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Abstract

Amino-terminal acetylation is probably the most common protein modification in eukaryotes with as many as 50%–80% of
proteins reportedly altered in this way. Here we report a systematic analysis of the predicted N-terminal processing of
cytosolic proteins versus those destined to be sorted to the secretory pathway. While cytosolic proteins were profoundly
biased in favour of processing, we found an equal and opposite bias against such modification for secretory proteins.
Mutations in secretory signal sequences that led to their acetylation resulted in mis-sorting to the cytosol in a manner that
was dependent upon the N-terminal processing machinery. Hence N-terminal acetylation represents an early determining
step in the cellular sorting of nascent polypeptides that appears to be conserved across a wide range of species.
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Introduction

The mechanism of translational initiation dictates that eukary-

otic proteins are synthesized with an amino-terminal methionine

residue. In 80% of yeast proteins studied, the initiating methionine

is removed to reveal a new amino-terminal residue [1], and some

50% of proteins have their amino-terminal residue acetylated

[2,3]. Hence rather few proteins possess an unmodified N-

terminus. However, while N-terminal processing is widespread, its

biological significance is not well understood. It has been suggested

to contribute to differential protein stability and has recently been

shown to function as a degron for certain cytosolic proteins [4,5],

while in a small number of cases the processed N-terminus is

known to contribute directly to protein function [6–9].

Methionine cleavage is catalysed by methionine aminopepti-

dases (MetAPs) that act co-translationally as the N-terminus

emerges from the ribosome [1,10]. MetAPs exhibit substrate

specificity and are strongly influenced by the residue at position 2

(P2), with cleavage favoured by P2 residues with small side chains

such as glycine, alanine, or serine [11,12]. Yeast and humans each

possess two MetAPs (MetAP1 & 2), and while yeast can tolerate

the loss of either enzyme, the double mutant is lethal demonstrat-

ing that methionine processing is a vital function [13]. Interest-

ingly, MetAP2 is the target for the potent anti-angiogenic

compound fumagillin that exhibits anti-tumourigenic properties

[14,15].

Protein N-termini can also be modified by acetylation of the free

a-amino group by N-a-acetyl transferases (NATs). Five distinct

NATs have been identified with different substrate specificities.

NatA normally acetylates N-terminal G, S, A, and T residues

exposed by MetAP cleavage, whereas NatB acetylates methionine

residues that are followed by either D, E, or N at P2 [3,16,17].

NatC acetylates certain methionines with either L, I, W, or F at

P2, but other sequence elements influence processing in this case

[18]. NatD appears to be specialised for histone N-acetylation [19]

and finally NatE acetylates substrates with Leucine at P2 and

Proline at P4 [20].

While most proteins remain in the cytoplasm after synthesis,

others are targeted to different compartments. Those destined for

the secretory pathway typically possess an N-terminal signal-

sequence which directs them to the endoplasmic reticulum (ER)

[21]. These proteins are translocated into the lumen of the ER, via

the Sec61 translocon, whereupon their signal-sequence is removed

by signal peptidase [22]. A subset of membrane proteins can be

targeted to the ER via non-cleaved internal signal anchor or C-

terminal trans-membrane segments, which act as both targeting

and membrane-integration signals.

N-terminal signal sequences are degenerate in primary structure

but are typically 15–30 residues long, and usually comprise

charged/polar residues, followed by 6–15 hydrophobic residues

and a polar C-terminal region containing the cleavage site for

signal peptidase [23,24].

In yeast, there are two pathways by which secretory proteins are

targeted to the ER. The co-translational pathway is mediated by

Signal Recognition Particle (SRP), which recognises a signal

sequence emerging from the ribosome and targets the ribosome-

nascent chain (RNC) complex to the translocon via SRP-receptor

(SR) [25,26]. The targeted ribosome then binds tightly to the

cytosolic surface of Sec61p allowing the elongating polypeptide

chain to be delivered directly into the translocation channel
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[27–29]. The alternative ‘‘post-translational’’ pathway is indepen-

dent of SRP/SR [30] and targets full-length polypeptides in a

reaction that requires cytosolic chaperones that maintain precur-

sors in a translocation-competent conformation [31–33]. Trans-

location occurs via the same Sec61-channel, but in this case,

targeting requires the essential integral membrane protein Sec62p

that interacts with precursor and may constitute a specific receptor

[34]. Mammalian cells possess a homologue of SEC62, but this

mode of translocation remains poorly characterized in metazoans

[35,36].

Properties of the signal sequence, and in particular the

hydrophobicity of the central core, determine which pathway a

substrate will access, with more hydrophobic signal sequences

utilizing the SRP pathway [30].

Cleavage of the signal sequence reveals a novel N-terminus for

the mature translocated protein, which is located in the ER lumen

and so inaccessible to the N-terminal processing enzymes. The

processing status of the initiating methionine of signal sequences

has largely been ignored, particularly as such N-termini are

not detected in proteomic analyses. We therefore decided to

investigate the N-terminal processing of signal sequences using a

combination of bioinformatic and experimental approaches and

find that N-terminal modification is incompatible with targeting to

the ER.

Results

Signal sequence recognition and N-terminal processing both

occur co-translationally as the nascent chain emerges from the

ribosome [10,37]. We therefore decided to investigate whether

secretory proteins might be subject to N-terminal processing in a

similar manner to their cytosolic counterparts. As the P2 residue is

the major determinant of N-terminal processing, we first surveyed

the amino acid frequency at this position for signal sequence-

containing proteins versus cytosolic proteins (Figure 1A). Surpris-

ingly, we found a significantly different frequency distribution

between the two sets (p,0.0001, according to the x2 test with 18

degrees of freedom). Lysine, leucine, and arginine were most

frequent at P2 in signal sequences but were rarely found at this

position in the cytosolic set. Conversely, while serine and alanine

were most frequent at P2 in cytosolic proteins, these were less

evident in signal sequences. A clear pattern emerged when the

ratio of frequencies were compared between the two classes of

proteins (Figure 1B); small and acidic residues were strongly biased

towards cytosolic proteins, whereas large and basic ones were

favoured in signal sequences. The frequency of small residues at

P2 in cytosolic proteins predicts that ,72% of these proteins

would be substrates for MetAP cleavage (Figure 1C), in good

agreement with empirical data from proteomic studies [2]. In

contrast only 23% of signal sequences would be predicted to be

MetAP substrates (Figure 1C). Hence our data reveal that for

signal sequences there appears to be a strong selection for P2

residues that would maintain the original N-terminal methionine.

We next addressed whether this bias was of functional

significance for ER translocation. The signal sequence of

Carboxypeptidase Y (CPY) [38] begins with ‘‘MK’’ and so, like

most secretory proteins in our analysis, is predicted to remain

unprocessed. Rather than mutating the native P2 residue we chose

to insert one of seven different amino acids between the initiator

methionine and the following lysine residue (Figure 2A). We then

assessed the translocation efficiency of these mutants in vivo by

monitoring their ER-dependent glycosylation (Figure 2B). Inser-

tion of arginine or valine had no effect on the efficiency of

translocation, demonstrating that an insertion at this position does

not inherently perturb signal sequence function. However, the

other five insertions tested all resulted in translocation defects

indicated by the accumulation of the cytosolic precursor form of

preproCPY (ppCPY). The most significant defects were observed

for glycine, serine, and glutamate, which are three of the four

residues most biased in their frequency distribution towards

cytosolic proteins (Figure 1B). Thus the bias observed in our

bioinformatic analysis correlates with defects in translocation,

thereby implying an important role for P2 in a functional signal

sequence.

The inhibitory effects of these various P2 residues might reflect

either some simple perturbation of the signal sequence or their

predicted impact on N-terminal processing. We reasoned that if

processing alone were responsible for the effects, then inhibiting

MetAP activity might restore translocation of the mutant proteins.

We therefore analysed translocation in wild-type and Dmap1 cells

in the presence of the Map2p inhibitor fumagillin (Figures 2C and

S1). In wild-type (MAP1) cells, fumagillin had little or no effect on

the translocation of native (MK) CPY nor the translocation defects

observed for the various insertion mutants. Similarly, the absence

of Map1 alone (Dmap1) had no discernible effect on any of the

translocation substrates. In contrast, when Dmap1 cells were

treated with fumagillin we found almost complete restoration of

translocation for the MA, MC, MG, and MS mutants. All four are

predicted substrates for Met-cleavage, and our data demonstrate

that their inhibitory effects are entirely dependent upon MetAP

activity. In contrast, ME is not a substrate for MetAP and we

found that the translocation defect for this mutant persisted under

these conditions. The effect of fumagillin was therefore substrate-

specific, correlating precisely with the known specificity of MetAPs

[11]. We therefore conclude that MetAP-dependent cleavage of a

signal peptide’s initiating methionine has a strong inhibitory effect

on the translocation of CPY.

In our analysis, the ME and MS mutations had the strongest

effects on translocation (Figure 2B) and these P2 residues displayed

extreme bias against their occurrence in natural signal sequences

(Figure 1B). While ‘‘ME’’ is not a substrate for MetAP, it is known

to promote N-a-acetylation of the N-terminal methionine by NatB

[6]. Likewise, the P2 serine, once revealed by MetAP, is predicted

to be N-a-acetylated by NatA. We therefore tested whether

acetylation might be the key determinant affecting translocation by

Author Summary

The eukaryotic cell comprises several distinct compart-
ments, called organelles, required to perform specific
functions. The proteins in these compartments are almost
always synthesised in the cytoplasm and so require
complex sorting mechanisms to ensure their delivery to
the appropriate organelle. Of course, not all proteins need
to leave the cytoplasm since many remain there to
perform cytoplasmic functions. It is well known that many
proteins are modified by acetylation of their amino-
terminus at a very early stage in their synthesis. We have
discovered a profound difference between the likelihood
of such a modification on cytoplasmic proteins and on
those destined for one of the major organelles, the
endoplasmic reticulum (ER): whereas cytoplasmic proteins
are typically acetylated, those bound for the ER are largely
unmodified. Moreover, when specific ER proteins were
engineered to induce their acetylation we found that their
targeting to the ER was inhibited. Our data suggest that N-
terminal acetylation is a major determinant in protein
sorting in eukaryotes.
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analysing translocation efficiencies in either NatA(Dard1) or

NatB(Dnat3)-deficient strains (Figure 3). In Dard1 cells, transloca-

tion of MS-CPY appeared largely restored while the ME mutant

remained unaffected. The converse was observed in the Dnat3

strain. Importantly, the ability of the different Nat mutants to

rescue precursor translocation matched precisely the substrate

specificities of NatA and NatB for MS and ME, respectively.

Moreover, the observation that inhibition of MAP activity

specifically rescues the translocation of NatA substrates is entirely

consistent with methionine cleavage being a prerequisite for NatA-

dependent acetylation. Thus, it is the N-a-acetylation of these

substrates that is the major determinant in the inhibition of

translocation in vivo.

We next examined the effect of mutants predicted to induce

acetylation of two independent ER translocation substrates,

namely Pdi1p and prepro-alpha factor (ppaF) (Figure 4A and

4B). The signal sequence of Pdi1p begins MK and hence is not

predicted to be a substrate for MetAP or N-acetylation [2]. MSK

and MEK mutations both led to accumulation of non-translocated

precursor and a reduction of fully translocated glycosylated Pdi1p

at steady state. Furthermore, analysis by mass-spectrometry

confirmed that the MSK mutant of pPdi1 was methionine-

processed and N-acetylated in vivo, as predicted (Figure S2). No

peptides corresponding to an unmodified N-terminus were

detected.

Wild-type ppaF, which begins MR, is efficiently translocated

and secreted. In contrast an MS mutant, which is a predicted

substrate for NatA, accumulated in cells, as the non-translocated

precursor. Hence, the inhibitory effect of acetylation appears

widespread and not restricted to CPY.

Next we sought to reconstitute this phenomenon in vitro using

ppaF. We translated both wild-type (MR) and MS mutant forms

of ppaF in reticulocyte lysate and then incubated these precursors

with yeast microsomes (Figures 4C and S3). We observed

microsome-dependent translocation and glycosylation of wild-type

ppaF but found no evidence of translocation of the MS mutant.

Thus the inhibitory effect of the P2 Serine can also be

reconstituted in vitro.

Our data thus far indicate that MS-ppaF would be acetylated

following processing by MetAP. To verify this directly we

performed in vitro translations in the presence of 1-[14C]-acetyl-

CoA and detected incorporation of radiolabel into MS-ppaF but

not wild-type (Figure 4D). For this experiment, we utilised a ppaF

variant where all lysines have been mutated to arginine; hence, the

only primary amine potentially available for acetylation is the N-

terminal aNH2 group. These in vitro data demonstrate directly

that the MS mutant form of ppaF is indeed acetylated as predicted

and support our hypothesis that N-terminal acetylation inhibits

ER translocation.

Charge distribution across the signal sequence has been shown

to affect translocation efficiency [39]. N-a-acetylation of the signal

peptide would reduce the overall positive charge of the N-terminus

by +1, and therefore one potentially trivial explanation might

be that it is the loss of positive charge, rather than acetylation per

se, that inhibited translocation. However, we can exclude this

possibility given that the insertion of an additional arginine

residue at position 3 (MSRR), which restores the overall charge of

the N-region following N-a-acetylation, also failed to translocate

(Figure S3).

We next wished to assess the stage at which the translocation of

an acetylated MS substrate is blocked. We incubated in vitro

translated wild-type (MR) ppaF with yeast microsomes in the

absence of ATP, which permits targeting to Sec61, but not

subsequent translocation. Using site-specific photocross-linking

probes incorporated into the signal sequence, we could detect a

complex spectrum of uv-induced adducts as has been reported

previously (Figure 4E; [40]). An adduct of ,50 kD could be

readily immunoprecipitated with Sec61p antisera, indicating the

engagement of precursor with the translocon. In striking contrast,

the MS mutant completely failed to crosslink with Sec61p. Hence

we conclude that targeting arrests at a step prior to the interaction

of the precursor with the translocon.

There are two pathways by which secretory precursors can be

targeted to the ER; some precursors follow a post-translational

Sec62p-dependent pathway, while substrates with more hydro-

phobic signal sequences utilise a co-translational SRP-dependent

mechanism [25,30]. As CPY, Pdi1p, and ppaF are all translocated

post-translationally, we therefore sought to compare the behaviour

of an SRP-dependent substrate. We chose the well-characterised

SRP-dependent substrate OPY, a variant of CPY in which the

endogenous signal sequence is replaced with that of Ost1p [41].

The OPY signal sequence begins MR, and so should remain

unprocessed, enabling us to perform a precisely parallel muta-

tional analysis to that for CPY (see Figure 2C). In striking contrast

to CPY, we found that the introduction of various processable

residues at P2 had no effect on the translocation of OPY (Figure 5A

and 5B). Thus the observed inhibitory effect of an MS mutation on

translocation can be suppressed in the context of an SRP-

dependent signal sequence. This property was not limited to the

Ost1p signal sequence; co-translational translocation of the SRP-

dependent substrate DHC-aF [30,42] into yeast microsomes using

a yeast translation extract was also unaffected by the incorporation

of a potentially acetylatable serine residue at P2 (Figure S4).

Moreover, the well-characterized SRP-dependent substrates Sec71

and Dap2 (DPAP B) [30,43] have P2 residues of S and E,

respectively, entirely consistent with our finding that NAT

substrates can be tolerated by the SRP pathway.

These data suggest either SRP can successfully target an

acetylated substrate or alternatively such substrates might not be

processed as expected. Therefore, to address this point we assessed

whether or not the Ost1p signal sequence was N-terminally

processed. We tested the MS mutant for the presence of any

unmodified N-termini using a biotinylation assay to detect free a-

NH2 groups in a protein completely lacking lysine residues. We

observed no difference in the efficiency of biotinylation between

wild-type (MR) and mutant (MS) suggesting that in the context of

an SRP-dependent signal sequence, and contrary to expectation,

the MS amino-terminal was not acetylated (Figure 5C).

This effect of SRP might go some way to explain the small, but

not insubstantial, minority of secretory proteins predicted to be

processed in our bioinformatic analysis. Consistent with this idea,

we found that average peak hydrophobicity of signal sequences

Figure 1. Amino acid frequency at P2 of signal sequences versus cytosolic proteins. (A) Relative frequency of amino acids at P2 of a filtered
set of 277 signal sequence-containing proteins from S. cerevisiae was compared to a similar size group (n = 252) of randomly selected cytosolic
proteins. Frequency distribution between the groups differed significantly (p,0.0001, x2 = 207.3 18 df). (B) Ratio of relative frequency of P2 residues
between signal sequence (fss) and cytosolic (fcyt) proteins. Tryptophan was absent from the cytosolic group; therefore, no log(fss/fcyt) value is plotted.
P2 specificities of MetAP, NatA, and NatB are indicated. (C) Predicted methionine cleavage of signal sequence and cytosolic N-termini based on
relative P2 frequency. For complete datasets, see Tables S1–S4.
doi:10.1371/journal.pbio.1001073.g001
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among this minority was significantly greater than for the majority

subset of sequences (Figure S5). Overall, more than 99% of signal

sequences were either not predicted to be acetylated or were

sufficiently hydrophobic to interact with SRP.

Having validated the biological significance of the bias observed

in our bioinformatic study, we extended our analysis from yeast to

higher eukaryotes (Figure 6). The pattern observed in nematodes

and insects was remarkably similar to that seen in yeast, with

,70% of signal peptides predicted to retain an unprocessed

methionine compared to only 20% for the proteome as a whole

[2]. The trend was similar in humans and plants, albeit less

pronounced, with ,50% of secretory N-termini predicted to

remain unprocessed compared to 15% for the proteome as a

whole [2]. Thus this phenomenon appears not to be restricted to

fungi but is very widely conserved.

Discussion

Here we describe the striking observation that yeast signal

sequences display a profound bias against N-terminal processing.

The bias is precisely converse to that observed in cytosolic proteins

where N-terminal processing is highly favoured. Moreover, we

show that this bias is of functional significance as introduction of

residues at position 2 which promote N-terminal processing

inhibits translocation in to the ER. Importantly this inhibition can

be reversed by blocking N-terminal processing, confirming that it

is the processing itself that leads to the block in translocation. The

bias against N-terminal processing is not restricted to yeast but is

also observed across eukaryotes, suggesting this is a widely

conserved phenomenon.

It is possible that other factors distinct from N-terminal

processing might affect the observed bias in amino acid frequency

at position 2. We considered the potential effect of the Kozak

consensus sequence that favours a G at the +4 position

(corresponding to the first base of codon 2) in genes optimised

for translation efficiency [44]. However, while this might

contribute to the bias observed among cytosolic proteins, it is

unlikely to be the dominant feature since it does not explain the

predominance of Serine at position 2. Furthermore, the Kozak

consensus does not have such a strong effect in yeast and it has

recently been reported that the effect of the +4 position may be

more important in promoting N-terminal modification than in

influencing initiation efficiency [45].

A second possible factor influencing the P2 frequency

distribution could be the previously reported bias for an

adenine-free stretch within the signal-sequence coding region of

a secretory mRNA, which is important for its nuclear export [46].

However, this also seems an unlikely explanation as lysine, with its

A-rich codon (AAA/AAG), is actually more frequent at position 2

of signal sequences as compared to cytosolic proteins. Critically,

however, both translation initiation and nuclear mRNA export

operate independently of N-terminal processing and so would not

lead to translocation defects that could be reversed by N-terminal

processing mutants, as we observe. Furthermore the restoration of

translocation in such processing mutants shows a precise substrate

dependency, ruling out rescue of translocation by some indirect

effect. Hence, while we would not completely exclude a minor role

for the Kozak consensus or mRNA elements in influencing the P2

residue of signal sequences, the strong correlation and clear

functional effects make a bias against N-terminal processing the

simplest and most likely explanation of the relative P2 residue

frequency.

A trivial explanation for the inhibitory effect of acetylation could

be the change in charge distribution across the signal sequence,

which is known to be important for targeting [39]. However, this

appears unlikely, firstly as insertion of an additional positively

Figure 2. Removal of the N-terminal methionine inhibits ER translocation of CPY. (A) Schematic of wild-type CPY and P2 mutants. Signal
peptide sequence, position of N-glycosylation (y), and signal peptidase cleavage (Q) sites are indicated. (B) Yeast cells (Dpep4,Dprc1) expressing
either wild-type or mutant CPY were pulse-labelled with [35S]methionine/cysteine, then CPY immunoprecipitated, and analysed by SDS-PAGE and
phosphorimaging. Positions of glycosylated CPY (g4-pCPY and g3-pCPY) are indicated as are the untranslocated ppCPY and signal-sequence cleaved,
non-glycosylated CPY (pCPY) observed in sec61-3 cells and in tunicamycin-treated wild-type cells (Tu), respectively. Translocation efficiency was
determined by quantification of ppCPY and g3- and g4-pCPY from three independent experiments. Error bars represent standard error of the mean.
Asterisks represent p,0.05 (*) and p,0.001 (***) according to the one-way analysis of variance with Tukey’s multiple comparison test. (C) CPY
translocation was analysed as in (B), in a wild-type (Dpep4,Dprc1) and isogenic Dmap1 strain in the presence and absence of the Map2 inhibitor
fumagillin (for quantification, see Figure S1).
doi:10.1371/journal.pbio.1001073.g002

Figure 3. N-terminal acetylation blocks protein translocation. Translocation of wild-type, MS, and ME mutants of CPY was examined z(as in
Figure 2B) in wild-type and Dard1 and Dnat3 strains, which lack NatA and NatB activity, respectively. Data are representative of three independent
experiments.
doi:10.1371/journal.pbio.1001073.g003
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charged residue to counteract the loss of the +1 charge following

acetylation of the free amino terminus did not restore translocation

(Figure S3). Secondly, translocation of the ME CPY mutant can be

restored in a strain lacking NatB activity (Dnat3), which results in

the same net N-terminal charge as is present in the acetylated MS

CPY mutant, which fails to translocate (Figure 3). Hence simple

charge distribution alone cannot explain the inhibitory effects of

N-acetylation.

Overall our data indicate that N-acetylation inhibits ER

translocation and that most secretory proteins avoid this by virtue

of a P2 residue that prevents processing. Interestingly, SRP-

dependent substrates appear to evade this effect as SRP blocks N-

terminal N-acetylation even in the presence of a P2 residue

predicted to be a NatA substrate. SRP and NatA are both thought

to contact the ribosome via the same site (ribosomal protein

Rpl25/L23a) [47–49]. Hence competition for this site would

provide a potential mechanistic explanation for this phenomenon.

This finding also predicts that while the P2 residue is the major

determinant of N-acetylation by NatA, there are scenarios where

N-acetylation does not occur, despite the presence of an

appropriate P2 residue. Empirical evidence for this prediction

was recently provided by the global analysis of N-acetylation of the

drosophila proteome [50].

Comparison of predicted N-terminal processing of signal

sequences across other species indicates an almost identical bias

for nematodes and drosophila as seen in yeast. In plants and

humans, the bias is still present but is less marked. Interestingly, a

bias against predicted N-terminal processing (73%) has also been

noted for prokaryotic signal sequences [51]. Hence the bias against

processing of signal sequences appears widespread and not

restricted to yeast.

Current dogma suggests that the SRP-dependent targeting

pathway is more pervasive in mammals. As SRP appears to allow

substrates to evade the effects of acetylation, this may well explain

why the bias against N-terminal processing is less pronounced in

humans. Nevertheless, homologues of the SRP-independent

pathway components Sec62 and Sec63 are present in mammals

and form complexes with the Sec61 translocon [35,36]. Further-

more, both mammalian and drosophila Sec62 can functionally

replace their yeast counterpart [52,53]. These observations,

combined with our observed bias against N-terminal processing

in these organisms, suggest that although SRP-dependent

targeting is perhaps more dominant, Sec62-dependent transloca-

tion still likely occurs. Identification of substrates for this pathway

remains an important question to be addressed in the future.

What might be the reason as to why secretory and cytosolic

proteins have a precisely converse bias for N-acetylation? Cytosolic

proteins, once synthesized, typically fold rapidly to their final tertiary

structure in the cytoplasm. In contrast, secretory precursors must

reach the translocon in an unfolded state in order to be competent

for translocation. Post-translationally translocated substrates achieve

this by their interactions with cytosolic chaperones that prevent their

folding within the cytoplasm [32]. SRP-dependent substrates are

targeted co-translationally and so reach the translocon as short

nascent chains, thus eliminating the possibility of folding in the

cytoplasm. It is not known what causes translocation substrates to

recruit these chaperones, but our data allow us to propose a model in

which acetylation determines the fate of nascent polypeptides. We

speculate that acetylation identifies nascent polypeptides, very early

in their synthesis, as being destined to fold in the cytoplasmic

compartment. Most secretory proteins are unmodified and so would

be delayed in their folding sufficiently to facilitate their functional

interaction with the translocon. This would be entirely consistent

with our finding that acetylation blocks secretory substrate

interaction with Sec61, arresting the protein in the cytosol.

Not all proteins that fold and remain in the cytosol are

acetylated. It may be that such modification would be incompat-

ible with function, but it might also be that such proteins have

more complex folding requirements; for example, they might be

required to fold more slowly, perhaps relying on the recruitment of

specific cytosolic chaperones.

An alternative biological explanation for this phenomenon

could relate to a proofreading step for Sec62-dependent substrates.

Unlike their SRP-dependent counterparts, Sec62-dependent signal

sequences are only modestly hydrophobic [30]. It is quite likely,

therefore, that globular cytosolic proteins may contain internal

regions of similar hydrophobicity, which upon folding form the

hydrophobic core of such proteins. Clearly, it is critical that these

proteins do not translocate into the ER and become mis-sorted.

Entirely consistent with this idea, it has been shown that randomly

selected regions of the mature domains of both CPY and invertase

(Suc2) can promote translocation, albeit inefficiently, when

positioned at the N-terminus [54,55].

A requirement for a free N-terminus proximal to the

hydrophobic region could provide a mechanism to prevent

internal regions of non-secretory proteins engaging the transloca-

tion machinery. Modification of the N-termini of cytosolic proteins

would also help prevent mis-sorting.

Internal ER targeting sequences of course exist, but they tend to

be trans-membrane domains which act as signal anchor sequences;

hence they are much more hydrophobic and thus promote

targeting via the SRP pathway [30].

In summary, our finding that N-terminal processing inhibits ER

translocation of secretory proteins identifies a non-acetylated N-

terminus as a hitherto unappreciated yet general feature of signal

sequences, which is necessary to promote efficient targeting of

substrates to the ER translocon.

Materials and Methods

Bioinformatics
The set of S. cerevisiae signal sequence-containing proteins was

obtained from the signal peptide database (SPdb) v 5.1 [56]. This

set of 291 sequences was manually filtered for duplicates, dubious

Figure 4. Protein N-acetylation inhibits ER translocation both in vivo and in vitro. (A) Schematic of wild-type and P2 signal sequence
mutants of Pdi1p and preproa-factor. Position of N-glycosylation (y) and signal peptidase cleavage (Q) sites are indicated. (B) Wild-type and
indicated mutants of myc-tagged Pdi1p and ppaF were expressed in wild-type (Dpep4) or sec61-3 strains, and treated, where indicated, with
Tunicamycin (Tu). Steady-state levels of protein were determined by preparation of cell extracts from these strains and analysis by Western blot with
anti-myc antibodies. (C) Wild-type (MR) and MS forms of lysine-less ppaF (where all lysines had been mutated to arginine) were translated in vitro,
then incubated with yeast microsomes (yRM). Position of non-translocated (ppaF) and signal-sequence cleaved, glycosylated (g-paF) are indicated.
(D) Lysine-less forms of both wild-type (MR) and MS ppaF were translated in vitro in the presence of either [35S] methionine or [14C] acetyl-CoA and
immuno-precipitated with anti-ppaF antibodies before analysis by either scintillation counting or SDS-PAGE. Error bars represent standard deviation;
three asterisks indicate p,0.001 according to the two-tailed student’s t test. (E) Wild-type (MR) and MS ppaF with lysine residues at positions 5 and 12
were translated in vitro in the presence of [35S] methionine and TDBA-lysyl-tRNA. Targeting to microsomes was performed in the absence of ATP and
then cross-linking induced by uv-irradiation. Where indicated, samples were denatured and immuno-precipitated with Sec61 antisera.
doi:10.1371/journal.pbio.1001073.g004
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ORFs (as defined by SGD), and proteins known to be localized to

mitochondria, to yield a final filtered set of 277 ORFs. For a

complete list of ORFs, see Table S1. The P2 amino acid frequency

distribution did not differ significantly between the filtered and

unfiltered sets (x2 = 5.17, 19 df). Graphical and statistical analysis

was performed using Prism 4.0 (GraphPad). MetAP cleavage was

assumed for P2 residues A, C, G, P, S, V, and T [11,12]. The yeast

cytosolic dataset (Table S2) was generated by random selection

from SGD of proteins with known cytosolic localization.

Prediction of N-acetylation was performed as described previously

[2]; where appropriate, the P3 residue was also taken into

consideration. MN, which is only predicted to lead to N-

acetylation in 55% of cases [2], was scored as acetylated. Human

and Caenorhabditis elegans signal sequence datasets were also

obtained from the signal peptide database (SPdb) v5.1 [56].

Drosophila melanogaster and Arabidopsis thaliana datasets were obtained

Figure 5. An SRP-dependent precursor is refractory to N-acetylation. (A) Schematic of wild-type OPY (CPY with the endogenous signal
sequence replaced by that of Ost1) and corresponding P2 signal sequence mutants. (B) Wild-type and mutant OPY translocation in vivo was
monitored by pulse-labelling and immunoprecipitation as in Figure 2B. (C) Lysine-less wild-type (MR) and MS opaF (ppaF with the signal sequence
replaced with that of Ost1p and all lysines mutated to arginine) were translated in vitro in the presence of [35S] methionine, denatured, and modified
with amine-reactive sulfo-NHS-SS-biotin. Biotinylated proteins were re-isolated on immobilized-streptavidin and analysed by SDS-PAGE and
phosphorimaging.
doi:10.1371/journal.pbio.1001073.g005
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from the signal peptide website (www.signalpeptide.de, accessed

March 2010). Peak hydrophobicity was determined by Kyte-

Doolittle using a window size of 11 [30,57].

Yeast Strains
Yeast strains in this study are listed in Table S7. GFY3 was

constructed by mating Dpep4 and Dprc1 strains, sporulation of the

diploid, and selection of tetrads, which had three G418-resistant

spores; spores were scored for null mutations by PCR and western

blotting. GFY7 was made by PCR amplification of the pFA6a-

His3MX6 module [58] with appropriate primers (Table S8); the

PCR product was used to transform GFY3 and His+ colonies

selected. GFY11 and GFY12 were made by PCR amplification of

pAG26 [59] with appropriate primers (Table S8); the PCR

products were used to transform Dprc1 followed by selection on

Hygromycin B. All deletions were confirmed by PCR. Yeast

strains were grown in either YPD (1% yeast extract, 2% peptone,

and 2% glucose) or YNB (0.67% yeast nitrogen base, 2% glucose,

and appropriate supplements) at 30uC, with the exception of

pulse-labelling of MWY63 (sec61-3), which was grown at 30uC,

then shifted to 17uC for 2 h.

Plasmid Construction
The constructs which express ppCPY and ppOPY with position

2 insertion mutations of the signal sequence listed in Table S9

were made using the respective pairs of primers (Table S8) to

perform site-directed mutagenesis of pMW346 or pOPY,

respectively. pGF22, the PsiI/SphI fragment of pA11-k5, was

cloned into pEH3 to replace this portion of wild-type ppaF and

thus making a lysine-free ppaF. pGF24 and pGF25 were

constructed by PCR (Table S9) of the Ost1 signal sequence from

pOPY and pOPY-S, respectively. The PCR products were

digested with EcoRI/HincII and cloned into pGF23 (Table S9) to

replace the ppaF signal sequence with that of Ost1 or the serine

mutant version, respectively. PDI1 was amplified from genomic

DNA with appropriate primers (Table S8) that introduce a single

C-terminal c-myc-tag. The PCR products were digested with PsiI/

BamHI and were then ligated into BstZ171/BamHI sites of

pMW346, placing the PDI1-myc ORF under the control of the

PRC1 promotor. pPPaF-2myc constructs were generated in a

similar manner except that they contain two c-myc-tags and the

PCR products generated were digested with BstZ171/BamHI.

In Vivo Pulse-Labelling
Yeast cells expressing wild-type CPY or signal sequence mutants

(Table S7) were grown in YNB medium with appropriate

supplements to an OD600nm = 0.2, where stated cells were treated

with 3 mM Fumagillin (Fluorochem) for 30 min at 30uC prior to

radio-labelling. Pulse-labelling was initiated by addition of 10 mCi

of [35S] Methionine/Cysteine mix (Perkin Elmer) per OD600nm

units of cells for 5 min at 30uC (20 min at 17uC for sec61-3).

Labelling was terminated by addition of ice cold sodium azide to a

final concentration of 20 mM. For each sample 5 or 10 OD600

units of cells were harvested.

Denaturing Immunoprecipitation
Radiolabelled yeast cells were spheroplasted prior to addition of

lysis buffer (1% SDS, 50 mM Tris-HCl, pH 7.4, and 5 mM

EDTA) and then incubated at 95uC. Samples were then diluted

with 5 volumes of immuno-precipitation buffer (62.5 mM Tris-

HCl, pH 7.4, 1.25% (v/v) Triton-X-100, 190 mM NaCl,

6.25 mM EDTA), pre-cleared for 1 h, and then antiserum (anti-

Figure 6. A bias against N-terminal processing of signal sequences is conserved across eukaroytes. Predicted frequency of an
unprocessed initiating methionine in signal sequences from S. cerevisaie (n = 277), C. elegans (n = 378), Drosophila (n = 448), human (n = 595), and
Arabidopsis (n = 500) compared to the respective proteomes as a whole [2]. For complete datasets, see Tables S5 and S6.
doi:10.1371/journal.pbio.1001073.g006
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CPY or anti-aF [60,61]) added to the supernatant. After 1 h,

immune complexes were recovered with Protein A sepharose for a

further hour and then washed extensively prior to elution with

SDS-PAGE sample buffer. Samples were then analysed by SDS-

PAGE and visualised either by phosphorimaging or autoradiog-

raphy. Quantification was performed with Aida image-analyzer

software (Raytek). Subsequent statistical analysis was performed

using Prism 4.0 (GraphPad). Samples for scintillation counting

were dissociated from the sepharose with 3% SDS for 5 min at

95uC. Dissociated protein was dried onto Whatman glass GF/A

filter discs and placed in 4.5 mL of scintillant and counted in a

Tricarb 2100TR liquid scintillation counter (Packard).

In Vitro Transcription and Translation
Templates for transcription of various ppaF mRNAs were

generated by PCR from plasmids pEH3 or pGF22 using

appropriate primers (Table S8) and transcription carried out with

SP6 polymerase. Transcriptions of OpaF mRNAs were from

pGF24 or pGF25 for MR and MS OpaF, respectively, and were

carried out with T7 polymerase. Translations were performed in

rabbit reticulocyte lysate system (Promega) for 30 min with the

inclusion of either 2.04 mCi [35S] Methionine or 0.04 mCi 1-[14C]-

Acetyl Coenzyme A (Perkin Elmer) per 10 mL of reaction.

Translation was terminated by addition of 2 mM cycloheximide.

Co-translational translocation of DHC-aF into yeast microsomes

was performed using translation extracts from a strain over-

expressing SRP, as described previously [42].

Yeast Microsomes and Translocation Assays
Preparation of yeast microsomes from a Dpep4 strain was carried

out as previously described [62]. For translocation assays; 10 mL of

translation reaction was incubated with 2 mL microsomes for

20 min at 30uC.

Photocross-Linking
Wild-type and MS K5K14ppaF were translated in rabbit

reticulocyte lysate as above but in the presence of e-4-(3-trifluoro-

methyldiazirino) benzoic acid (TDBA)-lysyl-tRNA and then used for

photocross-linking assays as described [63]. Briefly, translations were

terminated with 2 mM puromycin for 10 min at 30uC, and then

treated with 0.5 mg/mL RNase A for 5 min on ice prior to depletion

of ATP from the translation reaction and yeast microsomes by

treatment with hexokinase/glucose. The microsomes and translation

reaction were then combined, allowing targeting to occur for 15 min

at 30uC. Microsomes were re-isolated by centrifugation and

resuspended in membrane storage buffer. Samples were irradiated

with uv light (365 nm, 15 mW/cm2) twice for 5 s and then

precipitated with ethanol and analysed directly or following

denaturing immuno-precipitation with Sec61 antiserum [64].

N-Terminal Biotinylation
In vitro translations (20 mL scale), programmed with lysine-free

OpaF mRNAs, were performed as above in the presence of [35S]

methionine. Proteins were sequentially precipitated with ammo-

nium sulphate, then ethanol. The samples were then denatured in

PBS+1% SDS for 10 min at 65uC. Free N-termini were modified

by treatment with 1 mM sulpho-NHS-SS-Biotin (Pierce) for

20 min at 37uC. After removal of free biotinylation reagent by

acetone precipitation, samples were resuspended in PBS+0.1%

SDS and then biotinylated proteins recovered on immobilized-

streptavidin beads (Pierce). Beads were washed 5 times with

PBS+0.1% SDS and bound protein eluted in SDS-PAGE sample

buffer.

Supporting Information

Figure S1 Quantification of CPY translocation in the presence

and absence of MetAP activity. Pulse-labelling of WT (MK) CPY

and mutants with A, C, E, G, and S inserted at P2 was performed

in wild-type (MAP1 Dprc1 Dpep4) and Dmap1 (Dprc1 Dpep4) yeast

cells in the presence and absence of the Map2 inhibitor fumagillin.

CPY was immunoprecipitated and analysed by SDS-PAGE and

phosphorimaging (see Figure 2). Translocation efficiency was

determined from quantification of the relative amounts of

glycosylated-CPY and non-translocated pCPY. The data are

displayed graphically and represent the means of three indepen-

dent experiments. Error bars represent the standard error of the

mean. Asterisks represent statistically significant differences to the

untreated wild-type (MAP1) strain with p,0.01 (**) and p,0.001

(***) according to the two-way analysis of variance.

(TIF)

Figure S2 MS-pPdi1p is Methionine-cleaved and N-acetylated in

vivo. MS-pPdi1p-myc was affinity purified from yeast cells with

anti-myc antiserum and analysed by SDS-PAGE and staining with

Coomassie brilliant blue (Text S1). The MS-pPdi1p-myc precursor

band was excised, digested with elastase, and analysed by LC-MS/

MS (Text S1). Product ion spectra and associated fragmentation

tables, which list all the fragment ions observed (highlighted), are

shown for two N-terminal peptides. No peptides corresponding to

an unmodified N-terminus were detected in the analysis.

(TIF)

Figure S3 N-acetylation of ppaF blocks translocation in vitro.

Wild-type (MR), MSR, and MSRR ppaF were translated in vitro

in rabbit reticulocyte lysate and then incubated with yeast

microsomes (yRM). Position of non-translocated (ppaF) and

signal-sequence cleaved, glycosylated (g-paF) are indicated. (*)

Ubiquitinylated ppaF generated in the absence of microsomes.

(TIF)

Figure S4 DHC-aF translocation is insensitive to a P2 residue

that can promote N-acetylation. (A) DHC-aF comprises ppaF with

the hydrophobic core of the signal sequence replaced with that of

DPAP B, creating an SRP-dependent substrate. DHC-aF with the

endogenous P2 residue (MR) or with a serine inserted at position 2

(MS) were translated in vitro in a yeast extract supplemented with

[35S] methionine in the presence or absence of yeast microsomes

(yRM). Translated proteins were immunoprecipitated with anti-aF

antibodies prior to analysis by SDS-PAGE and phosphorimaging.

Positions of the unprocessed (DHCaF) and glycosylated (g-DHCaF)

forms of the protein are indicated. (B) WT and MS ppaF were

translated in yeast extract in the presence of [35S] methionine and

incubated with or without yeast microsomes.

(TIF)

Figure S5 Peak hydrophobicity analysis of Yeast Signal

Sequences. Mean peak hydrophobicity of yeast signal sequences

group according to their predicted N-terminal processing. Peak

hydrophobicity determined based on Kyte-Doolittle [57] with a

window size of 11. The ‘‘acetylated,’’ ‘‘methionine cleaved not

acetylated,’’ and ‘‘non-processed’’ groups had mean peak

hydrophobicities of 2.59360.0657 (SEM), 2.51860.0673, and

2.33360.0352, respectively. The ‘‘acetylated’’ and ‘‘cleaved not

acetylated’’ groups differed significantly from the ‘‘unprocessed’’

group (p,0.01 and p,0.05, respectively, one-way ANOVA with

Tukey’s multiple comparison test). The acetylated and cleaved

group were not significantly different. Note that only two signal

sequences of the acetylated group (,6%) had a peak hydropho-

bicity of less than 2, the threshold for interaction with SRP [30].

(TIF)
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