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We investigate soliton collisions in the Manakov model, which is a system of coupled
nonlinear Schrödinger equations that is integrable via the inverse scattering method. Com-
puting the asymptotic forms of the general N -soliton solution in the limits t → ∓∞, we
elucidate a mechanism that factorizes an N -soliton collision into a nonlinear superposition
of

�
N
2

�
pair collisions with arbitrary order. This removes the misunderstanding that multi-

particle effects exist in the Manakov model and provides a new “set-theoretical” solution
to the quantum Yang-Baxter equation. As a by-product, we also obtain a new nontrivial
relation among determinants and extended determinants.

§1. Introduction

In recent years, there has been a surge of interest in some systems of coupled
nonlinear Schrödinger (coupled NLS) equations because of their relevance in nonlin-
ear optics.1)–3) Among such systems, this paper focuses on the following system of
coupled NLS equations:

iqt + qxx + 2||q||2q = 0, q = (q1, q2, · · · , qm). (1.1)

Here ||q||2 ≡ q · q† =
∑m

j=1 |qj|2, where the superscript † denotes Hermitian conjuga-
tion. The subscripts t and x denote the partial differentiation with respect to these
variables. It is well known that (1.1) is a completely integrable system.4), 5) We
call (1.1) the Manakov model, since the two-component (m = 2) case of (1.1) was
solved for the first time by Manakov4) using the inverse scattering method (ISM).
The extension of the ISM to the general m-component case is straightforward.5)

Nevertheless, the value of m is extremely important when we consider soliton solu-
tions. The m = 2 case is merely a special case of the general m case. The most
interesting is the case in which the total number of solitons, say N , is equal to the
number of components, m. Indeed, in the N = m case, the coefficient vectors for the
hyperbolic-secant-type envelope of solitons [see, e.g., u1 in (2.12)], which we refer
to after normalization as polarization vectors, are just sufficient to span the vector
space C

m, in which q exists. Soliton solutions in the other cases (N > m or N < m)
are obtained from those in this case through a special choice of soliton parameters
or the operation of a unitary transformation. In this paper, we consider the most
general case, in which N and m are arbitrary positive integers. Then, the most
interesting case, N = m, is automatically included.

Although the integrability of the Manakov model (1.1) has been established
∗) E-mail: tsuchida@poisson.ms.u-tokyo.ac.jp
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152 T. Tsuchida

formally through application of the ISM, multi-soliton dynamics in the model remain
to be clarified. There are two reasons for this. One reason is that the vector nature of
(1.1), which supports the internal degrees of freedom of solitons, leads to complicated
behavior. Indeed, even a two-soliton collision is highly nontrivial,6)–9) as not only
does a displacement of the soliton centers depend on the initial polarization vectors
but also the polarization vectors themselves are changed. Therefore, in this model,
the effect of an N -soliton collision can never be written as the algebraic sum of the
effects of pair collisions (at least, if we employ only the initial soliton parameters).
This is quite different from the NLS case [i.e. (1.1) with m = 1], in which the effect
of an N -soliton collision in fact can be written as the algebraic sum of the effects of
pair collisions (in which the order of the pair collisions does not matter).10)–12) The
other reason is that Manakov gave a rather misleading description of an N -soliton
collision in Ref. 4). We quote the corresponding part, the first two sentences of the
last paragraph of §2 in Ref. 4):

Comparison of relations (17) and (18) indicates that an N -soliton collision
does not, in general, reduce to a pair collision. This is clear, for example,
from the fact that the expression for S+

k contains S+
j with j > k, which

depend on the initial parameters of all the remaining solitons.

(♣)

The relations (17) referred to here are given by

S+
N =

{∏
n<N

α −1
11 (ζN , ζn)

}
α̂T (ζN , ζ1, S

−
1 ) · · · α̂T (ζN , ζN−1, S

−
N−1)S

−
N ,

S+
i =

{∏
k>i

α11(ζi, ζk)

}{∏
n<i

α −1
11 (ζi, ζn)

}
α̂∗(ζ∗i , ζi+1, S

+
i+1) · · · α̂∗(ζ∗i , ζN , S+

N )

· α̂T (ζi, ζ1, S
−
1 ) · · · α̂T (ζi, ζi−1, S

−
i−1)S

−
i , i = 1, 2, · · · , N − 1,

while the relations (18) are given by

S+
2 = α −1

11 (ζ2, ζ1) α̂T (ζ2, ζ1, S
−
1 )S−

2 ,

S+
1 = α11(ζ1, ζ2) α̂∗(ζ∗1 , ζ2, S

+
2 )S−

1 .

We now briefly explain the situation considered and the notation used in Ref. 4).
The equations (17) of Ref. 4) represent the solution for the collision of N solitons
(to which we refer as solitons-1, 2, · · · , N), while the equations (18) represent that
for two solitons. We note that the equations (18) are obtained from (17) by setting
N = 2. The equations (17) were derived through analysis based on and intuition
gained from the ISM. It is assumed that a soliton designated by a larger number
moves faster along the x-axis. That is, soliton-i overtakes∗) solitons-1, 2, · · · , i − 1
and is overtaken by solitons-i + 1, i + 2, · · · , N as time t passes from −∞ to
+∞. The velocity of soliton-i and its amplitude are determined by the complex
parameter ζi, which is time independent. The quantities Si are column vectors with

∗) Throughout this paper, we use the term “overtake” if only the relative velocity is positive.

Thus it can be used for head-on collisions, etc.
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N -Soliton Collision in the Manakov Model 153

two complex components, corresponding to the choice of m = 2 in Ref. 4). The
vector norm ||Si||

[
= (S†

i · Si)
1
2

]
determines the center position of soliton-i, while

the normalized vector Si/||Si|| gives its polarization vector after the operation of
Hermitian conjugation. The superscripts + and − denote the final state (t → +∞)
and the initial state (t → −∞), respectively. α11 is a scalar function and α̂ is a 2×2
matrix function. We do not give their explicit forms, which are not important in the
following discussion. The superscripts T and ∗ denote the operations of transposition
and complex conjugation, respectively.

Although the assertion (♣) is somewhat ambiguous, the most natural and rea-
sonable interpretation seems to be the following:

Let us try to explain (17) by assuming that the N solitons collide pairwise in
accordance with (18). Then, the first equation in (17) can be understood as
follows. Soliton-N first overtakes soliton-N−1 in its initial state, i.e. soliton-
N −1, which has not collided with other solitons. Next, soliton-N overtakes
soliton-N − 2, which has not collided with other solitons. . . . Finally, it
overtakes soliton-1, which has not collided with other solitons.

Similarly, the second equation in (17) can be understood as follows.
Soliton-i overtakes solitons-i − 1, i − 2, · · · , 1 in this order, none of which
has collided with other solitons. Next, soliton-i is overtaken by solitons-N ,
N − 1, · · · , i + 1 in their final states, i.e. those which will not collide with
other solitons.

If we attempt to diagram these events, we immediately encounter a
contradiction. This indicates that an N -soliton collision cannot be described
as a sequence of pair collisions, since the matrices α̂ for different sets of
arguments do not commute in general.

The logic of the above interpretation is not mathematically rigorous, but it seems
to be correct if the complex structure of (17) is taken into account. It might also be
possible to interpret the assertion (♣) in a different way. In any case, it appears that
an N -soliton collision in the Manakov model (1.1) does not reduce to a pair collision,
and thus that some multi-particle effects exist in the Manakov model. However, in
fact this is not true.

The main goal of this paper is to clear up this misunderstanding. We explicitly
demonstrate a mechanism that factorizes an N -soliton collision in the Manakov
model (1.1) into a nonlinear superposition of pair collisions. Here, we have used
the term “nonlinear” to express the fact that the considered superposition is no
longer additive. For the sake of definiteness, we explain in advance what we prove in
terms of the Manakov notation, which also gives the definition of factorization in this
paper. We first interpret the equations (18) as forming a nonlinear mapping with
two complex parameters, f(ζ2, ζ1), which maps the initial state {S−

2 , S−
1 } into the

final state {S+
2 , S+

1 }. Then, we can use the mapping f(ζj, ζk) to evaluate in an N -
soliton collision the effect of the two-soliton collision whereby soliton-j in a state Sj

overtakes soliton-k in a state Sk. For a given order of
(
N
2

)
pair collisions, we consider

the corresponding composition of the
(
N
2

)
mappings: f(ζj, ζk), N ≥ j > k ≥ 1.
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154 T. Tsuchida

Then, regardless of the order of the pair collisions,∗) the composed mapping maps
the initial state {S−

N , S−
N−1, · · · , S−

1 } exactly to the final state {S+
N , S+

N−1, · · · , S+
1 }

given by the equations (17).
To prove this factorization, we do not employ the Manakov results, the equa-

tions (17) and (18), for the following two reasons. One reason is that, although it is
ingenious and seems to be correct, the derivation of (17) in Ref. 4) is neither very rig-
orous nor understandable to the reader not familiar with the ISM. The other reason
is that the equations (17) are not tractable for our purpose. In this paper, we em-
ploy a more straightforward approach to obtain another formula for the asymptotic
behavior of N solitons. We start from an explicit formula for the N -soliton solution
of the matrix NLS equation derived using the ISM in Ref. 13). Through a simple
reduction, we obtain an explicit formula for the general N -soliton solution of the
Manakov model (1.1).14) To make the paper self-contained, we first set N = 2 and
compute the asymptotic forms of the two-soliton solution in the t → ∓∞ limits in
our notation. These solutions define the collision laws of two solitons in the Manakov
model, which are essentially the same as those given by the equations (18). Next,
we consider the general N case and compute the asymptotic forms of the N -soliton
solution in the t → ∓∞ limits. To express the polarization vectors appearing in
the asymptotic forms concisely, we extend the definition of a determinant in such
a way that the last column of an extended determinant consists of vectors. This
determinant represents a vector defined in terms of the Laplace expansion with re-
spect to the last column. We find a beautiful relation which casts the Hermitian
product between such extended determinants into the form of a product of conven-
tional determinants. Using this relation and the Jacobi formula for determinants, we
prove that an N -soliton collision in the Manakov model (1.1) can be factorized into
a nonlinear superposition of

(
N
2

)
pair collisions in arbitrary order. This reveals∗∗)

the following two properties of the Manakov model:

(a) An N -soliton collision is composed of a nonlinear superposition of
(N

2

)
pair

collisions of certain order.

(b) The composition of
(N

2

)
mappings corresponding to pair collisions in an N -

soliton collision yields the same mapping for every possible order of composition.

We remark that solitons are not mass points, and do not have compact support.
Rather, they are structures with infinitely long tails. Even in a two-soliton collision,
it takes an infinite time for the solitons to completely recover their own shapes.
Taking this into consideration, it is more meaningful to understand this factorization
conceptually than phenomenologically. It is unlikely that properties (a) and (b) are
related directly. We note that proving (a) is equally difficult for every order of pair
collisions and that proving (b) for arbitrary N reduces to proving it for N = 3, that
is, the following:

∗) Here, we are referring to the order in which neighboring solitons collide pairwise. That is,

unlike the m = 1 case (scalar NLS), we do not consider virtual collisions between non-neighboring

solitons.
∗∗) To deduce property (b) from the factorization rigorously in the present setting, some discus-

sion is needed. This is given in §5.
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N -Soliton Collision in the Manakov Model 155

(b’) The composition of three mappings corresponding to pair collisions in a three-
soliton collision does not depend on the (conceptional) order of pair collisions.

The property (b’) is called the Yang-Baxter property. The validity of this property
means that the collision laws of two solitons in the Manakov model (1.1) give a “set-
theoretical” solution to the quantum Yang-Baxter equation.15) To the best of the
author’s knowledge, this solution is new. We mention that another “set-theoretical”
solution to the quantum Yang-Baxter equation is studied by Veselov16) through
investigation of the matrix KdV equation.

A few interesting ideas17)–19) have been proposed to explain in a general manner
the pairwise nature of soliton collisions in integrable systems. However, those ideas
seem to be too intuitive in their present forms to complete a mathematically rigorous
proof. For instance, it is not obvious that a pair collision is unaffected by the other
solitons given only that they are far away, or that the final result is invariant when
the order of multiple limits is changed. In addition, unlike this work, those works do
not elucidate a nice mechanism of factorization.

Finally, we would like to comment on the literature concerning the Manakov
model (1.1). Multi-soliton solutions of the Manakov model have already been ob-
tained using the Hirota method20)–22) (see also Refs. 23) and 24) for results obtained
with another method). In this sense, although it is very useful, the explicit formula
for the N -soliton solution obtained in this paper may not be essentially new.∗) The
main contribution of this work is the elucidation of the pairwise nature of soliton
collisions in the Manakov model. The results of this paper were obtained by the
author in the summer of 2000 and presented at the autumn meeting of the Physical
Society of Japan in that year. Very recently, he encountered some papers25)–27),∗∗)

which pose the same problem (but do not solve it completely). In particular, in
Ref. 27), which actually appeared after the first submission of this paper, Kanna
and Lakshmanan gave a “proof” of the pairwise collision nature of a three-soliton
collision. Unfortunately, the “proof” of Kanna-Lakshmanan27) is absolutely incor-
rect. Indeed, in addition to a few fatal mistakes, their “proof” as a whole is a typical
example of circular reasoning.

The remainder of this paper is organized as follows. In §2, we derive an explicit
formula for the N -soliton solution of the Manakov model.14) In §3, we obtain the
collision laws of two solitons. In §4, we compute the asymptotic forms of the N -
soliton solution in the limits t → ∓∞. In §5, we elucidate a mechanism that factorizes
an N -soliton collision into a nonlinear superposition of pair collisions and discuss the
Yang-Baxter property. Section 6 is devoted to concluding remarks.

§2. Explicit formula for the general N -soliton solution

In this section, considering a reduction of a formula given in Ref. 13), we derive
an explicit formula for the general N -soliton solution of the Manakov model (1.1).

In Ref. 13), under vanishing boundary conditions, we applied the ISM to nonlin-

∗) In any case, our formula has the advantage of compactness in its own right.
∗∗) Actually, the work of Park and Shin25) is very similar to that of Steudel.28)
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ear evolution equations associated with the generalized Zakharov-Shabat eigenvalue
problem: [

Ψ1

Ψ2

]
x

=
[ −iζI Q

−Q† iζI

] [
Ψ1

Ψ2

]
. (2.1)

Here, ζ is the spectral parameter, I is the m × m unit matrix, and Q is an m × m
matrix-valued potential function. The first two of the nonlinear evolution equations
associated with (2.1) are the matrix NLS equation,

iQt + Qxx + 2QQ†Q = O, (2.2)

and the matrix complex mKdV equation,

Qt + Qxxx + 3(QxQ†Q + QQ†Qx) = O. (2.3)

We mention that integrable space-discretizations of (2.2) and (2.3) were found re-
cently29) (see also the relevant work in Refs. 22) and 30)–32)). The general N -soliton
solution of (2.2) or (2.3) is expressed as13)

Q(x, t) = −2i( I I · · · I︸ ︷︷ ︸
N

) S−1




C1(t)† e−2iζ∗1x

C2(t)† e−2iζ∗2x

...
CN (t)†e−2iζ∗Nx


 , (2.4)

where the mN × mN matrix S is given by

Sjk = δjkI −
N∑

l=1

e2i(ζl−ζ∗j )x

(ζl − ζ∗k)(ζl − ζ∗j )
Cj(t)†Cl(t), 1 ≤ j, k ≤ N. (2.5)

Here, ζj are discrete eigenvalues in the upper-half plane of ζ (Im ζj > 0), each of
which determines a bound state in the potential Q. The quantities Cj(t) are m×m
nonzero matrices whose time dependences are given by

Cj(t) = Cj(0)e4iζ2
j t, j = 1, 2, · · · , N, (2.6)

for the matrix NLS equation (2.2), and

Cj(t) = Cj(0)e8iζ3
j t, j = 1, 2, · · · , N,

for the matrix complex mKdV equation (2.3), respectively.
Let us consider a reduction of the N -soliton solution of the matrix NLS equation

to that of the Manakov model. We restrict the matrix Q to the form

Q =




q1 q2 · · · qm

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 ≡

[
q
O

]
, (2.7)
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so that the matrix NLS equation (2.2) is reduced to the Manakov model (1.1). In this
case, the matrices Cj(t)† must have the same form as Q, from their definition,13), 14)

Cj(t)† =




c
(1)
j c

(2)
j · · · c

(m)
j

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


 ≡ i

[
cj(t)
O

]
, j = 1, 2, · · · , N. (2.8)

Conversely, if Cj(t)† take the form (2.8), Q(x, t) given by the formula (2.4) with (2.5)
fits the form (2.7). Then, the formula can be compressed into a compact form,14)

q(x, t) = 2
N∑

j=1

N∑
k=1

(T−1)jke−2iζ∗kxck(t),

where the N × N matrix T is given by

Tjk = δjk −
N∑

l=1

e2i(ζl−ζ∗j )x

(ζl − ζ∗k)(ζl − ζ∗j )
cj(t) · cl(t)†, 1 ≤ j, k ≤ N.

Thanks to (2.6) and (2.8), the time dependence of cj(t) is given by

cj(t) = e−4iζ∗2j tcj(0), j = 1, 2, · · · , N.

The above set of equations gives a formula for the general N -soliton solution of the
Manakov model (1.1) under vanishing boundary conditions. Let us rewrite this into
a form convenient to investigate the asymptotic behavior. We first rewrite it as

q(x, t) = 2
N∑

j=1

N∑
k=1

(W−1)jke−i[(ζk+ζ∗k)x+2(ζ2
k+ζ∗2k )t]ck(0),

where the N × N matrix W is given by

Wjk = δjke
−i[(ζj−ζ∗j )x+2(ζ2

j −ζ∗2j )t] −
N∑

l=1

cj(0) · cl(0)†

(ζl − ζ∗k)(ζl − ζ∗j )
ei[(ζl−ζ∗l )x+2(ζ2

l −ζ∗2l )t]

× ei[(ζl+ζ∗l )x+2(ζ2
l +ζ∗2l )t]e−i[(ζj+ζ∗j )x+2(ζ2

j +ζ∗2j )t], 1 ≤ j, k ≤ N.

Next, we introduce the parametrization

ζj = ξj + iηj (ξj ∈ R, ηj > 0),
cj(0) = 2ηje−αjuj (αj ∈ R, ||uj || = 1),

and employ the following abbreviations:

τj ≡ −i[(ζj − ζ∗j )x + 2(ζ2
j − ζ∗2j )t] = 2ηj(x + 4ξjt),

Θj ≡ (ζj + ζ∗j )x + 2(ζ2
j + ζ∗2j )t = 2ξjx + 4(ξ2

j − η2
j )t.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/111/2/151/1908929 by guest on 16 August 2022
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In this way, we obtain the simplest formula for the general N -soliton solution of the
Manakov model (1.1),

q(x, t) = 2
N∑

j=1

N∑
k=1

(U−1)jke−iΘkuk, (2.9)

where the N × N matrix U is given by

Ujk =
eτj+αj

2ηj
δjk +

N∑
l=1

λjkle−(τl+αl)+i(Θl−Θj), 1 ≤ j, k ≤ N, (2.10)

with

λjkl = − 2ηl(uj · u†
l )

(ζl − ζ∗k)(ζl − ζ∗j )
. (2.11)

If we set N = 1 in the above formula, we obtain the one-soliton solution,

q(x, t) = 2η1 sech(τ1 + α1)e−iΘ1u1. (2.12)

Therefore, we understand the significance of each parameter/coordinate as follows:

2ηj : amplitude of soliton-j,
−4ξj : velocity of soliton-j’s envelope,
τj : coordinate for observing soliton-j’s envelope,
Θj : coordinate for observing soliton-j’s carrier waves,
uj : polarization vector of soliton-j (||uj || = 1).

To be precise, in the case of two or more solitons, the real polarization vectors are
not invariant and change under soliton collision. The vector uj defines the bare
polarization of soliton-j, which is realized when it becomes the rightmost soliton.
This point is demonstrated below. In the following, we assume that all the soliton
velocities are distinct, so that every soliton collides with all others.

§3. Two-soliton collision

In this section, we compute the asymptotic forms of the two-soliton solution in
the limits t → ∓∞, which define the collision laws of two solitons in the Manakov
model (1.1).

We first write out the two-soliton solution given by (2.9) with N = 2. According
to (2.10), the matrix U in this case takes the form

U =




eτ1+α1

2η1
+

2∑
l=1

λ11le−(τl+αl)+i(Θl−Θ1)
2∑

l=1

λ12le−(τl+αl)+i(Θl−Θ1)

2∑
l=1

λ21le−(τl+αl)+i(Θl−Θ2) eτ2+α2

2η2
+

2∑
l=1

λ22le−(τl+αl)+i(Θl−Θ2)


 .
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N -Soliton Collision in the Manakov Model 159

Then, the two-soliton solution is given by

q(x, t) =
2

det U

{[
eτ2+α2

2η2
+

2∑
l=1

(λ22l − λ21l)e−(τl+αl)+i(Θl−Θ2)

]
e−iΘ1u1

+

[
eτ1+α1

2η1
+

2∑
l=1

(λ11l − λ12l)e−(τl+αl)+i(Θl−Θ1)

]
e−iΘ2u2

}
, (3.1)

with

det U =
eτ1+α1

2η1

eτ2+α2

2η2
+

eτ1+α1

2η1

2∑
l=1

λ22le−(τl+αl)+i(Θl−Θ2)

+
eτ2+α2

2η2

2∑
l=1

λ11le−(τl+αl)+i(Θl−Θ1)

+ e−(τ1+α1)e−(τ2+α2)
∑

{l1,l2}={1,2}

∣∣∣∣ λ11l1 λ12l1

λ21l2 λ22l2

∣∣∣∣ . (3.2)

Here, we have simplified the expression of detU using the relations∣∣∣∣ λ11l λ12l

λ21l λ22l

∣∣∣∣ = 0, l = 1, 2, (3.3)

which can be proved straightforwardly.
Next, we assume that

ξ1(= Re ζ1) > ξ2(= Re ζ2)

and investigate the asymptotic behavior of q(x, t) as t → ∓∞. This is accomplished
by identifying the dominant terms in the numerator of (3.1) and its denominator
(3.2). We here note the relation τ1/η1 = τ2/η2 + 8(ξ1 − ξ2)t.

In the limit t → −∞, we have

τ1

η1

 τ2

η2
.

In this case, we have to consider separately the two regions (1−) and (2−) defined
below. It is easily seen that q � 0 in all other regions.
(1−) finite τ1, τ2 → +∞

In this case, the dominant terms are those which contain the factor eτ2 . Then,
using the relation λ111 = 1/(2η1), we obtain

q �
2 eτ2+α2

2η2
e−iΘ1u1

eτ1+α1

2η1

eτ2+α2

2η2
+ eτ2+α2

2η2
λ111e−(τ1+α1)

= 2η1 sech(τ1 + α1)e−iΘ1u1. (3.4)
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(2−) τ1 → −∞, finite τ2

Here, the dominant terms are those which contain the factor e−τ1. Then, we
obtain

q � 2
[
(λ221 − λ211)e−(τ1+α1)e−iΘ2u1 + (λ111 − λ121)e−(τ1+α1)e−iΘ2u2

]
eτ2+α2

2η2
λ111e−(τ1+α1) + e−(τ1+α1)e−(τ2+α2)

∑
{l1,l2}
={1,2}

∣∣∣∣ λ11l1 λ12l1

λ21l2 λ22l2

∣∣∣∣
. (3.5)

In terms of φ12 defined by

e−2φ12 ≡ 1
λ111λ222

∑
{l1,l2}={1,2}

∣∣∣∣ λ11l1 λ12l1

λ21l2 λ22l2

∣∣∣∣ , (3.6)

we can rewrite the asymptotic form (3.5) as

q � 2η2 sech(τ2 + α2 + φ12)e−iΘ2 × eφ12

[(
λ221 − λ211

λ111

)
u1 +

(
1 − λ121

λ111

)
u2

]
.

(3.7)

Here, φ12 is always taken as real, since (3.6) can be rewritten as [cf. (3.3) and
(2.11)]

e−2φ12 =
1

λ111λ222

∣∣∣∣ λ111 + λ112 λ121 + λ122

λ211 + λ212 λ221 + λ222

∣∣∣∣
= (2η1)(2η2)

∣∣∣∣∣∣
iu1·u†

1
ζ1−ζ∗1

iu1·u†
2

ζ2−ζ∗1

iu2·u†
1

ζ1−ζ∗2
iu2·u†

2
ζ2−ζ∗2

∣∣∣∣∣∣
∣∣∣∣∣ i 2η1

ζ1−ζ∗1
i 2η1

ζ1−ζ∗2
i 2η2

ζ2−ζ∗1
i 2η2

ζ2−ζ∗2

∣∣∣∣∣
=
∣∣∣∣ ζ1 − ζ2

ζ1 − ζ∗2

∣∣∣∣2
{

1 +
(ζ1 − ζ∗1 )(ζ2 − ζ∗2 )∣∣ζ1 − ζ∗2

∣∣2
∣∣∣u1 · u†

2

∣∣∣2
}

(> 0).

In the limit t → +∞, we have
τ1

η1
� τ2

η2
.

In this case, we have to consider separately the two regions (2+) and (1+) defined
below. It is easily seen that q � 0 in all other regions.
(2+) τ1 → +∞, finite τ2

In this case, the dominant terms are those which contain the factor eτ1 . Then,
using the relation λ222 = 1/(2η2), we obtain

q �
2 eτ1+α1

2η1
e−iΘ2u2

eτ1+α1

2η1

eτ2+α2

2η2
+ eτ1+α1

2η1
λ222e−(τ2+α2)

= 2η2 sech(τ2 + α2)e−iΘ2u2. (3.8)

(1+) finite τ1, τ2 → −∞
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In this case, the dominant terms are those which contain the factor e−τ2 . Then,
with the help of (3.6), we obtain

q � 2
[
(λ222 − λ212)e−(τ2+α2)e−iΘ1u1 + (λ112 − λ122)e−(τ2+α2)e−iΘ1u2

]
eτ1+α1

2η1
λ222e−(τ2+α2) + e−(τ1+α1)e−(τ2+α2)

∑
{l1,l2}
={1,2}

∣∣∣∣ λ11l1 λ12l1

λ21l2 λ22l2

∣∣∣∣
= 2η1 sech(τ1 + α1 + φ12)e−iΘ1 × eφ12

[(
1 − λ212

λ222

)
u1 +

(
λ112 − λ122

λ222

)
u2

]
.

(3.9)

Taking the sum of (3.4) and (3.7), or (3.8) and (3.9), with a slight simplification, we
arrive at the following theorem.

Theorem 3.1. The asymptotic forms of the two-soliton solution of the Manakov
model (1.1) are as follows (see also Fig. 1):
as t → −∞,

q � 2η1 sech(τ1 + α1)e−iΘ1u1 + 2η2 sech(τ2 + α2 + φ12)e−iΘ2u{1},2;

as t → +∞,

q � 2η1 sech(τ1 + α1 + φ12)e−iΘ1u{2},1 + 2η2 sech(τ2 + α2)e−iΘ2u2.

Here φ12 and u{1},2, u{2},1 are given by

e−2φ12 =
∣∣∣∣ ζ1 − ζ2

ζ1 − ζ∗2

∣∣∣∣2
{

1 +
(ζ1 − ζ∗1 )(ζ2 − ζ∗2 )∣∣ζ1 − ζ∗2

∣∣2
∣∣∣u1 · u†

2

∣∣∣2
}

,

and

u{1},2 = eφ12
ζ∗1 − ζ∗2
ζ1 − ζ∗2

{
u2 − ζ1 − ζ∗1

ζ1 − ζ∗2

(
u2 · u†

1

)
u1

}
,

u{2},1 = eφ12
ζ∗2 − ζ∗1
ζ2 − ζ∗1

{
u1 − ζ2 − ζ∗2

ζ2 − ζ∗1

(
u1 · u†

2

)
u2

}
.

Theorem 3.1 defines the collision laws of two solitons in the Manakov model,
which we use in §5 to factorize an N -soliton collision into pair collisions. Here, we
mention some important properties of the collision laws:

• A two-soliton collision changes neither the amplitudes of the solitons nor the
modulus of the Hermitian product of the polarization vectors. In fact, recalling
that ||u1|| = ||u2|| = 1, we can prove by direct computations that∣∣∣∣u{1},2

∣∣∣∣ =
∣∣∣∣u{2},1

∣∣∣∣ = 1,
∣∣∣u1 · u†

{1},2
∣∣∣ =

∣∣∣u{2},1 · u†
2

∣∣∣ ,∣∣∣u1 · u†
2

∣∣∣ =
∣∣∣u{2},1 · u†

{1},2
∣∣∣ .
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Although we omit here the tiresome proof, the most important relation
∣∣∣∣u{1},2

∣∣∣∣
=
∣∣∣∣u{2},1

∣∣∣∣ = 1 is shown in §5 in a more general context. This relation shows
that the collision is elastic if we observe it with conserved density, ||q||2 =∑m

j=1 |qj|2.
• As a result of the collision, the polarization vectors rotate nontrivially on the

unit sphere in C
m. Thus, if we observe the collision with respect to each com-

ponent qk, it appears as if it were inelastic.

• We have expressed φ12, u{1},2 and u{2},1 in terms of u1 and u2. Then, the
collision laws are symmetric with respect to interchange of the subscripts 1 and
2. This form of the collision laws is very useful in studying the factorization of
an N -soliton collision into pair collisions. For any fixed unit vector u1, we can
invert the mapping u2 
→ u{1},2 using the following relation for the projection
operator u†

1u1 (cf. (u†
1u1)2 = u†

1u1):(
I − ζ1 − ζ∗1

ζ1 − ζ∗2
u†

1u1

)(
I +

ζ1 − ζ∗1
ζ∗1 − ζ∗2

u†
1u1

)
= I.

Then, we can express φ12, u2 and u{2},1 in terms of u1 and u{1},2 as Manakov
did in Ref. 4):

e−2φ12 =
∣∣∣∣ ζ1 − ζ2

ζ1 − ζ∗2

∣∣∣∣2
{

1 − (ζ1 − ζ∗1 )(ζ2 − ζ∗2 )∣∣ζ1 − ζ2

∣∣2
∣∣∣u1 · u†

{1},2
∣∣∣2
}−1

, (3.10a)

soliton-1

soliton-1 soliton-2

soliton-2

interaction
ranget

q � 2η2 sech(τ2 + α2 + φ12)e
−iΘ2u{1},2 q � 2η1 sech(τ1 + α1)e

−iΘ1u1

q � 2η1 sech(τ1 + α1 + φ12)e
−iΘ1u{2},1 q � 2η2 sech(τ2 + α2)e

−iΘ2u2

Fig. 1. Two-soliton collision.
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u2 = e−φ12
ζ1 − ζ∗2
ζ∗1 − ζ∗2

{
u{1},2 +

ζ1 − ζ∗1
ζ∗1 − ζ∗2

(
u{1},2 · u†

1

)
u1

}
, (3.10b)

u{2},1 = e−φ12
ζ∗2 − ζ1

ζ2 − ζ1

{
u1 − ζ2 − ζ∗2

ζ2 − ζ1

(
u1 · u†

{1},2
)

u{1},2

}
. (3.10c)

Owing to the lack of symmetry under the exchange of 1 and 2 (even after
a change of the vector notation), this new form of the collision laws is not
useful in studying the factorization problem. On the other hand, it is of prime
importance in explicitly showing that a two-soliton collision can be expressed
as a mapping from the initial state to the final state. Moreover, using (3.10), we
can easily check that if ||u1|| =

∣∣∣∣u{1},2
∣∣∣∣ = 1, then ||u2|| = 1. This verifies that

for any unit vector u1, the mapping u2 
→ u{1},2 in Theorem 3.1 is a bijection
on the unit sphere. We use this fact in §5 to prove the Yang-Baxter property
of the mapping (3.10).

§4. Asymptotic behavior of the N -soliton solution

In this section, we compute the asymptotic forms of the N -soliton solution in
the limits t → ∓∞ and simplify them as much as possible. Extensions of some
techniques applied to the KdV equation are used.33)–35)

We first rewrite the N -soliton solution (2.9) before considering the limits t →
∓∞. We use the tilde to denote cofactors. For instance, the cofactor Ũkj is obtained
by deleting the k-th row and the j-th column from the determinant of U and multi-
plying it by (−1)k+j. Using the definition of U given in (2.10) and the multilinearity
of determinants, we can rewrite (2.9) as

q(x, t)

=
2

det U

N∑
j=1

N∑
k=1

Ũkje−iΘkuk

=
2

det U

[
(Ũ11 + · · · + Ũ1N )e−iΘ1u1 + · · · + (ŨN1 + · · · + ŨNN )e−iΘN uN

]

=
2

det U



∣∣∣∣∣∣∣∣∣

1 1 · · · 1
U21 U22 · · · U2N
...

...
. . .

...
UN1 UN2 · · · UNN

∣∣∣∣∣∣∣∣∣
e−iΘ1u1

+ · · · +

∣∣∣∣∣∣∣∣∣
U11 U12 · · · U1N
...

...
...

UN−11 UN−12 · · · UN−1N

1 1 · · · 1

∣∣∣∣∣∣∣∣∣
e−iΘN uN




=
2

det U


N−1∑

n=0

∑
2≤j1<···<jn≤N


 N∏

k=2
k �=j1,··· ,jn

eτk+αk

2ηk


 N∑

l1,··· ,ln=1

e−(τl1
+αl1

)+i(Θl1
−Θj1

)
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× · · · × e−(τln+αln)+i(Θln−Θjn)

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

λj11l1 λj1j1l1 · · · λj1jnl1
...

...
. . .

...
λjn1ln λjnj1ln · · · λjnjnln

∣∣∣∣∣∣∣∣∣
e−iΘ1u1

+ · · · +
N−1∑
n=0

∑
1≤j1<···<jn≤N−1


 N−1∏

k=1
k �=j1,··· ,jn

eτk+αk

2ηk


 N∑

l1,··· ,ln=1

e−(τl1
+αl1

)+i(Θl1
−Θj1

)

× · · · × e−(τln+αln)+i(Θln−Θjn)

∣∣∣∣∣∣∣∣∣
λj1j1l1 · · · λj1jnl1 λj1Nl1

...
. . .

...
...

λjnj1ln · · · λjnjnln λjnNln

1 · · · 1 1

∣∣∣∣∣∣∣∣∣
e−iΘN uN


 .

(4.1)

Similarly, we can rewrite the determinant of U as

det U

=
N∏

k=1

eτk+αk

2ηk
+

N∑
j1=1


 N∏

k=1
k �=j1

eτk+αk

2ηk


 N∑

l1=1

e−(τl1
+αl1

)+i(Θl1
−Θj1

)λj1j1l1

+
∑

1≤j1<j2≤N


 N∏

k=1
k �=j1,j2

eτk+αk

2ηk


 N∑

l1,l2=1

e−(τl1
+αl1

)+i(Θl1
−Θj1

)e−(τl2
+αl2

)+i(Θl2
−Θj2

)

×
∣∣∣∣ λj1j1l1 λj1j2l1

λj2j1l2 λj2j2l2

∣∣∣∣
+ · · · +

N∑
l1,··· ,lN=1

e−(τl1
+αl1

)+i(Θl1
−Θ1) · · · e−(τlN

+αlN
)+i(ΘlN

−ΘN )

×

∣∣∣∣∣∣∣
λ11l1 · · · λ1Nl1

...
. . .

...
λN1lN · · · λNNlN

∣∣∣∣∣∣∣
=

N∑
n=0

∑
1≤j1<···<jn≤N


 N∏

k=1
k �=j1,··· ,jn

eτk+αk

2ηk


 N∑

l1,··· ,ln=1

e−(τl1
+αl1

)+i(Θl1
−Θj1

)

× · · · × e−(τln+αln)+i(Θln−Θjn)

∣∣∣∣∣∣∣
λj1j1l1 · · · λj1jnl1

...
. . .

...
λjnj1ln · · · λjnjnln

∣∣∣∣∣∣∣ . (4.2)
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Here, we note [cf. the definition of λjkl (2.11)] that the quantity(
uj′ · u†

l

)
ζl − ζ∗j′

λjkl = −
(
uj′ · u†

l

)
2ηl

(
uj · u†

l

)
(ζl − ζ∗j′)(ζl − ζ∗k)(ζl − ζ∗j )

is invariant under interchange of the subscripts j and j′. Thus, we have(
uj′ · u†

l

)
ζl − ζ∗j′

λjkl −
(
uj · u†

l

)
ζl − ζ∗j

λj′kl = 0.

This shows that if uj′ ·u†
l �= 0 or uj ·u†

l �= 0, the two vectors (λj1l, λj2l, · · · , λjNl) and
(λj′1l, λj′2l, · · · , λj′Nl) are linearly dependent. In the case that uj′ ·u†

l = uj ·u†
l = 0,

according to (2.11), both vectors become zero. Therefore, the determinants in (4.1)
or (4.2) contribute only if l1, · · · , ln are all distinct. This fact is a generalization of
the relations (3.3).

Next, we assume that

ξ1(= Re ζ1) > ξ2(= Re ζ2) > · · · > ξN (= Re ζN ),

and investigate the asymptotic behavior of q(x, t) in the limits t → ∓∞. This is
accomplished by identifying the dominant terms in the numerator of (4.1) and its
denominator (4.2). We here note the relations τj/ηj = τk/ηk + 8(ξj − ξk)t.

In the limit t → −∞, we have

τ1

η1

 τ2

η2

 · · · 
 τN

ηN
.

In this case, we have to consider the following N regions (1−)–(N−) separately. It
is easily seen that q � 0 in all other regions.
(1−) finite τ1, τ2, · · · , τN → +∞

In this case, the dominant terms are those which contain the factor eτ2+···+τN .
Then, using the relation λ111 = 1/(2η1), we obtain

q �
2
(∏N

k=2
eτk+αk

2ηk

)
e−iΘ1u1∏N

k=1
eτk+αk

2ηk
+
(∏N

k=2
eτk+αk

2ηk

)
e−(τ1+α1)λ111

= 2η1 sech(τ1 + α1)e−iΘ1u1. (4.3)

(n−) τ1, · · · , τn−1 → −∞, finite τn, τn+1, · · · , τN → +∞, n = 2, · · · , N − 1
Here, the dominant terms are those which contain the factor
e−τ1−···−τn−1+τn+1+···+τN . Then, those in the numerator of (4.1) are

2
n∑

j=1

(
N∏

k=n+1

eτk+αk

2ηk

) ∑
{l1,··· ,ln−1}
={1,··· ,n−1}

e−(τ1+α1) · · · e−(τn−1+αn−1)ei(Θj−Θn)
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×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ11l1 · · · λ1nl1
...

...
λj−11 lj−1

· · · λj−1nlj−1

1 · · · 1
λj+11 lj · · · λj+1nlj

...
...

λn1ln−1 · · · λnnln−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e−iΘjuj ,

while those in the denominator (4.2) are(
N∏

k=n

eτk+αk

2ηk

) ∑
{l1,··· ,ln−1}
={1,··· ,n−1}

e−(τ1+α1) · · · e−(τn−1+αn−1)

×

∣∣∣∣∣∣∣
λ11l1 · · · λ1n−1 l1

...
. . .

...
λn−11 ln−1 · · · λn−1n−1 ln−1

∣∣∣∣∣∣∣
+

(
N∏

k=n+1

eτk+αk

2ηk

) ∑
{l1,··· ,ln}
={1,··· ,n}

e−(τ1+α1) · · · e−(τn+αn)

∣∣∣∣∣∣∣
λ11l1 · · · λ1nl1

...
. . .

...
λn1ln · · · λnnln

∣∣∣∣∣∣∣ .

As a natural extension of (3.6), we define φi1i2···ip for distinct positive integers
i1, i2, · · · , ip by

e−2φi1i2···ip ≡ 1
λi1i1i1 · · ·λipipip

∑
{l1,··· ,lp}

={i1,··· ,ip}

∣∣∣∣∣∣∣
λi1i1l1 · · · λi1ipl1

...
. . .

...
λipi1lp · · · λipiplp

∣∣∣∣∣∣∣ . (4.4)

We should note that φi1i2···ip is symmetric with respect to permutations of the
subscripts i1, i2, · · · , ip. We prove below that φi1i2···ip can always be taken as
real. In terms of φi1i2···ip , we can express the asymptotic form of q in this region
as

q � 2ηn sech(τn + αn + φ12···n − φ12···n−1)e−iΘneφ12···n+φ12···n−1

× 1
λ111 · · ·λn−1n−1n−1

n∑
j=1

∑
{l1,··· ,ln−1}
={1,··· ,n−1}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ11l1 · · · λ1nl1
...

...
λj−11 lj−1

· · · λj−1nlj−1

1 · · · 1
λj+11 lj · · · λj+1nlj

...
...

λn1ln−1 · · · λnnln−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
uj .

(4.5)
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(N−) τ1, · · · , τN−1 → −∞, finite τN

Here, the dominant terms are those which contain the factor e−τ1−···−τN−1 . With
calculations similar to those in the case (n−), we obtain the asymptotic form
of q given by (4.5) with n = N .

In the limit t → +∞, we have

τ1

η1
� τ2

η2
� · · · � τN

ηN
.

In this case, we have to consider the following N regions (N+)–(1+) separately. It
is easily seen that q � 0 in all other regions.

(N+) τ1, · · · , τN−1 → +∞, finite τN

In this case, the dominant terms are those which contain the factor eτ1+···+τN−1 .
Then, using the relation λNNN = 1/(2ηN ), we obtain

q �
2
(∏N−1

k=1
eτk+αk

2ηk

)
e−iΘN uN∏N

k=1
eτk+αk

2ηk
+
(∏N−1

k=1
eτk+αk

2ηk

)
e−(τN+αN )λNNN

= 2ηN sech(τN + αN )e−iΘN uN . (4.6)

(n+) τ1, · · · , τn−1 → +∞, finite τn, τn+1, · · · , τN → −∞, n = 2, · · · , N − 1
In this case, the dominant terms are those which contain the factor
eτ1+···+τn−1−τn+1−···−τN . Then, those in the numerator of (4.1) are

2
N∑

j=n

(
n−1∏
k=1

eτk+αk

2ηk

) ∑
{l1,··· ,lN−n}
={n+1,··· ,N}

e−(τn+1+αn+1) · · · e−(τN+αN )ei(Θj−Θn)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λnnl1 · · · λnNl1
...

...
λj−1nlj−n

· · · λj−1N lj−n

1 · · · 1
λj+1nlj−n+1

· · · λj+1N lj−n+1

...
...

λNnlN−n
· · · λNNlN−n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
e−iΘjuj ,

while those in the denominator (4.2) are(
n∏

k=1

eτk+αk

2ηk

) ∑
{l1,··· ,lN−n}
={n+1,··· ,N}

e−(τn+1+αn+1) · · · e−(τN+αN )

×

∣∣∣∣∣∣∣
λn+1n+1 l1 · · · λn+1N l1

...
. . .

...
λN n+1 lN−n

· · · λNNlN−n

∣∣∣∣∣∣∣

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/111/2/151/1908929 by guest on 16 August 2022



168 T. Tsuchida

+

(
n−1∏
k=1

eτk+αk

2ηk

) ∑
{l1,··· ,lN−n+1}

={n,··· ,N}

e−(τn+αn) · · · e−(τN+αN )

×

∣∣∣∣∣∣∣
λnnl1 · · · λnNl1

...
. . .

...
λNnlN−n+1

· · · λNNlN−n+1

∣∣∣∣∣∣∣ .
In terms of φi1i2···ip defined by (4.4), we can express the asymptotic form of q
in this region as

q � 2ηn sech(τn + αn + φnn+1 ···N − φn+1n+2 ···N )e−iΘneφnn+1 ···N+φn+1n+2 ···N

× 1
λn+1n+1n+1 · · ·λNNN

N∑
j=n

∑
{l1,··· ,lN−n}
={n+1,··· ,N}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λnnl1 · · · λnNl1
...

...
λj−1nlj−n

· · · λj−1N lj−n

1 · · · 1
λj+1nlj−n+1

· · · λj+1N lj−n+1

...
...

λNnlN−n
· · · λNNlN−n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
uj .

(4.7)

(1+) finite τ1, τ2, · · · , τN → −∞
In this case, the dominant terms are those which contain the factor e−τ2−···−τN .
With calculations similar to those in the case (n+), we obtain the asymptotic
form of q given by (4.7) with n = 1.

We now simplify the above asymptotic forms by using the following definitions:

cjk ≡ i
ζk − ζ∗j

, djk ≡ i
ζk − ζ∗j

(
uj · u†

k

)
. (4.8)

According to the definition of λjkl (2.11), we have λjkl = 2ηlckldjl. Then, we can
rewrite the definition of φi1i2···in [(4.4) with p → n] in a factorized form [cf. the
paragraph below (4.2)]:

e−2φi1i2···in =
n∏

l=1

(2ηil) ×
∑

l1=i1,··· ,in
· · ·

∑
ln=i1,··· ,in

∣∣∣∣∣∣∣
2ηl1ci1l1di1l1 · · · 2ηl1cinl1di1l1

...
. . .

...
2ηlnci1lndinln · · · 2ηlncinlndinln

∣∣∣∣∣∣∣
=

n∏
l=1

(2ηil)
2 ×

∣∣∣∣∣∣∣
di1i1 · · · di1in

...
. . .

...
dini1 · · · dinin

∣∣∣∣∣∣∣×
∣∣∣∣∣∣∣

ci1i1 · · · cini1
...

. . .
...

ci1in · · · cinin

∣∣∣∣∣∣∣ . (4.9)

Here i1, i2, · · · , in are distinct positive integers. For any nonzero vector (yi1 , · · · , yin),
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we have

(yi1 , · · · , yin)


 di1i1 · · · di1in

...
. . .

...
dini1 · · · dinin




 y∗i1

...
y∗in




=
∑

j,k=i1,··· ,in

i
ζk − ζ∗j

(
uj · u†

k

)
yjy

∗
k

=
∑

j,k=i1,··· ,in

∫ ∞

0
ei(ζk−ζ∗j )z

(
uj · u†

k

)
yjy

∗
k dz

=
∫ ∞

0

∣∣∣∣∣
∣∣∣∣∣ ∑
j=i1,··· ,in

e−iζ∗j zyjuj

∣∣∣∣∣
∣∣∣∣∣
2

dz

> 0.

Thus, the eigenvalues of the underlined Hermitian matrix are all positive. This
proves that the second term on the right-hand side of (4.9) is positive. Considering
the special case in which all the vectors ui1 , · · · , uin are identical, we can prove the
same for the third term in (4.9). Therefore, the right-hand side of (4.9) is positive,
and φi1i2···in can always be taken as real. In the same way as for (4.9), we can rewrite
the second line of (4.5) or (4.7) in the following factorized form:

1
λi1i1i1 · · ·λin−1in−1in−1

n∑
j=1

∑
{l1,··· ,ln−1}

={i1,··· ,in−1}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λi1i1l1 · · · λi1inl1
...

...
λij−1i1lj−1

· · · λij−1inlj−1

1 · · · 1
λij+1i1lj · · · λij+1inlj

...
...

λini1ln−1 · · · λininln−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
uij

=
n−1∏
l=1

(2ηil) ×
n∑

j=1

∑
l1=i1,··· ,in−1

· · ·
∑

ln−1=i1,··· ,in−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2ηl1ci1l1di1l1 · · · 2ηl1cinl1di1l1
...

...
2ηlj−1

ci1lj−1
dij−1lj−1

· · · 2ηlj−1
cinlj−1

dij−1lj−1

1 · · · 1
2ηljci1ljdij+1lj · · · 2ηljcinljdij+1lj

...
...

2ηln−1ci1ln−1dinln−1 · · · 2ηln−1cinln−1dinln−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
uij
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=
n−1∏
l=1

(2ηil)
2 ×

n∑
j=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

di1i1 · · · di1in−1 0
...

...
...

dij−1i1 · · · dij−1in−1 0
0 · · · 0 1

dij+1i1 · · · dij+1in−1 0
...

...
...

dini1 · · · dinin−1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣∣∣
ci1i1 · · · cini1

...
...

ci1in−1 · · · cinin−1

1 · · · 1

∣∣∣∣∣∣∣∣∣
uij

=
n−1∏
l=1

(2ηil)
2 ×

∣∣∣∣∣∣∣∣∣
ci1i1 · · · cini1

...
...

ci1in−1 · · · cinin−1

1 · · · 1

∣∣∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣
di1i1 · · · di1in−1 ui1

...
...

...
dini1 · · · dinin−1 uin

∣∣∣∣∣∣∣ . (4.10)

The last determinant, which contains vectors in its last column, represents a vector
defined in terms of the Laplace expansion with respect to the last column.

We can simplify the asymptotic forms further by noting some relations between
the conventional determinants in (4.9) and (4.10). We have the following lemma:

Lemma 4.1. The following equalities involving determinants hold:∣∣∣∣∣∣∣∣∣
ci1i1 · · · cini1

...
...

ci1in−1 · · · cinin−1

1 · · · 1

∣∣∣∣∣∣∣∣∣
=

n−1∏
l=1

ζ∗il − ζ∗in
ζil − ζ∗in

×

∣∣∣∣∣∣∣
ci1i1 · · · cin−1i1

...
. . .

...
ci1in−1 · · · cin−1in−1

∣∣∣∣∣∣∣ , (4.11)

∣∣∣∣∣∣∣
ci1i1 · · · cini1

...
. . .

...
ci1in · · · cinin

∣∣∣∣∣∣∣ =
i
∏n−1

l=1 (ζin − ζil)∏n
l=1(ζin − ζ∗il)

×

∣∣∣∣∣∣∣∣∣
ci1i1 · · · cini1

...
...

ci1in−1 · · · cinin−1

1 · · · 1

∣∣∣∣∣∣∣∣∣
, (4.12)

∣∣∣∣∣∣∣
ci1i1 · · · cini1

...
. . .

...
ci1in · · · cinin

∣∣∣∣∣∣∣ =
i

ζin − ζ∗in

n−1∏
l=1

∣∣∣∣ζil − ζin

ζil − ζ∗in

∣∣∣∣2 ×
∣∣∣∣∣∣∣

ci1i1 · · · cin−1i1
...

. . .
...

ci1in−1 · · · cin−1in−1

∣∣∣∣∣∣∣ .
(4.13)

Proof. We can prove (4.11) by subtracting on the left-hand side the last column
from each of the other columns and using the relation

cjk − cnk =
ζ∗j − ζ∗n
ζk − ζ∗n

cjk.

Similarly, (4.12) is proved by subtracting on the left-hand side the last row from each
of the other rows and using the relation

cjk − cjn =
ζn − ζk

ζn − ζ∗j
cjk.
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(4.13) is a direct consequence of (4.12) and (4.11). �

Taking the sum of (4.3) and (4.5) (n = 2, · · · , N), or (4.6) and (4.7) (n =
1, · · · , N − 1), with the help of (4.9), (4.10) and Lemma 4.1, we finally arrive at the
following proposition.

Proposition 4.2. The asymptotic forms of the N -soliton solution of the Manakov
model (1.1) are as follows:
as t → −∞,

q �
N∑

n=1

2ηn sech
(
τn + αn + φ{1,··· ,n−1},n

)
e−iΘnu{1,··· ,n−1},n;

as t → +∞,

q �
N∑

n=1

2ηn sech
(
τn + αn + φ{n+1,··· ,N},n

)
e−iΘnu{n+1,··· ,N},n.

Here φ{i1,··· ,in−1},in and u{i1,··· ,in−1},in are defined for distinct positive integers
i1, · · · , in−1, in by

e−2φ{i1,··· ,in−1},in ≡ e−2(φi1···in−1in−φi1···in−1
)

=
n−1∏
l=1

∣∣∣∣ζil − ζin

ζil − ζ∗in

∣∣∣∣2 ×

∣∣∣∣∣∣∣
di1i1 · · · di1in

...
. . .

...
dini1 · · · dinin

∣∣∣∣∣∣∣
dinin

∣∣∣∣∣∣∣
di1i1 · · · di1in−1

...
. . .

...
din−1i1 · · · din−1in−1

∣∣∣∣∣∣∣
(> 0),

(4.14)

and

u{i1,··· ,in−1},in

≡ eφi1···in−1in+φi1···in−1

λi1i1i1 · · ·λin−1in−1in−1

n∑
j=1

∑
{l1,··· ,ln−1}

={i1,··· ,in−1}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λi1i1l1 · · · λi1inl1
...

...
λij−1i1lj−1

· · · λij−1inlj−1

1 · · · 1
λij+1i1lj · · · λij+1inlj

...
...

λini1ln−1 · · · λininln−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
uij
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= eφ{i1,··· ,in−1},in

n−1∏
l=1

ζ∗il − ζ∗in
ζil − ζ∗in

×

∣∣∣∣∣∣∣
di1i1 · · · di1in−1 ui1

...
...

...
dini1 · · · dinin−1 uin

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
di1i1 · · · di1in−1

...
. . .

...
din−1i1 · · · din−1in−1

∣∣∣∣∣∣∣
. (4.15)

When the set {i1, · · · , in−1} is empty, the definitions (4.14) and (4.15) should read
e−2φ{ },i ≡ 1 and u{ },i ≡ ui.

We prove in the next section that u{i1,··· ,in−1},in is always a unit vector, i.e.∣∣∣∣u{i1,··· ,in−1},in
∣∣∣∣ = 1. This ensures that an N -soliton collision does not change

the amplitudes of solitons. The vector u{1,··· ,n−1},n gives the polarization vector
of soliton-n before an N -soliton collision, while u{n+1,··· ,N},n gives that after the
collision. Using the definition

q{i1,··· ,in−1},in ≡ 2ηin sech
(
τin + αin + φ{i1,··· ,in−1},in

)
e−iΘin u{i1,··· ,in−1},in , (4.16)

we can diagram the asymptotic behavior of the N -soliton solution in the simplest
way (see Fig. 2). We should note that q{i1,··· ,in−1},in is symmetric with respect to

interaction
ranget

1

N1 n

N n

q{1,...,N−1},N q{1,...,n−1},n q{ },1

q{2,...,N},1 q{n+1,...,N},n q{ },N

Fig. 2. Asymptotic behavior of the N -soliton solution.
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permutations of i1, · · · , in−1. The last subscript in denotes the soliton’s number,
which is, of course, time independent. The significance of the other subscripts,
i1, · · · , in−1, in { } is clarified in the next section.

§5. Factorization of an N -soliton collision into a superposition of pair
collisions

In this section, on the basis of the collision laws of two solitons presented in §3,
we examine the asymptotic behavior of the N -soliton solution obtained in §4. We
conclude that an N -soliton collision in the Manakov model (1.1) can be factorized
into a nonlinear superposition of pair collisions in arbitrary order.

We first prove a lemma needed later to compute the Hermitian product of
u{i1,··· ,in−1},j and u{i1,··· ,in−1},k.

Lemma 5.1. For any set of unit vectors ui1 , · · · , uin−1 , uj , uk and dil defined by
(4.8), the following equality holds:

∣∣∣∣∣∣∣∣∣
di1i1 · · · di1in−1 ui1

...
. . .

...
...

din−1i1 · · · din−1in−1 uin−1

dji1 · · · djin−1 uj

∣∣∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣∣∣
di1i1 · · · di1in−1 ui1

...
. . .

...
...

din−1i1 · · · din−1in−1 uin−1

dki1 · · · dkin−1 uk

∣∣∣∣∣∣∣∣∣

†

=
ζk − ζ∗j

i
×

∣∣∣∣∣∣∣
di1i1 · · · di1in−1

...
. . .

...
din−1i1 · · · din−1in−1

∣∣∣∣∣∣∣×
∣∣∣∣∣∣∣∣∣

di1i1 · · · di1in−1 di1k
...

. . .
...

...
din−1i1 · · · din−1in−1 din−1k

dji1 · · · djin−1 djk

∣∣∣∣∣∣∣∣∣
.

(5.1)

Proof. In the proof of this lemma, we use D to denote the last determinant in
(5.1):

D ≡

∣∣∣∣∣∣∣∣∣
di1i1 · · · di1in−1 di1k

...
. . .

...
...

din−1i1 · · · din−1in−1 din−1k

dji1 · · · djin−1 djk

∣∣∣∣∣∣∣∣∣
.

We express minor determinants obtained by deleting one row and one column of D
as

D

[
il
k

]
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

di1i1 · · · di1in−1

...
...

dil−1i1 · · · dil−1in−1

dil+1i1 · · · dil+1in−1

...
...

din−1i1 · · · din−1in−1

dji1 · · · djin−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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D

[
j
il

]
=

∣∣∣∣∣∣∣
di1i1 · · · di1il−1

di1il+1
· · · di1in−1 di1k

...
...

...
...

...
din−1i1 · · · din−1il−1

din−1il+1
· · · din−1in−1 din−1k

∣∣∣∣∣∣∣ ,

D

[
j
k

]
=

∣∣∣∣∣∣∣
di1i1 · · · di1in−1

...
. . .

...
din−1i1 · · · din−1in−1

∣∣∣∣∣∣∣ .
Using these abbreviations and the Laplace expansion of determinants, we can rewrite
the left-hand side of (5.1) as

l.h.s. =




n−1∑
p=1

(−1)n+pD

[
ip
k

]
uip + D

[
j
k

]
uj




·



n−1∑
q=1

(−1)n+qD

[
j
iq

]
u†

iq
+ D

[
j
k

]
u†

k




=
n−1∑
p=1

n−1∑
q=1

(−1)p+qD

[
ip
k

]
D

[
j
iq

]
×
{

(ζiq − ζ∗j ) + (ζ∗j − ζ∗ip)
i

}
dipiq

+
n−1∑
q=1

(−1)n+qD

[
j
k

]
D

[
j
iq

]
× (ζiq − ζ∗j )

i
djiq

+
n−1∑
p=1

(−1)n+pD

[
ip
k

]
D

[
j
k

]
×
{

(ζk − ζ∗j ) + (ζ∗j − ζ∗ip)
i

}
dipk

+ D

[
j
k

]
D

[
j
k

]
× (ζk − ζ∗j )

i
djk

=
n−1∑
q=1

(−1)n+qD

[
j
iq

] (ζiq − ζ∗j )
i




n−1∑
p=1

(−1)n+pD

[
ip
k

]
dipiq + D

[
j
k

]
djiq




+
n−1∑
p=1

(−1)n+pD

[
ip
k

] (ζ∗j − ζ∗ip)
i




n−1∑
q=1

(−1)n+qD

[
j
iq

]
dipiq + D

[
j
k

]
dipk




+ D

[
j
k

] (ζk − ζ∗j )
i




n−1∑
p=1

(−1)n+pD

[
ip
k

]
dipk + D

[
j
k

]
djk




=
n−1∑
q=1

(−1)n+qD

[
j
iq

] (ζiq − ζ∗j )
i

∣∣∣∣∣∣∣∣∣
di1i1 · · · di1in−1 di1iq

...
. . .

...
...

din−1i1 · · · din−1in−1 din−1iq

dji1 · · · djin−1 djiq

∣∣∣∣∣∣∣∣∣
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+
n−1∑
p=1

(−1)n+pD

[
ip
k

] (ζ∗j − ζ∗ip)
i

∣∣∣∣∣∣∣∣∣
di1i1 · · · di1in−1 di1k

...
. . .

...
...

din−1i1 · · · din−1in−1 din−1k

dipi1 · · · dipin−1 dipk

∣∣∣∣∣∣∣∣∣
+ D

[
j
k

] (ζk − ζ∗j )
i

D.

It is easily seen that in the last expression, only the last term remains. This is the
right-hand side of (5.1). �

Corollary 5.2. The vector u{i1,··· ,in−1},in defined for distinct positive integers
i1, · · · , in−1, in by (4.15) with (4.14) is a unit vector, i.e.∣∣∣∣u{i1,··· ,in−1},in

∣∣∣∣ = 1.

Proof. Using Lemma 5.1 in the special case j = k (≡ in), we have∣∣∣∣u{i1,··· ,in−1},in
∣∣∣∣2

= u{i1,··· ,in−1},in · u†
{i1,··· ,in−1},in

=
n−1∏
l=1

∣∣∣∣ζil − ζ∗in
ζil − ζin

∣∣∣∣2 ×
dinin

∣∣∣∣∣∣∣
di1i1 · · · di1in−1

...
. . .

...
din−1i1 · · · din−1in−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
di1i1 · · · di1in

...
. . .

...
dini1 · · · dinin

∣∣∣∣∣∣∣
×

n−1∏
l=1

∣∣∣∣ζ∗il − ζ∗in
ζil − ζ∗in

∣∣∣∣2

×

ζin − ζ∗in
i

∣∣∣∣∣∣∣
di1i1 · · · di1in−1

...
. . .

...
din−1i1 · · · din−1in−1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

di1i1 · · · di1in
...

. . .
...

dini1 · · · dinin

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
di1i1 · · · di1in−1

...
. . .

...
din−1i1 · · · din−1in−1

∣∣∣∣∣∣∣
2

= 1. �

We are now able to apply the collision laws defined by Theorem 3.1 to the two-
soliton collision in which soliton q{i1,··· ,in−1,j},k overtakes soliton q{i1,··· ,in−1},j [cf. the
definition (4.16)]. Here, i1, · · · , in−1, j, k are distinct positive integers.

Proposition 5.3. The two-soliton collision in which q{i1,··· ,in−1,j},k overtakes
q{i1,··· ,in−1},j changes these solitons to q{i1,··· ,in−1},k and q{i1,··· ,in−1,k},j, as shown in
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Fig. 3. According to Theorem 3.1, this is equivalent to the following set of equalities:

e−2
�
φ{i1,··· ,in−1,j},k−φ{i1,··· ,in−1},k

�
= e−2

�
φ{i1,··· ,in−1,k},j−φ{i1,··· ,in−1},j

�
(5.2a)

=
∣∣∣∣ζj − ζk

ζj − ζ∗k

∣∣∣∣2
{

1 +
(ζj − ζ∗j )(ζk − ζ∗k)∣∣ζj − ζ∗k

∣∣2
∣∣∣u{i1,··· ,in−1},j · u†

{i1,··· ,in−1},k
∣∣∣2
}

, (5.2b)

u{i1,··· ,in−1,j},k = eφ{i1,··· ,in−1,j},k−φ{i1,··· ,in−1},k
ζ∗j − ζ∗k
ζj − ζ∗k

{
u{i1,··· ,in−1},k

− ζj − ζ∗j
ζj − ζ∗k

(
u{i1,··· ,in−1},k · u†

{i1,··· ,in−1},j
)

u{i1,··· ,in−1},j

}
, (5.3)

u{i1,··· ,in−1,k},j = eφ{i1,··· ,in−1,k},j−φ{i1,··· ,in−1},j
ζ∗k − ζ∗j
ζk − ζ∗j

{
u{i1,··· ,in−1},j

− ζk − ζ∗k
ζk − ζ∗j

(
u{i1,··· ,in−1},j · u†

{i1,··· ,in−1},k
)

u{i1,··· ,in−1},k

}
. (5.4)

Proof. Throughout this proof, we employ the following notation in order to express
determinants compactly:

d

(
j1, j2, · · · , jl

k1, k2, · · · , kl

)
≡

∣∣∣∣∣∣∣∣∣
dj1k1 dj1k2 · · · dj1kl

dj2k1 dj2k2 · · · dj2kl

...
...

. . .
...

djlk1 djlk2 · · · djlkl

∣∣∣∣∣∣∣∣∣
.

To prove (5.2), we first rewrite the left-hand side of (5.2a) as

e−2
�
φ{i1,··· ,in−1,j},k−φ{i1,··· ,in−1},k

�

=
∣∣∣∣ζj − ζk

ζj − ζ∗k

∣∣∣∣2 ×
d

(
i1, · · · , in−1, j, k
i1, · · · , in−1, j, k

)
d

(
i1, · · · , in−1

i1, · · · , in−1

)

d

(
i1, · · · , in−1, j
i1, · · · , in−1, j

)
d

(
i1, · · · , in−1, k
i1, · · · , in−1, k

) , (5.5)

using the definition of φ{i1,··· ,in−1},in , (4.14). Obviously, the right-hand side of (5.5)
is symmetric with respect to interchange of j and k. It follows that the equality
(5.2a) holds.

Next, we prove the equality (5.2b). Using the definition of u{i1,··· ,in−1},in , (4.15),
and Lemma 5.1, we obtain

u{i1,··· ,in−1},j · u†
{i1,··· ,in−1},k = eφ{i1,··· ,in−1},j+φ{i1,··· ,in−1},k ×

n−1∏
l=1

(ζ∗il − ζ∗j )(ζil − ζk)
(ζil − ζ∗j )(ζ∗il − ζk)

× ζk − ζ∗j
i

×
d

(
i1, · · · , in−1, j
i1, · · · , in−1, k

)

d

(
i1, · · · , in−1

i1, · · · , in−1

) . (5.6)
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Multiplying (5.6) by its complex conjugate on each side, we obtain, with the help of
(4.14),

∣∣∣u{i1,··· ,in−1},j · u†
{i1,··· ,in−1},k

∣∣∣2 = −
∣∣ζk − ζ∗j

∣∣2
(ζj − ζ∗j )(ζk − ζ∗k)

×
d

(
i1, · · · , in−1, j
i1, · · · , in−1, k

)
d

(
i1, · · · , in−1, k
i1, · · · , in−1, j

)

d

(
i1, · · · , in−1, j
i1, · · · , in−1, j

)
d

(
i1, · · · , in−1, k
i1, · · · , in−1, k

) .

Then, we can rewrite the right-hand side of (5.2b) as∣∣∣∣ζj − ζk

ζj − ζ∗k

∣∣∣∣2
{

1 +
(ζj − ζ∗j )(ζk − ζ∗k)∣∣ζj − ζ∗k

∣∣2
∣∣∣u{i1,··· ,in−1},j · u†

{i1,··· ,in−1},k
∣∣∣2
}

=
∣∣∣∣ζj − ζk

ζj − ζ∗k

∣∣∣∣2

1 −

d

(
i1, · · · , in−1, j
i1, · · · , in−1, k

)
d

(
i1, · · · , in−1, k
i1, · · · , in−1, j

)

d

(
i1, · · · , in−1, j
i1, · · · , in−1, j

)
d

(
i1, · · · , in−1, k
i1, · · · , in−1, k

)

 . (5.7)

Here, thanks to the Jacobi formula for determinants, we have

d

(
i1, · · · , in−1, j
i1, · · · , in−1, j

)
d

(
i1, · · · , in−1, k
i1, · · · , in−1, k

)

− d

(
i1, · · · , in−1, j
i1, · · · , in−1, k

)
d

(
i1, · · · , in−1, k
i1, · · · , in−1, j

)

= d

(
i1, · · · , in−1

i1, · · · , in−1

)
d

(
i1, · · · , in−1, j, k
i1, · · · , in−1, j, k

)
. (5.8)

Thus, (5.7) is equal to (5.5). This completes the proof of the equality (5.2b).
To prove the equality (5.3), we need to extend the Jacobi formula (5.8). We

remark that, although the matrix elements dil here are given by (4.8), the two sides
of (5.8) are equal as a polynomial for general elements dil. Therefore, maintaining
the validity of (5.8), we can replace the columns with index k by columns consisting
of the vectors ui1 , · · · , uin−1 , uj or uk:

d

(
i1, · · · , in−1, j
i1, · · · , in−1, j

) ∣∣∣∣∣∣∣∣∣
di1i1 · · · di1in−1 ui1

...
. . .

...
...

din−1i1 · · · din−1in−1 uin−1

dki1 · · · dkin−1 uk

∣∣∣∣∣∣∣∣∣
− d

(
i1, · · · , in−1, k
i1, · · · , in−1, j

) ∣∣∣∣∣∣∣∣∣
di1i1 · · · di1in−1 ui1

...
. . .

...
...

din−1i1 · · · din−1in−1 uin−1

dji1 · · · djin−1 uj

∣∣∣∣∣∣∣∣∣
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= d

(
i1, · · · , in−1

i1, · · · , in−1

)
∣∣∣∣∣∣∣∣∣∣∣

di1i1 · · · di1in−1 di1j ui1
...

. . .
...

...
...

din−1i1 · · · din−1in−1 din−1j uin−1

dji1 · · · djin−1 djj uj

dki1 · · · dkin−1 dkj uk

∣∣∣∣∣∣∣∣∣∣∣
. (5.9)

We rewrite the right-hand side of (5.3) using (4.14), (4.15) and (5.6) (with j ↔ k)
as

eφ{i1,··· ,in−1,j},k−φ{i1,··· ,in−1},k
ζ∗j − ζ∗k
ζj − ζ∗k

{
u{i1,··· ,in−1},k

− ζj − ζ∗j
ζj − ζ∗k

(
u{i1,··· ,in−1},k · u†

{i1,··· ,in−1},j
)

u{i1,··· ,in−1},j

}

= eφ{i1,··· ,in−1,j},k × ζ∗j − ζ∗k
ζj − ζ∗k

n−1∏
l=1

ζ∗il − ζ∗k
ζil − ζ∗k

× 1

d

(
i1, · · · , in−1, j
i1, · · · , in−1, j

)
d

(
i1, · · · , in−1

i1, · · · , in−1

)

×


d

(
i1, · · · , in−1, j
i1, · · · , in−1, j

) ∣∣∣∣∣∣∣∣∣
di1i1 · · · di1in−1 ui1

...
. . .

...
...

din−1i1 · · · din−1in−1 uin−1

dki1 · · · dkin−1 uk

∣∣∣∣∣∣∣∣∣
− d

(
i1, · · · , in−1, k
i1, · · · , in−1, j

) ∣∣∣∣∣∣∣∣∣
di1i1 · · · di1in−1 ui1

...
. . .

...
...

din−1i1 · · · din−1in−1 uin−1

dji1 · · · djin−1 uj

∣∣∣∣∣∣∣∣∣


 .

Owing to the extended Jacobi formula (5.9), this is equal to u{i1,··· ,in−1,j},k [cf. the
definition (4.15)]. Now, the proof of the equality (5.3) is complete. The proof of the
equality (5.4) is obtained by interchanging j and k in the proof of (5.3). �

Proposition 5.3 is applicable to two-soliton collisions satisfying the following condi-
tion:

• Before the collision, the set of subscripts in the left-hand soliton’s { } is equal
to the entire set of subscripts of the right-hand soliton: {i1, · · · , in−1, j} =
{i1, · · · , in−1} ∪ {j}.

We also note the following properties (cf. Fig. 3):
• After the collision, the set of subscripts in the left-hand soliton’s { } is still

equal to the entire set of subscripts of the right-hand soliton: {i1, · · · , in−1, k} =
{i1, · · · , in−1} ∪ {k}.

• The entire set of subscripts of the left-hand soliton is unchanged: {i1, · · · , in−1, j}
∪ {k} = {i1, · · · , in−1, k} ∪ {j}.

• The set of subscripts in the right-hand soliton’s { } is unchanged: {i1, · · · , in−1}
= {i1, · · · , in−1}.

• The overtaken soliton’s number is removed from the overtaking soliton’s { },
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interaction
range

soliton-

soliton-

t

soliton-

soliton-

k j

j k

q{i1,...,in−1,j},k q{i1,...,in−1},j

q{i1,...,in−1,k},j q{i1,...,in−1},k

Fig. 3. Two-soliton collision in the presence of other solitons.

while the overtaking soliton’s number is added to the overtaken soliton’s { }.

We are now able to state the main result of this paper.

Theorem 5.4. An N -soliton collision in the Manakov model (1.1) can be factorized
into a nonlinear superposition of

(
N
2

)
pair collisions in arbitrary order.

Proof. According to the asymptotic behavior of the N -soliton solution as t → −∞
(see Fig. 2), solitons-N , · · · , 1 are initially distributed along the x-axis as

q{1,··· ,N−1},N , · · · , q{1,··· ,n−1},n, · · · , q{ },1.

We take this initial state as the point of departure and assume that the solitons collide
pairwise in a given order. Then, a pair collision takes place

(
N
2

)
= N(N−1)

2 times.
What will the final state be under this assumption? To answer this, we note the
following two points:

• The set of subscripts in each soliton’s { } is always equal to the entire set of
subscripts of the next soliton to the right. This ensures that Proposition 5.3 is
applicable to every pair collision.
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• Soliton-n will overtake solitons-1, · · · , n − 1 and will be overtaken by solitons-
n + 1, · · · , N .

We see that, regardless of the order of the pair collisions, solitons-1, · · · , N are finally
distributed along the x-axis as

q{2,··· ,N},1, · · · , q{n+1,··· ,N},n, · · · , q{ },N .

This final state is exactly the same as the asymptotic behavior of the N -soliton
solution in the t → +∞ limit (see Fig. 2).

Q.E.D.

Remark 1. Theorem 5.4, together with (3.10), demonstrates that the initial state
of N solitons uniquely determines its final state. That is, an N -soliton collision de-
scribed by Proposition 4.2 defines a mapping from the initial state to the final state.
This fact is not evident from Proposition 4.2.

Remark 2. We can now prove that the mapping (3.10) satisfies the property (b)
or, equivalently the Yang-Baxter property (b’), as stated in the introduction. It is
sufficient to verify the following:
The initial polarization vectors of N solitons (u{1,··· ,N−1},N , · · · , u{ },1) given in
Proposition 4.2 can be made to coincide with any combination of N unit vectors in
C

m by appropriately varying the bare polarization vectors (uN , · · · , u1).
This is easily verified if we consider the order of the pair collisions such that every
soliton experiences the bare polarization u{ },j(= uj) once and inductively use the
fact that the mapping u2 
→ u{1},2 in Theorem 3.1 is a bijection on the unit sphere.

Remark 3. The validity of the Yang-Baxter property allows us to extract a new “set-
theoretical” solution to the quantum Yang-Baxter equation (cf. Refs. 15) and 16)).
To be more specific, regarding (3.10) as the mapping (u{1},2, u1) 
→ (u2, u{2},1), we
obtain a nontrivial solution to the parameter-dependent Yang-Baxter equation for
mappings that act on the direct product of two (complex) unit vectors. Naturally,
we can extend this solution further by adding information concerning the center po-
sitions of solitons. However, this extension is not very intriguing, because the net
change wrought by the mapping does not depend on the added information.

§6. Concluding remarks

In this paper, we have investigated soliton collisions in the Manakov model
for the general case of m components (1.1) using a straightforward approach. We
first derived the general N -soliton solution of the Manakov model from that of the
matrix NLS equation (2.2) through a simple reduction.14) We considered the limits
t → ∓∞ for the N = 2 case and obtained the collision laws of two solitons in the
Manakov model. Next, we considered the same limits for the case of general N and
obtained the asymptotic behavior of the N -soliton solution. We were able to diagram
the asymptotic behavior in the simplest way in terms of the quantity q{i1,··· ,in−1},in
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defined by (4.16) (see Fig. 2). Taking advantage of this, we proved with a simple
combinatorial treatment that an N -soliton collision in the Manakov model can be
factorized into a nonlinear superposition of

(
N
2

)
pair collisions in arbitrary order.

This clears up the longtime misunderstanding that multi-particle effects exist in the
Manakov model.

This result is far from trivial in the m ≥ 2 case. In the m = 1 case (scalar NLS),
all the soliton parameters that play an essential role in the collision laws (in the
notation of this paper, ζ1, ζ2, · · · , ζN ) are invariant in time. A pair collision results
only in a displacement of the soliton centers and a shift of the phases, which will not
change the effects of future pair collisions. Thus, a superposition of

(
N
2

)
pair collisions

gives the same results for every order of the pair collisions. It is not difficult to prove
in this case that an N -soliton collision reduces to a pair collision.10)–12) In contrast,
in the m ≥ 2 case, a pair collision results in a change of the polarization vectors. This
changes the effects of future pair collisions completely. Therefore, it was not obvious
before the present work that a nonlinear superposition of

(
N
2

)
pair collisions gives

the same results for every order of the pair collisions or that it exactly coincides
with an N -soliton collision. The key to proving these facts is a highly nontrivial
relation among determinants and extended determinants, given in Lemma 5.1. This
implies the possibility that some new relations similar to Lemma 5.1 can be obtained
through the investigation of soliton collisions in multi-component integrable systems.

Very recently, Steiglitz and coworkers36), 37) proposed that soliton collisions in
the Manakov model can be utilized to carry out any computation with beams in a
nonlinear optical medium (see Ref. 38) for the experimental foundations). We be-
lieve that the results obtained in this paper will be useful to refine and reinforce their
interesting idea. In particular, Theorem 5.4 supports∗) their hypothesis on the pair-
wise nature of soliton collisions and Proposition 4.2, together with Proposition 5.3,
provides a hint on how to design optical logic operations more simply and reliably
than the method proposed in Ref. 37).
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