defined by
Equation (13): the grand mean xY .m; k0/ ; the sample variance S2

m;k0
; and the lag-one correlation y'

Y.m/
. Then the correlation

adjustment A is computed according to Equation (7).
The final step of N-Skart is to construct the skewness- and correlation-adjusted CI for �X (see Step [7] of Figure 2).

N-Skart makes separate adjustments to the classical batch-means CI based on the corresponding effects of nonnormality and
correlation of the batch means on the distribution of the usual Student’s t-ratio,

t1 D
p
k0
hxY .m; k0/� �X

i.
Sm;k0 ; (14)

that underlies the batch-means method. To do this, N-Skart must first compute approximately unbiased estimators of the
marginal variance and skewness of the truncated, nonspaced batch means fYj .m/ W j D 1; : : : ; k0g with the current batch
size m. From all the individual observations in the current simulation-generated data set, N-Skart temporarily forms a set of
approximately i.i.d. spaced batch means with batch size m, where the spacer size is the smallest multiple of m exceeding
the size of the warm-up period. Let k00 denote the resulting number of spaced batch means. From this approximate random
sample of size k00, N-Skart computes S2

m;k00
and yBm;k00 , the usual unbiased estimators of the associated marginal variance

and skewness of batch means with batch size m as specified in Equations (17)–(19) in Figure 2.
For the skewness adjustment, N-Skart exploits the results of Willink (2005). To construct a CI for the mean � of

a nonnormal population based on a random sample of size n from that population, Willink (2005) derived the following
modified t-statistic based on the sample mean xX , the sample standard deviation S , and the sample third central moment y�3
computed from the given data set:

t2 D . xX � �/C y�3=.6S2n/C Œy�3=.3S4/�. xX � �/2 C Œy�23=.27S8/�. xX � �/3p
S2=n

; (15)

which has approximately Student’s t-distribution with n�1 degrees of freedom under widely applicable conditions—provided
that (15) is computed from observations that are independent and identically distributed (and hence uncorrelated). To obtain
the skewness adjustment appropriate for N-Skart, we make the following substitutions in the numerator of Willink’s modified
t-statistic (15): (i) xX is replaced by xY .m; k0/; (ii) S2 is replaced by S2

m;k00
; and (iii) y�3 is replaced by yBm;k00S3

m;k00
.

For the correlation adjustment, N-Skart makes the following substitution in the denominator of Willink’s modified
t-statistic (15): S2 is replaced by AS2

m;k00 , where the correlation-adjustment factor A is computed according to Equations (7)–
(9). Usually the batch-means process can be adequately modeled by an autoregressive-moving average (ARMA) process, at
least for the purpose of estimating the autocorrelation structure of the batch means—see Box, Jenkins, and Reinsel (2008);
Steiger et al. (2004, 2005a, 2005b); and Lada and Wilson (2007, 2008). In N-Skart, the autocorrelation adjustment A is
applied to the variance estimator S2

m;k00
to compensate for any residual correlation between the truncated batch means. For

a detailed explanation of the correlation-adjustment used in N-Skart, see Appendix A of Tafazzoli (2009). If k0 and k00 are
sufficiently large, then we can treat AS2

m;k00
=k0 as an approximately unbiased estimator of Var

� xY .m; k0/
�

with k00�1 degrees
of freedom. The substitutions of the last two paragraphs yield N-Skart’s 100.1�˛/% skewness- and autoregression-adjusted
CI for �X that is given by Equations (16)–(19) in Figure 2.
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[1] From the given sample data set of size N , compute the sample skewness yB of the last 80% of the observations

according to Equation (10). If j yBj > 4:0, then set the initial batch size m minf16; bN=1,280cg; otherwise set

m 1. Set the current number of batches in a spacer, d  0, and the maximum number of batches allowed in a

spacer, d�  10. Then divide the initial sample into k  1,280 nonspaced (adjacent) batches of size m. Set the

randomness test size, ˛ran  0:20, and the number of times the batch count has been deflated in the randomness

test, b  0.

[2] Use Equation (11) to compute the current set of nonspaced batch means fYj .m/ W j D 1; : : : ; kg; and from the last

80% of fYj .m/ W j D 1; : : : ; kg, compute the sample skewness yBm as specified by Equation (12). If j yBmj > 0:5,

then reassign the maximum number of batches per spacer according to d�  3.

[3] Apply the von Neumann test for randomness to the current set of k batch means with significance level ˛ran.

[3a] If the randomness test is passed, then set k0  k and go to [5]; otherwise go to [3b].

[3b] Insert spacers each with m observations (one ignored batch) between the k0  bk=2c remaining batches;

assign the values of the k0 spaced batch means; and set the total number of batches in a spacer, d  1.

[3c] Apply the randomness test to the current set of k0 spaced batch means with significance level ˛ran. If the

randomness test is passed, then go to [5]; otherwise go to [3d].

[3d] If d D d� so that the current number of batches per spacer equals the maximum number of batches per

spacer, then go to [4]; else add another ignored batch to each spacer so that the total number of batches per

spacer and the number of spaced batches are respectively updated according to

d  d C 1 and k0  

n
ıf.d C 1/mg˘ ;

respectively. Reassign the values of the k0 spaced batch means, and go to [3c].

[4] If dp2me � d0:9ke � N , then update the batch size m, the total batch count k, the overall sample size n, and

N-Skart’s other status variables according to

m dp2me ; k  d0:9ke ; n km ; d  0 ; b  b C 1 ; and d�  10 I

and go to [2]. Otherwise, issue a warning that the randomness test could not be passed due to insufficient data,

and ask if user wishes to continue. If the user chooses to continue with constructing a CI, then go to [5]; otherwise

quit the procedure without delivering a CI.

[5] Skip the first w D d �m observations in the overall sample of size N , and take N 0 D N � w. First reinflate

the batch count k0  minfdk0.1=0:9/be; kg; then compute the additional inflation factor f  p
N 0=.k0m/ for

both the batch size and batch count, and reset the truncated batch count k0  minfbf k0c; 1,024g. If k0 < 1,024,

then reset the batch size according to m  bfmc; otherwise take m  bN 0=1,024c because the maximum of

k0 D 1,024 truncated, nonspaced batch means has been reached. Compute the corresponding truncated, nonspaced

batch means fYj .m/ W j D 1; : : : ; k0g according to Equation (13) so that there is no partial batch left at the end

of the data set.

[6] From the current set of truncated, nonspaced batch means fYj .m/ W j D 1; : : : ; k0g defined by Equation (13),

compute the following: the grand mean xY .m; k0/ defined by Equation (3); the sample variance S2
m;k0 defined

by Equation (6); the sample estimator y'
Y.m/

of the lag-one correlation of the truncated, nonspaced batch means

defined by Equation (8); and finally the correlation adjustment A defined by Equation (7).

Figure 2: Algorithmic statement of N-Skart
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[7] Compute the correlation-adjusted 100.1�˛/% CI for �X using the skewness-adjusted critical valuesG.t1�˛=2;k00�1/
and G.t˛=2;k00�1/ of Student’s t-ratio for k00 � 1 degrees of freedom,

2
4 xY .m; k0/�G.t1�˛=2;k00�1/

s
AS2

m;k00

k0 ; xY .m; k0/�G.t˛=2;k00�1/

s
AS2

m;k00

k0

3
5 ; (16)

where to evaluate (16) we must first compute spaced batch means with d 0 D dw=me batches per spacer so we

have k00 D 1C b.k0 � 1/=.d 0 C 1/c spaced batches of size m with corresponding spaced batch means Yj .m; d 0/
� Y.j�1/.d 0C1/C1.m/ as defined in (13) for j D 1; : : : ; k00 with grand mean

xY .m; k00; d 0/ 1

k00
k00X
jD1

Yj .m; d
0/

and sample variance and sample skewness respectively given by

S2m;k00  1

k00 � 1
k00X
jD1

�
Yj .m; d

0/ � xY .m; k00; d 0/
�2

(17)

and

Tm;k00;d 0  k00

.k00 � 1/.k00 � 2/
k00X
jD1

�
Yj .m; d

0/ � xY .m; k00; d 0/
�3
: (18)

From the latter statistics (17) and (18), compute

yBm;k00 D Tm;k00;d 0

S3
m;k00

; ˇ �
yBm;k00

6
p
k0 ; and G.�/ �

( �
3
p
1C 6ˇ.� � ˇ/ � 1�ı.2ˇ/ ; if ˇ 6D 0 ;

� ; if ˇ D 0 : (19)

Deliver the CI (16) and stop.

Figure 2 (continued): Algorithmic statement of N-Skart

4. PERFORMANCE EVALUATION OF N-SKART

To examine the performance of N-Skart with respect to coverage probability and the mean and variance of the half-length of
its CIs, we applied N-Skart to a set of test problems including processes resembling practical applications with realistic levels
of complexity and processes exhibiting extremes of stochastic behavior. For each of the test processes, the steady-state mean
is known; therefore for a given test process, we can compute the empirical coverage probabilities for the CIs delivered by each
output procedure in order to evaluate the performance of the procedure and compare its performance with that of N-Skart.
We used the following sample sizes in our experiments: 10,000 ; 20,000 ; 50,000 ; and 200,000 . These particular values
were singled out to evaluate the performance of N-Skart for what might be considered “very small,” “small,” “medium,” and
“large” sample sizes.

Each experiment includes 1,000 independent replications of N-Skart applied to each test process; and on each replication,
N-Skart delivered 90% and 95% CIs for the selected steady-state mean response. Beyond CI coverage probability, the
performance of each output procedure is reported with respect to the following criteria:
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(a) average CI relative precision—that is, sample average taken over all 1,000 replications of N-Skart of the larger of
the left and right CI half-lengths expressed as fraction of the magnitude of the CI midpoint;

(b) average CI half-length—that is, the sample average taken over all 1,000 replications of N-Skart of the larger of the
left and right CI half-lengths; and

(c) variance of the CI half-length—that is, the sample average taken over all 1,000 replications of N-Skart of the larger
of the left and right CI half-lengths.

The standard error of each CI coverage estimator for CIs with nominal coverage probability 90% is approximately 0:95%;
and the standard error of each CI coverage estimator for CIs with nominal coverage probability 95% is approximately 0:69%.

We used the following test processes in part of our performance evaluation of N-Skart. For a description of all the test
processes used in the full performance evaluation of N-Skart, see Tafazzoli (2009).

� M=M=1 Queue Waiting Times, 90% Server Utilization The test process fXig is the sequence of waiting times in
the M=M=1 queue with an empty-and-idle initial condition, an interarrival rate of � D 0:9 customers per time unit,
and a service rate of � D 1:0 customers per time unit. In this system the steady-state server utilization is 	 D 0:9,
and the steady-state expected waiting time is �X D 9:0 time units.

� M=M=1 Queue Waiting Times, 80% Server Utilization The test process fXig is defined in the same way as for
the previous test process, except the interarrival rate is � D 0:8 customers per time unit so that the steady-state
server utilization is 	 D 0:8, and the steady-state expected waiting time is �X D 3:2 time units.

� AR(1)-to-Pareto (ARTOP) Process The test process fXig is generated from an underlying (or base) AR(1) process
fZi W i D 1; 2; : : :g with autoregressive parameter 
 D 0:995 and white-noise variance 1 � 
2 D 0:9975 � 10�2 so
that in steady-state the fZi g are standard normal random variables with lag-one correlation 0.995. The corresponding
observations fXi W i D 0; 1; : : :g of the target ARTOP process are generated from the Pareto c.d.f.

FX .x/ � PrfX � xg D
�
1 � .�=x/ ; x � � ;
0; x < � ;

with location parameter � D 1:0 and shape parameter  D 2:1 as follows: Xi D F�1
X Œˆ.Zi /� D �=Œ1�ˆ.Zi /�1= 

for i D 0; 1; : : : , where ˆ.z/ D R z
�1.2�/

�1=2e��2=2d� for all real z denotes the c.d.f. of the standard normal
distribution. This scheme provides a test process fXi W i D 1; 2; : : :g whose steady-state marginal distribution has
mean, standard deviation, and skewness given by �X D 1:9091, �X D 4:1660, and Sk.Xi / D 1, respectively. By
takingZ0 D 3:4, we obtain the initial conditionX0 D F�1

X Œˆ.Z0/� D 43:5689, which induces a pronounced positive
bias in this test process. Clearly this process also exhibits pronounced correlation among successive observations
as well as severe nonnormality.

� M=M=1=LIFO Queue Waiting Times The test process fXig is the sequence of queue waiting times for the
M=M=1=LIFO queue, with customers in the queue being served in last-in-first-out (LIFO) order, a mean in-
terarrival time of 1:0, a mean service time of 0:8, and an empty-and-idle initial condition. Thus in steady-state
operation this system has a server utilization of 	 D 0:8 and a mean queue waiting time �X D 3:20. This test
process was selected mainly because in steady-state operation, batch means computed from the waiting times are
highly skewed, even for batch sizes that are sufficiently large to ensure the batch means are nearly uncorrelated.

Table 1 shows the result of applying N-Skart to the selected test processes to construct nominal 90% and 95% CIs. The
experimentation for each test problem included 1,000 independent replications of N-Skart.

The results in Table 1 and in Section 4.2 of Tafazzoli (2009) indicate that the coverage probabilities provided by N-Skart
for the given sample sizes were close to their nominal levels in almost all test problems, except for the queue-waiting-time
process in the M=M=1=LIFO queue and the ARTOP process, where N-Skart experienced some minor undercoverage for
the sample sizes 10,000 and 20,000. The pronounced level of nonnormality and stochastic dependence exhibited by the
M=M=1=LIFO and ARTOP processes prevented N-Skart from working effectively with such unrealistically small sample
sizes as 10,000 and 20,000. In general, we concluded that N-Skart performed better when it was applied to processes with
limited marginal skewness. In the cases of the M=M=1=LIFO queueing system and the ARTOP process, when the sample
size was small, the batch size could not increase sufficiently to reduce the batch-means skewness to a reasonable level. It
should be mentioned here that in all the experimentation reported in Table 1, we simply ignored the warning message issued
by N-Skart for test problems in which the randomness test could not be passed due to insufficient data; and we requested
that N-Skart deliver a CI on all 1,000 independent replications of each test problem.
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Table 1: Performance of N-Skart for selected test problems based on 1,000 replications

Confidence Performance M/M/1, 90% Utilization M/M/1, 80% Utilization
Level Measure 10,000 20,000 50,000 200,000 10,000 20,000 50,000 200,000

CI coverage 87.60% 88.40% 90.30% 90.00% 90.40% 90.70% 90.40% 89.60%
90% Avg. rel. precision 33.32% 25.77% 17.66% 8.64% 20.57% 14.77% 9.23% 4.39%

Avg. CI half-length 3.1309 2.4018 1.6195 0.7791 0.8395 0.5972 0.3702 0.1757
Var. CI half-length 3.7402 2.1298 0.4448 0.0542 0.1038 0.0522 0.0115 0.0008

CI coverage 92.20% 93.10% 94.00% 94.90% 94.90% 95.80% 94.20% 94.90%
95% Avg. rel. precision 39.79% 30.93% 20.83% 10.46% 24.06% 17.91% 10.85% 5.28%

Avg. CI half-length 3.7681 2.8757 1.8963 0.9461 0.9764 0.7231 0.4363 0.2114
Var. CI half-length 4.847 2.2475 0.5176 0.0582 0.1076 0.0503 0.015 0.0012

Confidence Performance ARTOP M/M/1/LIFO
Level Measure 10,000 20,000 50,000 200,000 10,000 20,000 50,000 200,000

CI coverage 83.10% 85.30% 87.40% 88.80% 84.50% 87.20% 88.50% 89.00%
90% Avg. rel. precision 26.97% 22.03% 14.69% 9.17% 17.76% 13.54% 8.89% 4.40%

Avg. CI half-length 0.5632 0.4505 0.2878 0.179 0.5757 0.4368 0.2855 0.1411
Var. CI half-length 0.405 0.2802 0.0587 0.049 0.0534 0.0291 0.006 0.0008

CI coverage 88.40% 90.60% 91.80% 93.60% 90.70% 92.70% 93.10% 95.10%
95% Avg. rel. precision 33.15% 28.63% 23.08% 11.31% 21.87% 16.64% 10.84% 5.32%

Avg. CI half-length 0.6715 0.5897 0.4816 0.2213 0.7094 0.5373 0.3481 0.1706
Var. CI half-length 0.3698 0.9588 1.1747 0.1093 0.092 0.0526 0.0104 0.0013

To put some of the results in Table 1 into perspective, we note from Figures 2 and 4 of Fishman and Yarberry (1997) that
when ABATCH was applied to waiting times in the M=M=1 queue with 90% server utilization to compute a nominal 90%
CI for the steady-state mean waiting time, ABATCH delivered the following coverage probabilities over 1,000 independent
replications of data sets with the following fixed sizes: (i) N D 16,384, 80%; (ii) N D 65,536, 83%; and (iii) N D 262,144,
86%. Clearly N-Skart outperformed ABATCH in this test process. Steiger (1999) also contains results on the performance
of ABATCH in some of the test processes used in this article; but the results in Steiger (1999) are based on only 100
independent replications of ABATCH, and the sample sizes are based on a relative-precision stopping rule and thus are not
fixed over all replications. It is nevertheless true that the performance of ABATCH reported in Steiger (1999) is closely
similar to that reported in Fishman and Yarberry (1997); and on the basis of the results in Table 1 for N-Skart and the
results reported in Fishman and Yarberry (1997) and Steiger (1999) for ABATCH, we concluded that N-Skart performed at
least as well as ABATCH in all the given test problems. A definitive comparison of the performance of N-Skart with that
of ABATCH and MSER-5 (Franklin and White 2008) is the subject of ongoing work.

In general, when we are working with N-Skart, a CI with abnormally large half-length or high relative precision should
alert us regarding potential problems with the delivered CIs and a possible need for bigger sample size.

5. CONCLUSIONS AND RECOMMENDATIONS

In this paper we developed a new, completely automated nonoverlapping batch-means method, called N-Skart, for constructing
a correlation- and skewness-adjusted CI for the steady-state mean of a simulation output process for handling the test problems
in which the user supplies a single simulation-generated series of arbitrary length, and the user specifies the desired coverage
probability for a CI based on that series. From the experimental results presented in Section 4, it is evident that N-Skart
provides close conformance to the user specified CI coverage probabilities.
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