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Abstract. A threshold result on the global dynamics of the scalar asymptoti-
cally periodic Kolmogorov equation is proved and then applied to models of single-
species growth and n-species competition in a periodically operated chemostat.
The operating parameters and the species-specific response functions can be peri-
odic functions of time. Species-specific removal rates are also permitted. Su�cient
conditions ensure uniform persistence of all of the species and guarantee that the
full system admits at least one positive, periodic solution. In the special case when
the species-specific removal rates are all equal to the dilution rate, the single-species
growth model has a threshold between global extinction and uniform persistence,
in the form of a positive, periodic coexistence state. Improved results in the case of
3-species competition are also given, including an example illustrating competition-
mediated coexistence of three species.

1. Introduction. The chemostat is an important laboratory apparatus
used for the continuous culture of microorganisms. In ecology it is often
viewed as a model of a simple lake system, of the wastewater treatment
process, or of biological waste decomposition. It is an excellent experimental
venue in which to study the e↵ect of simple microbial interactions, including
exploitative competition.

Various mathematical models have been developed and analyzed exten-
sively by many di↵erent investigators (see, for example, the recent mono-
graph by Smith and Waltman ([13]) and the references therein). Mathe-
matical models of the chemostat are among the few predictive models in
microbial ecology. The models of exploitative competition in a well-stirred
chemostat operated under constant input and dilution, with competition for
a nonreproducing substrate, predict competitive exclusion. That is, they
predict that at most one competitor population avoids extinction (see, e.g.,
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[2, 13, 15, 16]). However, the coexistence of competing populations is obvi-
ous in nature, and so in order to explain this, it seems necessary to relax at
least one of the assumptions in the above models. One natural approach is
to introduce periodic coe�cients to represent, for example, daily or seasonal
variations in the environment.

There has been some research on models of the chemostat involving either
periodic nutrient input or periodic dilution rates (see, e.g., [1, 4–5, 7–10, 13,
14, 17]). As well, the periodic gradostat has been considered (see Smith
[11–12]).

In most of the previous analytical studies of the periodic chemostat, the
powerful theory of monotone dynamical systems was applied to limiting
systems obtained using certain conservation principles. However, the theory
of monotone dynamical systems can only be applied in this context to study
the competition between at most two species. Also, in order to apply a
conservation law to obtain the limiting systems, it is necessary to assume
that all of the removal rates are equal, thus ignoring all the species-specific
death rates and only considering the dilution rate.

Using a bifurcation theory approach, Lenas and Pavlou ([8–9]) used the
numerical package AUTO to study two-species and three-species competition
models in a periodically operated chemostat. Their results indicate that
for certain parameter ranges, their model admits quasi-periodic and chaotic
coexistence.

Our aim in this paper is to present a general framework to study, analyti-
cally, models of n-species competition in a periodically operated chemostat.
Nutrient input, dilution and species-specific removal rates are all permitted
to be periodic (but of commensurate period). As well, each species-specific
nutrient uptake function is assumed to be a monotone increasing function
of the substrate concentration, but can be periodic as a function of time
(but again of commensurate period). Di↵erential species-specific removal
rates are also permitted. We apply the theory of asymptotically periodic
semiflows (see Zhao [21]) and the comparison method (see Coppel [3]) to de-
termine criteria that guarantee the existence of at least one positive periodic
solution for the full system and the uniform persistence of all of the interact-
ing species. For 3-species competition, in the case that all the species-specific
removal rates are assumed to be equal to the dilution rate, under additional
assumptions on the form of the attractors in the lower-dimensional subsys-
tems, abstract persistence theory for periodic semiflows (see Zhao [20]) is
used to obtain similar results under criteria that are more easily satisfied.

This paper is organized as follows. In Section 2, a threshold-type result
on the global dynamics of the scalar asymptotically periodic Kolmogorov
equation is first proved by using asymptotically periodic semiflow theory
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(Theorem 2.1). Then single-species growth in the periodically operated
chemostat is considered. In the case that the species-specific removal rate
is permitted to be di↵erent than the dilution rate, Theorem 2.1 and the
comparison method are used to obtain su�cient conditions that guarantee
the existence of at least one positive periodic solution and ensures that the
species is uniformly persistent (that is, regardless of the initial concentration
of the species, provided that it is positive, the concentration of the species
remains uniformly bounded away from zero). On the other hand, when the
species-specific removal rate is assumed to be equal to the dilution rate, a
threshold-type result for the uniform persistence versus global extinction of
the species is obtained (Corollary 2.3). In Section 3, the n-species compe-
tition model in a general periodic chemostat is studied. Based on Theorem
2.1, the comparison method and uniformly persistent periodic semiflow the-
ory, su�cient conditions are obtained that guarantee the uniform persistence
of all n species and the existence of at least one positive periodic solution
of the full system (Theorem 3.1). The special case when the species-specific
removal rates of all of the species equal the nutrient dilution rate is also dis-
cussed (Corollary 3.2) and an improved result is given when there are only
two competing species (Corollary 3.3). Finally, in Section 4, the 3-species
competition model is studied under the additional assumptions that the
species-specific removal rates of all of the species equal the nutrient dilution
rate and that the positive, periodic solutions to each of the three, 2-species
subsystems of the limiting 3-species competition system is unique. We de-
termine su�cient conditions, that are more easily satisfied than those given
in Section 3, that guarantee the uniform persistence of the three interacting
species and prove existence of at least one positive periodic solution for the
full model system (Theorems 4.1, 4.2 and 4.3). Theorems 4.2 and 4.3 give
su�cient conditions for competition-mediated coexistence. Theorem 4.2 is
illustrated by an example.

2. Single population growth. We first consider the nonautonomous
Kolmogorov equation on single-species population growth

du

dt
= uF (t, u), u 2 R+ = [0,1), (2.1)

where F (t, u) : R2
+ ! R is continuous and locally Lipschitz in u. Let

F0(t, u) : R2
+ ! R be continuous, !-periodic in t (! > 0) and locally Lip-

schitz in u uniformly for t 2 [0,!]. Let �(t, s, u), t � s � 0, be the unique
solution of (2.1) with �(s, s, u) = u. We assume that

(C1) limt!1 |F (t, u)�F0(t, u)| = 0 uniformly for u in any bounded subset
of R+, and that there exists K > 0 such that F (t, u)  0 for all t � 0 and
u � K;
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(C2) For any t 2 R+, F0(t, u) is strictly decreasing for u, and that there
exists K0 > 0 such that F0(t,K0)  0 for all t � 0.
Then, we have the following threshold-type result on the global asymptotics
for the asymptotically periodic equation (2.1).

Theorem 2.1. Assume that (C1) and (C2) hold.
(a) If

R !
0 F0(t, 0) dt  0, then for any u 2 R+, limt!1 �(t, 0, u) = 0;

(b) If
R !
0 F0(t, 0) dt > 0, then for any u 2 R+ \ {0}, limt!1(�(t, 0, u)�

u⇤(t)) = 0, where u⇤(t) is the unique positive !-periodic solution of
the periodic Kolmogorov equation du

dt = uF0(t, u).

Proof. Let �0(t, s, u), t � s � 0, be the unique solution of the !-periodic
Kolmogorov equation

du

dt
= uF0(t, u), u 2 R+, (2.2)

with �0(s, s, u) = u 2 R+. We first claim that the following threshold result
on the global asymptotics of (2.2) holds.

(i) If
R !
0 F0(t, 0) dt  0, then for any u 2 R+, limt!1 �0(t, 0, u) = 0.

(ii) If
R !
0 F0(t, 0) dt > 0, then (2.2) admits a unique positive periodic

solution u⇤(t) and for any u 2 R+ \{0}, lim
t!1

(�0(t, 0, u)�u⇤(t)) = 0.

Indeed, by Zhao and Hutson [22, Lemmas 3.2 and 3.3], it remains to prove
the conclusion in the critical case

R !
0 F0(t, 0) dt = 0. For any u > 0, u(t) =

�0(t, 0, u) > 0 for all t > 0, and by the strict monotonicity of F (t, u) for
u � 0,

du

dt
= u(t)F (t, u(t)) < u(t)F (t, 0), for all t > 0.

Then, by the comparison theorem, u(t) < u(0)e
R t
0 F (s,0) ds, for all t > 0, and

hence the Poincaré map Q : R+ ! R+ defined by Q(u) = u(!) satisfies

Q(u) = u(!) < u(0)e
R !
0 F (s,0) ds = u(0) = u,

which implies that Q : R+ ! R+ admits no positive fixed point, and that
for any u > 0, 0 < Qn+1(u) < Qn(u), n � 0. Therefore, there exists ū � 0
such that limn!1Qn(u) = ū. Since ū = Q(ū), the nonexistence of positive
fixed points of Q implies ū = 0. Then, for any u > 0, limn!1Qn(u) = 0,
and hence limt!1 u(t) = 0.

Under the continuous di↵erentiability assumption on F (t, u) with respect
to u, as a simple corollary of Zhao [19, Theorem 3.5], the threshold result
on the global asymptotic stability holds for (2.2).
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From conditions (C1) and (C2), it easily follows that for any u 2 R+ and
any s � 0 , �(t, s, u) and �0(t, s, u) exist globally on [s,1), and solutions
of (2.1) and (2.2) are uniformly bounded. By [21, Proposition 3.2], �(t, s, u)
is asymptotic to the !-periodic semiflow T (t) = �0(t, 0, ·) : R+ ! R+,
and hence Tn(u) = �(n!, 0, u), n � 0, is an asymptotically autonomous
discrete dynamical process with limiting discrete semiflow Qn : R+ !
R+, n � 0, where Q = T (!) is the Poincaré map associated with the periodic
equation (2.2). By [21, Theorem 3.1], it su�ces to prove in case (a) that
limn!1 Tn(u) = 0 for any u 2 R+, and in case (b) that limn!1 Tn(u) =
u⇤(0) for any u 2 R+ \ {0}.

In case (a), by conclusion (i) above, u = 0 is a globally attractive fixed
point of Q in R+, and hence u = 0 is a unique isolated fixed point of Q and
is Q-acyclic in R+. Therefore, for any u 2 R+, by the convergence theorem
in [21, Theorem 2.4], !(u) = 0; i.e., limn!1 Tn(u) = 0.

In case (b), by conclusion (ii) above, u = u⇤(0) is a globally attractive
fixed point of Q in R+ \ {0}, and hence the only fixed points of Q in R+

are 0 and u⇤(0); both are isolated and there is no Q-cyclic chain among
them. Therefore, for any u 2 R+, again by the convergence theorem in
[21, Theorem 2.4], either !(u) = 0 or !(u) = u⇤(0). By Lemma 2 in the
Appendix, with m = 1, fW s(0)\(R+\{0}) = ;; i.e., for any u > 0, !(u) 6= 0.
Therefore, for any u > 0, !(u) = u⇤(0); i.e., limn!1 Tn(u) = u⇤(0). This
completes the proof. ⇤

Now consider a single population growth model in a periodic chemostat

dS(t)
dt

= (S0(t)� S(t))D0(t)� x(t)P (t, S(t)),

dx(t)
dt

= x(t)(P (t, S(t))�D1(t)).
(2.3)

Here S(t) denotes the concentration of the nutrient, x(t) denotes the biomass
of species at time t, P (t, s) represents the specific per capita nutrient up-
take function, S0(t) and D0(t) are the input nutrient concentration and the
dilution rate respectively, and D1(t) represents the specific removal rate of
the species. We assume that S0(t), D0(t) and D1(t) are all continuous,
!-periodic, positive functions, and that P (t, s) : R2

+ ! R+ is continuous,
!-periodic in t and satisfies

(i) P (t, s) is locally Lipschitz in s; and
(ii) P (t, 0) = 0, t � 0, and for any t � 0, P (t, s) is strictly increasing for

s 2 R+.
Let D(t) : R+ ! R+ be a continuous, !-periodic and positive function.
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For the linear periodic equation

dV (t)
dt

= S0(t)D0(t)�D(t)V (t), (2.4)

it easily follows that (2.4) admits a unique positive !-periodic solution V ⇤(t)
such that every solution V (t) of (2.4) with V (0) � 0 satisfies limt!1(V (t)�
V ⇤(t)) = 0. Moreover, V ⇤(t) can be expressed explicitly as V ⇤(t) =

e�
R t
0 D(s) ds

⇥R !
0 e

R s
0 D(u) duS0(s)D0(s) ds

e
R !
0 D(s) ds � 1

+
Z t

0
e
R s
0 D(u) duS0(s)D0(s) ds

⇤
.

Let D(t) = max(D0(t),D1(t)) and D(t) = min(D0(t),D1(t)). Then, D(t)
and D(t) : R+ ! R+ are continuous, !-periodic and positive functions. Let
V ⇤

1 (t) and V ⇤
2 (t) be the unique positive !-periodic solutions of (2.4) with D(t)

replaced by D(t) and D(t) respectively. By the comparison theorem and the
global attractivity of V ⇤

i (t) (i = 1, 2), it easily follows that V ⇤
2 (t)  V ⇤

1 (t)
for all t � 0.

Theorem 2.2. (a) If
R !
0 (P (t, V ⇤

2 (t)) � D1(t)) dt > 0, then system (2.3)
admits a positive (componentwise) !-periodic solution, and there exist ↵ > 0
and � > 0 such that every solution (S(t), x(t)) of (2.3) with S(0) � 0 and
x(0) > 0 satisfies

↵  lim inf
t!1

x(t)  lim sup
t!1

x(t)  �.

(b) If
R !
0 (P (t, V ⇤

1 (t))�D1(t)) dt  0, then every solution (S(t), x(t)) of (2.3)
with S(0) � 0 and x(0) � 0 satisfies limt!1 x(t) = 0.

Interpreting the predictions of the model biologically, Theorem 2.2 implies
that in case (a) the model system admits a periodic coexistence state and
the species is uniformly persistent, but in case (b) the species ultimately
goes to extinction.
Proof. Let P̂ (t, s) : R+ ⇥ R ! R be any given continuous extension of
P (t, s) on R+⇥R+ to R+⇥R such that P̂ (t, s) is !-periodic in t and locally
Lipschitz in s, and for any t � 0, P̂ (t, s) is strictly increasing for s 2 R.

In case (a), since V ⇤
1 (t) � V ⇤

2 (t), t 2 [0,!], and P̂ (t, V ⇤
i (t)) = P (t, V ⇤

i (t)),
t 2 [0,!] (i = 1, 2), by Theorem 2.1 (in the periodic case), the periodic
equation

dx(t)
dt

= x(t)(P̂ (t, V ⇤
i (t)� x(t))�D1(t)),

admits a unique positive !-periodic solution x⇤i (t), and x⇤i (t) is globally
attractive in R+ \ {0} (i=1,2). By the comparison theorem, it easily follows
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that x⇤1(t) � x⇤2(t), t 2 [0,!]. We further claim that V ⇤
1 (t) > x⇤1(t), t 2 [0,!].

Indeed, let x⇤1(t1) = max
0t!

x⇤1(t), t1 2 [0,!]; then dx⇤1(t1)
dt = 0, and hence

P̂ (t1, V ⇤
1 (t1)� x⇤1(t1)) = D1(t1) > 0.

Since P̂ (t1, s) is strictly increasing for s 2 R, V ⇤
1 (t1) > x⇤1(t1). Let y(t) =

V ⇤
1 (t)�x⇤1(t). Then, y(t) satisfies the following periodic di↵erential equation:

dy

dt
= S0(t)D0(t)�D(t)V ⇤

1 (t)� (V ⇤
1 (t)� y)(P̂ (t, y)�D1(t)). (2.5)

Since y(t1) > 0 and

dy

dt

���
y=0

= S0(t)D0(t) + (D1(t)�D(t))V ⇤
1 (t) � S0(t)D0(t) > 0,

y(t) > 0 for all t � t1. Then, the !-periodicity of y(t) implies that y(t) > 0
for all t � 0; i.e., V ⇤

1 (t) > x⇤1(t) for all t � 0.
For any (S0, x0) 2 R2

+ with S0 � 0 and x0 > 0, let (S(t), x(t)) be the
unique solution of (2.3) satisfying S(0) = S0 and x(0) = x0 with [0,�) as
its maximal existence interval. Then, it easily follows that S(t) > 0 and
x(t) > 0 for all t 2 (0,�). Let V (t) = S(t) + x(t); then,

S0(t)D0(t)�D(t)V (t)  dV (t)
dt

 S0(t)D0(t)�D(t)V (t), t 2 [0,�).

Let V (t) be the unique solution of the linear !-periodic equation

dV

dt
= S0(t)D0(t)�D(t)V

satisfying V (0) = V (0), and let V (t) be the unique solution of the linear
!-periodic equation

dV

dt
= S0(t)D0(t)�D(t)V,

satisfying V (0) = V (0). Then, by the standard comparison theorem,

V (t)  V (t)  V (t), t 2 [0,�). (2.6)

Since V (t) and V (t) exist globally on [0,1), � =1. Therefore, x(t) satisfies

x(t)(P̂ (t, V (t)� x(t))�D1(t)) 
dx(t)

dt
 x(t)(P̂ (t, V (t)� x(t))�D1(t)),
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for all t � 0. Then, by the comparison theorem,

x(t)  x(t)  x(t), t � 0, (2.7)

where x̄(t) is the unique solution of the nonautonomous equation

dx(t)
dt

= x(t)(P̂ (t, V (t)� x(t))�D1(t)), (2.8)

with x̄(0) = x0, and x(t) is the unique solution of the nonautonomous equa-
tion

dx(t)
dt

= x(t)(P̂ (t, V (t)� x(t))�D1(t)), (2.9)

with x(0) = x0. Since limt!1(V (t)�V ⇤
1 (t)) = 0 and limt!1(V (t)�V ⇤

2 (t)) =
0,

lim
t!1

(P̂ (t, V (t)� x)� P̂ (t, V ⇤
1 (t)� x)) = 0,

and
lim

t!1
(P̂ (t, V (t)� x)� P̂ (t, V ⇤

2 (t)� x)) = 0,

uniformly for x in any bounded subset of R+. In case (a), since

Z !

0
(P̂ (t, V ⇤

1 (t))�D1(t)) dt �
Z !

0
(P̂ (t, V ⇤

2 (t))�D1(t)) dt,

=
Z !

0
(P (t, V ⇤

2 (t))�D1(t)) dt > 0,

by Theorem 2.1 (b),

lim
t!1

(x̄(t)� x⇤1(t)) = 0 and lim
t!1

(x(t)� x⇤2(t)) = 0.

Therefore, by (2.7), it follows that

lim inf
t!1

(x(t)� x⇤2(t)) � lim
t!1

(x(t)� x⇤2(t)) = 0 (2.10)

lim sup
t!1

(x(t)� x⇤1(t))  lim
t!1

(x(t)� x⇤1(t)) = 0, (2.11)

and hence there exist ↵ > 0 and � > 0 such that x(t) satisfies

↵  lim inf
t!1

x(t)  lim sup
t!1

x(t)  �.
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In case (b), sinceZ !

0
(P̂ (t, V ⇤

2 (t))�D1(t)) dt 
Z !

0
(P̂ (t, V ⇤

1 (t))�D1(t)) dt

=
Z !

0
(P (t, V ⇤

1 (t))�D1(t)) dt  0,

by Theorem 2.1 (a), limt!1 x̄(t) = 0 and limt!1 x(t) = 0, and hence, by
(2.7), limt!1 x(t) = 0.

In case (a), it remains to prove the existence of a positive periodic solution
of (2.3). Under the abstract setting of periodic semiflows, this can be done
by using [20, Theorem 2.3] as in the latter part of the proof of Theorem 3.1.
Instead, we give an alternative, more elementary proof. Let V = S+x; then,
the system (2.3) is transformed into the following !-periodic system:

dV

dt
=S0(t)D0(t)�D0(t)(V � x)�D1(t)x,

dx

dt
=x(P̂ (t, V � x)�D1(t)).

(2.12)

Then, the positive invariance of R2
+ with respect to (2.3) implies that the

closed convex set W = {(V, x) : V � x � 0} ⇢ R2
+ is positively invariant

with respect to (2.12). Moreover, for any S0 � 0 and x0 > 0, since the
first equation of (2.3) implies that dS(t)

dt

��
S=0

= S0(t)D0(t) > 0, the unique
solution (S(t), x(t)) of (2.3) with S(0) = S0 and x(0) = x0 satisfies S(t) > 0
and x(t) > 0 for all t > 0. That is, for any V0 � x0 > 0, the unique solution
(V (t), x(t)) of (2.12) with V (0) = V0 and x(0) = x0 satisfies V (t) > x(t) > 0,
for all t > 0. Let G : W ! W be the Poincaré map associated with
(2.12); i.e., for every (V0, x0) 2 W,G(V0, x0) = (V (!), x(!)). Clearly, the
continuous dependence of solutions on initial data implies that G : W !W
is continuous. Let

W0 = {(V, x) 2W : V ⇤
2 (0)  V  V ⇤

1 (0), x⇤2(0)  x  x⇤1(0)}.

Since 0 < x⇤1(t) < V ⇤
1 (t), t 2 [0,!], (V ⇤

1 (0), x⇤1(0)) is in the interior of W ,
and hence W0 is a nonempty, closed, bounded and convex subset of R2

+.
For any (V0, x0) 2W0, the corresponding solution (V (t), x(t)) of (2.12) with
V (0) = V0 and x(0) = x0 satisfies

(V (t), x(t)) 2W for all t � 0; (2.13)

that is, V (t) � x(t) � 0 for all t � 0. Then, V (t) satisfies

S0(t)D0(t)�D(t)V (t)  dV (t)
dt

 S0(t)D0(t)�D(t)V (t), t � 0.



474 gail s.k. wolkowicz and xiao-qiang zhao

Since V ⇤
2 (0)  V0  V ⇤

1 (0), by the comparison theorem,

V ⇤
2 (t)  V (t)  V ⇤

1 (t), t � 0. (2.14)

Therefore, x(t) satisfies

x(t)(P̂ (t, V ⇤
2 (t)� x(t))�D1(t)) 

dx(t)
dt

, t � 0,

and
dx(t)

dt
 x(t)(P̂ (t, V ⇤

1 (t)� x(t))�D1(t)), t � 0.

Since x⇤2(0)  x0  x⇤1(0), again by the comparison theorem,

x⇤2(t)  x(t)  x⇤1(t), t � 0. (2.15)

Therefore, (2.14) and (2.15) imply that

V ⇤
2 (0) = V ⇤

2 (!)  V (!)  V ⇤
1 (!) = V ⇤

1 (0),
x⇤2(0) = x⇤2(!)  x(!)  x⇤1(!) = x⇤1(0).

(2.16)

Then, by (2.13) and (2.16), G(V0, x0) = (V (!), x(!)) 2 W0, and hence
G(W0) ⇢W0. By the Brouwer fixed-point theorem, it follows that there ex-
ists (V ⇤, x⇤) 2 W0, such that G(V ⇤, x⇤) = (V ⇤, x⇤). Clearly, the unique
solution (V ⇤(t), x⇤(t)) of (2.12) with (V ⇤(0), x⇤(0)) = (V ⇤, x⇤) is an !-
periodic solution of (2.12). Since V ⇤ � x⇤ > 0, by our previous claim,
V ⇤(t) > x⇤(t) > 0 for all t > 0, and hence, by the !-periodicity of V ⇤(t)
and x⇤(t), V ⇤(t) > x⇤(t) > 0 for all t � 0. Therefore, (S⇤(t), x⇤(t)) =
(V ⇤(t) � x⇤(t), x⇤(t)) is a positive (componentwise), !-periodic solution of
system (2.3). This completes the proof. ⇤

In the case that D0(t) = D1(t), t 2 [0,!], V ⇤
1 (t) = V ⇤

2 (t), x⇤1(t) = x⇤2(t),
t 2 [0,!], and hence, by (2.10) and (2.11) in the proof of Theorem 2.2, we
have the following threshold-type result on the global dynamics of the model
system.

Corollary 2.3. Let D0(t) = D1(t), t 2 [0,!].
(a) If

R !
0 (P (t, V ⇤

1 (t)) � D1(t)) > 0, then system (2.3) admits a unique
positive, periodic solution (S⇤(t), x⇤1(t)) = (V ⇤

1 (t)�x⇤1(t), x⇤1(t)), and
any solution (S(t), x(t)) of (2.3) with S(0) � 0 and x(0) > 0 satisfies
limt!1(S(t)� S⇤(t)) = 0 and limt!1(x(t)� x⇤(t)) = 0.

(b) If
R !
0 (P (t, V ⇤

1 (t))�D1(t))  0, then any solution (S(t), x(t)) of (2.3)
with S(0) � 0 and x(0) � 0 satisfies limt!1(S(t)� V ⇤

1 (t)) = 0 and
limt!1 x(t) = 0.
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3. n-Species competition. In this section, we consider the n-species
competition model in the periodic chemostat

dS(t)
dt

=(S0(t)� S(t))D0(t)�
nX

i=1

Pi(t, S(t))xi(t),

dxi(t)
dt

=xi(t)(Pi(t, S(t))�Di(t)), 1  i  n.

(3.1)

Here S(t) denotes the concentration of the nutrient, xi(t) denotes the
biomass of the i-th species at time t, Pi(t, s) represents the specific per capita
nutrient uptake function of the i-th species, S0(t) and D0(t) are the input
nutrient concentration and the dilution rate respectively, and Di(t) repre-
sents the specific removal rate or washout rate of species xi. We assume
that S0(t) and Di(t) (1  i  n) are all continuous, !-periodic and positive
functions, and that each Pi(t, s) (1  i  n) satisfies the same conditions as
P (t, s) in Section 2. Let

P i(t, s) =
⇢

Pi(t, s) if t � 0, s � 0,
0 if t � 0, s  0.

Then, P i : R+ ⇥ R ! R is a continuous extension of Pi(t, s) on R+ ⇥ R+

to R+ ⇥ R (1  i  n). Let D(t) = max(D0(t),D1(t), . . . ,Dn(t)) and
D(t) = min(D0(t),D1(t), . . . ,Dn(t)). Then, D(t) and D(t) : R+ ! R+ are
continuous, !-periodic, and positive functions. Let V ⇤

1 (t) and V ⇤
2 (t) be the

unique positive !-periodic solutions of (2.4) with D(t) replaced by D(t) and
D(t) respectively. As shown in Section 2, V ⇤

2 (t)  V ⇤
1 (t) for all t � 0.

We are now in a position to prove the main result of this section.

Theorem 3.1. Assume that
(1)

R !
0 (Pi(t, V ⇤

1 (t))�Di(t)) dt > 0, 1  i  n;
(2)

R !
0 (P i(t, V ⇤

2 (t) �
Pn

j=1,j 6=i x⇤j (t)) � Di(t)) dt > 0, 1  i  n, where
x⇤j (t) is the unique positive !-periodic solution of the scalar periodic
equation dxj

dt = xj(Pj(t, V ⇤
1 (t)� xj)�Dj(t)), 1  j  n.

Then, system (3.1) admits a positive !-periodic solution, and there exist
↵ > 0 and � > 0 such that any solution (S(t), x1(t), . . . , xn(t)) of (3.1) with
S(0) � 0 and xi(0) > 0 (1  i  n) satisfies

0 < ↵  lim inf
t!1

xi(t)  lim sup
t!1

xi(t)  �, 1  i  n.

Proof. Let P̂i(t, s) : R+ ⇥ R ! R be any given continuous extension of
Pi(t, s) on R+ ⇥ R+ to R+ ⇥ R, such that P̂i(t, s) is !-periodic in t and
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locally Lipschitz in s, and for any t � 0, P̂i(t, s) is strictly increasing with
respect to s 2 R, 1  i  n. By Theorem 2.1 (in the periodic case), condition
(1) implies that for each 1  i  n, the periodic equation

dxi

dt
= xi(P̂i(t, V ⇤

1 (t)� xi)�Di(t))

admits a unique !-periodic solution x⇤i (t) and x⇤i (t) is globally attractive in
R+ \ {0}. As in the proof of Theorem 2.2, V ⇤

1 (t) > x⇤i (t), t 2 [0,!]. Then,
x⇤i (t) is a unique positive !-periodic solution of the periodic equation

dxi

dt
= xi(Pi(t, V ⇤

1 (t)� xi)�Di(t));

that is, x⇤i (t) is independent of the choice of the extension P̂i(t, s) of Pi(t, s).
Let

P̂i✏(t, s) =
⇢

Pi(t, s) if t � 0, s � 0,
✏s if t � 0, s  0.

By the boundedness of V ⇤
2 (t) �

Pn
j=1,j 6=i x⇤j (t) on [0,1), it easily follows

that

lim
✏!0+

Z !

0
P̂i✏(t, V ⇤

2 (t)�
nX

j=1,j 6=i

x⇤j (t)) dt =
Z !

0
(P i(t, V ⇤

2 (t)�
nX

j=1,j 6=i

x⇤j (t))) dt

(1  i  n). Then, by condition (2), there exists ✏ > 0 such that

Z !

0
(P̂i✏(t, V ⇤

2 (t)�
nX

j=1,j 6=i

x⇤j (t))�Di(t)) dt > 0, 1  i  n. (3.2)

In what follows, for simplicity, we denote P̂i✏(t, s) by P̂i(t, s) (1  i  n).
For any (S0, x0) = (S0, x0

1, . . . , x
0
n) 2 Rn+1

+ with x0
i > 0 (1  i  n), let

(S(t), x(t)) = (S(t), x1(t), . . . , xn(t)) be the unique solution of (3.1) satisfy-
ing S(0) = S0, x(0) = x0 on the maximal existence interval [0,�). Since
dS
dt |S=0 = S0(t)D0(t) > 0, S(t) > 0 and x(t) > 0 for all t 2 [0,�). Let
V (t) = S(t) +

Pn
i=1 xi(t); then,

S0(t)D0(t)�D(t)V (t)  dV (t)
dt

 S0(t)D0(t)�D(t)V (t).

Therefore, by the comparison theorem,

V (t)  V (t)  V (t), t 2 [0,�), (3.3)
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where V (t) is the unique solution of the linear !-periodic equation

dV

dt
= S0(t)D0(t)�D(t)V (t),

with V (0) = V (0), and V (t) is the unique solution of the linear !-periodic
equation

dV

dt
= S0(t)D0(t)�D(t)V (t),

with V (0) = V (0), respectively. The global existence of V (t) on [0,1)
implies that � =1. Since limt!1(V (t)� V ⇤

1 (t)) = 0, V (t), and hence S(t)
and x(t) = (x1(t), . . . , xn(t)) are ultimately bounded. That is, system (3.1)
is point dissipative on Rn+1

+ . Therefore, for all t � 0, 1  i  n,

xi(t)
dt

= xi(t)(P̂i(t, V (t)�
nX

j=1

xj(t))�Di(t))

 xi(t)(P̂i(t, V (t)� xi(t))�Di(t)).

Then, by the comparison theorem,

xi(t)  x̄i(t), 1  i  n, t � 0, (3.4)

where x̄i(t) is the unique solution of the nonautonomous equation

dxi(t)
dt

= xi(t)(P̂i(t, V (t)� xi)�Di(t)), (3.5)

with x̄i(0) = xi(0) > 0 (1  i  n). Since limt!1(V (t)� V ⇤
1 (t)) = 0,

lim
t!1

(P̂i(t, V (t)� xi)� P̂ (t, V ⇤
1 (t)� xi) = 0

uniformly for xi in any bounded subset of R+. Since

Z !

0
(P̂i(t, V ⇤

1 (t))�Di(t)) dt =
Z !

0
(Pi(t, V ⇤

1 (t))�Di(t)) dt > 0,

by Theorem 2.1 (b),

lim
t!1

(x̄i(t)� x⇤i (t)) = 0, 1  i  n. (3.6)



478 gail s.k. wolkowicz and xiao-qiang zhao

Therefore, by (3.3) and (3.4), for any 1  i  n and all t � 0,

dxi(t)
dt

=xi(t)(P̂i(t, V (t)�
nX

j=1

xj(t))�Di(t))

�xi(t)(P̂i(t, V (t)�
nX

j=1,j 6=i

x̄j(t)� xi(t))�Di(t)),
(3.7)

and hence, by the comparison theorem,

xi(t) � xi(t), 1  i  n, t � 0, (3.8)

where xi(t) is the unique solution of the nonautonomous equation

dxi

dt
= xi(t)(P̂i(t, V (t)�

nX
j=1,j 6=i

x̄j(t)� xi)�Di(t)), (3.9)

with xi(0) = xi(0) (1  i  n). Since limt!1(V (t)� V ⇤
2 (t)) = 0, by (3.6),

lim
t!1

(P̂i(t, V (t)�
nX

j=1,j 6=i

x⇤j (t)� xi)� P̂i(t, V ⇤
2 (t)�

nX
j=1,j 6=i

x⇤j (t)� xi)) = 0,

uniformly for xi in any bounded subset of R+ (1  i  n). Then, by (3.2)
and Theorem 2.1 (b),

lim
t!1

(xi(t)� x⇤i (t)) = 0, (3.10)

where x⇤i (t) (1  i  n) is the unique positive !-periodic solution of the
periodic equation

dxi

dt
= xi(t)(P̂i(t, V ⇤

2 (t)�
nX

j=1,j 6=i

x⇤j (t)� xi)�Di(t)). (3.11)

Then, by (3.4), (3.6), (3.8) and (3.10),

lim inf
t!1

(xi(t)� x⇤i (t) � 0 � lim sup
t!1

(xi(t)� x⇤i (t)), (3.12)

for all 1  i  n. Clearly, (3.12) implies that there exist ↵ > 0 and � > 0
such that any solution (S(t), x1(t), . . . , xn(t)) of (3.1) with S(0) � 0 and
xi(0) > 0 (1  i  n) satisfies

0 < ↵  lim inf
t!1

xi(t)  lim sup
t!1

xi(t)  �, 1  i  n.
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To prove the existence of a positive !-periodic solution of (3.1), let X =
Rn+1

+ , X0 = {(S, x1, . . . , xn) 2 Rn+1
+ , xi > 0 for all 1  i  n} and

@X0 = {(S, x1, . . . , xn) 2 Rn+1
+ , xi = 0 for some 1  i  n}. Then,

X = X0 [ @X0. For any y = (S, x1, . . . , xn) 2 X, let �(t, y), t � 0 be the
unique solution of (3.1) with �(0, y) = y. Clearly, T (t) = �(t, ·) : X ! X is
a periodic semiflow ([20]), and T (t)X0 ⇢ X0 for all t � 0. As we have shown,
T (t) is point dissipative (i.e., ultimately bounded) in X and uniformly per-
sistent with respect to (X0, @X0), (i.e., there exists ⌘ > 0 such that for
any y 2 X0, lim inf

t!1
d(T (t)y, @X0) � ⌘). Let Q = T (!) : X ! X be the

Poincaré map associated with (3.1). Then, by Yoshizawa [18, Theorem 8.5],
the ultimate boundedness of solutions of a periodic system of ordinary dif-
ferential equations implies the uniform boundedness of solutions, and hence
Q : X ! X is compact. Therefore, by [20, Theorem 2.3], Q admits a fixed
point y0 2 X0, i.e., y0 = Q(y0), and hence �(t, y0) is a periodic solution of
(3.1). Let y0 = (S0, x0

1, . . . , x
0
n) 2 X0; then, S0 � 0, x0

i > 0 for all 1  i  n.
It then follows that �(t, y0) = (S(t), x1(t), . . . , xn(t)) satisfies S(t) > 0 and
xi(t) > 0 (1  i  n) for all t > 0. By the !-periodicity of �(t, y0), S(t) > 0
and xi(t) > 0 (1  i  n) for all t � 0. Therefore, �(t, y0) is a positive
!-periodic solution of (3.1). This completes the proof. ⇤

In the case Di(t) = D0(t), t 2 [0,!], 1  i  n, D(t) = D(t) = D0(t),
V ⇤

1 (t) = V ⇤
2 (t), t 2 [0,!], and hence we have the following corollary of

Theorem 3.1.

Corollary 3.2. Let Di(t) = D0(t), t 2 [0,!], 1  i  n. Assume that
(1)

R !
0 (Pi(t, V ⇤

1 (t))�D0(t)) dt > 0, 1  i  n;
(2)

R !
0 (P i(t, V ⇤

1 (t) �
Pn

j=1,j 6=i x⇤j (t)) �D0(t)) dt > 0, 1  i  n, where
x⇤j (t) is the unique positive !-periodic solution of the scalar periodic
equation dxj

dt = xj(Pj(t, V ⇤
1 (t)� xj)�D0(t)), 1  j  n.

Then, system (3.1) admits a positive !-periodic solution and all n species
are uniformly persistent.

As shown in the proof of Theorem 2.2, in the case Di(t) = D0(t), t 2 [0,!],
1  i  n, it easily follows that V ⇤

1 (t) > x⇤i (t), t 2 [0,!], 1  i  n. Thus
we have the following result for 2-species competition.

Corollary 3.3. Let Di(t) = D0(t), t 2 [0,!], 1  i  2. Assume that
(1)

R !
0 (Pi(t, V ⇤

1 (t))�D0(t)) dt > 0, 1  i  2;
(2)

R !
0 (Pi(t, V ⇤

1 (t) � x⇤j (t)) � D0(t)) dt > 0, 1  i, j  2, i 6= j, where
x⇤j (t) is the unique positive !-periodic solution of the scalar periodic
equation dxj

dt = xj(Pj(t, V ⇤
1 (t)� xj)�D0(t)), 1  j  2.
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Then, system (3.1) admits a positive, !-periodic solution and both species
are uniformly persistent.

Remark 3.4. In [13, Section 7], 2-species competition in the chemostat
with periodic dilution rate is discussed in the setting of monotone dynamical
systems theory. It is easy to see that our Corollary 3.3 generalizes their
result on the uniform persistence of 2 species and the existence of a positive
periodic solution for the full system (not just for the limiting system).

4. 3-Species competition. For 2-species competition in a periodic
chemostat with D1(t) = D2(t) = D0(t) (0  t  !), it follows easily that
(x⇤1(t), 0) and (0, x⇤2(t)) are the semitrivial periodic solutions of the limit-
ing 2-species competition system. Then, condition (2) in Corollary 3.3 is
a natural invasibility condition. However, for n-species competition in the
periodic chemostat, even with Di(t) = D0(t) (0  t  !) (1  i  n),
(x⇤1(t), . . . , x⇤i�1(t), 0, x⇤i+1(t), . . . , x⇤n(t)) (1  i  n) is not the solution of
the limiting n-species competition system determined using the conserva-
tion principle, and hence, due to our overestimation of the e↵ect of compe-
tition, condition (2) in Corollary 3.2 is a stronger invasibility condition than
necessary. In this section, we show that whenever the positive, periodic so-
lutions to each of the three, 2-species subsystems of the limiting 3-species
competition system are unique, the expected, natural invasibility conditions
are su�cient to guarantee the uniform persistence of the three interacting
species and enough to ensure the existence of at least one positive periodic
solution for the full model system (see Theorem 4.1). The final results, given
in Theorems 4.2 and 4.3, give conditions for competition-mediated coexis-
tence. Here, in at least one of the two-species subsystems, one of the species
is driven to extinction, regardless of the initial conditions. However, when
the third species is introduced all three species coexist, again independent of
the initial conditions provided that they are all positive. We conclude this
section with an example that illustrates Theorem 4.2.

Consider the 3-species competition model in the periodic chemostat

dS(t)
dt

=(S0(t)� S(t))D0(t)�
3X

i=1

Pi(t, S(t))xi(t),

dxi(t)
dt

=xi(t)(Pi(t, S(t))�D0(t)), 1  i  3.

(4.1)

Here S0(t), D0(t) and Pi(t, s) (1  i  3) satisfy the same conditions as in
(3.1), with Di(t) = D0(t) (1  i  3). Let V ⇤

0 (t) be the unique, globally
attractive, positive !-periodic solution of

dV

dt
= (S0(t)� V (t))D0(t).
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For each 1  i  3, there is a corresponding 2-species periodic competition
system

dxj

dt
= xj(Pj(t, V ⇤

0 �
3X

k=1,k 6=i

xk)�D0(t)), 1  j  3, j 6= i. (Ei)

We will distinguish among the following three cases:
(A1) Each (Ei) (1  i  3) admits at most one positive !-periodic solu-

tion;
(A2) Each (Ei) (2  i  3) admits at most one positive !-periodic solu-

tion, and (E1) admits no positive !-periodic solution;
(A3) (E2) admits at most one positive !-periodic solution, and each (Ei)

(i = 1, 3) admits no positive !-periodic solution.

Theorem 4.1. Let (A1) hold. Assume that
(1) µi ⌘

R !
0 (Pi(t, V ⇤

0 (t))�D0(t)) dt > 0, 1  i  3;
(2) µji ⌘

R !
0 (Pi(t, V ⇤

0 (t)� x⇤j (t))�D0(t)) dt > 0, 1  i, j  3, i 6= j;
(3) µ̄i ⌘

R !
0 (Pi(t, V ⇤

0 (t) �
P3

j=1,j 6=i x̄i
j(t)) �D0(t)) dt > 0, 1  i  3,

where x⇤i (t) (1  i  3) is the unique positive, !-periodic solution of
the scalar periodic equation

dxi

dt
= xi(Pi(t, V ⇤

0 (t)� xi)�D0(t)),

and (x̄1
2(t), x̄1

3(t)), (x̄2
1(t), x̄2

3(t)) and (x̄3
1(t), x̄3

2(t)) are the unique pos-
itive, !-periodic solutions of (E1), (E2) and (E3), respectively.

Then, system (4.1) admits a positive, !-periodic solution, and there exist
↵ > 0 and � > 0 such that any solution (S(t), x1(t), x2(t), x3(t)) of (4.1)
with S(0) � 0 and xi(0) > 0 (1  i  3) satisfies

0 < ↵  lim inf
t!1

xi(t)  lim sup
t!1

xi(t)  �, 1  i  3.

Proof. Let P̂i(t, s) : R+ ⇥ R ! R be any given continuous extension of
Pi(t, s) on R+ ⇥ R+ to R+ ⇥ R, such that P̂i(t, s) is !-periodic in t and
locally Lipschitz in s, and for any t � 0, P̂i(t, s) is strictly increasing with
respect to s 2 R, 1  i  3. As in the proof of Theorem 3.1, condition (1)
implies that for each 1  i  3, the periodic equation

dxi

dt
= xi(Pi(t, V ⇤

0 (t)� xi)�Di(t)) (4.2)
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admits a unique positive, !-periodic solution x⇤i (t) with V ⇤
0 (t) > x⇤i (t), t 2

[0,!], and x⇤i (t) is globally attractive for the periodic equation

dxi

dt
= xi(P̂i(t, V ⇤

0 (t)� xi)�Di(t)), (4.3)

in R+ \ {0}. For the 2-species periodic competition system

dx1

dt
=x1(P̂1(t, V ⇤

0 (t)� x1 � x2)�D0(t)),

dx2

dt
=x2(P̂2(t, V ⇤

0 (t)� x1 � x2)�D0(t)),
(Ê3)

we claim that if (x̃1(t), x̃2(t)) is a positive !-periodic solution to (Ê3), then
(x̃1(t), x̃2(t)) satisfies V ⇤

0 (t) > x̃1(t) + x̃2(t), t 2 [0,!]. Indeed, let x̃1(t1) =
max

0t!
x̃1(t), t1 2 [0,!]; then dx̃1(t1)

dt = 0, and hence P̂1(t1, V ⇤
0 (t1)� x̃1(t1)�

x̃2(t1)) = D0(t1) > 0. Then, since P̂1(t1, s) is strictly increasing for s 2 R,
V ⇤

0 (t1) > x̃1(t1) + x̃2(t1). Let y(t) = V ⇤
0 (t) � x̃1(t) � x̃2(t). It then easily

follows that y(t) satisfies the following periodic di↵erential equation:

dy

dt
= S0(t)D0(t)�D0(t)y � x̃1(t)P̂1(t, y)� x̃2(t)P̂2(t, y).

Since y(t1) > 0 and
dy

dt
|y=0 = S0(t)D0(t) > 0,

y(t) > 0 for all t � t1. Then, the !-periodicity of y(t) implies that y(t) > 0
for all t � 0; i.e., V ⇤

0 (t) > x̃1(t) + x̃2(t) for all t � 0. By a standard
monotone dynamical systems approach (see, e.g., [13, Chapter 7], [12] and
Hess [6, IV.33]), conditions (1) and (2) with 1  i, j  2, i 6= j imply that
system (Ê3) is compressive in the sense that there are two positive !-periodic
solutions (x1(t), x2(t)) and (x1(t), x2(t)) to (Ê3) with 0 < x1(t)  x1(t) and
0 < x2(t)  x2(t), t 2 [0,!], such that each solution (x1(t), x2(t)) of (Ê3)
with x1(0) > 0 and x2(0) > 0 satisfies

lim
t!1

d(x1(t), [x1(t), x1(t)]) = 0 and lim
t!1

d(x2(t), [x2(t), x2(t)]) = 0.

By our previous claim, V ⇤
0 (t) > x1(t) + x2(t) and V ⇤

0 (t) > x1(t) + x2(t), and
hence both (x1(t), x2(t)) and (x1(t), x2(t)) are also positive, periodic solu-
tions of (E3). Therefore, by the uniqueness assumption (A1), (x1(t), x2(t)) =
(x1(t), x2(t)), t 2 [0,!], and hence (E3) admits a unique positive, !-periodic
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solution (x̄3
1(t), x̄3

2(t)) with V ⇤
0 (t) > x̄3

1(t) + x̄3
2(t), t 2 [0,!]. Furthermore,

(x̄3
1(t), x̄3

2(t)) is globally attractive for (Ê3) in int(R2
+). By a similar ar-

gument, it follows that (E1) and (E2) admit unique positive, !-periodic
solutions (x̄1

2(t), x̄1
3(t)) and (x̄2

1(t), x̄2
3(t)) with V ⇤

0 (t) > x̄1
2(t) + x̄1

3(t) and
V ⇤

0 (t) > x̄2
1(t) + x̄2

3(t), t 2 [0,!], respectively.
For the 3-species periodic competition system

dxi

dt
= xi(P̂i(t, V ⇤

0 (t)�
3X

j=1

xj)�D0(t)), 1  i  3, (4.4)

let �0(t, x) be the unique solution of (4.4) with �0(0, x) = x 2 R3
+. By a

standard comparison theorem argument, it then easily follows that �0(t, x)
exists globally on [0,1) and solutions of (4.4) are uniformly and ultimately
bounded. Let X = R3

+, and let Q = �0(!, ·) be the Poincaré map asso-
ciated with (4.4). Then, Q : X ! X is compact and point dissipative.
Let X0 = {(x1, x2, x3) 2 R3

+, xi > 0 for all 1  i  3} and @X0 =
{(x1, x2, x3) 2 R3

+, xi = 0 for some 1  i  3}. Then, X = X0 [ @X0.
Let M1 = (0, 0, 0), M2 = (x⇤1(0), 0, 0), M3 = (0, x⇤2(0), 0), M4 = (0, 0, x⇤3(0)),
M5 = (0, x̄1

2(0), x̄1
3(0)), M6 = (x̄2

1(0), 0, x̄2
3) and M7 = (x̄3

1(0), x̄3
2, 0). Then,

all Mi (1  i  7) are fixed points of Q. For any x 2 X, let !(x) be the
!-limit set of x with respect to the discrete semiflow {Qn}1n=0. Then, by our
previous analysis, [

x2@X0
!(x) = {M1,M2, . . . ,M7}, and no subset of the Mi’s

forms a cycle for Q|@X0 : @X0 ! @X0. By conditions (1), (2) and (3), and
Lemma 1 in the Appendix, each Mi (1  i  7) is isolated for Q in X0, and
hence isolated in X, since Mi is isolated for Q|@X0 in @X0, and Q : X0 ! X0.
Therefore, [7

i=1Mi is an isolated and acyclic covering of [
x2@X0

!(x) in @X0.

Again by Lemma 1 in the Appendix, for each 1  i  7, W s(Mi) \X0 = ;.
By [20, Theorem 2.2], it follows that Q : X ! X is uniformly persistent
with respect to (X0, @X0). Therefore, by [20, Theorem 2.3], Q has a global
attractor A0 ⇢ X0 relative to strongly bounded sets in X0, and hence A0 is
globally asymptotically stable for Q in X0.

Let (S(t), x(t)) = (S(t), x1(t), x2(t), x3(t)) be any given solution of (4.1)
with S(0) � 0 and xi(0) > 0 (1  i  3), and let

V (t) = S(t) +
3X

i=1

xi(t), t � 0.

Then, S(t) > 0, xi(t) > 0 (1  i  3), t > 0, and V (t) satisfies

dV (t)
dt

= (S0(t)� V (t))D0(t), (4.5)
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and so (S(t), x(t)) exists globally on [0,1). Therefore, limt!1 |V (t) �
V ⇤

0 (t)| = 0, and x(t) satisfies the 3-dimensional nonautonomous system

dxi

dt
= xi(P̂i(t, V (t)�

3X
j=1

xj)�D0(t)), 1  i  3, (4.6)

with

lim
t!1

(P̂i(t, V (t)�
3X

i=1

xj)� P̂ (t, V ⇤
0 (t)�

3X
i=1

xj)) = 0 (1  i  3) (4.7)

uniformly for x = (x1, x2, x3) in any bounded subset of R3
+. By the bound-

edness of V (t), it easily follows that solutions of (4.6) are uniformly bounded
in R3

+. Let �(t, s, x) (t � s) be the unique solution of (4.6) with �(s, s, x) =
x 2 R3

+ = X. By [21, Proposition 3.2], �(t, s, x), t � s, x 2 R3
+ is as-

ymptotic to the !-periodic semiflow T (t) = �0(t, ·) : R3
+ ! R3

+, and hence
Tn(x) = �(n!, 0, x) : X ! X,n � 0 is an asymptotically autonomous dis-
crete dynamical process with limiting autonomous discrete semiflow Qn :
X ! X,n � 0, where Q = T (!) is the Poincaré map associated with (4.4)
(see [21]). By conditions (1), (2) and (3) and Lemma 2 in the Appendix, for
each 1  i  7, fW s(Mi) \X0 = ;. Therefore, by [21, Theorem 2.5], for any
x 2 X0, the !-limit set !(x) of �+(x) = {Tn(x) : n � 0} satisfies !(x) ⇢ A0.
Then, by [21, Theorem 3.1], for any x 2 X0,

lim
t!1

d(�(t, 0, x), T (t)A0) = 0,

and so, since T (!)A0 = A0 and T (t) is an !-periodic semiflow,

lim
t!1

d(�(t, 0, x), A⇤0) = 0,

where A⇤0 = [
t2[0,!]

T (t)A0 is a compact subset of X0. In particular, since

x(0) 2 X0,

lim
t!1

d(x(t), A⇤0) = lim
t!1

d(�(t, 0, x(0)), A⇤0) = 0.

Therefore, there exist ↵ > 0 and � > 0, which depend only on A⇤0, such that
the solution (S(t), x(t)) of (4.1) with S(0) � 0 and xi(0) > 0 (1  i  3)
satisfies

0 < ↵  lim inf
t!1

xi(t)  lim sup
t!1

xi(t)  �, 1  i  3.

From the last part of the proof of Theorem 3.1, it follows that system (4.1)
admits a positive periodic solution. This completes the proof.
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Theorem 4.2. Let (A2) hold. Assume that
(1) µi ⌘

R !
0 (Pi(t, V ⇤

0 (t))�D0(t)) dt > 0, 1  i  3;
(2) µji ⌘

R !
0 (Pi(t, V ⇤

0 (t) � x⇤j (t)) � D0(t)) dt > 0, 1  i, j  3, i 6=
j, j 6= 2, and µ21 ⌘

R !
0 (P1(t, V ⇤

0 (t)� x⇤2(t))�D0(t)) dt > 0,
(3) µ̄i ⌘

R !
0 (Pi(t, V ⇤

0 (t) �
P3

j=1,j 6=i x̄i
j(t)) �D0(t)) dt > 0, 2  i  3,

where x⇤i (t) (1  i  3), (x̄2
1(t), x̄2

3(t)) and (x̄3
1(t), x̄3

2(t)) are as in
Theorem 4.1.

Then the conclusion of Theorem 4.1 holds.

Proof. We use the same notation as in the proof of Theorem 4.1. By the a
priori estimate on the positive periodic solution of (Ê1) claimed in the proof
of Theorem 4.1, (A2) implies that (Ê1) admits no positive periodic solution.
Since

R !
0 (P2(t, V ⇤

0 (t) � x⇤3(t)) � D0(t)) dt > 0, by an argument using the
theory of monotone dynamical systems, as in the proof of [6, Theorem 34.1],
it follows that (u⇤2(t), 0) is globally attractive for (Ê1) in int(R2

+). Clearly,
[

x2@X0
!(x) = {M1,M2,M3,M4,M6,M7}. Then, as in the proof of Theorem

4.1, [7
i=1,i6=5Mi is an isolated and acyclic covering of [

x2@X0
!(x) in @X0. Now

an argument similar to that given in Theorem 4.1 completes the proof.

Theorem 4.3. Let (A3) hold. Assume that
(1) µi ⌘

R !
0 (Pi(t, V ⇤

0 (t))�D0(t)) dt > 0, 1  i  3;
(2) µ3i ⌘

R !
0 (Pi(t, V ⇤

0 (t) � x⇤3(t)) � D0(t)) dt > 0, 1  i  2, µ21 ⌘R !
0 (P1(t, V ⇤

0 (t)� x⇤2(t))�D0(t)) dt > 0, and µ13 ⌘
R !
0 (P3(t, V ⇤

0 (t)�
x⇤1(t))�D0(t)) dt > 0;

(3) µ̄2 ⌘
R !
0 (P2(t, V ⇤

0 (t) �
P3

j=1,j 6=2 x̄2
j(t)) �D0(t)) dt > 0, where x⇤i (t)

(1  i  3) and (x̄2
1(t), x̄2

3(t)) are as in Theorem 4.1.
Then the conclusion of Theorem 4.1 holds.

Proof. Again we use the same notation as in the proof of Theorem 4.1.
As in the proof of Theorem 4.2, (A3) implies that (u⇤2(t), 0) and (u⇤1(t), 0)

are globally attractive for (Ê1) and (Ê3) in int(R2
+), respectively. Clearly,

[
x2@X0

!(x) = {M1,M2,M3,M4,M6}. Then, as in the proof of Theorem 4.1,

[6
i=1,i6=5Mi is an isolated and acyclic covering of [

x2@X0
!(x) in @X0. Now

again, an argument similar to that given in Theorem 4.1 completes the proof.
Remark 4.4. If, instead of assumption (A1), we let M5,M6 and M7,
in the proof of Theorem 4.1, be three positive, global attractors of the
Poincaré maps associated with the three, 2-dimensional competition sys-
tems (Ê1), (Ê2) and (Ê3), respectively, then, by a similar argument, the
conclusion of Theorem 4.1 holds with condition (3) replaced by a revised
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Figure 1. An example of competition-mediated oscillatory coexistence
of three species illustrating Theorem 4.2. Figure 1(a) depicts the time
series of the globally attracting !-periodic solution in the x1-x2 face.
The solid curve is x1(t) and the dashed curve is x2(t). Figure 1(b)
depicts the time series of the globally attracting !-periodic solution in
the x1-x3 face. The solid curve is x1(t) and the dashed curve is x3(t).
Figure 1(c) depicts the time series of the positive !-periodic solution.
Figure 1(d) gives the projection into x1-x2-x3 phase-space, of the two-
and three-species !-periodic orbits shown in Figure 1(a)–(c).

invasibility condition. For example, let (x1(t), x2(t)) and (x1(t), x2(t)) be as
in the proof of Theorem 4.1. Then, under condition (3), with i = 3 and
(x̄3

1(t), x̄3
2(t)) replaced by (x1(t), x2(t)), one can prove that M7 is an isolated

invariant set of Q in X and fW s(M7) \X0 = ;, by using the compressivity
of (Ê3) and arguments similar to those given in Lemmas 1 and 2 in the
Appendix.

4.1. An example of oscillatory competition-mediated coexis-
tence. In this section an example is given to illustrate the oscillatory coex-
istence of three species predicted by Theorem 4.2.

All of the simulations are done using MATLAB. We assumed convergence
occurred when xi(t) and xi(t + !) agreed to at least 10 decimal places.

Example. We use the parameters from the three-species example given
in Lenas and Pavlou [9, Table 1, case (a) and Figure 3(a)]. The operating
parameters u0 = 0.4675 and S0(t) ⌘ 11 were selected so that the dynamics
would be given by region 27 of their bifurcation diagram (see [9, Figure
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3(a) and Table 3]). The dilution rate was therefore given by D0(t) = µ0 +
a cos(!t), where a = 0.3 and ! = 0.2 and Monod-type functional responses
(see [9, Table 1, case (a)]) Pi(t, S(t)) = ↵iS(t)/(�i + S(t)), where ↵1 =
1,�1 = 1,↵2 = 0.7,�2 = 0.3,↵3 = 0.64, and �3 = 0.2.

From the simulations it appears that all of the hypotheses of Theorem
4.2 are satisfied. See Figure 1, where we plot the time series of the unique
two-species positive periodic solution in the x1-x2 face in Figure 1(a) and
the unique two-species positive periodic solution in the x1-x3 face in Figure
1(b). According to [9, Table 3] (and our simulations confirm this), for the
parameters selected, there is no positive periodic solution in the x2-x3 face.
Instead all orbits in this face approach the single-species !-periodic solution
where x2(t) > 0 but x3(t) ⌘ 0.

We evaluated the integrals given in Theorem 4.2 numerically using the
trapezoidal rule as in the previous example and found µ1 = 14.1111, µ2 =
6.7205, µ3 = 5.0603, µ12 = 0.6780, µ13 = 1.87861, µ21 = 0.7909, µ31 =
0.2990, µ32 = 0.8122, µ̄2 = 0.0012, and µ̄3 = 0.0009. Note that all of these
quantities are positive and that it is not necessary to evaluate µ23 in this
case.

In Figure 1(c), the time series of the three-species positive !-periodic
solution, predicted to exist by Theorem 4.2, is shown.

This example also illustrates competition-mediated coexistence in the fol-
lowing sense. If species one is absent, and species two and three compete,
then species two drives species three to extinction. However, this extinction
of species three is avoided simply by introducing competitor one. Once com-
petitor one is introduced, all three species persist in sustained oscillation.

Appendix. In this appendix, we give two results that are very useful
in the application of the abstract uniform persistence (or repellor) theorems
for the periodic and asymptotically periodic semiflows to the m-dimensional
Kolmogorov periodic and asymptotically periodic biological systems.

Consider first the m-dimensional Kolmogorov periodic system

dui

dt
= uiF0i(t, u) (1  i  m) (A1)

where u = (u1, . . . , um) 2 Rm
+ . We assume that F0 = (F01, . . . , F0m)T :

Rm+1
+ ! Rm

+ is continuous and !-periodic with respect to t (! > 0), and
that the solution �0(t, u) of (A1) with �0(0, u) = u exists uniquely on [0,1).
Let S = �0(!, ·) : Rn

+ ! Rm
+ . Then, Sn(u) = �0(n!, u) for any u 2 Rm

+ .

Lemma 1. If for some 1  i  m,

u⇤(t) = (u⇤1(t), . . . , u
⇤
i�1(t), 0, u

⇤
i+1(t), . . . , u

⇤
m(t))
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is an !-periodic solution of (A1) with u⇤j (0) � 0 (1  j  m, j 6= i) and
u⇤(t) satisfies

R !
0 F0i(t, u⇤(t)) dt > 0. Then, there exists � > 0 such that

lim
n!1

d(Sn(u), u⇤(0)) � �, for all u 2 int (Rm
+ ).

Proof. It su�ces to prove that there exists � > 0 such that for any u 2
B(u⇤(0), �) \ int(Rm

+ ), where B(u⇤(0), �) = {u 2 Rm : |u � u⇤(0)| < �},
there exists N = N(u) � 1 such that SN (u) /2 B(u⇤(0), �). Let ✏ be a fixed
positive number such that 0 < ✏ < 1

!

R !
0 F0i(t, u⇤(t)) dt. By the uniform

continuity of F0i(t, u) on the compact subset [0,!]⇥ [0, b]m ⇢ Rm+1, where
b = max0t! |u⇤(t)| + 1, there exists �0 2 (0, 1) such that for any u and
v 2 [0, b]m with |u� v| < �0, and all t 2 [0,!],

|F0i(t, u)� F0i(t, v)| < ✏.

By the continuous dependence of solutions on initial values, it then follows
that there exists � > 0 such that for any u 2 B(u⇤(0), �) \Rm

+ ,

|�0(t, u)� u⇤(t)| = |�0(t, u)� �0(t, u⇤(0))| < �0, for all t 2 [0,!].

Proceeding by contradiction, assume that there exists u0 2 B(u⇤(0), �) \
int(Rm

+ ) such that for all n � 1, Sn(u0) = �0(n!, u0) 2 B(u⇤(0), �). For any
t � 0, let t = n! + t0, where t0 2 [0,!) and n = [t/!] is the greatest integer
less than or equal to t/!. Then,

|�0(t, u0)� u⇤(t)| = |�0(t0,�0(n!, u0))� u⇤(t0)| < �0.

Therefore,

|F0i(t,�0(t, u0))� F0i(t, u⇤(t))| < ✏, for all t � 0.

Let �0(t, u0) = (�1(t, u0), . . . ,�m(t, u0)). Then, for all t � 0, �0(t, u0) 2
int(Rm

+ ), and hence �i(t, u0) satisfies

d�i

dt
= �iF0i(t,�0(t)) � �i(F0i(t, u⇤(t))� ✏), t � 0.

Therefore, by the comparison theorem,

�i(t, u0) � �i(0, u0) · e
R t
0 (F0i(t,u

⇤(t))�✏) ds, for all t � 0.

In particular,

�i(n!, u0) � �i(0, u0) · en
R !
0 (F0i(t,u

⇤(t))�✏) ds, for all n � 0.
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By the choice of ✏, limn!1 �i(n!, u0) = +1, which contradicts our assump-
tion that Sn(u0) = �0(n!, u0) 2 B(u⇤(0), �) for all n � 1. Therefore, for all
u 2 int(Rm

+ ), limn!1d(Sn(u), u⇤(0)) � �. This completes the proof. ⇤
Then, consider the m-dimensional nonautonomous Kolmogorov system

dui

dt
= uiFi(t, u) (1  i  m), (A2)

where u = (u1, . . . , um) 2 Rm
+ . We assume that F = (F1, . . . , Fm)T :

Rm+1
+ ! Rm

+ is continuous and locally Lipschitz in u. Let �0(t, s, u) and
�(t, s, u) be the unique solutions of (A1) and (A2) with �0(s, s, u) = u
and �(s, s, u) = u (s � 0), respectively. Let Tn(u) = �(n!, 0, u), T (t)u =
�0(t, 0, u) and S(u) = T (!)u, u 2 Rm

+ .

Lemma 2. Assume that limt!1 |F (u, t)� F0(t, u)| = 0 uniformly for u in
any bounded subset of Rm

+ , and that solutions of (A1) and (A2) are uniformly
bounded in Rm

+ . If for some 1  i  m,

u⇤(t) = (u⇤1(t), . . . , u
⇤
i�1(t), 0, u

⇤
i+1(t), . . . , u

⇤
m(t))

is an !-periodic solution of (A1) with u⇤j (0) � 0 (1  j  m, j 6= i) and
u⇤(t) satisfies Z !

0
F0i(t, u⇤(t)) dt > 0,

then fW s(u⇤(0)) \ int(Rm
+ ) = ;, where

fW s(u⇤(0)) = {u 2 Rm
+ : lim

n!1
Tn(u) = u⇤(0)}.

Proof. By [21, Proposition 3.2], �(t, s, u), t � s � 0, u 2 Rm
+ , is asymptotic

to the !-periodic semiflow T (t) : Rm ! Rm, and hence Tn(u) : Rm
+ !

Rm
+ , n � 0 is an asymptotically autonomous discrete dynamical process

with the limiting autonomous discrete semiflow Sn : Rm
+ ! Rm

+ , n � 0 ([21]).
Assume that, for the sake of contradiction, there exists a u0 2 fW s(u⇤(0)) \
int(Rm

+ ). Then, limn!1 Tn(u0) = u⇤(0), and hence, by [21, Theorem 3.1],

lim
t!1

(�(t, 0, u0)� u⇤(t)) = lim
t!1

(�(t, 0, u0)� T (t)u⇤(0)) = 0.

Since limt!1 |F (t, u)� F0(t, u)| = 0 uniformly for u in any bounded subset
of Rm

+ , it easily follows that

lim
t!1

(F (t,�(t, 0, u0))� F0(t, u⇤(t))) = 0.
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In particular,

lim
t!1

(Fi(t,�(t, 0, u0))� F0i(t, u⇤(t))) = 0.

Let ✏ be a fixed positive number such that 0 < ✏ < 1
!

R !
0 F0i(t, u⇤(t)) dt.

Then, there exists N = N(✏) > 0 such that for all t � N!,

Fi(t,�(t, 0, u0)) � F0i(t, u⇤(t))� ✏.

Let �(t, 0, u0) = (�1(t), . . . ,�n(t)) = �(t). Then, �(t) 2 int(Rm
+ ) for all

t � 0. Therefore, �i(t) satisfies

d�i(t)
dt

= �i(t)Fi(t,�(t)) � �i(t)(F0i(t, u⇤(t))� ✏), t � N!.

By the comparison theorem,

�i(t) � �i(N!)e
R t
N!(F0i(s,u⇤(s))�✏) ds, t � N!.

In particular, for all n � N ,

�i(n!) � �i(N!)e(n�N)
R !
0 (F0i(s,u⇤(s))�✏) ds.

Then, by the choice of ✏,

lim
n!1

�i(n!) = +1,

which contradicts
lim

t!1
(�(t, 0, u0)� u⇤(t)) = 0.

This completes the proof.
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